欢迎访问ic37.com |
会员登录 免费注册
发布采购

AGLE3000V2-FFGG896 参数 Datasheet PDF下载

AGLE3000V2-FFGG896图片预览
型号: AGLE3000V2-FFGG896
PDF下载: 下载PDF文件 查看货源
内容描述: IGLOOe低功耗快闪FPGA和Flash Freeze技术 [IGLOOe Low-Power Flash FPGAs with Flash Freeze Technology]
分类和应用:
文件页数/大小: 156 页 / 5023 K
品牌: ACTEL [ Actel Corporation ]
 浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第2页浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第3页浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第4页浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第5页浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第7页浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第8页浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第9页浏览型号AGLE3000V2-FFGG896的Datasheet PDF文件第10页  
IGLOOe Device Family Overview
Flash Advantages
Low Power
Flash-based IGLOOe devices exhibit power characteristics similar to those of an ASIC, making them
an ideal choice for power-sensitive applications. IGLOOe devices have only a very limited power-on
current surge and no high-current transition period, both of which occur on many FPGAs.
IGLOOe devices also have low dynamic power consumption to further maximize power savings;
power is even further reduced by the use of a 1.2 V core voltage.
Low dynamic power consumption, combined with low static power consumption and Flash*Freeze
technology, gives the IGLOOe device the lowest total system power offered by any FPGA.
Security
The nonvolatile, flash-based IGLOOe devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. IGLOOe devices incorporate FlashLock, which provides
a unique combination of reprogrammability and design security without external overhead,
advantages that only an FPGA with nonvolatile flash programming can offer.
IGLOOe devices utilize a 128-bit flash-based lock and a separate AES key to secure programmed
intellectual property and configuration data. In addition, all FlashROM data in IGLOOe devices can
be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher
encryption standard. AES was adopted by the National Institute of Standards and Technology
(NIST) in 2000 and replaces the 1977 DES standard. IGLOOe devices have a built-in AES decryption
engine and a flash-based AES key that make them the most comprehensive programmable logic
device security solution available today. IGLOOe devices with AES-based security allow for secure,
remote field updates over public networks such as the Internet, and ensure that valuable IP
remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a
programmed IGLOOe device cannot be read back, although secure design verification is possible.
Security, built into the FPGA fabric, is an inherent component of the IGLOOe family. The flash cells
are located beneath seven metal layers, and many device design and layout techniques have been
used to make invasive attacks extremely difficult. The IGLOOe family, with FlashLock and AES
security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable
IP is protected and secure, making remote ISP possible. An IGLOOe device provides the most
impenetrable security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,
the configuration data is an inherent part of the FPGA structure, and no external configuration
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based
IGLOOe FPGAs do not require system configuration components such as EEPROMs or
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB
area, and increases security and system reliability.
Live at Power-Up
The Actel flash-based IGLOOe devices support Level 0 of the LAPU classification standard. This
feature helps in system component initialization, execution of critical tasks before the processor
wakes up, setup and configuration of memory blocks, clock generation, and bus activity
management. The LAPU feature of flash-based IGLOOe devices greatly simplifies total system
design and reduces total system cost, often eliminating the need for CPLDs and clock generation
PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOOe device's
flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when
system power is restored. This enables the reduction or complete removal of the configuration
PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB
design. Flash-based IGLOOe devices simplify total system design and reduce cost and design risk
while increasing system reliability and improving system initialization time.
1 -2
v1.2