欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD744JR 参数 Datasheet PDF下载

AD744JR图片预览
型号: AD744JR
PDF下载: 下载PDF文件 查看货源
内容描述: 精密, 500 ns建立BiFET运算放大器 [Precision, 500 ns Settling BiFET Op Amp]
分类和应用: 运算放大器放大器电路光电二极管PC
文件页数/大小: 12 页 / 470 K
品牌: AD [ ANALOG DEVICES ]
 浏览型号AD744JR的Datasheet PDF文件第4页浏览型号AD744JR的Datasheet PDF文件第5页浏览型号AD744JR的Datasheet PDF文件第6页浏览型号AD744JR的Datasheet PDF文件第7页浏览型号AD744JR的Datasheet PDF文件第8页浏览型号AD744JR的Datasheet PDF文件第9页浏览型号AD744JR的Datasheet PDF文件第11页浏览型号AD744JR的Datasheet PDF文件第12页  
AD744
REF
OUT
GAIN
ADJUST
100
REF
IN
REF
GND
V
CC
0.1 F
100
BIPOLAR
OFFSET
ADJUST
20V SPAN
10V
19.95k
AD565A
9.96k
5k
10V SPAN
5k
DAC OUT
C
LEAD
10pF
+15V
1 F
20k
8k
AD744
1 F
0.1 F
–V
EE
POWER
GND
MSB
LSB
–15V
Figure 34.
±
10 V Voltage Output Bipolar DAC Using the AD744 as an Output Buffer
HIGH-SPEED OP AMP APPLICATIONS
AND TECHNIQUES
DAC Buffers (I-to-V Converters)
A HIGH-SPEED, 3 OP AMP INSTRUMENTATION
AMPLIFIER CIRCUIT
Digital-to-analog converters which use bipolar transistors to
switch currents into (or out of) their outputs can achieve very
fast settling times. The AD565A, for example, is specified to
settle to 12 bits in less than 250 ns, with a current output. How-
ever, in many applications, a voltage output is desirable, and it
would be useful – perhaps essential – that this I-to-V conversion
be accomplished without increasing the settling time or without
degrading the accuracy of the DAC.
Figure 34 is a schematic of an AD565A DAC using an AD744
output buffer. The 10 pF C
LEAD
capacitor compensates for the
DAC’s output capacitance, plus the 5.5 pF amplifier input
capacitance.
Figure 35 is an oscilloscope photo of the AD744’s output volt-
age with a +10 V to 0 V step applied; this corresponds to an all
“1s” to all “0s” code change on the DAC. Since the DAC is
The instrumentation amplifier circuit shown in Figure 36 can
provide a range of gains from unity up to 1000 and higher. The
circuit bandwidth is 4 MHz at a gain of 1 and 750 kHz at a gain
of 10; settling time for the entire circuit is less than 2
µs
to within 0.01% for a 10 V step, (G = 10).
While the AD744 is not stable with 100% negative feedback (as
when connected as a standard voltage follower), phase margin
and therefore stability at unity gain may be increased to an accept-
able level by placing the parallel combination of a resistor and a
small lead capacitor between each amplifier’s output and its
inverting input terminal.
The only penalty associated with this method is a small band-
width reduction at low gains. The optimum value for C
LEAD
may be determined from the graph of Figure 41. This technique
can be used in the circuit of Figure 36 to achieve stable opera-
tion at gains from unity to over 1000.
CIRCUIT GAIN =
20,000
+1
R
G
*1.5pF
– 20pF
(TRIM FOR BEST SETTLING TIME)
**10k
**10k
**10k
10k
5pF
**10k
A3
SENSE
AD744
–IN
A1
10k
7.5pF
R
G
7.5pF
AD744
A2
+IN
REFERENCE
Figure 35. Upper Trace: AD744 Output Voltage for
a +10 V to 0 V Step, Scale: 5 mV/div.
Lower Trace: Logic Input Signal, Scale: 5 V/div.
AD744
*VOLTRONICS
SP20 TRIMMER CAPACITOR OR EQUIVALENT
**RATIO
MATCHED 1% METAL FILM RESISTORS
+15V
1 F
COMM
1 F
–15V
–V
S
1 F
0.1 F
PIN 4
+V
S
1 F
0.1 F
PIN 7
EACH
AMPLIFIER
connected in the 20 V span mode, 1 LSB is equal to 4.88 mV.
Output settling time for the AD565/AD744 combination is less
than 500 ns to within a 2.44 mV, 1/2 LSB error band.
FOR OPTIONAL OFFSET ADJUSTMENT:
TRIM A1, A3 USING TRIM PROCEDURE SHOWN IN FIGURE 21.
Figure 36. A High Performance, 3 Op Amp
Instrumentation Amplifier Circuit
–10–
REV. C