欢迎访问ic37.com |
会员登录 免费注册
发布采购

ML4831CP 参数 Datasheet PDF下载

ML4831CP图片预览
型号: ML4831CP
PDF下载: 下载PDF文件 查看货源
内容描述: 电子镇流器控制器 [Electronic Ballast Controller]
分类和应用: 光电二极管电子控制器
文件页数/大小: 14 页 / 195 K
品牌: MICRO-LINEAR [ MICRO LINEAR CORPORATION ]
 浏览型号ML4831CP的Datasheet PDF文件第3页浏览型号ML4831CP的Datasheet PDF文件第4页浏览型号ML4831CP的Datasheet PDF文件第5页浏览型号ML4831CP的Datasheet PDF文件第6页浏览型号ML4831CP的Datasheet PDF文件第8页浏览型号ML4831CP的Datasheet PDF文件第9页浏览型号ML4831CP的Datasheet PDF文件第10页浏览型号ML4831CP的Datasheet PDF文件第11页  
ML4831  
Figure 3 shows the output configuration for the  
operational transconductance amplifiers.  
BALLAST OUTPUT SECTION  
The IC controls output power to the lamps via frequency  
modulation with non-overlapping conduction. This means  
that both ballast output drivers will be low during the  
discharging time t of the oscillator capacitor C .  
DIS  
T
CURRENT  
MIRROR  
OSCILLATOR  
IN  
OUT  
The VCO frequency ranges are controlled by the output of  
the LFB amplifier (Pin 6). As lamp current decreases, Pin 6  
rises in voltage, causing the C(T) charging current to  
decrease, thereby causing the oscillator frequency to  
decrease. Since the ballast output network attenuates high  
frequencies, the power to the lamp will be increased.  
gmV  
2
IN  
IQ +  
io = gmV  
IN  
gmV  
2
IN  
IQ –  
V
REF  
V
REF  
17  
IN  
OUT  
CURRENT  
MIRROR  
CONTROL  
I
CHG  
R(T)  
R(T)/C(T)  
+
8
Figure 3. Output Configuration  
A DC path to ground or VCC at the output of the  
1.25/3.75  
C(T)  
transconductance amplifiers will introduce an offset error.  
The magnitude of the offset voltage that will appear at the  
5 mA  
input is given by V = io/gm. For a io of 1uA and a gm  
OS  
of 0.08 µmhos the input referred offset will be 12.5mV.  
Capacitor C1 as shown in Figure 2 is used to block the  
DC current to minimize the adverse effect of offsets.  
Slew rate enhancement is incorporated into all of the  
operational transconductance amplifiers in the ML4831.  
This improves the recovery of the circuit in response to  
power up and transient conditions. The response to large  
signals will be somewhat non-linear as the  
transconductance amplifiers change from their low to high  
transconductance mode. This is illustrated in Figure 4.  
CLOCK  
= 3.75V  
t
DIS  
t
CHG  
V
TH  
iO  
C(T)  
V
TL  
= 1.25V  
V
Differential  
IN  
Figure 5. Oscillator Block Diagram and Timing  
0
Linear Slope Region  
The oscillator frequency is determined by the following  
equations:  
1
+ t  
F
=
OSC  
(3)  
t
CHG  
DIS  
and  
Figure 4. Transconductance Amplifier Characteristics  
V
V
+I R V  
REF CH  
T
TL  
t
= R C In  
T T  
(4)  
CHG  
+I R V  
TH  
REF CH  
T
7