欢迎访问ic37.com |
会员登录 免费注册
发布采购

AAT1149AIUV-1.875-T1 参数 Datasheet PDF下载

AAT1149AIUV-1.875-T1图片预览
型号: AAT1149AIUV-1.875-T1
PDF下载: 下载PDF文件 查看货源
内容描述: 2.2MHz的快速瞬态400毫安降压转换器 [2.2MHz Fast Transient 400mA Step-Down Converter]
分类和应用: 转换器
文件页数/大小: 17 页 / 1859 K
品牌: ANALOGICTECH [ ADVANCED ANALOGIC TECHNOLOGIES ]
 浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第5页浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第6页浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第7页浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第8页浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第10页浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第11页浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第12页浏览型号AAT1149AIUV-1.875-T1的Datasheet PDF文件第13页  
PRODUCT DATASHEET
AAT1
149A
SwitchReg
TM
Control Loop
The AAT1149A is a peak current mode step-down con-
verter. The current through the P-channel MOSFET (high
side) is sensed for current loop control, as well as short
circuit and overload protection. A fixed slope compensa-
tion signal is added to the sensed current to maintain
stability for duty cycles greater than 50%. The peak cur-
rent mode loop appears as a voltage-programmed cur-
rent source in parallel with the output capacitor.
The output of the voltage error amplifier programs the
current mode loop for the necessary peak switch current
to force a constant output voltage for all load and line
conditions. Internal loop compensation terminates the
transconductance voltage error amplifier output. For the
adjustable output, the error amplifier reference is fixed
at 0.6V.
2.2MHz Fast Transient 400mA Step-Down Converter
Applications Information
Inductor Selection
The step-down converter uses peak current mode con-
trol with slope compensation to maintain stability for
duty cycles greater than 50%. The output inductor value
must be selected so the inductor current down slope
meets the internal slope compensation requirements. A
2.2μH inductor is recommended for a 1.875V output.
Manufacturer’s specifications list both the inductor DC
current rating, which is a thermal limitation, and the
peak current rating, which is determined by the satura-
tion characteristics. The inductor should not show any
appreciable saturation under normal load conditions.
Some inductors may meet the peak and average current
ratings yet result in excessive losses due to a high DCR.
Always consider the losses associated with the DCR and
its effect on the total converter efficiency when selecting
an inductor.
The 2.2μH CBC2518 series inductor selected from Taiyo
Yuden has a 130mW DCR and a 890mA saturation cur-
rent rating. At full load, the inductor DC loss is 21mW
which gives a 2.8% loss in efficiency for a 400mA,
1.875V output.
Soft Start / Enable
Soft start limits the current surge seen at the input and
eliminates output voltage overshoot. When pulled low,
the enable input forces the AAT1149A into a low-power,
non-switching state. The total input current during shut-
down is less than 1μA.
Current Limit and
Over-Temperature Protection
For overload conditions, the peak input current is limit-
ed. To minimize power dissipation and stresses under
current limit and short-circuit conditions, switching is
terminated after entering current limit for a series of
pulses. Switching is terminated for seven consecutive
clock cycles after a current limit has been sensed for a
series of four consecutive clock cycles.
Thermal protection completely disables switching when
internal dissipation becomes excessive. The junction
over-temperature threshold is 140°C with 15°C of hys-
teresis. Once an over-temperature or over-current fault
conditions is removed, the output voltage automatically
recovers.
Input Capacitor
Select a 4.7μF to 10μF X7R or X5R ceramic capacitor for
the input. To estimate the required input capacitor size,
determine the acceptable input ripple level (V
PP
) and solve
for C. The calculated value varies with input voltage and
is a maximum when V
IN
is double the output voltage.
C
IN
=
V
V
O
· 1-
O
V
IN
V
IN
V
PP
- ESR
·
F
S
I
O
V
O
V
1
· 1
-
O
= for V
IN
= 2 · V
O
V
IN
V
IN
4
1
C
IN(MIN)
=
V
PP
- ESR
·
4
·
F
S
I
O
Always examine the ceramic capacitor DC voltage coef-
ficient characteristics when selecting the proper value.
For example, the capacitance of a 10μF, 6.3V, X5R ceram-
ic capacitor with 5.0V DC applied is actually about 6μF.
1149A.2008.08.1.1
www.analogictech.com
9