欢迎访问ic37.com |
会员登录 免费注册
发布采购

MCW03-05D12 参数 Datasheet PDF下载

MCW03-05D12图片预览
型号: MCW03-05D12
PDF下载: 下载PDF文件 查看货源
内容描述: DC / DC转换器3W ,在SIP -8封装的高功率密度 [DC/DC CONVERTER 3W, High Power Density in SIP-8 Package]
分类和应用: 转换器
文件页数/大小: 4 页 / 819 K
品牌: MINMAX [ MINMAX TECHNOLOGY CO., LTD. ]
 浏览型号MCW03-05D12的Datasheet PDF文件第1页浏览型号MCW03-05D12的Datasheet PDF文件第2页浏览型号MCW03-05D12的Datasheet PDF文件第3页  
®
Test Setup
MCW03 SERIES
DC/DC CONVERTER 3W,
SIP-Package
Peak-to-Peak Output Noise Measurement Test
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between
50 mm and 75 mm from the DC/DC Converter.
+Vin
Single Output
DC / DC
Converter
-Vin
-Out
+Out
Copper Strip
Cout
Copper Strip
Resistive
Scope
Load
+Vin
Dual Output
DC / DC
Converter
-Vin
+Out
Com.
-Out
Copper Strip
Cout
Copper Strip
Cout
Copper Strip
Scope
Scope
Resistive
Load
Remote On/Off
Negative logic remote on/off turns the module off during a logic high voltage on the remote on/off pin, and on during a logic low. To turn the power module on and off,
the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent.
A logic high is 2.7V to 15V. A logic low is under 0.6 VDC or open circuit, drops down to 0VDC by 2mV/℃. The maximum sink current at on/off terminal during a logic
low is 1 mA. The maximum allowable leakage current of the switch at on/off terminal= (under 0.6VDC or open circuit) is 1mA.
Maximum Capacitive Load
The MCW03 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up,
affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited
duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back
into its specified range.
Input Source Impedance
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In
applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.
Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0
at 100 KHz) capacitor of a 8.2µF for the 5V input device, a 3.3µF for the 12V input devices and a 1.5µF for the 24V and 48V devices.
+
DC Power
Source
-
+
Cin
-Vin
-Out
+Vin
DC / DC
Converter
+Out
Load
Technical Notes
Overcurrent Protection
Output Ripple Reduction
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is
recommended to use 3.3µF capacitors at the output.
+
DC Power
Source
-
-Vin
+Vin
Single Output
DC / DC
Converter
-Out
+Out
+
DC Power
Source
-
+Vin
+Out
Dual Output
DC / DC Com.
Converter
Cout
Cout
Load
Load
Cout
Load
-Vin
-Out
Thermal Considerations
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the
maximum temperature rating of the components inside the power module, the case temperature must be kept below 105℃. The derating curves are determined from
measurements obtained in a test setup.
Position of air velocity
probe and thermocouple
15mm / 0.6in
50mm / 2in
Air Flow
DUT
18, Sin Sin Road, An-Ping Industrial District, Tainan 702, Taiwan
Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail:
sales@minmax.com.tw
Minmax Technology Co., Ltd.
2013/01/24 REV:7
Page 4 of 4