欢迎访问ic37.com |
会员登录 免费注册
发布采购

1N5817 参数 Datasheet PDF下载

1N5817图片预览
型号: 1N5817
PDF下载: 下载PDF文件 查看货源
内容描述: 肖特基二极管1安培20 , 30和40伏 [SCHOTTKY BARRIER RECTIFIERS 1 AMPERE 20, 30 and 40 VOLTS]
分类和应用: 肖特基二极管
文件页数/大小: 6 页 / 100 K
品牌: MOTOROLA [ MOTOROLA ]
 浏览型号1N5817的Datasheet PDF文件第1页浏览型号1N5817的Datasheet PDF文件第3页浏览型号1N5817的Datasheet PDF文件第4页浏览型号1N5817的Datasheet PDF文件第5页浏览型号1N5817的Datasheet PDF文件第6页  
125  
115  
NOTE 1 — DETERMINING MAXIMUM RATINGS  
40 30 23  
Reverse power dissipation and the possibility of thermal runaway  
must be considered when operating this rectifier at reverse voltages  
°
above 0.1 V  
equation (1).  
. Proper derating may be accomplished by use of  
RWM  
105  
95  
T
=
=
=
(1)  
T
– R  
P
– R P  
θJA R(AV)  
A(max)  
J(max)  
θJA F(AV)  
where T  
A(max)  
Maximum allowable ambient temperature  
Maximum allowable junction temperature  
(125°C or the temperature at which thermal  
runaway occurs, whichever is lowest)  
Average forward power dissipation  
R
(°C/W) = 110  
JA  
θ
T
J(max)  
80  
60  
P
P
=
=
=
F(AV)  
85  
75  
Average reverse power dissipation  
Junction–to–ambient thermal resistance  
R(AV)  
R
θJA  
Figures 1, 2, and 3 permit easier use of equation (1) by taking re-  
verse power dissipation and thermal runaway into consideration. The  
figures solve for a reference temperature as determined by equation  
(2).  
3.0  
4.0  
5.0  
7.0  
10  
15  
20  
2.0  
V
, DC REVERSE VOLTAGE (VOLTS)  
R
Figure 1. Maximum Reference Temperature  
1N5817  
T
R
= T  
– R P  
J(max)  
Substituting equation (2) into equation (1) yields:  
= T – R P  
θJA F(AV)  
Inspection of equations (2) and (3) reveals that T is the ambient  
temperature at which thermal runaway occurs or where T = 125°C,  
when forward power is zero. The transition from one boundary condi-  
tion to the other is evident on the curves of Figures 1, 2, and 3 as a  
differenceintherateofchangeoftheslopeinthevicinityof115°C. The  
dataofFigures1, 2, and3isbasedupondcconditions. Foruseincom-  
mon rectifier circuits, Table 1 indicates suggested factors for an equiv-  
alent dc voltage to use for conservative design, that is:  
θJA R(AV)  
(2)  
125  
115  
T
A(max)  
R
(3)  
R
40  
23  
30  
J
°
105  
95  
R
(°  
C/W) = 110  
80  
θ
JA  
60  
(4)  
V
= V x F  
in(PK)  
R(equiv)  
ThefactorFisderivedbyconsideringthepropertiesofthevariousrec-  
tifier circuits and the reverse characteristics of Schottky diodes.  
85  
EXAMPLE:FindT  
A(max)  
for1N5818operatedina12–voltdcsupply  
usingabridgecircuitwithcapacitivefiltersuchthatI  
=0.4A(I  
=
75  
DC  
F(AV)  
= 80°C/W.  
3.0  
4.0  
5.0  
7.0  
10  
15  
20  
30  
0.5 A), I  
/I  
= 10, Input Voltage = 10 V  
, R  
(FM) (AV)  
(rms) θJA  
V
, DC REVERSE VOLTAGE (VOLTS)  
R
Step 1. Find V  
Step 1. Find  
. Read F = 0.65 from Table 1,  
R(equiv)  
Figure 2. Maximum Reference Temperature  
1N5818  
V
= (1.41)(10)(0.65) = 9.2 V.  
R(equiv)  
Step 2. Find T from Figure 2. Read T = 109°C  
R
R
Step 1. Find @ V = 9.2 V and R  
= 80°C/W.  
R
F(AV)  
θJA  
from Figure 4. **Read P  
Step 3. Find P  
= 0.5 W  
F(AV)  
125  
115  
40  
I
(FM)  
30  
23  
@
= 10 and I  
= 0.5 A.  
F(AV)  
I
°
(AV)  
Step 4. Find T  
Step 4. Find T  
from equation (3).  
= 109 – (80) (0.5) = 69°C.  
A(max)  
A(max)  
105  
95  
R
(°C/W) = 110  
θ
JA  
**Values given are for the 1N5818. Power is slightly lower for the  
1N5817 because of its lower forward voltage, and higher for the  
1N5819.  
80  
60  
85  
75  
4.0  
5.0  
7.0  
10  
15  
20  
30  
40  
V
, DC REVERSE VOLTAGE (VOLTS)  
R
Figure 3. Maximum Reference Temperature  
1N5819  
Table 1. Values for Factor F  
Full Wave, Bridge  
Half Wave  
Circuit  
Full Wave, Center Tapped*†  
Load  
Resistive  
Capacitive*  
Resistive  
Capacitive  
Resistive  
1.0  
Capacitive  
Sine Wave  
Square Wave  
0.5  
1.3  
0.5  
0.65  
0.75  
1.3  
1.5  
0.75  
1.5  
0.75  
1.5  
*Note that V  
2.0 V .  
in(PK)  
Use line to center tap voltage for V  
.
R(PK)  
in  
2
Rectifier Device Data