欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • AD2S81AJD图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD2S81AJD 现货库存
  • 数量12500 
  • 厂家AD 
  • 封装28CDIP 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • AD2S81AJD图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • AD2S81AJD 现货库存
  • 数量3385 
  • 厂家ADI 
  • 封装DIP28 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • AD2S81AJD图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • AD2S81AJD 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装SBDIP-28P 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • AD2S81AJD【优势库存】图
  • 齐创科技(上海北京青岛)有限公司

     该会员已使用本站14年以上
  • AD2S81AJD【优势库存】 现货库存
  • 数量5000 
  • 厂家ADI代理 
  • 封装40CDIP 
  • 批号24+热销 
  • 中国区代理全新热卖原装正品
  • QQ:2394092314QQ:2394092314 复制
    QQ:792179102QQ:792179102 复制
  • 021-62153656 QQ:2394092314QQ:792179102
  • AD2S81AJD图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • AD2S81AJD 现货库存
  • 数量10000 
  • 厂家ADI(亚德诺) 
  • 封装28-CDIP(0.600,15.24mm) 
  • 批号22+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • AD2S81AJD图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD2S81AJD
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装CDIP-28 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • AD2S81AJD图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD2S81AJD
  • 数量16 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD2S81AJD图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • AD2S81AJD
  • 数量68000 
  • 厂家ADI/亚德诺 
  • 封装DIP-28 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • AD2S81AJD图
  • 集好芯城

     该会员已使用本站13年以上
  • AD2S81AJD
  • 数量17515 
  • 厂家ADI/亚德诺 
  • 封装DIP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • ad2s81ajd图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • ad2s81ajd
  • 数量5000 
  • 厂家ad 
  • 封装深圳原装现货0755-83975781 
  • 批号原厂原装 
  • QQ:767621813QQ:767621813 复制
    QQ:541766577QQ:541766577 复制
  • 0755-83975781 QQ:767621813QQ:541766577
  • AD2S81AJD图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD2S81AJD
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装CDIP-28 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD2S81AJD图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • AD2S81AJD
  • 数量100000 
  • 厂家AD 
  • 封装DIP 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • AD2S81AJD.图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • AD2S81AJD.
  • 数量8650 
  • 厂家√ 欧美㊣品 
  • 封装贴◆插 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • AD2S81AJD图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • AD2S81AJD
  • 数量12300 
  • 厂家ADI/亚德诺 
  • 封装DIP-28 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • AD2S81AJD图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD2S81AJD
  • 数量15862 
  • 厂家ADI 
  • 封装SBDIP-.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • AD2S81AJD图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • AD2S81AJD
  • 数量98622 
  • 厂家ADI/亚德诺 
  • 封装DIP-28 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • ad2s81ajd图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • ad2s81ajd
  • 数量5000 
  • 厂家ad 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • AD2S81AJD图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • AD2S81AJD
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装CDIP-28 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • AD2S81AJD图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD2S81AJD
  • 数量15862 
  • 厂家ADI 
  • 封装SBDIP-.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • AD2S81AJD图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • AD2S81AJD
  • 数量3275 
  • 厂家Analog Devices Inc. 
  • 封装28-CDIP(0.600,15.24mm) 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • AD2S81AJD图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • AD2S81AJD
  • 数量15300 
  • 厂家Analog Devices Inc. 
  • 封装28-CDIP(0.600,15.24mm) 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • AD2S81AJD图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD2S81AJD
  • 数量21351 
  • 厂家AD 
  • 封装CDIP28 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • AD2S81AJD图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • AD2S81AJD
  • 数量5300 
  • 厂家ADI 
  • 封装DIP28 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • AD2S81AJD图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • AD2S81AJD
  • 数量35917 
  • 厂家AD 
  • 封装CDIP28 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • AD2S81AJD图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • AD2S81AJD
  • 数量2015 
  • 厂家AD 
  • 封装SOP/DIP 
  • 批号19889 
  • ★一级代理AD原装现货,特价热卖!★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • AD2S81AJD图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • AD2S81AJD
  • 数量40000 
  • 厂家ADI(亚德诺) 
  • 封装CDIP-28 
  • 批号2年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • AD2S81AJD图
  • 深圳市意好科技有限公司

     该会员已使用本站15年以上
  • AD2S81AJD
  • 数量3550 
  • 厂家
  • 封装原厂 
  • 批号24+ 
  • 中华地区销售
  • QQ:2853107358QQ:2853107358 复制
    QQ:2853107357QQ:2853107357 复制
  • 0755-88608316 QQ:2853107358QQ:2853107357
  • AD2S81AJD图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • AD2S81AJD
  • 数量114 
  • 厂家ADI/亚德诺 
  • 封装CDIP 
  • 批号22+ 
  • ★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • AD2S81AJD图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • AD2S81AJD
  • 数量3715 
  • 厂家ADI 
  • 封装28-CDIP(0.600,15.24mm) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • AD2S81AJD图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • AD2S81AJD
  • 数量13000 
  • 厂家AD 
  • 封装DIP 
  • 批号24+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • AD2S81AJD图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • AD2S81AJD
  • 数量26980 
  • 厂家ADI 
  • 封装SBDIP-28P 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • AD2S81AJD图
  • 毅创腾(集团)有限公司

     该会员已使用本站16年以上
  • AD2S81AJD
  • 数量3000 
  • 厂家ADI 
  • 封装SBDIP-28P 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507168QQ:2355507168 复制
  • 86-755-83210801 QQ:2355507165QQ:2355507168

产品型号AD2S81AJD的概述

芯片AD2S81AJD的概述 AD2S81AJD是一款高性能的模拟到数字转换器(ADC),由Analog Devices公司生产。该芯片主要用于将模拟信号转换为数字信号,广泛应用于工业、自动化、通讯、医疗设备等多个领域。其设计之初旨在提高转换精度和速度,以支持各种需要高采样率的应用。 AD2S81AJD支持多种输入信号类型,能够满足不同传感器和控制系统的要求。该芯片内部集成了多种功能,如数字滤波和增益控制,使其在多种应用中表现出色。其适用的输入范围及性能,使其在现代工程项目中得到广泛使用,尤其是在运动控制和数字信号处理方面。 芯片AD2S81AJD的详细参数 AD2S81AJD具有一系列值得注意的技术参数,包括但不限于: - 转换精度:12位分辨率,提供高达4096个离散数字值。 - 输入范围:支持0至5V的模拟输入信号。 - 转换速度:具备每秒最多可进行10,000次转换的能力,适应...

产品型号AD2S81AJD的Datasheet PDF文件预览

Variable Resolution, Monolithic  
Resolver-to-Digital Converters  
a
AD2S81A/AD2S82A  
AD2S82A FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Monolithic (BiMOS ll) Tracking R/D Converter  
Ratiometric Conversion  
INTEGRATOR  
I/P  
DEMOD DEMOD  
I/P O/P  
Low Power Consumption: 300 mW Typ  
Dynamic Performance Set by User  
Velocity Output  
AD2S82A  
PHASE  
SENSITIVE  
DETECTOR  
INTEGRATOR  
O/P  
SIN I/P  
SIGNAL  
GND  
COS I/P  
ANALOG  
GND  
A1  
A2  
SEGMENT  
SWITCHING  
ESD Class 2 Protection (2,000 V Min)  
R-2R  
DAC  
AC ERROR  
O/P  
A3  
AD2S81A  
28-Lead DIP Package  
Low Cost  
RIPPLE  
CLK  
VCO I/P  
INHIBIT  
VCO O/P  
VCO DATA  
TRANSFER  
LOGIC  
16-BIT  
UP/DOWN COUNTER  
OUTPUT DATA LATCH  
16 DATA BITS  
+12V  
–12V  
AD2S82A  
44-Lead PLCC Package  
10-, 12-, 14- and 16-Bit Resolution Set by User  
High Max Tracking Rate 1040 RPS (10 Bits)  
VCO Output (Inter LSB Output)  
Data Complement Facility  
COMP  
+5V  
DATA  
LOAD  
DIGITAL  
GND  
BUSY DIR  
SC2  
SC1 ENABLE  
BYTE  
SELECT  
Industrial Temperature Range  
An analog signal proportional to velocity is also available and  
can be used to replace a tachogenerator.  
APPLICATIONS  
DC Brushless and AC Motor Control  
Process Control  
Numerical Control of Machine Tools  
Robotics  
Axis Control  
PRODUCT HIGHLIGHTS  
Monolithic. A one-chip solution reduces the package size re-  
quired and increases the reliability.  
Resolution Set by User. Two control pins are used to select  
the resolution of the AD2S82A to be 10, 12, 14 or 16 bits al-  
lowing the user to use the AD2S82A with the optimum resolu-  
tion for each application.  
GENERAL DESCRIPTION  
The AD2S82A is a monolithic 10-, 12-, 14- or 16-bit tracking  
resolver-to-digital converter contained in a 44-lead J leaded  
PLCC package. Two extra functions are provided in the new  
surface mount package–COMPLEMENT and VCO output.  
Ratiometric Tracking Conversion. Conversion technique  
provides continuous output position data without conversion  
delay and is insensitive to absolute signal levels. It also provides  
good noise immunity and tolerance to harmonic distortion on  
the reference and input signals.  
The AD2S81A is a monolithic 12-bit fixed resolution tracking  
resolver-to-digital converter packaged in a 28-lead DIP.  
The converters allow users to select their own dynamic performance  
with external components. This allows the users great flexibility in  
defining the converter that best suits their system requirements.  
The AD2S82A allows users to select the resolution to be 10, 12,  
14 or 16 bits and to track resolver signals rotating at up to 1040  
revs per second (62,400 rpm) when set to 10-bit resolution.  
Dynamic Performance Set by the User. By selecting exter-  
nal resistor and capacitor values the user can determine band-  
width, maximum tracking rate and velocity scaling of the  
converter to match the system requirements. The external com-  
ponents required are all low cost, preferred value resistors and  
capacitors, and the component values are easy to select using  
the simple instructions given.  
The AD2S81A and AD2S82A convert resolver format input  
signals into a parallel natural binary digital word using a ratio-  
metric tracking conversion method. This ensures high-noise  
immunity and tolerance of lead length when the converter is  
remote from the resolver.  
Velocity Output. An analog signal proportional to velocity is  
available and is linear to typically one percent. This can be used  
in place of a velocity transducer in many applications to provide  
loop stabilization in servo controls and velocity feedback data.  
The output word is in a three-state digital logic form available in  
two bytes on the 16 output data lines for the AD2S82A and on  
eight output data lines for the AD2S81A. BYTE SELECT,  
ENABLE and INHIBIT pins ensure easy data transfer to 8- and  
16-bit data buses, and outputs are provided to allow for cycle or  
pitch counting in external counters.  
Low Power Consumption. Typically only 300 mW.  
MODELS AVAILABLE  
Information on the models available is given in the Ordering  
Guide.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
(@ T = +25؇C, unless otherwise noted)  
AD2S81A/AD2S82A–SPECIFICATIONS  
A
AD2S81A  
AD2S82A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Units  
SIGNAL INPUTS  
Frequency  
400  
1.8  
20,000  
2.2  
50  
20,000  
2.2  
Hz  
V rms  
nA  
MΩ  
V pk  
Voltage Level  
2.0  
60  
1.8  
2.0  
60  
Input Bias Current  
Input Impedance  
Maximum Voltage  
150  
150  
1.0  
1.0  
±8  
±8  
REFERENCE INPUT  
Frequency  
400  
1.0  
20,000  
8.0  
150  
50  
20,000  
8.0  
150  
Hz  
Voltage Level  
1.0  
V pk  
nA  
Input Bias Current  
Input Impedance  
60  
60  
1.0  
1.0  
MΩ  
CONTROL DYNAMICS  
Repeatability  
Allowable Phase Shift  
Tracking Rate  
1
1
LSB  
Degrees  
rps  
(Signals to Reference)  
10 Bits  
–10  
+10  
–10  
+10  
1040  
260  
65  
12 Bits  
260  
rps  
14 Bits  
16 Bits  
User Selectable  
rps  
rps  
16.25  
Bandwidth1  
ACCURACY  
Angular Accuracy  
H
؎22 + 1 LSB arc min  
J
؎30 + 1 LSB  
؎8 + 1 LSB  
؎4 + 1 LSB  
؎2 + 1 LSB  
arc min  
arc min  
arc min  
K
L
Monotonicity  
Guaranteed Monotonic  
Missing Codes (16-Bit Resolution) J, K  
L
4
1
Codes  
Code  
VELOCITY SIGNAL  
Linearity  
Over Full Range  
±1  
؎3  
±2  
6
±1  
؎3  
±2  
6
% FSD  
% FSD  
mV  
µV/°C  
% FSD  
V
Reversion Error  
DC Zero Offset2  
DC Zero Offset Tempco  
Gain Scaling Accuracy  
Output Voltage  
Dynamic Ripple  
Output Load  
–22  
–22  
؎10  
±10.5  
1.5  
؎10  
±10.5  
1.5  
1 mA Load  
Mean Value  
±8  
±9  
±8  
±9  
% rms O/P  
kΩ  
1.0  
1.0  
INPUT/OUTPUT PROTECTION  
Analog Inputs  
Analog Outputs  
Overvoltage Protection  
Short Circuit O/P Protection  
±8  
±8  
±8  
±8  
V
mA  
±5.6  
±10.4  
±5.6  
±10.4  
DIGITAL POSITION  
Resolution  
Output Format  
Load  
10, 12, 14 and 16  
Bidirectional Natural Binary  
3
3
LSTTL  
ns  
INHIBIT3  
Sense  
Logic LO to Inhibit  
Time to Stable Data  
600  
600  
ENABLE3  
Logic LO Enables Position  
Output. Logic HI Outputs in  
High Impedance State  
ENABLE/Disable Time  
35  
60  
110  
140  
35  
60  
110  
140  
ns  
ns  
BYTE SELECT3  
Sense  
Logic HI  
MS Byte DB1–DB8,  
(LS Byte DB9–DB16)4  
LS Byte DB1–DB8,  
(LS Byte DB9–DB16)4  
Logic LO  
Time to Data Available  
SHORT CYCLE INPUTS4, 5  
Internally Pulled High  
(100 k) to +VS  
SC1  
SC2  
0
0
1
1
0
1
0
1
10 Bit  
12 Bit  
14 Bit  
16 Bit  
DATA LOAD4, 5  
Sense  
Internally Pulled High (100 k)  
to +VS; Logic LO Allows  
150  
300  
ns  
Data to Be Loaded into the  
Counters from the Data Lines  
–2–  
REV. B  
AD2S81A/AD2S82A  
AD2S81A  
Typ  
AD2S82A  
Parameter  
Conditions  
Min  
200  
Max  
Min  
200  
Typ  
Max  
Units  
COMPLEMENT4, 5  
Internally Pulled High (100 k) to  
+VS; Logic LO to Activate; No  
Connect for Normal Operation  
BUSY3  
Sense  
Width  
Load  
Logic HI When Position O/P Changing  
Use Additional Pull-Up  
600  
1
600  
1
ns  
LSTTL  
DIRECTION3  
Sense  
Logic HI Counting Up  
Logic LO Counting Down  
Max Load  
3
3
LSTTL  
RIPPLE CLOCK3  
Sense  
Logic HI, All 1s to All 0s  
All 0s to All 1s  
Width  
Reset  
Load  
Dependent On Input Velocity  
Before Next Busy  
300  
2.0  
300  
2.0  
3
3
LSTTL  
V
DIGITAL INPUTS  
High Voltage, VIH  
INHIBIT, ENABLE  
DB1–DB16, Byte Select  
±VS = ±10.8 V, VL = 5.0 V  
INHIBIT, ENABLE  
DB1–DB16, Byte Select  
±VS = ±13.2 V, VL = 5.0 V  
Low Voltage, VIL  
0.8  
0.8  
V
DIGITAL INPUTS  
High Current, IIH  
INHIBIT, ENABLE  
DB1–DB16  
±VS = ±13.2 V, VL = 5.5 V  
INHIBIT, ENABLE  
DB1–DB16, Byte Select  
±VS = ±13.2 V, VL = 5.5 V  
؎100  
؎100  
؎100  
؎100  
µA  
µA  
Low Current, IIL  
DIGITAL INPUTS  
Low Voltage, VIL  
ENABLE = HI  
1.0  
1.0  
V
SC1, SC2, Data Load  
±VS = ±12.0 V, VL = 5.0 V  
ENABLE = HI  
Low Current, IIL  
–400  
–400  
µA  
SC1, SC2, Data Load  
±VS = ±12.0 V, VL = 5.0 V  
DIGITAL OUTPUTS  
High Voltage, VOH  
DB1–DB16; RIPPLE CLK, DIR  
±VS = ±12.0 V, VL = 4.5 V  
IOH = 100 µA  
DB1–DB16, RIPPLE CLK, DIR  
±VS = ±12.0 V, VL = 5.5 V  
IOL = 1.2 mA  
2.4  
2.4  
V
V
Low Voltage, VOL  
0.4  
0.4  
THREE-STATE LEAKAGE  
Current IL  
DB1–DB16 Only  
+VS = ±12.0 V, VL = 5.5 V  
VOL = 0 V  
+VS = ±12.0 V, VL = 5.5 V  
VOH = 5.0 V  
±100  
±100  
±100  
±100  
µA  
µA  
POWER SUPPLIES  
Voltage Levels  
+VS  
–VS  
+VL  
+10.8  
–10.8  
+5  
+13.2  
–13.2  
+13.2  
+10.8  
–10.8  
+5  
+13.2  
–13.2  
+13.2  
V
V
V
Current  
+IS  
±VS @ ±12 V  
±VS @ ±13.2 V  
±VL @ ±5.0 V  
؎12  
؎19  
؎0.5  
؎23  
؎30  
؎1.5  
؎12  
؎19  
؎0.5  
؎23  
؎30  
؎1.5  
mA  
mA  
mA  
+IS  
+IL  
NOTES  
1Refers to small signal bandwidth.  
2Output offset dependent on value for R6.  
3Refer to timing diagram.  
4AD2S82A only.  
5These pins are referenced to +VS (i.e., HI = +12 V, LO = 0 V).  
Specifications subject to change without notice.  
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test.  
–3–  
REV. B  
(typical @ +25؇C unless otherwise noted)  
AD2S81A/AD2S82A–SPECIFICATIONS  
AD2S81A  
AD2S82A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Units  
RATIO MULTIPLIER  
AC Error Output Scaling  
10 Bit  
12 Bit  
14 Bit  
16 Bit  
177.6  
44.4  
mV/Bit  
mV/Bit  
mV/Bit  
mV/Bit  
44.4  
11.1  
2.775  
PHASE SENSITIVE DETECTOR  
Output Offset Voltage  
Gain  
12  
12  
mV  
In Phase  
w.r.t. REF  
w.r.t. REF  
–0.882 –0.9  
–0.918  
0.04  
150  
–0.882 –0.9  
–0.918  
0.04  
V rms/V dc  
V rms/V dc  
nA  
MΩ  
V
In Quadrature  
Input Bias Current  
Input Impedance  
Input Voltage  
60  
60  
150  
1
1
±8  
±8  
INTEGRATOR  
Open-Loop Gain  
At 10 kHz  
57  
100  
1
60  
±7  
63  
57  
100  
1
63  
dB  
Dead Zone Current (Hysteresis)  
Input Offset Voltage  
Input Bias Current  
nA/LSB  
mV  
nA  
5
150  
5
150  
60  
Output Voltage Range  
±VS = ±10.8 V dc  
±VS = ±12 V dc  
V
VCO  
Maximum Rate  
VCO Rate  
1.0  
7.1  
7.1  
1.1  
7.9  
7.9  
1.0  
7.1  
7.1  
1.1  
7.9  
7.9  
MHz  
kHz/µA  
kHz/µA  
Positive DIR  
Negative DIR  
8.7  
8.7  
8.7  
8.7  
VCO Power Supply Sensitivity  
Increase  
+VS  
–VS  
+VS  
–VS  
+0.5  
–8.0  
–8.0  
+2.0  
1
70  
–1.22  
+0.5  
–8.0  
–8.0  
+2.0  
1
70  
–1.22  
%/V  
%/V  
%/V  
%/V  
mV  
nA  
nA/°C  
V
Decrease  
Input Offset Voltage  
Input Bias Current  
5
380  
5
380  
Input Bias Current Tempco  
Input Voltage Range  
Linearity of Absolute Rate  
Full Range  
Over 0% to 50% of Full Range  
Reversion Error  
Sensitivity of Reversion Error  
to Symmetry of Power Supplies  
VCO Output1, 2  
±8  
±8  
<2  
<2  
% FSD  
% FSD  
% FSD  
%/V of  
Asymmetry  
V/LSB  
<1  
<1  
1.5  
1.5  
±8  
±8  
±2.7  
±3.0  
±3.3  
POWER SUPPLIES  
Voltage Levels  
+VS  
–VS  
+VL  
Current  
+IS  
+IS  
+IL  
+10.8  
–10.8  
+5  
+13.2  
–13.2  
+13.2  
+10.8  
–10.8  
+5  
+13.2  
–13.2  
+13.2  
V
V
V
±VS @ ±12 V  
±VS @ ±13.2 V  
±VL @ ±5.0 V  
؎12  
؎19  
؎0.5  
؎23  
؎30  
؎1.5  
؎12  
؎19  
؎0.5  
؎23  
؎30  
؎1.5  
mA  
mA  
mA  
NOTES  
1The VCO output swings between ±3 V depending on the resolver direction.  
ORDERING GUIDE  
2AD2S82A only.  
Operating  
Specifications in boldface are tested on all production units at final electrical test.  
Specifications subject to change without notice.  
Temperature  
Ranges  
Package  
Options*  
Accuracy  
AD2S81AJD  
AD2S82AHP  
AD2S82AJP  
AD2S82AKP  
AD2S82ALP  
30 arc min  
22 arc min  
8 arc min  
4 arc min  
2 arc min  
0°C to +70°C  
D-28  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
P-44A  
P-44A  
P-44A  
P-44A  
*D = Ceramic DIP Package; P = Plastic Leaded Chip Carrier (PLCC) Package.  
ESD SENSITIVITY  
The AD2S81A and AD2S82A features an input protection circuit consisting of large “distributed”  
diodes and polysilicon series resistors to dissipate both high energy discharge (Human Body Model)  
and fast, low energy pulses (Charges Device Model).  
WARNING!  
T
he AD2S81A and AD2S82A is ESD protection Class II (2000 V min). Proper ESD precautions are  
strongly recommended to avoid functional damage or performance degradation. For further informa-  
tion on ESD precautions, refer to Analog Devices ESD Prevention Manual.  
ESD SENSITIVE DEVICE  
–4–  
REV. B  
AD2S81A/AD2S82A  
RECOMMENDED OPERATING CONDITIONS  
ABSOLUTE MAXIMUM RATINGS1 (with respect to GND)  
+VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +14 V dc  
2
Power Supply Voltage (+VS to –VS) . . . . . . . . . ±12 V dc ±10%  
Power Supply Voltage VL . . . . . . . . . . . . . . . . . . +5 V dc ±10%  
Analog Input Voltage (SIN and COS) . . . . . . . . 2 V rms ±10%  
Analog Input Voltage (REF) . . . . . . . . . . . . . . 1 V to 8 V peak  
Signal and Reference Harmonic Distortion . . . . . . . 10% (max)  
Phase Shift Between Signal and Reference . ±10 Degrees (max)  
Ambient Operating Temperature Range  
–VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –14 V dc  
+VL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +VS  
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +14 V to –VS  
SIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +14 V to –VS  
COS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +14 V to –VS  
Any Logical Input . . . . . . . . . . . . . . . . . . . –0.4 V dc to +VL dc  
Demodulator Input . . . . . . . . . . . . . . . . . . . . . . . +14 V to –VS  
Integrator Input . . . . . . . . . . . . . . . . . . . . . . . . . . +14 V to –VS  
VCO Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +14 V to –VS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . .860 mW  
Operating Temperature  
Commercial (JD) . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial (HP, JP, KP, LP) . . . . . . . . . . . . –40°C to +85°C  
PIN FUNCTION DESCRIPTIONS  
Mnemonic  
Description  
REFERENCE I/P  
DEMOD I/P  
AC ERROR O/P  
COS I/P  
Reference Signal Input  
Demodulator Input  
Ratio Multiplier Output  
Cosine Input  
Commercial (JD) . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial (HP, JP, KP, LP) . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature (All Grades) . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
ANALOG GND  
SIGNAL GND  
SIN I/P  
Power Ground  
Resolver Signal Ground  
Sine Input  
CAUTION  
1. Absolute Maximum Ratings are those values beyond which damage to the  
device may occur.  
+VS  
Positive Power Supply  
2. Correct polarity voltages must be maintained on the +VS and –VS pins.  
DB1–DB16  
+VL  
Parallel Output Data  
Logic Power Supply  
ENABLE  
Logic Hi-Output Data in High Impedance  
State Logic Lo Present Data to the Output Latches  
Logic Hi-Most Significant Byte to DB1–DB8  
Logic Lo-Most Significant Byte to DB1–DB8  
Logic Lo Inhibits Data Transfer to Output Latches  
Digital Ground  
Select Converter Resolution  
Logic Lo DB1–DB16 Inputs  
Logic Hi DB1–DB16 Outputs  
Converter Busy, Data Not Valid While Busy Hi  
Logic State Defines Direction of Input Signal Rotation  
Positive Pulse when Converter Output Changes from  
1s to All 0s or Vice Versa  
AD2S81A/AD2S82A PIN CONFIGURATIONS  
BYTE SELECT  
1
2
REFERENCE I/P  
DEMOD I/P  
AC ERROR O/P  
COS I/P  
28  
27  
26  
25  
DEMOD O/P  
INHIBIT  
DIGITAL GND  
SC1–SC2*  
DATA LOAD*  
INTEGRATOR O/P  
INTEGRATOR I/P  
VCO I/P  
3
4
5
24 –V  
23  
ANALOG GND  
SIN I/P  
S
BUSY  
DIR  
RIPPLE CLK  
6
RIPPLE CLK  
DIR  
AD2S81A  
+V  
S
7
22  
21  
20  
19  
18  
17  
16  
15  
TOP VIEW  
(Not to Scale)  
8
MSB DB1  
DB2  
BUSY  
9
DIGITAL GND  
INHIBIT  
–VS  
VCO I/P  
Negative Power Supply  
VCO Input  
10  
11  
12  
13  
14  
DB3  
INTEGRATOR I/P Integrator Input  
INTEGRATOR O/P Integrator Output  
DEMOD O/P  
COMPLEMENT*  
VCO O/P*  
DB4  
BYTE SELECT  
ENABLE  
DB5  
Demodulator Output  
Active Logic Lo  
VCO Output  
+V  
L
DB6  
DB7  
DB8 LSB  
*AD2S82A Only.  
Bit Weight Table  
Binary  
Bits (N)  
Resolution Degrees  
Minutes  
/Bit  
Seconds  
/Bit  
(2N)  
/Bit  
0
1
2
3
4
1
2
4
8
360.0  
180.0  
90.0  
45.0  
22.5  
21600.0  
10800.0  
5400.0  
2700.0  
1350.0  
1296000.0  
648000.0  
324000.0  
162000.0  
81000.0  
6
5
4
3
2
1
44 43 42 41 40  
PIN 1  
IDENTIFIER  
7
8
39  
38  
37  
36  
35  
34  
33  
SIN O/P  
+V  
–V  
S
RIPPLE CLK  
DIR  
S
16  
9
NC  
MSB DB1  
DB2  
10  
11  
12  
13  
BUSY  
5
6
7
8
9
32  
64  
128  
256  
512  
11.25  
5.625  
2.8125  
1.40625  
0.703125  
675.0  
337.5  
168.75  
84.375  
42.1875  
40500.0  
20250.0  
10125.0  
5062.5  
DATA LOAD  
AD2S82A  
TOP VIEW  
(Not to Scale)  
DB3  
COMPLEMENT  
SC2  
DB4  
DB5 14  
DB6 15  
DB7 16  
32 SC1  
31  
30  
29  
DIGITAL GND  
2531.25  
INHIBIT  
NC  
10  
11  
12  
13  
14  
1024  
2048  
4096  
8192  
116384  
0.3515625  
0.1757813  
0.0878906  
0.0439453  
0.0219727  
21.09375  
10.546875  
5.273438  
2.636719  
1.318359  
1265.625  
632.8125  
316.40625  
158.20313  
79.10156  
DB8  
17  
18 19 20 21 22 23 24 25 26 27 28  
NC = NO CONNECT  
15  
16  
17  
18  
32768  
65536  
131072  
0.0109836  
0.0054932  
0.0027466  
0.0013733  
0.659180  
0.329590  
0.164795  
0.082397  
39.55078  
19.77539  
9.88770  
4.94385  
262144  
REV. B  
–5–  
AD2S81A/AD2S82A  
CONNECTING THE CONVERTER  
in Figure 7 and described in the Connecting the Resolver  
section.  
The power supply voltages connected to +VS and –VS pins  
should be +12 V dc and –12 V dc and must not be reversed.  
The voltage applied to VL can be +5 V dc to +VS.  
The two signal ground wires from the resolver should be joined  
at the SIGNAL GROUND pin of the resolver to minimize the  
coupling between the sine and cosine signals. For this reason it  
is also recommended that the resolver is connected using indi-  
vidually screened twisted pair cables with the sine, cosine and  
reference signals twisted separately.  
It is recommended that the decoupling capacitors are connected  
in parallel between the power lines +VS, –VS and ANALOG GND  
adjacent to the converter. Recommended values are 100 nF  
(ceramic) and 10 µF (tantalum). Also capacitors of 100 nF and  
10 µF should be connected between +VL and DIGITAL GND  
adjacent to the converter.  
SIGNAL GND and ANALOG GND are connected internally.  
ANALOG GND and DIGITAL GND must be connected  
externally.  
When more than one converter is used on a card, then separate  
decoupling capacitors should be used for each converter.  
The external components required should be connected as  
shown in Figures 1a and 1b.  
The resolver connections should be made to the SIN and  
COS inputs, REFERENCE I/P and SIGNAL GND as shown  
REFERENCE I/P  
OFFSET ADJUST  
R9  
C3  
HP FILTER  
–12V  
+12V  
R3  
R8  
R2  
C2  
C1  
R1  
BANDWIDTH  
SELECTION  
R4  
C5  
DEMOD  
I/P  
AC ERROR  
O/P  
DEMOD  
O/P  
INTEGRATOR  
I/P  
C4  
R5  
A1  
A2  
SIN I/P  
PHASE-SENSITIVE  
DETECTOR  
INTEGRATOR  
O/P  
SEGMENT  
SWITCHING  
SIGNAL GND  
A3  
R-2R DAC  
VELOCITY  
SIGNAL  
COS I/P  
ANALOG GND  
AD2S82A  
R6  
RIPPLE CLK  
+12V  
TRACKING  
RATE  
SELECTION  
16-BIT UP/DOWN COUNTER  
OUTPUT DATA LATCH  
VCO  
DATA TRANSFER  
LOGIC  
VCO I/P  
–12V  
R7  
C6  
COMP  
DATA  
LOAD  
SC1 SC2  
ENABLE  
VCO DIR INHIBIT  
BUSY  
DIGITAL  
GND  
+5V  
BYTE  
SELECT  
O/P  
16 DATA BITS  
Figure 1a. AD2S82A Connection Diagram  
REFERENCE I/P  
OFFSET ADJUST  
R9  
C3  
R3  
HP FILTER  
–12V  
+12V  
R8  
R2  
C2  
C1  
BANDWIDTH  
SELECTION  
R4  
R1  
C5  
C4  
DEMOD  
I/P  
AC ERROR  
O/P  
DEMOD  
O/P  
INTEGRATOR  
I/P  
R5  
PHASE-SENSITIVE  
DETECTOR  
INTEGRATOR  
O/P  
A1  
A2  
SIN I/P  
VELOCITY  
SIGNAL  
SEGMENT  
SWITCHING  
SIGNAL GND  
A3  
R-2R DAC  
COS I/P  
AD2S81A  
R6  
TRACKING  
RATE  
SELECTION  
RIPPLE CLK  
+12V  
16-BIT UP/DOWN COUNTER  
OUTPUT DATA LATCH  
VCO  
DATA TRANSFER  
LOGIC  
VCO I/P  
–12V  
R7  
C6  
BYTE  
SELECT  
ENABLE  
BUSY  
DIGITAL  
GND  
+5V  
DIR INHIBIT  
8 DATA BITS  
Figure 1b. AD2S81A Connection Diagram  
–6–  
REV. B  
AD2S81A/AD2S82A  
CONVERTER RESOLUTION (AD2S82A ONLY)  
HARMONIC DISTORTION  
Two major areas of the AD2S82A specification can be selected  
by the user to optimize the total system performance. The reso-  
lution of the digital output is set by the logic state of the inputs  
SC1 and SC2 to be 10, 12, 14 or 16 bits and the dynamic char-  
acteristics of bandwidth and tracking rate are selected by the  
choice of external components.  
The amount of harmonic distortion allowable on the signal and  
reference lines is 10%.  
Square waveforms can be used but the input levels should be  
adjusted so that the average value is 1.9 V rms. (For example, a  
square wave should be 1.9 V peak). Triangular and sawtooth  
waveforms should have a amplitude of 2 V rms.  
The choice of the resolution will affect the values of R4 and R6  
which scale the inputs to the integrator and the VCO, respec-  
tively (see the Component Selection section). If the resolution is  
changed, then new values of R4 and R6 must be switched into  
the circuit.  
Note: The figure specified of 10% harmonic distortion is for  
calibration convenience only.  
POSITION OUTPUT  
The resolver shaft position is represented at the converter out-  
put by a natural binary parallel digital word.  
Note: When changing resolution under dynamic conditions, do  
it when the BUSY is low, i.e., when Data is not changing.  
As the digital position output of the converter passes through  
the major carries, i.e., all “1s” to all “0s” or the converse, a  
RIPPLE CLK logic output is initiated indicating that a revolu-  
tion or a pitch of the input has been completed.  
CONVERTER OPERATION  
When connected in a circuit such as shown in Figure 1, the  
AD2S81A/AD2S82A operates as a tracking resolver-to-digital  
converter and forms a type 2 closed loop system. The output  
will automatically follow the input for speeds up to the selected  
maximum tracking rate. No convert command is necessary as  
the conversion is automatically initiated by each LSB increment,  
or decrement, of the input. Each LSB change of the converter  
initiates a BUSY pulse.  
The direction of input rotation is indicated by the DIRECTION  
(DIR) logic output. This direction data is always valid in ad-  
vance of a RIPPLE CLK pulse and, as it is internally latched,  
only changing state (1 LSB min change) with a corresponding  
change in direction.  
Both the RIPPLE CLK pulse and the DIR data are unaffected  
by the application of the INHIBIT.  
The AD2S81A/AD2S82A is remarkably tolerant of input ampli-  
tude and frequency variation because the conversion depends  
only on the ratio of the input signals. Consequently there is no  
need for accurate, stable oscillator to produce the reference  
signal. The inclusion of the phase sensitive detector in the con-  
version loop ensures a high immunity to signals that are not  
coherent or are in quadrature with the reference signal.  
The static positional accuracy quoted is the worst case error that  
can occur over the full operating temperature excluding the  
effects of offset signals at the INTEGRATOR I/P (which can be  
trimmed out–see Figures 1a and 1b), and with the following  
conditions: input signal amplitudes are within 10% of the  
nominal; phase shift between signal and reference is less than  
10 degrees.  
SIGNAL CONDITIONING  
These operating conditions are selected primarily to establish a  
repeatable acceptance test procedure which can be traced to  
national standards. In practice, the AD2S81A/AD2S82A can be  
used well outside these operating conditions providing the above  
points are observed.  
The amplitude of the SINE and COSINE signal inputs should  
be maintained within 10% of the nominal values if full perfor-  
mance is required from the velocity signal.  
The digital position output is relatively insensitive to amplitude  
variation. Increasing the input signal levels by more than 10%  
will result in a loss in accuracy due to internal overload. Reduc-  
ing levels will result in a steady decline in accuracy. With the  
signal levels at 50% of the correct value, the angular error will  
increase to an amount equivalent to 1.3 LSB. At this level the  
repeatability will also degrade to 2 LSB and the dynamic re-  
sponse will also change, since the dynamic characteristics are  
proportional to the signal level.  
VELOCITY SIGNAL  
The tracking converter technique generates an internal signal at  
the output of the integrator (the INTEGRATOR O/P pin) that  
is proportional to the rate of change of the input angle. This is a  
dc analog output referred to as the VELOCITY signal.  
In many applications it is possible to use the velocity signal of  
the AD2S81A/AD2S82A to replace a conventional  
tachogenerator.  
The AD2S81A/AD2S82A will not be damaged if the signal  
inputs are applied to the converter without the power supplies  
and/or the reference.  
DC ERROR SIGNAL  
The signal at the output of the phase-sensitive detector (DEMOD  
O/P) is the signal to be nulled by the tracking loop and is, there-  
fore, proportional to the error between the input angle and the  
output digital angle. This is the dc error of the converter; and as  
the converter is a type 2 servo loop, it will increase if the output  
fails to track the input for any reason. It is an indication that the  
input has exceeded the maximum tracking rate of the converter  
or, due to some internal malfunction, the converter is unable to  
reach a null. By connecting two external comparators, this volt-  
age can be used as a “built-in test.”  
REFERENCE INPUT  
The amplitude of the reference signal applied to the converter’s  
input is not critical, but care should be taken to ensure it is kept  
within the recommended operating limits.  
The AD2S81A/AD2S82A will not be damaged if the reference  
is supplied to the converter without the power supplies and/or  
the signal inputs.  
REV. B  
–7–  
AD2S81A/AD2S82A  
COMPONENT SELECTION  
4. Maximum Tracking Rate (R6)  
The following instructions describe how to select the external  
components for the converter in order to achieve the required  
bandwidth and tracking rate. In all cases the nearest “preferred  
value’’ component should be used and a 5% tolerance will not  
degrade the overall performance of the converter. Care should  
be taken that the resistors and capacitors will function over the  
required operating temperature range. The components should  
be connected as shown in Figure 1.  
The VCO input resistor R6 sets the maximum tracking rate  
of the converter, and hence the velocity scaling as at the max  
tracking rate, the velocity output will be 8 V.  
Decide on your maximum tracking rate, “T,” in revolutions  
per second. Note that “T” must not exceed the maximum  
tracking rate or 1/16 of the reference frequency.  
6. 32 ×1010  
R6 =  
PC compatible software is available to help users select the optimum  
component values for the AD2S81A and AD2S82A, and display the  
transfer gain, phase and small step response.  
T × n  
where n = bits per revolution  
= 1,024 for 10 bits resolution  
= 4,096 for 12 bits  
= 16,384 for 14 bits  
For more detailed information and explanation, see the Circuit  
Functions and Dynamic Performance section.  
= 65,536 for 16 bits  
1. HF Filter (R1, R2, C1, C2)  
The function of the HF filter is to remove any dc offset and  
to reduce the amount of noise present on the signal inputs  
to the AD2S81A/AD2S82A, reaching the Phase Sensitive  
Detector and affecting the outputs. R1 and C2 may be omit-  
ted—in which case R2 = R3 and C1 = C3, calculated below—  
but their use is particularly recommended if noise from  
switch mode power supplies and brushless motor drive is  
present.  
5. Closed-Loop Bandwidth Selection (C4, C5, R5)  
a. Choose the closed-loop bandwidth (fBW) required  
ensuring that the ratio of reference frequency to band-  
width does exceed the following guidelines:  
Resolution  
Ratio of Reference Frequency/Bandwidth  
2.5 : 1  
10  
12  
14  
16  
4
6
: 1  
: 1  
Values should be chosen so that  
7.5 : 1  
Typical values may be 100 Hz for a 400 Hz reference fre-  
quency and 500 Hz to 1000 Hz for a 5 kHz reference  
frequency.  
15 kΩ ≤ R1 = R2 56 kΩ  
1
C1 = C2  
b. Select C4 so that  
2 π R1 fREF  
21  
and fREF = Reference Frequency  
(Hz)  
C4 =  
F
R6 × fBW  
2
This filter gives an attenuation of three times at the input to  
the phase sensitive detector.  
with R6 in and fBW, in Hz selected above.  
c. C5 is given by  
C5 = 5 × C4 F  
d. R5 is given by  
2. Gain Scaling Resistor (R4)  
If R1, C2 are fitted, then:  
EDC  
1
3
R4 =  
×
100 × 109  
4
R5 =  
2 × π × f BW × C5  
where 100 × 10–9 = current/LSB  
If R1, C2 are not fitted, then:  
6. VCO Phase Compensation  
The following values of C6 and R7 should be fitted.  
EDC  
R4 =  
C6 = 470 pF, R7 = 68 Ω  
100 ×10–9  
7. Offset Adjust  
where EDC = 160 × 10–3 for 10 bits resolution  
Offsets and bias currents at the integrator input can cause an  
additional positional offset at the output of the converter of  
1 arc minute typical, 5.3 arc minutes maximum. If this can be  
tolerated, then R8 and R9 can be omitted from the circuit.  
= 40 × 10–3 for 12 bits  
= 10 × 10–3 for 14 bits  
= 2.5 × 10–3 for 16 bits  
= Scaling of the DC ERROR in volts  
If fitted, the following values of R8 and R9 should be used:  
3. AC Coupling of Reference Input (R3, C3)  
Select R3 and C3 so that there is no significant phase shift at  
the reference frequency. That is,  
R8 = 4.7 M, R9 = 1 Mpotentiometer  
To adjust the zero offset, ensure the resolver is disconnected  
and all the external components are fitted. Connect the COS  
pin to the REFERENCE I/P and the SIN pin to the SIGNAL  
GND and with the power and reference applied, adjust the  
potentiometer to give all “0s” on the digital output bits.  
R3 = 100 kΩ  
1
C3 >  
F
R3 × fREF  
The potentiometer may be replaced with select on test resistors  
if preferred.  
with R3 in .  
–8–  
REV. B  
AD2S81A/AD2S82A  
DATA TRANSFER  
If the AD2S81A/AD2S82A is being used in a pitch and revolu-  
tion counting application, the ripple and busy will need to be  
gated to prevent false decrement or increment (see Figure 2).  
RIPPLE CLK is unaffected by INHIBIT.  
To transfer data the INHIBIT input should be used. The data  
will be valid 600 ns after the application of a logic “LO” to the  
INHIBIT. This is regardless of the time when the INHIBIT is  
applied and allows time for an active BUSY to clear. By using  
the ENABLE input the two bytes of data can be transferred  
after which the INHIBIT should be returned to a logic “HI”  
state to enable the output latches to be updated.  
+5V  
1k  
10k⍀  
TO COUNTER  
(CLOCK)  
1N414  
8
RIPPLE  
CLK  
BUSY Output  
2N3904  
0V  
The validity of the output data is indicated by the state of the  
BUSY output. When the input to the converter is changing, the  
signal appearing on the BUSY output is a series of pulses at  
TTL level. A BUSY pulse is initiated each time the input moves  
by the analog equivalent of one LSB and the internal counter is  
incremented or decremented.  
+5V  
5k1  
1N4148  
BUSY  
NOTE: DO NOT USE ABOVE CCT WHEN INHIBIT IS “LO.”  
Figure 2. Diode Transistor Logic Nand Gate  
INHIBIT Input  
The INHIBIT logic input only inhibits the data transfer from  
the up-down counter to the output latches and, therefore, does  
not interrupt the operation of the tracking loop. Releasing the  
INHIBIT automatically generates a BUSY pulse to refresh the  
output data.  
DIRECTION Output  
The DIRECTION (DIR) logic output indicates the direction of  
the input rotation. Any change in the state of DIR precedes the  
corresponding BUSY, DATA, and RIPPLE CLK updates. DIR  
can be considered as an asynchronous output and can make  
multiple changes in state between two consecutive LSB update  
cycles. This corresponds to a change in input rotation direction  
but less than 1 LSB.  
ENABLE Input  
The ENABLE input determines the state of the output data. A  
logic “HI” maintains the output data pins in the high impedance  
condition, and the application of a logic “LO” presents the data  
in the latches to the output pins. The operation of the ENABLE  
has no effect on the conversion process.  
COMPLEMENT (AD2S82A Only)  
The COMPLEMENT input is internally pulled to +12 V in the  
INACTIVE STATE. It is pulled down to DIGITAL GROUND  
(100 µA) to ACTIVATE.  
BYTE SELECT Input  
The BYTE SELECT input on the AD2S82A selects the byte of  
the position data to be presented at the data output DB1 to  
DB8. The least significant byte will be presented on data output  
DB9 to DB16 (with the ENABLE input taken to a logic “LO”)  
regardless of the state of the BYTE SELECT pin. Note that  
when the AD2S82A is used with a resolution less than 16 bits,  
the unused data lines are pulled to a logic “LO.” A logic “HI”  
on the BYTE SELECT input will present the eight most signifi-  
cant data bits on data output DB1 and DB8. A logic “LO” will  
present the least significant byte on data outputs 1 to 8, i.e.,  
data outputs 1 to 8 will duplicate data outputs 9 to 16.  
When used in conjunction with DATA LOAD, strobing DATA  
LOAD and COMPLEMENT pins to logic LO, will set the logic  
HIGH bits of the AD2S82A counter to a LO state. Those bits of  
the applied data which are logic LO will not change the corre-  
sponding bits in the AD2S82A counter:  
For Example:  
Initial Counter State  
Applied Data Word  
Counter State after Data Load  
1 0 1 0 1  
1 1 0 0 0  
1 1 0 0 0  
When the BYTE select pin is a logic “HI” on the AD2S81A, the  
most significant byte is presented on Pins 8 to 15 (with the  
ENABLE input taken to a logic “LO”). A logic “HI” presents  
the 4 least significant bits on Pins 8 to 11 and places a logic  
“LO” on Pins 12 to 15 (with the ENABLE input taken to a  
logic “LO”).  
Initial Counter State  
Applied Data Word  
Counter State after Data Load and Complement 0 0 1 0 1  
1 0 1 0 1  
1 1 0 0 0  
In order to read the output the following procedures should be  
followed:  
The operation of the BYTE SELECT has no effect on the con-  
version process of the converter.  
1. Place Outputs in high impedance (ENABLE = HI).  
2. Present data to pins.  
RIPPLE CLOCK  
As the output of the converter passes through the major carry,  
i.e., all “1s” to all “0s” or the converse, a positive going edge on  
the RIPPLE CLK output is initiated indicating that a revolu-  
tion, or a pitch, of the input has been completed.  
3. Pull DATA LOAD and COMPLEMENT pins to ground.  
4. Wait 100 ns.  
5. Remove data from pins.  
6. Remove outputs from high impedance state (ENABLE =  
LO).  
7. Read outputs.  
The minimum pulsewidth of the ripple clock is 300 ns. RIPPLE  
CLK is normally set high before a BUSY pulse and resets before  
the next positive going edge of the next consecutive pulse.  
The only exception to this is when DIR changes while the  
RIPPLE CLK is high. Resetting of the RIPPLE CLK will only  
occur if the DIR remains stable for two consecutive positive  
BUSY pulse edges.  
REV. B  
–9–  
AD2S81A/AD2S82A  
CIRCUIT FUNCTIONS AND DYNAMIC  
PERFORMANCE  
V
BUSY  
H
t1  
The AD2S81A/AD2S82A allows the user greater flexibility in  
choosing the dynamic characteristics of the resolver-to-digital  
conversion to ensure the optimum system performance. The  
characteristics are set by the external components shown in  
Figure 1, and the Component Selection section explains how to  
select desired maximum tracking rate and bandwidth values.  
The following paragraphs explain in greater detail the circuit of  
the AD2S81A/AD2S82A and the variations in the dynamic  
performance available to the user.  
RIPPLE  
CLK  
V
V
H
L
V
t2  
H
t3  
V
t4  
H
V
V
DATA  
H
L
t5  
V
L
INHIBIT  
V
H
t6  
V
H
t7  
Loop Compensation  
DIR  
V
L
The AD2S81A and AD2S82A (connected as shown in Figure  
1a and 1b) operates as a type 2 tracking servo loop where the  
VCO/counter combination and integrator perform the two inte-  
gration functions inherent in a type 2 loop.  
t8  
t9  
INHIBIT  
V
L
Additional compensation in the form of a pole/zero pair is re-  
quired to stabilize any type 2 loop to avoid the loop gain charac-  
teristic crossing the 0 dB axis with 180° of additional phase lag,  
as shown in Figure 6. This compensation is implemented by the  
integrator components (R4, C4, R5, C5).  
V
L
ENABLE  
V
t10  
H
V
Z
DATA  
t11  
V
L
V
BYTE  
SELECT  
L
V
H
The overall response of such a system is that of a unity gain  
second order low pass filter, with the angle of the resolver as the  
input and the digital position data as the output.  
V
H
DATA  
V
L
t12  
t13  
The AD2S81A/AD2S82A does not have to be connected as  
tracking converter, parts of the circuit can be used indepen-  
dently. This is particularly true of the Ratio Multiplier which  
can be used as a control transformer (see Application Note).  
PARAMETER  
TMIN  
200  
10  
TMAX  
600  
25  
CONDITION  
BUSY WIDTH VH–VH  
RIPPLE CLOCK VH TO BUSY VH  
t1  
t2  
A block diagram of the AD2S81A/AD2S82A is given in  
Figure 4.  
t3  
470  
16  
580  
45  
RIPPLE CLOCK VL TO NEXT BUSY VH  
BUSY VH TO DATA VH  
t4  
t5  
3
25  
BUSY VH TO DATA VL  
t6  
70  
140  
625  
670  
600  
110  
110  
140  
125  
INHIBIT VH TO BUSY VH  
t7  
485  
515  
MIN DIR VH TO BUSY VH  
t8  
MIN DIR VH TO BUSY VH  
t9  
INHIBIT VL TO DATA STABLE  
ENABLE VL TO DATA VH  
t10  
t11  
t12  
t13  
40  
35  
ENABLE VL TO DATA VL  
60  
BYTE SELECT VL TO DATA STABLE  
BYTE SELECT VH TO DATA STABLE  
60  
Figure 3. Digital Timing  
C5  
R5  
AC ERROR  
C4  
sin sin t  
R4  
PHASE-  
SENSITIVE  
DEMODULATOR  
RATIO  
MULTIPLIER  
A1 sin () sin t  
cos sin t  
INTEGRATOR  
R6  
CLOCK  
VCO  
VELOCITY  
DIRECTION  
DIGITAL  
Figure 4. AD2S81A/AD2S82A Functional Diagram  
–10–  
REV. B  
AD2S81A/AD2S82A  
Ratio Multiplier  
Phase Sensitive Demodulator  
The ratio multiplier is the input section of the AD2S81A/  
AD2S82A and compares the signal from the resolver input  
angle, θ, to the digital angle, φ, held in the counter. Any differ-  
ence between these two angles results in an analog voltage at  
the AC ERROR OUTPUT. This circuit function has histori-  
cally been called a “Control Transformer” as it was originally  
performed by an electromechanical device known by that name.  
The phase sensitive demodulator is effectively ideal and devel-  
ops a mean dc output at the DEMODULATOR O/P pin of  
±2 2  
π
×(DEMODULATOR I/P rms voltage)  
for sinusoidal signals in phase or antiphase with the reference  
(for a square wave the DEMODULATOR O/P voltage will  
equal the DEMODULATOR I/P). This provides a signal at the  
DEMODULATOR O/P which is a dc level proportional to the  
positional error of the converter.  
The AC ERROR signal is given by  
A1 sin (θ φ) sin ωt  
where ω = 2 π fREF  
DC Error Scaling = 160 mV/bit (10-bits resolution)  
fREF = reference frequency  
= 40 mV/bit (12-bits resolution)  
= 10 mV/bit (14-bits resolution)  
= 2.5 mV/bit (16-bits resolution)  
A1, the gain of the ratio multiplier stage is 14.5.  
So for 2 V rms inputs signals  
AC ERROR output in volts/(bit of error)  
When the tracking loop is closed, this error is nulled to zero  
unless the converter input angle is accelerating.  
360  
n
Integrator  
= 2 × sin  
Where n = bits per rev  
× A1  
The integrator components (R4, C4, R5, C5) are external to  
the AD2S81A/AD2S82A to allow the user to determine the  
optimum dynamic characteristics for any given application. The  
Component Selection section explains how to select compo-  
nents for a chosen bandwidth.  
= 1,024 for 10-bits resolution  
= 4,096 for 12 bits  
= 16,384 for 14 bits  
Since the output from the integrator is fed to the VCO INPUT,  
it is proportional to velocity (rate of change of output angle)  
and can be scaled by selection of R6, the VCO input resistor.  
This is explained in the Voltage Controlled Oscillator (VCO)  
section below.  
= 65,536 for 16 bits  
Giving an AC ERROR O/P  
= 178 mV/bit @ 10-bits resolution  
= 44.5 mV/bit @ 12 bits  
= 11.125 mV/bit @ 14 bits  
= 2.78 mV/bit @ 16 bits  
To prevent the converter from “flickering” (i.e., continually  
toggling by ±1 bit when the quantized digital angle, φ, is not an  
exact representation of the input angle, θ), feedback is internally  
applied from the VCO to the integrator input to ensure that the  
VCO will only update the counter when the error is greater than  
or equal to 1 LSB. In order to ensure that this feedback “hyster-  
esis” is set to 1 LSB the input current to the integrator must be  
scaled to be 100 nA/bit. Therefore,  
The ratio multiplier will work in exactly the same way whether  
the AD2S81A/AD2S82A is connected as a tracking converter or  
as a control transformer, where data is preset into the counters  
using the DATA LOAD pin.  
HF Filter  
The AC ERROR OUTPUT may be fed to the PSD via a simple  
ac coupling network (R2, C1) to remove any dc offset at this  
point. Note, however, that the PSD of the AD2S81A/AD2S82A  
is a wideband demodulator and is capable of aliasing HF noise  
down to within the loop bandwidth. This is most likely to hap-  
pen where the resolver is situated in particularly noisy environ-  
ments, and the user is advised to fit a simple HF filter R1, C2  
prior to the phase sensitive demodulator.  
DC Error Scaling (mV/bit )  
R4 =  
100 (nA/bit )  
Any offset at the input of the integrator will affect the accuracy  
of the conversion as it will be treated as an error signal and  
offset the digital output. One LSB of extra error will be  
added for each 100 nA of input bias current. The method of  
adjusting out this offset is given in the Component Selection  
section.  
The attenuation and frequency response of a filter will affect the  
loop gain and must be taken into account in deriving the loop  
transfer function. The suggested filter (R1, C1, R2, C2) is shown  
in Figure 1 and gives an attenuation at the reference frequency  
(fREF) of 3 times at the input to the phase sensitive demodulator.  
Voltage Controlled Oscillator (VCO)  
The VCO is essentially a simple integrator feeding a pair of dc  
level comparators. Whenever the integrator output reaches one  
of the comparator threshold voltages, a fixed charge is injected  
into the integrator input to balance the input current. At the  
same time the counter is clocking either up or down, dependent  
on the polarity of the input current. In this way the counter is  
clocked at a rate proportional to the magnitude of the input  
current of the VCO.  
Values of components used in the filter must be chosen to en-  
sure that the phase shift at fREF is within the allowable signal to  
reference phase shift of the converter.  
REV. B  
–11–  
AD2S81A/AD2S82A  
Figure 5 illustrates how the VCO output compensates for in-  
stances where, due to hysteresis, there is no change in the digital  
count output for 1 LSB change in input angle. The sum of the  
digital count output and VCO output equals the actual input  
angle.  
During the reset period the input continues to be integrated, the  
reset period is constant at 400 ns.  
The VCO rate is fixed for a given input current by the VCO  
scaling factor:  
= 7. 9 kHz / µA  
Transfer Function  
The tracking rate in rps per µA of VCO input current can be  
found by dividing the VCO scaling factor by the number of LSB  
changes per rev (i.e., 4096 for 12-bit resolution).  
By selecting components using the method outlined in the  
Component Selection section, the converter will have a critically  
damped time response and maximum phase margin. The  
Closed-Loop Transfer Function is given by:  
The input resistor R6 determines the scaling between the con-  
verter velocity signal voltage at the INTEGRATOR O/P pin and  
the VCO input current. Thus to achieve a 5 V output at 100 rps  
(6000 rpm) and 12-bit resolution the VCO input current must  
be:  
(100 × 4096)/(7900) = 51.8 µA  
Thus, R6 would be set to: 5/(51.8 × 10-–6) = 96 kΩ  
θOUT  
θIN  
14(1+ sN )  
(sN + 2.4)(sN + 3.4 sN + 5.8)  
=
2
where SN, the normalized frequency variable, is:  
2
π
s
SN =  
f BW  
The velocity offset voltage depends on the VCO input resistor,  
R6, and the VCO bias current and is given by  
and fBW is the closed loop 3 dB bandwidth (selected by the  
choice of external components).  
Velocity Offset Voltage = R6 × (VCO bias current )  
The temperature coefficient of this offset is given by  
Velocity Offset Tempco = R6 × (VCO bias current tempco)  
where the VCO bias current tempco is typically –1.22 nA/°C.  
The acceleration constant, KA, is given approximately by  
K A = 6 × ( f BW )2 sec2  
The normalized gain and phase diagrams are given in Figures  
6 and 7.  
The maximum recommended rate for the VCO is 1.1 MHz  
which sets the maximum possible tracking rate.  
12  
9
Since the minimum voltage swing available at the integrator  
output is ±8 V, this implies that the minimum value for R6 is  
57 k. As  
6
1. 1 × 106  
7. 9 × 103  
3
Max Current =  
MinValue R6 =  
= 139 µA  
= 57kΩ  
0
–3  
–6  
–9  
–12  
8
139 ×106  
VCO OUTPUT  
In order to overcome the “freeplay” inherent in a servo system  
using digitized position feedback, an analog output voltage is  
available representing the resolver shaft position within the least  
significant bit of digital angle output.  
0.02  
0.04  
0.1  
0.2  
0.4  
0
2
FREQUENCY – fBW  
Figure 6. AD2S81A/AD2S82A Gain Plot  
The converter updates the output if the error is an LSB or  
greater and the VCO output gives the positional error smaller  
than 1 LSB.  
180  
135  
90  
45  
0
INPUT  
ANGLE  
+LSB  
–45  
–90  
0
–LSB  
–135  
+3V  
–180  
VCO  
0.02  
0.04  
0.1  
0.2  
0.4  
0
2
OUTPUT  
FREQUENCY – fBW  
–3V  
Figure 7. AD2S81A/AD2S82A Phase Plot  
Figure 5.  
–12–  
REV. B  
AD2S81A/AD2S82A  
The small signal step response is shown in Figure 8. The time  
from the step to the first peak is t1 and the t2 is the time from  
the step until the converter is settled to 1 LSB. The times t1 and  
t2 are given approximately by  
Input Acceleration[LSB/sec2]  
Error in LSBs =  
KA[sec–2  
]
100[rev/sec2] × 212  
2.7×106  
=
= 0.15LSBs or 47.5seconds of arc  
1
t1 =  
f BW  
To determine the value of KA based on the passive components  
used to define the dynamics of the converter, the following  
should be used:  
5
R
t2 =  
×
f BW 12  
4.04 × 1011  
2n R6 R4 (C4 + C5)  
K A  
=
where R = resolution, i.e., 10, 12, 14 or 16.  
OUTPUT  
POSITION  
t2  
Where n = resolution of the converter  
R4, R6 in ohms  
C5, C4 in farads  
SOURCES OF ERRORS  
Integrator Offset  
Additional inaccuracies in the conversion of the resolver signals  
will result from an offset at the input to the integrator as it will  
be treated as an error signal. This error will typically be 1 arc  
minute over the operating temperature range.  
TIME  
t1  
A description of how to adjust from zero offset is given in the  
Component Selection section and the circuit required is shown  
in Figures 1a and 1b.  
Figure 8. AD2S81A/AD2S82A Small Step Response  
The large signal step response (for steps greater than 5 degrees)  
applies when the error voltage exceeds the linear range of the  
converter.  
Differential Phase Shift  
Phase shift between the sine and cosine signals from the resolver  
is known as differential phase shift and can cause static error.  
Some differential phase shift will be present on all resolvers as a  
result of coupling. A small resolver residual voltage (quadrature  
voltage) indicates a small differential phase shift. Additional  
phase shift can be introduced if the sine channel wires and the  
cosine channel wires are treated differently. For instance, differ-  
ent cable lengths or different loads could cause differential  
phase shift.  
Typically the converter will take three times longer to reach the  
first peak for a 179 degrees step.  
In response to a velocity step, the velocity output will exhibit  
the same time response characteristics as outlined above for the  
position output.  
ACCELERATION ERROR  
A tracking converter employing a type 2 servo loop does not  
suffer any velocity lag, however, there is an additional error due  
to acceleration. This additional error can be defined using the  
acceleration constant KA of the converter.  
The additional error caused by differential phase shift on the  
input signals approximates to  
Error = 0.53 a × b arc minutes  
where a = differential phase shift (degrees).  
b = signal to reference phase shift (degrees).  
Input Acceleration  
K A  
=
Error in Output Angle  
This error can be minimized by choosing a resolver with a small  
residual voltage, ensuring that the sine and cosine signals are  
handled identically and removing the reference phase shift (see  
Connecting the Resolver section). By taking these precautions  
the extra error can be made insignificant.  
The numerator and denominator must have consistent angular  
units. For example, if KA is in sec–2, then the input acceleration  
may be specified in degrees/sec2 and the error output in degrees.  
Angular measurement may also be specified using radians, min-  
utes of arc, LSBs, etc.  
Under static operating conditions phase shift between the refer-  
ence and the signal lines alone will not theoretically affect the  
converter’s static accuracy.  
KA does not define maximum input acceleration, only the error due  
to it’s acceleration. The maximum acceleration allowable before  
the converter loses track is dependent on the angular accuracy  
requirements of the system.  
However, most resolvers exhibit a phase shift between the signal  
and the reference. This phase shift will give rise under dynamic  
conditions to an additional error defined by:  
Angular Accuracy × KA = degrees/sec2  
KA can be used to predict the output position error for a given  
input acceleration. For example for an acceleration of 100 revs/  
sec2, KA = 2.7 × 106 sec–2 and 12-bit resolution.  
Shaft Speed (rps) × Phase Shift (Degrees)  
Reference Frequency  
REV. B  
–13–  
AD2S81A/AD2S82A  
Following the preceding precautions will allow the user to use  
the velocity signal in very noisy environments for example PWM  
motor drive applications. Resolver/converter error curves may  
exhibit apparent acceleration/deceleration at a constant velocity.  
This results in ripple on the velocity signal of frequency twice  
the input rotation.  
For example, for a phase shift of 20 degrees, a shaft rotation of  
22 rps and a reference frequency of 5 kHz, the converter will  
exhibit an additional error of:  
22×20  
0.088 degrees  
5000  
This effect can be eliminated by putting a phase shift in the  
reference to the converter equivalent to the phase shift in the  
resolver (see Connecting the Resolver section).  
CONNECTING THE RESOLVER  
The recommended connection circuit is shown in Figure 9.  
Note: Capacitive and inductive crosstalk in the signal and reference  
leads and wiring can cause similar problems.  
OSCILLATOR  
(e.g. OSC1758)  
C3  
VELOCITY ERRORS  
REF I/P  
1
2
3
4
5
6
7
The signal at the INTEGRATOR O/P pin relative to the ANA-  
LOG GND pin is an analog voltage proportional to the rate of  
change of the input angle. This signal can be used to stabilize  
servo loops or in the place of a velocity transducer. Although the  
conversion loop of the AD2S81A/AD2S82A includes a digital  
section, there is an additional analog feedback loop around the  
velocity signal. This ensures against flicker in the digital posi-  
tional output in both dynamic and static states.  
R3  
AD2S82A  
TWISTED PAIR  
SCREENED  
CABLE  
DIGITAL  
GND  
31  
COS I/P  
ANALOG  
GND  
SIGNAL  
GND  
S2  
R1  
S4  
S3  
SIN I/P  
A better quality velocity signal will be achieved if the following  
points are considered:  
R2  
S1  
RESOLVER  
1. Protection.  
POWER RETURN  
The velocity signal should be buffered before use.  
Figure 9. Connecting the AD2S82A to a Resolver  
2. Reversion error*  
The reversion error can be nulled by varying one supply rail  
relative to the other.  
In cases where the reference phase relative to the input signals  
from the resolver requires adjustment, this can be easily  
achieved by varying the value of the resistor R2 of the HF filter  
(see Figures 1a and 1b).  
3. Ripple and Noise.  
Noise on the input signals to the converter is the major cause of  
noise on the velocity signal. This can be reduced to a minimum  
if the following precautions are taken:  
Assuming that R1 = R2 = R and C1 = C2 = C  
1
The resolver is connected to the converter using separate  
twisted pair cable for the sine, cosine and reference signals.  
and Reference Frequency =  
2 π RC  
Care is taken to reduce the external noise wherever possible.  
by altering the value of R2, the phase of the reference relative to  
the input signals will change in an approximately linear manner  
for phase shifts of up to 10 degrees.  
An HF filter is fitted before the Phase-Sensitive Demodulator  
(as described in the section HF FILTER).  
Increasing R2 by 10% introduces a phase lag of 2 degrees. De-  
creasing R2 by 10% introduces a phase lead of 2 degrees.  
A resolver is chosen that has low residual voltage, i.e., a small  
signal in quadrature with the reference.  
Components are selected to operate the AD2S81A/AD2S82A  
with the lowest acceptable bandwidth.  
1
PHASE LEAD = ARC TAN  
C
PHASE LAG = ARC TAN 2 fRC  
2 fRC  
R
Feedthrough of the reference frequency should be removed  
by a filter on the velocity signal.  
R
C
Maintenance of the input signal voltages at 2 V rms will  
prevent LSB flicker at the positional output. The analog  
feedback or hysteresis employed around the VCO and the  
integrator is a function of the input signal levels (see Integra-  
tor section).  
Figure 10. Phase Shift Circuits  
*Reversion error, or side-to-side nonlinearity, is a result of differences in the up and  
down rates of the VCO.  
–14–  
REV. B  
AD2S81A/AD2S82A  
1M⍀  
100k⍀  
22nF  
15k⍀  
100nF  
4.7M⍀  
REFERENCE  
INPUT  
VELOCITY  
O/P  
100nF  
22nF  
15k⍀  
1.5nF  
6.8nF  
39k⍀  
110k⍀  
68⍀  
180k⍀  
COS HIGH  
REF LOW  
COS LOW  
SIN LOW  
RESOLVER  
SIGNAL  
470pF  
100nF  
6
7
5
4
3
2
1
44 43 42 41 40  
–12V  
39  
38  
37  
36  
35  
34  
33  
32  
31  
SIN HIGH  
+12V  
PIN 1  
IDENTIFIER  
RIPPLE CLK  
DIRECTION  
BUSY  
8
9
MSB  
10  
11  
12  
13  
14  
15  
16  
17  
DATA LOAD  
AD2S82A  
TOP VIEW  
(Not to scale)  
COMPLEMENT  
SC2  
DATA  
OUTPUT  
0V  
30 INHIBIT  
29  
18 19 20 21 22 23 24 25 26 27 28  
LSB  
BYTE SELECT  
ENABLE  
DATA OUTPUT  
+5V  
Figure 11. Typical Circuit Configuration  
TYPICAL CIRCUIT CONFIGURATION  
For more information on resistive scaling of SIN, COS and  
REFERENCE converter inputs, refer to the application note  
“Circuit Applications of the 2S81 and 2S80 Resolver-to-Digital  
Converters.”  
Figure 11 shows a typical circuit configuration for the AD2S81A/  
AD2S82A in a 12-bit resolution mode. Values of the external  
components have been chosen for a reference frequency of 5 kHz  
and a maximum tracking rate of 260 rps with a bandwidth of  
520 Hz. Placing the values for R4, R6, C4 and C5 in the equa-  
tion for KA gives a value of 2.7 × 106. The resistors are 0.125 W,  
5% tolerance preferred values. The capacitors are 100 V ceramic,  
10% tolerance components.  
APPLICATIONS  
Control Transformer  
The ratio multiplier of the AD2S82A can be used independently  
of the loop integrators as a control transformer. In this mode the  
resolver inputs θ are multiplied by a digital angle φ, any differ-  
ence between and φ and θ will be represented by the AC ERROR  
output as SIN ωt sin (θφ) or the DEMOD output as sin (θφ).  
To use the AD2S81A/AD2S82A in this mode refer to the  
“Control Transformer” application note.  
For signal and reference voltages greater than 2 V rms a simple  
voltage divider circuit of resistors can be used to generate the  
correct signal level at the converter. Care should be taken to  
ensure that the ratios of the resistors between the sine signal line  
and ground and the cosine signal line and ground are the same.  
Any difference will result in an additional position error.  
Dynamic Switching  
In applications where the user requires wide band response from  
the converter, for example 100 rpm to 6000 rpm, superior per-  
formance is achieved if the converters control characteristics are  
switched dynamically. This reduces velocity offset levels at low  
tracking rates. For more information on the technique refer to  
“Dynamic Resolution Switching Using the Variable Resolution  
Monolithic Resolver-to-Digital Converters.”  
360  
315  
270  
225  
180  
OTHER PRODUCTS  
The AD2S80A is a monolithic resolver-to-digital converter  
offering 10–16 bits of resolution and user selectable dynamics.  
The AD2S80A is also available in 40-lead ceramic DIP, 44-lead  
LCC and is qualified to MIL-STD 883B Rev C.  
135  
90  
45  
0
The AD2S46 is a highly integrated hybrid resolver/synchro to  
digital converter packaged in a 28-lead ceramic DIP. The part  
offers the user 1.3 arc minutes of accuracy over the full military  
temperature range.  
0
4
8
12  
16  
20  
24  
TIME – ms  
Figure 12. Large Step Response Curves for Typical Circuit  
Shown in Figure 11  
The AD2S34 is a dual channel 14-bit hybrid resolver-to-digital  
converter packaged in a 1 in2 32-lead flatpack.  
The 1740/41/42 are hybrid resolver/synchro to digital converters  
which incorporate pico-transformer isolated input signal  
conditioning.  
REV. B  
–15–  
AD2S81A/AD2S82A  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Ceramic DIP (D) Package  
(D-28)  
0.005 (0.13) MIN  
28  
0.100 (2.54) MAX  
15  
0.610 (15.49)  
0.500 (12.70)  
1
14  
0.620 (15.75)  
0.590 (14.99)  
PIN 1  
1.490 (37.85) MAX  
0.060 (1.52)  
0.225  
(5.72)  
MAX  
0.015 (0.38)  
0.150  
(3.81)  
MIN  
0.018 (0.46)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
SEATING  
PLANE  
0.026 (0.66) 0.110 (2.79) 0.070 (1.78)  
0.014 (0.36) 0.090 (2.29) 0.030 (0.76)  
Plastic Leaded Chip Carrier (P) Package  
(P-44A)  
0.180 (4.57)  
0.165 (4.19)  
0.056 (1.42)  
0.042 (1.07)  
0.048 (1.21)  
0.042 (1.07)  
0.025 (0.63)  
0.015 (0.38)  
0.048 (1.21)  
0.042 (1.07)  
6
40  
39  
7
PIN 1  
IDENTIFIER  
0.050  
(1.27)  
BSC  
0.63 (16.00)  
0.59 (14.99)  
0.021 (0.53)  
0.013 (0.33)  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
17  
29  
28  
18  
0.040 (1.01)  
0.025 (0.64)  
0.020  
(0.50)  
R
0.656 (16.66)  
0.650 (16.51)  
SQ  
SQ  
0.110 (2.79)  
0.085 (2.16)  
0.695 (17.65)  
0.685 (17.40)  
–16–  
REV. B  
配单直通车
AD2S81AJD产品参数
型号:AD2S81AJD
是否无铅: 含铅
是否Rohs认证: 不符合
生命周期:Active
零件包装代码:DIP
包装说明:DIP,
针数:28
Reach Compliance Code:unknown
风险等级:5.9
Is Samacsys:N
其他特性:LG-MAX
最大模拟输入电压:2 V
最大角精度:30 arc min
转换器类型:SYNCHRO OR RESOLVER TO DIGITAL CONVERTER
JESD-30 代码:R-CDIP-T28
JESD-609代码:e0
长度:37.85 mm
湿度敏感等级:NOT SPECIFIED
最大负电源电压:-13.2 V
最小负电源电压:-10.8 V
标称负供电电压:-12 V
位数:12
功能数量:1
端子数量:28
最高工作温度:70 °C
最低工作温度:
封装主体材料:CERAMIC, METAL-SEALED COFIRED
封装代码:DIP
封装形状:RECTANGULAR
封装形式:IN-LINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:COMMERCIAL
座面最大高度:5.27 mm
信号/输出频率:20000 Hz
最大供电电压:13.2 V
最小供电电压:10.8 V
标称供电电压:12 V
表面贴装:NO
技术:BICMOS
温度等级:COMMERCIAL
端子面层:TIN LEAD
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
最大跟踪速率:260 rps
宽度:15.24 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!