欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • AD5764CSUZ图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • AD5764CSUZ 三甲现货
  • 数量9000 
  • 厂家ADI 
  • 封装TQFP32 
  • 批号23+ 
  • 原装现货,价格优势
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • AD5764CSUZ图
  • 集好芯城

     该会员已使用本站13年以上
  • AD5764CSUZ 现货库存
  • 数量27935 
  • 厂家ADI(亚德诺) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • AD5764CSUZ图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD5764CSUZ 现货库存
  • 数量12500 
  • 厂家AD 
  • 封装32TQFP 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD5764CSUZ图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD5764CSUZ 现货库存
  • 数量9000 
  • 厂家AD 
  • 封装现有库存 
  • 批号24+ 
  • 原装有COC原厂证明,假一罚万!
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • AD5764CSUZ图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • AD5764CSUZ 现货库存
  • 数量8000 
  • 厂家ADI(亚德诺) 
  • 封装NA 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • AD5764CSUZ-REEL7图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • AD5764CSUZ-REEL7 现货库存
  • 数量3000 
  • 厂家ADI/亚德诺 
  • 封装NA 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • AD5764CSUZ图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • AD5764CSUZ 现货库存
  • 数量15000 
  • 厂家ADI 
  • 封装TQFP-32 
  • 批号22+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • AD5764CSUZ图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • AD5764CSUZ 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装TQFP32 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • AD5764CSUZ-REEL7图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD5764CSUZ-REEL7 现货库存
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装TQFP-32 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD5764CSUZ【优势库存】图
  • 齐创科技(上海北京青岛)有限公司

     该会员已使用本站14年以上
  • AD5764CSUZ【优势库存】 现货库存
  • 数量4820 
  • 厂家ADI代理 
  • 封装32TQFP 
  • 批号24+热销 
  • 中国区代理全新热卖原装正品
  • QQ:2394092314QQ:2394092314 复制
    QQ:792179102QQ:792179102 复制
  • 021-62153656 QQ:2394092314QQ:792179102
  • AD5764CSUZ-REEL7?图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • AD5764CSUZ-REEL7? 优势库存
  • 数量2000 
  • 厂家ADI 
  • 封装TQFP32 
  • 批号21+ 
  • 只做原装现货假一赔十
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • AD5764CSUZ图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • AD5764CSUZ
  • 数量6800 
  • 厂家ADI/亚德诺 
  • 封装TQFP32 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • AD5764CSUZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD5764CSUZ
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装TQFP-32 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • AD5764CSUZ图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • AD5764CSUZ
  • 数量20062 
  • 厂家ADI 
  • 封装32-Lead TQFP (7mm x 7mm x 1mm) 
  • 批号24+ 
  • 原厂原装公司现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • AD5764CSUZ图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • AD5764CSUZ
  • 数量3200 
  • 厂家Ad 
  • 封装QFP 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • AD5764CSUZ图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD5764CSUZ
  • 数量20 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD5764CSUZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • AD5764CSUZ
  • 数量68000 
  • 厂家ADI/亚德诺 
  • 封装QFP32 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • AD5764CSUZ图
  • 集好芯城

     该会员已使用本站13年以上
  • AD5764CSUZ
  • 数量20062 
  • 厂家ADI 
  • 封装32-Lead TQFP (7mm x 7mm x 1mm) 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • AD5764CSUZ图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • AD5764CSUZ
  • 数量30000 
  • 厂家ADI/亚德诺 
  • 封装QFP32 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • AD5764CSUZ图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • AD5764CSUZ
  • 数量8800 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • AD5764CSUZ-REEL7图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • AD5764CSUZ-REEL7
  • 数量5000 
  • 厂家AD 
  • 封装32-TQFP(7x7) 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • AD5764CSUZ图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • AD5764CSUZ
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装TQFP-32 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • AD5764CSUZ图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • AD5764CSUZ
  • 数量5000 
  • 厂家AD 
  • 封装TQFP32 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • AD5764CSUZ图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • AD5764CSUZ
  • 数量4223 
  • 厂家Analog Devices Inc. 
  • 封装32-TQFP(7x7) 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • AD5764CSUZ图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD5764CSUZ
  • 数量12500 
  • 厂家AD 
  • 封装32TQFP 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD5764CSUZ图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • AD5764CSUZ
  • 数量15300 
  • 厂家Analog Devices Inc. 
  • 封装32-TQFP(7x7) 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • AD5764CSUZ图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • AD5764CSUZ
  • 数量5000 
  • 厂家AD 
  • 封装深圳原装现货0755-83975781 
  • 批号原厂原装 
  • QQ:767621813QQ:767621813 复制
    QQ:541766577QQ:541766577 复制
  • 0755-83975781 QQ:767621813QQ:541766577
  • AD5764CSUZ图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • AD5764CSUZ
  • 数量3210 
  • 厂家ADI(亚德诺) 
  • 封装TQFP-32 
  • 批号23+ 
  • ▉原厂渠道▉支持实单
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • AD5764CSUZ图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD5764CSUZ
  • 数量1260 
  • 厂家AD 
  • 封装SOP14 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • AD5764CSUZ图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • AD5764CSUZ
  • 数量8789 
  • 厂家ADI 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • AD5764CSUZ-REEL7图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • AD5764CSUZ-REEL7
  • 数量45000 
  • 厂家ADI(亚德诺) 
  • 封装TQFP-32 
  • 批号2年内 
  • 全新原装 正品保障
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • AD5764CSUZ图
  • 深圳市意好科技有限公司

     该会员已使用本站15年以上
  • AD5764CSUZ
  • 数量6100 
  • 厂家ADI 
  • 封装原厂 
  • 批号24+ 
  • 中华地区销售
  • QQ:2853107358QQ:2853107358 复制
    QQ:2853107357QQ:2853107357 复制
  • 0755-88608316 QQ:2853107358QQ:2853107357
  • AD5764CSUZ图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • AD5764CSUZ
  • 数量99000 
  • 厂家ADI 
  • 封装N/A 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • AD5764CSUZ图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • AD5764CSUZ
  • 数量3715 
  • 厂家ADI 
  • 封装32-TQFP(7x7) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • AD5764CSUZ图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • AD5764CSUZ
  • 数量101 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号22+ 
  • ★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165

产品型号AD5764CSUZ的概述

芯片AD5764CSUZ的概述 AD5764CSUZ是一款高性能的数字-模拟转换器(DAC),由Analog Devices公司生产。该芯片主要用于各种工业控制系统、自动化设备、仪器仪表等应用场景,具备高分辨率和优异的动态性能。AD5764CSUZ是该系列DAC中的一员,特征包括16位分辨率、低噪声和快响应时间等,适合需要精确电压输出的场合。 AD5764CSUZ能够在单电源下工作,它采用了稳压供电的设计,确保持久的稳定性和性能。该芯片的输出电压范围广泛,能够满足多个设计需求。此外,AD5764CSUZ支持SPI接口,适合与各种微控制器和处理器连接,便于数据的采集和输出控制。 芯片AD5764CSUZ的详细参数 AD5764CSUZ的详细参数体现出这款DAC的高性能优势,主要参数包括: - 分辨率:16位 - 输出范围:0V到VREF(可调) - 参考电压范围:2.5V到5V,具备内置...

产品型号AD5764CSUZ的Datasheet PDF文件预览

Complete Quad, 16-Bit, High Accuracy,  
Serial Input, Bipolar Voltage Output DAC  
Data Sheet  
AD5764  
FEATURES  
GENERAꢀ DESCRIPTION  
Complete quad, 16-bit digital-to-analog  
converter (DAC)  
Programmable output range  
10 V, 10.2564 V, or 10.5263 V  
The AD5764 is a quad, 16-bit, serial input, bipolar voltage  
output DAC that operates from supply voltages of 11.4 V to  
16.5 V. Nominal full-scale output range is 1ꢀ V. The AD5764  
provides integrated output amplifiers, reference buffers, and  
1 ꢀSB maximum INꢀ error, 1 ꢀSB maximum DNꢀ error  
ꢀow noise: 60 nV/√Hz  
Settling time: 10 μs maximum  
proprietary power-up/power-down control circuitry. The part  
also features a digital I/O port that is programmed via the serial  
interface. The part incorporates digital offset and gain adjust  
registers per channel.  
Integrated reference buffers  
Output control during power-up/brownout  
Programmable short-circuit protection  
Simultaneous updating via ꢀDAC  
The AD5764 is a high performance converter that offers guar-  
anteed monotonicity, integral nonlinearity (INL) of 1 LꢁB, low  
noise, and 1ꢀ μs settling time. During power-up (when the  
supply voltages are changing), VOUTx is clamped to ꢀ V via a  
low impedance path.  
CꢀR  
Asynchronous  
to zero code  
Digital offset and gain adjust  
ꢀogic output control pins  
The AD5764 uses a serial interface that operates at clock rates of  
up to 3ꢀ MHz and is compatible with DꢁP and microcontroller  
interface standards. Double buffering allows the simultaneous  
updating of all DACs. The input coding is programmable to  
either twos complement or offset binary formats. The asynchro-  
nous clear function clears the data register to either bipolar zero or  
zero scale depending on the coding used. The AD5764 is ideal  
for both closed-loop servo control and open-loop control appli-  
cations. The AD5764 is available in a 32-lead TQFP, and offers  
guaranteed specifications over the −4ꢀ°C to +85°C industrial  
temperature range. ꢁee Figure 1 for the functional block diagram.  
DSP-/microcontroller-compatible serial interface  
Temperature range: −40°C to +85°C  
iCMOS process technology1  
APPꢀICATIONS  
Industrial automation  
Open-loop/closed-loop servo control  
Process control  
Data acquisition systems  
Automatic test equipment  
Automotive test and measurement  
High accuracy instrumentation  
Table 1. Related Devices  
Part No.  
AD5764R  
AD5744R  
Description  
AD5764 with internal voltage reference  
Complete quad, 14-bit, high accuracy, serial  
input, bipolar voltage output DAC with  
internal voltage reference  
1 For analog systems designers within industrial/instrumentation equipment OEMs who need high performance ICs at higher voltage levels, iCMOS® is a technology  
platform that enables the development of analog ICs capable of 30 V and operating at 15 V supplies, allowing dramatic reductions in power consumption and package  
size, and increased ac and dc performance.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
Tel: 781.329.4700  
www.analog.com  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
Fax: 781.461.3113 ©2006–2011 Analog Devices, Inc. All rights reserved.  
 
 
AD5764  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Function Register ....................................................................... 21  
Data Register............................................................................... 21  
Coarse Gain Register ................................................................. 21  
Fine Gain Register...................................................................... 22  
Offset Register ............................................................................ 22  
Offset and Gain Adjustment Worked Example...................... 23  
Design Features............................................................................... 24  
Analog Output Control ............................................................. 24  
Digital Offset and Gain Control............................................... 24  
Programmable ꢁhort-Circuit Protection ................................ 24  
Digital I/O Port........................................................................... 24  
Local Ground Offset Adjust...................................................... 24  
Applications Information.............................................................. 25  
Typical Operating Circuit ......................................................... 25  
Layout Guidelines........................................................................... 27  
Galvanically Isolated Interface ................................................. 27  
Microprocessor Interfacing....................................................... 27  
Evaluation Board........................................................................ 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
ꢁpecifications..................................................................................... 4  
AC Performance Characteristics................................................ 5  
Timing Characteristics ................................................................ 6  
Absolute Maximum Ratings............................................................ 9  
EꢁD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 1ꢀ  
Typical Performance Characteristics ........................................... 12  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
DAC Architecture....................................................................... 18  
Reference Buffers........................................................................ 18  
ꢁerial Interface ............................................................................ 18  
LDAC  
ꢁimultaneous Updating via  
........................................... 19  
Transfer Function....................................................................... 2ꢀ  
CLR  
Asynchronous Clear (  
)....................................................... 2ꢀ  
REVISION HISTORY  
9/11—Rev. E to Rev. F  
Changed 3ꢀ MHz to 5ꢀ MHz Throughout.................................... 1  
Changes to t1, t2, and t3 Parameters, Table 4.................................. 6  
Changes to Table 2ꢀ ....................................................................... 26  
Deleted AD5764 to MC68HC11 Interface ꢁection.................... 27  
Deleted Figure 38; Renumbered ꢁequentially ............................ 27  
Deleted AD5764 to 8XC51 Interface ꢁection, Figure 39,  
AD5764 to ADꢁP-21ꢀ1 Interface ꢁection, Figure 4ꢀ, and  
AD5764 to PIC16C6x/PIC16C7x Interface ꢁection.................. 28  
7/11—Rev. D to Rev. E  
Changed 3ꢀ MHz to 5ꢀ MHz Throughout.................................... 1  
Changes to t1, t2, and t3 Parameters, Table 4.................................. 6  
04/08—Rev. A to Rev. B  
8/09—Rev. C to Rev. D  
Changes to Table ꢁummary ꢁtatement, ꢁpecifications ꢁection...4  
Changes to Power Requirements Parameter, Table 2 and  
Table ꢁummary ꢁtatement................................................................5  
Changes to t16 Parameter, Table 4 ....................................................6  
Changes to Table 6.......................................................................... 1ꢀ  
Changed Vꢁꢁ/VDD to AVꢁꢁ/AVDD in Typical Performance  
Characteristics ꢁection .................................................................. 13  
Changes to Table 16 ....................................................................... 22  
Changes to Table 18 ....................................................................... 23  
Changes to Typical Operating Circuit ꢁection........................... 28  
Changes to AD5764 to ADꢁP-21ꢀ1 ꢁection ............................... 29  
Changes to Ordering Guide.......................................................... 3ꢀ  
Changes to Table 2 and Table 3 Endnotes ..................................... 6  
Changes to t6 Parameter and Endnotes, Table 4........................... 7  
1/09—Rev. B to Rev. C  
Changes to General Description ꢁection ...................................... 1  
Changes to Figure 1.......................................................................... 3  
Changes to Table 2 Conditions....................................................... 4  
Changes to Table 3 Conditions....................................................... 5  
Changes to Table 4 Conditions....................................................... 6  
Changes to Figure 5.......................................................................... 8  
Changes to Table 5............................................................................ 9  
Changes to Table 6.......................................................................... 1ꢀ  
Changes to Figure 34...................................................................... 19  
Changes to Table 7 and Table 1ꢀ................................................... 2ꢀ  
Added Table 8; Renumbered ꢁequentially .................................. 2ꢀ  
Changes to Table 11 and Table 12 ................................................ 21  
Changes to Digital Offset and Gain Control ꢁection ................ 24  
1/07—Rev. 0 to Rev. A  
Changes to Absolute Maximum Ratings..................................... 1ꢀ  
Changes to Figure 25 and Figure 26............................................. 16  
3/06—Revision 0: Initial Version  
Rev. F | Page 2 of 28  
 
Data Sheet  
AD5764  
FUNCTIONAL BLOCK DIAGRAM  
AV  
AV  
AV  
AV  
SS  
RSTOUT  
RSTIN  
PGND  
REFGND  
REFAB  
DD  
SS  
DD  
VOLTAGE  
MONITOR  
AND  
DV  
CC  
REFERENCE  
BUFFERS  
AD5764  
CONTROL  
DGND  
ISCC  
16  
16  
G1  
G1  
G1  
G1  
INPUT  
REG A  
DATA  
REG A  
DAC A  
DAC B  
DAC C  
DAC D  
SDIN  
SCLK  
SYNC  
SDO  
VOUTA  
AGNDA  
INPUT  
SHIFT  
G2  
REGISTER  
AND  
GAIN REG A  
CONTROL  
LOGIC  
OFFSET REG A  
16  
16  
16  
INPUT  
REG B  
DATA  
REG B  
VOUTB  
AGNDB  
G2  
G2  
G2  
GAIN REG B  
OFFSET REG B  
D0  
D1  
INPUT  
REG C  
DATA  
REG C  
VOUTC  
AGNDC  
GAIN REG C  
OFFSET REG C  
BIN/2sCOMP  
INPUT  
REG D  
DATA  
REG D  
VOUTD  
AGNDD  
GAIN REG D  
CLR  
OFFSET REG D  
REFERENCE  
BUFFERS  
LDAC  
REFCD  
Figure 1.  
Rev. F | Page 3 of 28  
 
 
AD5764  
Data Sheet  
SPECIFICATIONS  
AVDD = 11.4 V to 16.5 V, AVꢁꢁ = −11.4 V to −16.5 V, AGNDx = DGND = REFGND = PGND = ꢀ V; REFAB = REFCD = 5 V;  
DVCC = 2.7 V to 5.25 V, RLOAD = 1ꢀ kΩ, CL = 2ꢀꢀ pF. Temperature range: −4ꢀ°C to +85°C; typical at +25°C. Device functionality is  
guaranteed to +1ꢀ5°C with degraded performance. All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
A Grade  
B Grade  
C Grade  
Unit  
Test Conditions/Comments  
ACCURACY  
Outputs unloaded  
Resolution  
16  
4
1
16  
2
1
16  
1
1
Bits  
Relative Accuracy (INL)  
Differential Nonlinearity  
Bipolar Zero Error  
LSB max  
LSB max  
mV max  
Guaranteed monotonic  
At 25°C; error at other temperatures  
obtained using bipolar zero TC  
2
2
2
Bipolar Zero Temperature  
Coefficient (TC)1  
Zero-Scale Error  
2
2
2
2
2
2
ppm FSR/°C max  
mV max  
At 25°C; error at other temperatures  
obtained using zero-scale TC  
Zero-Scale TC1  
Gain Error  
2
0.02  
2
0.02  
2
0.02  
ppm FSR/°C max  
% FSR max  
At 25°C; error at other temperatures  
obtained using gain TC  
Gain TC1  
DC Crosstalk1  
2
0.5  
2
0.5  
2
0.5  
ppm FSR/°C max  
LSB max  
REFERENCE INPUT1  
Reference Input Voltage  
DC Input Impedance  
Input Current  
5
1
5
1
5
1
V nom  
MΩ min  
μA max  
1% for specified performance  
Typically 100 MΩ  
Typically 30 nA  
10  
10  
10  
Reference Range  
1 to 7  
1 to 7  
1 to 7  
V min to V max  
OUTPUT CHARACTERISTICS1  
Output Voltage Range2  
10.5263  
14  
10.5263  
14  
10.5263  
14  
V min to V max  
V min to V max  
AVDD/AVSS  
AVDD/AVSS  
=
=
11.4 V, VREFIN = 5 V  
16.5 V, VREFIN = 7 V  
Output Voltage Drift vs. Time  
13  
13  
13  
ppm FSR/  
500 hours typ  
15  
15  
15  
ppm FSR/  
1000 hours typ  
Short-Circuit Current  
Load Current  
10  
1
10  
1
10  
1
mA typ  
mA max  
RISCC = 6 kΩ, see Figure 31  
For specified performance  
Capacitive Load Stability  
RLOAD = ∞  
RLOAD = 10 kΩ  
DC Output Impedance  
DIGITAL INPUTS  
200  
1000  
0.3  
200  
1000  
0.3  
200  
1000  
0.3  
pF max  
pF max  
Ω max  
DVCC = 2.7 V to 5.25 V, JEDEC compliant  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Current  
2
0.8  
1
2
0.8  
1
2
0.8  
1
V min  
V max  
μA max  
pF max  
Per pin  
Per pin  
Pin Capacitance  
10  
10  
10  
Rev. F | Page 4 of 28  
 
Data Sheet  
AD5764  
Parameter  
DIGITAL OUTPUTS (D0, D1, SDO)1  
A Grade  
B Grade  
C Grade  
Unit  
Test Conditions/Comments  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
High Impedance Leakage Current  
High Impedance Output  
Capacitance  
0.4  
DVCC − 1  
0.4  
DVCC − 0.5 DVCC − 0.5  
1
0.4  
DVCC − 1  
0.4  
0.4  
DVCC − 1  
0.4  
DVCC − 0.5  
1
5
V max  
V min  
V max  
V min  
μA max  
pF typ  
DVCC = 5 V 5%, sinking 200 μA  
DVCC = 5 V 5%, sourcing 200 μA  
DVCC = 2.7 V to 3.6 V, sinking 200 μA  
DVCC = 2.7 V to 3.6 V, sourcing 200 μA  
SDO only  
1
5
5
SDO only  
POWER REQUIREMENTS  
AVDD/AVSS  
11.4 to  
16.5  
11.4 to  
16.5  
11.4 to  
16.5  
V min to V max  
DVCC  
2.7 to 5.25 2.7 to 5.25  
2.7 to 5.25 V min to V max  
Power Supply Sensitivity1  
∆VOUT/∆ΑVDD  
AIDD  
AISS  
DICC  
−85  
3.5  
2.75  
1.2  
−85  
3.5  
2.75  
1.2  
−85  
3.5  
2.75  
1.2  
dB typ  
mA/channel max  
mA/channel max  
mA max  
Outputs unloaded  
Outputs unloaded  
VIH = DVCC, VIL = DGND, 750 μA typical  
12 V operation output unloaded  
Power Dissipation  
275  
275  
275  
mW typ  
1 Guaranteed by design and characterization; not production tested.  
2 Output amplifier headroom requirement is 1.4 V minimum.  
AC PERFORMANCE CHARACTERISTICS  
AVDD = 11.4 V to 16.5 V, AVꢁꢁ = −11.4 V to −16.5 V, AGNDx = DGND = REFGND = PGND = ꢀ V; REFAB = REFCD = 5 V;  
DVCC = 2.7 V to 5.25 V, RLOAD = 1ꢀ kΩ, CL = 2ꢀꢀ pF. All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
A Grade B Grade C Grade Unit  
Test Conditions/Comments  
Full-scale step to 1 LSB  
512 LSB step settling  
DYNAMIC PERFORMANCE1  
Output Voltage Settling Time  
8
8
8
μs typ  
10  
2
10  
2
10  
2
μs max  
μs typ  
Slew Rate  
5
8
25  
80  
8
5
8
25  
80  
8
5
8
25  
80  
8
V/μs typ  
nV-sec typ  
mV max  
dB typ  
nV-sec typ  
nV-sec typ  
nV-sec typ  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Channel-to-Channel Isolation  
DAC-to-DAC Crosstalk  
Digital Crosstalk  
2
2
2
2
2
2
Digital Feedthrough  
Effect of input bus activity on DAC  
outputs  
Output Noise (0.1 Hz to 10 Hz)  
Output Noise (0.1 Hz to 100 kHz)  
1/f Corner Frequency  
0.1  
45  
1
0.1  
45  
1
0.1  
45  
1
LSB p-p typ  
μV rms max  
kHz typ  
Output Noise Spectral Density  
Complete System Output Noise Spectral  
Density2  
60  
80  
60  
80  
60  
80  
nV/√Hz typ  
nV/√Hz typ  
Measured at 10 kHz  
Measured at 10 kHz  
1 Guaranteed by design and characterization; not production tested.  
2 Includes noise contributions from integrated reference buffers, 16-bit DAC, and output amplifier.  
Rev. F | Page 5 of 28  
 
 
 
 
AD5764  
Data Sheet  
TIMING CHARACTERISTICS  
AVDD = 11.4 V to 16.5 V, AVꢁꢁ = −11.4 V to −16.5 V, AGNDx = DGND = REFGND = PGND = ꢀ V; REFAB = REFCD = 5 V;  
DVCC = 2.7 V to 5.25 V, RLOAD = 1ꢀ kΩ, CL = 2ꢀꢀ pF. All specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Parameter1, 2, 3  
ꢀimit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
13  
90  
2
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
μs min  
ns min  
ns min  
ns max  
μs max  
ns min  
μs max  
ns max  
ns min  
μs max  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
24th SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
4
t5  
t6  
t7  
t8  
t9  
Data setup time  
Data hold time  
SYNC rising edge to LDAC falling edge (all DACs updated)  
SYNC rising edge to LDAC falling edge (single DAC updated)  
LDAC pulse width low  
5
1.7  
480  
10  
500  
10  
10  
2
t10  
t11  
t12  
t13  
t14  
LDAC falling edge to DAC output response time  
DAC output settling time  
CLR pulse width low  
CLR pulse activation time  
5, 6  
t15  
25  
13  
2
SCLK rising edge to SDO valid  
SYNC rising edge to SCLK falling edge  
SYNC rising edge to DAC output response time (LDAC = 0)  
LDAC falling edge to SYNC rising edge  
t16  
t17  
t18  
170  
1 Guaranteed by design and characterization; not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, and Figure 4.  
4 Standalone mode only.  
5 Measured with the load circuit of Figure 5.  
6 Daisy-chain mode only.  
Rev. F | Page 6 of 28  
 
 
 
 
 
 
 
Data Sheet  
AD5764  
Timing Diagrams  
t1  
SCLK  
SYNC  
1
2
24  
t3  
t2  
t6  
t4  
t5  
t8  
t7  
DB23  
SDIN  
DB0  
t10  
t10  
t9  
LDAC  
t18  
t12  
t11  
VOUTx  
LDAC = 0  
t12  
t17  
VOUTx  
CLR  
t13  
t14  
VOUTx  
Figure 2. Serial Interface Timing Diagram  
t1  
SCLK  
24  
48  
t3  
t2  
t6  
t5  
t16  
t4  
SYNC  
SDIN  
t8  
t7  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N–1  
INPUT WORD FOR DAC N  
t15  
DB23  
DB0  
SDO  
t9  
UNDEFINED  
t10  
LDAC  
Figure 3. Daisy-Chain Timing Diagram  
Rev. F | Page 7 of 28  
 
 
AD5764  
Data Sheet  
SCLK  
24  
48  
SYNC  
SDIN  
DB23  
DB0  
DB23  
DB0  
NOP CONDITION  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
DB23  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Readback Timing Diagram  
200µA  
I
OL  
V
V
(MIN) OR  
(MAX)  
TO SDO  
PIN  
OH  
OL  
C
L
50pF  
200µA  
I
OH  
Figure 5. Load Circuit for SDO Timing Diagram  
Rev. F | Page 8 of 28  
 
 
 
Data Sheet  
AD5764  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
1ꢀꢀ mA do not cause ꢁCR latch-up.  
ꢁtresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
AVDD to AGNDx, DGND  
AVSS to AGNDx, DGND  
DVCC to DGND  
−0.3 V to +17 V  
+0.3 V to −17 V  
−0.3 V to +7 V  
Digital Inputs to DGND  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
ESD CAUTION  
Digital Outputs to DGND  
REFAB, REFCD to AGNDx, PGND  
VOUTA, VOUTB, VOUTC, VOUTD to  
AGNDx  
−0.3 V to DVCC + 0.3 V  
−0.3 V to AVDD + 0.3 V  
AVSS to AVDD  
AGNDx to DGND  
−0.3 V to +0.3 V  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
32-Lead TQFP  
−40°C to +85°C  
−65°C to +150°C  
150°C  
θJA Thermal Impedance  
θJC Thermal Impedance  
Lead Temperature  
65°C/W  
12°C/W  
JEDEC industry standard  
J-STD-020  
Soldering  
Rev. F | Page 9 of 28  
 
AD5764  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
24  
AGNDA  
23 VOUTA  
22  
SYNC  
PIN 1  
SCLK  
SDIN  
SDO  
VOUTB  
AD5764  
TOP VIEW  
(Not to Scale)  
21 AGNDB  
20 AGNDC  
19 VOUTC  
18 VOUTD  
CLR  
LDAC  
D0  
AGNDD  
17  
D1  
9
10 11 12 13 14 15 16  
NC = NO CONNECT  
Figure 6. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
SYNC  
Active Low Input. This is the frame synchronization signal for the serial interface. While SYNC is low,  
data is transferred in on the falling edge of SCLK.  
2
SCLK  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of SCLK. This  
operates at clock speeds up to 30 MHz.  
3
4
5
SDIN  
SDO  
CLR  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
Serial Data Output. Used to clock data from the serial register in daisy-chain or readback mode.  
Negative Edge Triggered Input. Asserting this pin sets the data register to 0x0000. There is an internal  
pull-up device on this logic input. Therefore, this pin can be left floating and defaults to a Logic 1  
condition.  
6
LDAC  
Load DAC. Logic input. This is used to update the data register and consequently the analog outputs.  
When tied permanently low, the addressed data register is updated on the rising edge of SYNC. If  
LDAC is held high during the write cycle, the DAC input shift register is updated but the output  
update is held off until the falling edge of LDAC. In this mode, all analog outputs can be updated  
simultaneously on the falling edge of LDAC. The LDAC pin must not be left unconnected.  
7, 8  
D0, D1  
Digital I/O Port. The user can set up these pins as inputs or outputs that are configurable and readable  
over the serial interface. When configured as inputs, these pins have weak internal pull-ups to DVCC.  
When programmed as outputs, D0 and D1 are referenced by DVCC and DGND.  
9
RSTOUT  
RSTIN  
Reset Logic Output. This is the output from the on-chip voltage monitor used in the reset circuit. If  
desired, it can be used to control other system components.  
Reset Logic Input. This input allows external access to the internal reset logic. Applying a Logic 0 to  
this input clamps the DAC outputs to 0 V. In normal operation, RSTIN should be tied to Logic 1.  
Register values remain unchanged.  
10  
11  
12  
13, 31  
14  
15, 30  
16  
DGND  
DVCC  
AVDD  
PGND  
AVSS  
Digital Ground.  
Digital Supply. Voltage ranges from 2.7 V to 5.25 V.  
Positive Analog Supply. Voltage ranges from 11.4 V to 16.5 V.  
Ground Reference Point for Analog Circuitry.  
Negative Analog Supply. Voltage ranges from −11.4 V to −16.5 V.  
Resistor Connection for Pin Programmable Short-Circuit Current. This pin is used in association with an  
optional external resistor to AGND to program the short-circuit current of the output amplifiers. Refer  
to the Design Features section for further details.  
ISCC  
17  
18  
AGNDD  
VOUTD  
Ground Reference Pin for DAC D Output Amplifier.  
Analog Output Voltage of DAC D. This pin is a buffered output with a nominal full-scale output range  
of 10 V. The output amplifier is capable of directly driving a 10 kΩ, 200 pF load.  
19  
20  
VOUTC  
AGNDC  
Analog Output Voltage of DAC C. This pin is a buffered output with a nominal full-scale output range  
of 10 V. The output amplifier is capable of directly driving a 10 kΩ, 200 pF load.  
Ground Reference Pin for DAC C Output Amplifier.  
Rev. F | Page 10 of 28  
 
Data Sheet  
AD5764  
Pin No.  
21  
22  
Mnemonic  
Description  
AGNDB  
VOUTB  
Ground Reference Pin for DAC B Output Amplifier.  
Analog Output Voltage of DAC B. Buffered output with a nominal full-scale output range of 10 V.  
The output amplifier is capable of directly driving a 10 kΩ, 200 pF load.  
23  
VOUTA  
Analog Output Voltage of DAC A. Buffered output with a nominal full-scale output range of 10 V.  
The output amplifier is capable of directly driving a 10 kΩ, 200 pF load.  
24  
25  
AGNDA  
REFAB  
Ground Reference Pin for DAC A Output Amplifier.  
External Reference Voltage Input for Channel A and Channel B. Reference input range is 1 V to 7 V;  
programs the full-scale output voltage. VREFIN = 5 V for specified performance.  
26  
REFCD  
External Reference Voltage Input for Channel C and Channel D. Reference input range is 1 V to 7 V;  
programs the full-scale output voltage. VREFIN = 5 V for specified performance.  
27, 29  
28  
32  
NC  
No Connect.  
REFGND  
BIN/2sCOMP  
Reference Ground Return for the Reference Generator and Buffers.  
Determines the DAC Coding. This pin should be hardwired to either DVCC or DGND. When hardwired to  
DVCC, input coding is offset binary. When hardwired to DGND, input coding is twos complement  
(see Table 7 and Table 8).  
Rev. F | Page 11 of 28  
AD5764  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
T
= 25°C  
T
= 25°C  
A
A
AV /AV = ±15V  
AV /AV = ±12V  
DD SS  
0.8  
DD  
SS  
V
= 5V  
V
= 5V  
REFIN  
REFIN  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0
0
10000  
20000  
30000  
40000  
50000  
60000  
0
10000  
20000  
30000  
40000  
50000  
60000  
DAC CODE  
DAC CODE  
Figure 7. Integral Nonlinearity Error vs. Code,  
Figure 10. Differential Nonlinearity Error vs. Code,  
AVDD/AVSS  
=
15 V  
AVDD/AVSS  
=
12 V  
1.0  
0.8  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
T = 25°C  
A
AV /AV = ±15V  
DD SS  
A
AV /AV = ±12V  
DD  
SS  
V
= 5V  
V
= 5V  
REFIN  
REFIN  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–40  
10000  
20000  
30000  
40000  
50000  
60000  
–20  
0
20  
40  
60  
80  
100  
DAC CODE  
TEMPERATURE (°C)  
Figure 8. Integral Nonlinearity Error vs. Code,  
AVDD/AVSS 12 V  
Figure 11. Integral Nonlinearity Error vs. Temperature,  
AVDD/AVSS 15 V  
=
=
1.0  
0.8  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
A
T
= 25°C  
A
AV /AV = ±15V  
DD  
SS  
AV /AV = ±12V  
DD  
SS  
= 5V  
V
= 5V  
REFIN  
V
REFIN  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–40  
10000  
20000  
30000  
40000  
50000  
60000  
–20  
0
20  
40  
60  
80  
100  
DAC CODE  
TEMPERATURE (°C)  
Figure 9. Differential Nonlinearity Error vs. Code,  
AVDD/AVSS 15 V  
Figure 12. Integral Nonlinearity Error vs. Temperature,  
AVDD/AVSS 12 V  
=
=
Rev. F | Page 12 of 28  
 
 
 
Data Sheet  
AD5764  
0.15  
0.15  
0.10  
T
V
= 25°C  
A
= 5V  
REFIN  
0.10  
0.05  
0.05  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
T
= 25°C  
A
AV /AV = ±15V  
V
DD  
SS  
= 5V  
REFIN  
–40  
–20  
0
20  
40  
60  
80  
100  
11.4  
12.4  
13.4  
14.4  
15.4  
16.4  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 13. Differential Nonlinearity Error vs. Temperature,  
AVDD/AVSS 15 V  
Figure 16. Differential Nonlinearity Error vs. Supply Voltage  
=
0.8  
0.15  
0.10  
T
= 25°C  
A
AV /AV = ±16.5V  
DD SS  
0.6  
0.4  
0.05  
0.2  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
T
= 25°C  
A
AV /AV = ±12V  
V
DD  
SS  
= 5V  
REFIN  
1
2
3
4
5
6
7
–40  
–20  
0
20  
40  
60  
80  
100  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 17. Integral Nonlinearity Error vs. Reference Voltage,  
Figure 14. Differential Nonlinearity Error vs. Temperature,  
AVDD/AVSS  
= 16.5 V  
AVDD/AVSS  
=
12 V  
0.4  
0.3  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
T
V
= 25°C  
A
A
AV /AV = ±16.5V  
= 5V  
DD SS  
REFIN  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
11.4  
1
2
3
4
5
6
7
12.4  
13.4  
14.4  
15.4  
16.4  
REFERENCE VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 18. Differential Nonlinearity Error vs. Reference Voltage,  
AVDD/AVSS 16.5 V  
Figure 15. Integral Nonlinearity Error vs. Supply Voltage  
=
Rev. F | Page 13 of 28  
AD5764  
Data Sheet  
0.6  
T
0.8  
0.6  
0.4  
0.2  
0
= 25°C  
A
V
= 5V  
REFIN  
AV /AV = ±15V  
DD SS  
AV /AV = ±16.5V  
0.4  
DD  
SS  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
AV /AV = ±12V  
DD SS  
–0.2  
–0.4  
1
2
3
4
5
6
7
–40  
–20  
0
20  
40  
60  
80  
100  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 19. Total Unadjusted Error vs. Reference Voltage,  
Figure 22. Bipolar Zero Error vs. Temperature  
AVDD/AVSS  
=
16.5 V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
14  
13  
12  
11  
10  
9
V
= 5V  
REFIN  
T
V
= 25°C  
A
= 5V  
REFIN  
|I  
DD  
|
AV /AV = ±12V  
DD SS  
AV /AV = ±15V  
DD SS  
|I  
SS  
|
–0.2  
–40  
8
11.4  
–20  
0
20  
40  
60  
80  
100  
12.4  
13.4  
14.4  
15.4  
16.4  
TEMPERATURE (°C)  
AV /AV (V)  
DD SS  
Figure 23. Gain Error vs. Temperature  
Figure 20. IDD/ISS vs. AVDD/AVSS  
0.0014  
0.0013  
0.0012  
0.0011  
0.0010  
0.0009  
0.0008  
0.0007  
0.0006  
0.25  
0.20  
0.15  
0.10  
0.05  
0
T
= 25°C  
A
V
= 5V  
AV /AV = ±15V  
DD SS  
REFIN  
5V  
AV /AV = ±12V  
DD SS  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
3V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40  
–20  
0
20  
40  
60  
80  
100  
V
LOGIC  
TEMPERATURE (°C)  
Figure 21. Zero-Scale Error vs. Temperature  
Figure 24. DICC vs. Logic Input Voltage  
Rev. F | Page 14 of 28  
 
 
 
Data Sheet  
AD5764  
7000  
AV /AV = ±15V  
DD SS  
T
= 25°C  
A
V
= 5V  
= 6k  
T = 25°C  
A
REFIN  
RI  
6000  
5000  
4000  
3000  
2000  
1000  
0
V
= 5V  
SCC  
REFIN  
AV /AV = ±15V  
DD SS  
AV /AV = ±12V  
DD SS  
1
1µs/DIV  
CH1 –120mV  
–1000  
CH1 3.00V  
M1.00µs  
–10  
–5  
0
5
10  
SOURCE/SINK CURRENT (mA)  
Figure 27. Full-Scale Settling Time  
Figure 25. Source and Sink Capability of Output Amplifier with  
Positive Full Scale Loaded  
–4  
–6  
–8  
10000  
T
V
= 25°C  
A
= 5V  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
REFIN  
RI = 6kΩ  
SCC  
15V SUPPLIES  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
12V SUPPLIES  
AV /AV = ±12V  
DD  
SS  
V
= 5V  
REFIN  
T
= 25°C  
A
0x8000 TO 0x7FFF  
500ns/DIV  
–1000  
–2.0–1.5–1.0–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
TIME (µs)  
–12  
–7  
–2  
3
8
SOURCE/SINK CURRENT (mA)  
Figure 26. Source and Sink Capability of Output Amplifier with  
Negative Full Scale Loaded  
Figure 28. Major Code Transition Glitch Energy, AVDD/AVSS = 12 V  
Rev. F | Page 15 of 28  
 
AD5764  
Data Sheet  
10  
9
8
7
6
5
4
3
2
1
0
AV /AV = ±15V  
DD SS  
AV /AV = ±15V  
DD SS  
MIDSCALE LOADED  
= 0V  
T
= 25°C  
A
V
REFIN  
V
= 5V  
REFIN  
4
50µV/DIV  
CH4  
CH4 50.0µV  
M1.00s  
26µV  
0
20  
40  
60  
(k)  
80  
100  
120  
RI  
SCC  
Figure 31. Short-Circuit Current vs. RISCC  
Figure 29. Peak-to-Peak Noise (100 kHz Bandwidth)  
T
AV /AV = ±12V  
DD  
SS  
V
= 5V  
= 25°C  
REFIN  
1
2
T
A
RAMP TIME = 100µs  
LOAD = 200pF||10kꢀ  
3
B
CH1 10.0V  
CH2 10.0V  
M100µs A CH1  
29.60%  
7.80mV  
W
B
CH3 10.0mV  
T
W
Figure 30. VOUT vs. AVDD/AVSS on Power-Up  
Rev. F | Page 16 of 28  
 
Data Sheet  
AD5764  
TERMINOLOGY  
Total Unadjusted Error  
Relative Accuracy or Integral Nonlinearity (INL)  
Total unadjusted error (TUE) is a measure of the output error  
considering all the various errors. A plot of total unadjusted  
error vs. reference voltage can be seen in Figure 19.  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LꢁBs, from a straight  
line passing through the endpoints of the DAC transfer function. A  
typical INL vs. code plot can be seen in Figure 7.  
Zero-Scale Error Temperature Coefficient (TC)  
Zero-scale error TC is a measure of the change in zero-scale  
error with a change in temperature. Zero-scale error TC is  
expressed in ppm FꢁR/°C.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LꢁB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LꢁB maximum  
ensures monotonicity. This DAC is guaranteed monotonic. A  
typical DNL vs. code plot can be seen in Figure 9.  
Gain Error Temperature Coefficient (TC)  
Gain error TC is a measure of the change in gain error with  
changes in temperature. Gain error TC is expressed in  
ppm FꢁR/°C.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5764 is  
monotonic over its full operating temperature range.  
Digital-to-Analog Glitch Energy  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the data register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by 1 LꢁB at  
the major carry transition (ꢀx7FFF to ꢀx8ꢀꢀꢀ); see Figure 28.  
Bipolar Zero Error  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of ꢀ V when the data register is loaded  
with ꢀx8ꢀꢀꢀ (offset binary coding) or ꢀxꢀꢀꢀꢀ (twos complement  
coding). A plot of bipolar zero error vs. temperature can be seen  
in Figure 22.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the DAC  
but is measured when the DAC output is not updated. It is speci-  
fied in nV-sec and measured with a full-scale code change on  
the data bus, that is, from all ꢀs to all 1s, and vice versa.  
Bipolar Zero Temperature Coefficient (TC)  
Bipolar zero TC is the measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in ppm FꢁR/°C.  
Power Supply Sensitivity  
Power supply sensitivity indicates how the output of the DAC is  
affected by changes in the power supply voltage.  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code is loaded to the data register. Ideally, the output voltage  
should be 2 × VREF − 1 LꢁB. Full-scale error is expressed in  
percentage of full-scale range.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC while monitoring  
another DAC, and is expressed in LꢁBs.  
Negative Full-Scale Error/Zero-Scale Error  
Negative full-scale error is the error in the DAC output voltage  
when ꢀxꢀꢀꢀꢀ (offset binary coding) or ꢀx8ꢀꢀꢀ (twos complement  
coding) is loaded to the data register. Ideally, the output voltage  
should be −2 × VREF. A plot of zero-scale error vs. temperature  
can be seen in Figure 21.  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs with  
a full-scale code change (all ꢀs to all 1s and vice versa) with  
low and monitoring the output of another DAC. The energy of  
the glitch is expressed in nV-sec.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for the  
output to settle to a specified level for a full-scale input change.  
LDAC  
Slew Rate  
The slew rate of a device is a limitation in the rate of change of  
the output voltage. The output slewing speed of a voltage-output  
DAC is usually limited by the slew rate of the amplifier used at  
its output. ꢁlew rate is measured from 1ꢀ% to 9ꢀ% of the output  
signal and is given in V/μs.  
Channel-to-Channel Isolation  
Channel-to-channel isolation is the ratio of the amplitude of the  
signal at the output of one DAC to a sine wave on the reference  
input of another DAC. It is measured in dB.  
Digital Crosstalk  
Gain Error  
Digital crosstalk is a measure of the impulse injected into the  
analog output of one DAC from the digital inputs of another DAC,  
but is measured when the DAC output is not updated. It is specified  
in nV-sec and measured with a full-scale code change on the data  
bus, that is, from all ꢀs to all 1s, and vice versa.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed as a percentage of the full-scale range. A plot of  
gain error vs. temperature can be seen in Figure 23.  
Rev. F | Page 17 of 28  
 
AD5764  
Data Sheet  
THEORY OF OPERATION  
The AD5764 is a quad, 16-bit, serial input, bipolar voltage output  
DAC and operates from supply voltages of 11.4 V to 16.5 V and  
has a buffered output voltage of up to 1ꢀ.5263 V. Data is written to  
the AD5764 in a 24-bit word format, via a 3-wire serial interface.  
The device also offers an ꢁDO pin that is available for daisy-  
chaining or readback.  
SERIAꢀ INTERFACE  
The AD5764 is controlled over a versatile 3-wire serial interface  
that operates at clock rates of up to 3ꢀ MHz and is compatible  
with ꢁPI, QꢁPI™, MICROWIRE™, and DꢁP standards.  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MꢁB first as a 24-bit word under the control of a serial  
clock input, ꢁCLK. The input shift register consists of a read/  
write bit, three register select bits, three DAC address bits, and  
16 data bits, as shown in Table 9. The timing diagram for this  
operation is shown in Figure 2.  
The AD5764 incorporates a power-on reset circuit, which ensures  
that the data register powers up loaded with ꢀxꢀꢀꢀꢀ. The AD5764  
features a digital I/O port that can be programmed via the serial  
interface, on-chip reference buffers and per channel digital gain,  
and offset registers.  
DAC ARCHITECTURE  
Upon power-up, the data register is loaded with zero code  
(ꢀxꢀꢀꢀꢀ), and the outputs are clamped to ꢀ V via a low imped-  
ance path. The outputs can be updated with the zero code value  
The DAC architecture of the AD5764 consists of a 16-bit,  
current mode, segmented R-2R DAC. The simplified circuit  
diagram for the DAC section is shown in Figure 32.  
LDAC CLR  
at this time by asserting either  
or . The corresponding  
The four MꢁBs of the 16-bit data word are decoded to drive  
15 switches, E1 to E15. Each of these switches connects one of  
the 15 matched resistors to either AGNDx or IOUT. The remain-  
ing 12 bits of the data-word drive ꢁwitch ꢁꢀ to ꢁwitch ꢁ11 of  
the 12-bit R-2R ladder network.  
2sCOMP  
output voltage depends on the state of the BIN/  
pin. If  
pin is tied to DGND, the data coding is twos  
2sCOMP  
2sCOMP  
the BIN/  
complement, and the outputs update to ꢀ V. If the BIN/  
pin is tied to DVCC, the data coding is offset binary, and the  
outputs update to negative full scale. To power up the outputs  
R
R
R
CLR  
V
with zero code loaded to the outputs, hold the  
during power-up.  
pin low  
REF  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
Standalone Operation  
R/8  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous ꢁCLK source can only be  
E15  
E14  
E1  
S0  
S11  
S10  
IOUT  
ꢁYNC  
used if  
In gated clock mode, a burst clock containing the exact number  
ꢁYNC  
is held low for the correct number of clock cycles.  
VOUTx  
AGNDx  
of clock cycles must be used and  
the final clock to latch the data. The first falling edge of  
starts the write cycle. Exactly 24 falling clock edges must be  
must be taken high after  
4 MSBs DECODED INTO  
15 EQUAL SEGMENTS  
12-BIT, R-2R LADDER  
ꢁYNC  
Figure 32. DAC Ladder Structure  
ꢁYNC  
ꢁYNC  
applied to ꢁCLK before  
is brought high again. If  
is  
REFERENCE BUFFERS  
brought high before the 24th falling ꢁCLK edge, the data written  
is invalid. If more than 24 falling ꢁCLK edges are applied before  
The AD5764 operates with an external reference. The reference  
inputs (REFAB and REFCD) have an input range up to 7 V. This  
input voltage is used to provide a buffered positive and negative  
reference for the DAC cores. The positive reference is given by  
ꢁYNC  
is brought high, the input data is also invalid. The input  
shift register addressed is updated on the rising edge of  
For another serial transfer to take place,  
low again. After the end of the serial data transfer, data is  
automatically transferred from the input shift register to the  
addressed register.  
ꢁYNC  
must be brought  
.
ꢁYNC  
+VREF = 2 × VREF  
The negative reference to the DAC cores is given by  
−VREF = −2 × VREF  
When the data has been transferred into the chosen register of  
the addressed DAC, the data register and outputs can be  
These positive and negative reference voltages (along with the  
gain register values) define the output ranges of the DACs.  
LDAC  
updated by taking  
low.  
Rev. F | Page 18 of 28  
 
 
Data Sheet  
AD5764  
Daisy-Chain Operation  
disable bit; this bit is cleared by default. Readback mode is invoked  
W
by setting the R/ bit = 1 in the serial input shift register write.  
1
AD57641  
68HC11  
W
With R/ = 1, Bit A2 to Bit Aꢀ, in association with Bit REG2,  
MOSI  
SCK  
SDIN  
Bit REG1, and Bit REGꢀ, select the register to be read. The  
remaining data bits in the write sequence are don’t cares. During  
the next ꢁPI write, the data appearing on the ꢁDO output  
contain the data from the previously addressed register. For a  
read of a single register, the NOP command can be used in  
clocking out the data from the selected register on ꢁDO. The  
readback diagram in Figure 4 shows the readback sequence. For  
example, to read back the fine gain register of Channel A on the  
AD5764, implement the following:  
SCLK  
SYNC  
LDAC  
PC7  
PC6  
MISO  
SDO  
SDIN  
AD57641  
SCLK  
1. Write ꢀxAꢀXXXX to the AD5764 input shift register. This  
configures the AD5764 for read mode with the fine gain  
register of Channel A selected. Note that all the data bits,  
DB15 to DBꢀ, are don’t cares.  
SYNC  
LDAC  
SDO  
2. Follow this with a second write, an NOP condition,  
ꢀxꢀꢀXXXX. During this write, the data from the fine gain  
register is clocked out on the ꢁDO line, that is, data clocked  
out contain the data from the fine gain register in Bit DB5  
to Bit DBꢀ.  
SDIN  
AD57641  
SCLK  
SYNC  
LDAC  
SIMUꢀTANEOUS UPDATING VIA ꢀDAC  
SDO  
ꢁYNC  
LDAC  
, and after  
Depending on the status of both  
and  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
data has been transferred into the input register of the DACs,  
there are two ways in which the data register and DAC outputs  
can be updated.  
Figure 33. Daisy-Chaining the AD5764  
For systems that contain several devices, the ꢁDO pin can be  
used to daisy-chain several devices together. This daisy-chain  
mode can be useful in system diagnostics and in reducing the  
Individual DAC Updating  
LDAC  
In this mode,  
the input shift register. The addressed DAC output is updated  
ꢁYNC  
is held low while data is being clocked into  
ꢁYNC  
number of serial interface lines. The first falling edge of  
starts the write cycle. The ꢁCLK is continuously applied to the  
ꢁYNC  
on the rising edge of  
Simultaneous Updating of All DACs  
LDAC  
.
input shift register when  
is low. If more than 24 clock  
pulses are applied, the data ripples out of the input shift register  
and appears on the ꢁDO line. This data is clocked out on the  
rising edge of ꢁCLK and is valid on the falling edge. By connect-  
ing the ꢁDO of the first device to the ꢁDIN input of the next device  
in the chain, a multidevice interface is constructed. Each device in  
the system requires 24 clock pulses. Therefore, the total number of  
clock cycles must equal 24N, where N is the total number of  
AD5764 devices in the chain. When the serial transfer to all  
In this mode,  
into the input shift register. All DAC outputs are updated by  
LDAC ꢁYNC  
is held high while data is being clocked  
taking  
low any time after  
has been taken high.  
LDAC  
The update now occurs on the falling edge of  
.
OUTPUT  
I/V AMPLIFIER  
16-BIT  
DAC  
V
REFIN  
V
OUTx  
ꢁYNC  
devices is complete,  
is taken high. This latches the input  
data in each device in the daisy chain and prevents any further  
data from being clocked into the input shift register. The serial  
clock can be a continuous or a gated clock.  
DATA  
REGISTER  
LDAC  
ꢁYNC  
A continuous ꢁCLK source can only be used if  
is held low  
INPUT  
REGISTER  
for the correct number of clock cycles. In gated clock mode, a burst  
clock containing the exact number of clock cycles must be used,  
SCLK  
SYNC  
SDIN  
ꢁYNC  
and  
must be taken high after the final clock to latch the data.  
INTERFACE  
LOGIC  
SDO  
Readback Operation  
Figure 34. Simplified Serial Interface of Input Loading Circuitry  
for One DAC Channel  
Before a readback operation is initiated, the ꢁDO pin must be  
enabled by writing to the function register and clearing the ꢁDO  
Rev. F | Page 19 of 28  
 
AD5764  
Data Sheet  
The output voltage expression for the AD5764 is given by  
TRANSFER FUNCTION  
D
65,536  
Table 7 and Table 8 show the ideal input code to output voltage  
relationship for the AD5764 for both offset binary and twos  
complement data coding, respectively.  
VOUT = −2×VREFIN + 4×VREFIN  
where:  
D is the decimal equivalent of the code loaded to the DAC.  
REFIN is the reference voltage applied at the REFAB/REFCD pins.  
Table 7. Ideal Output Voltage to Input Code Relationship—  
Offset Binary Data Coding  
V
Digital Input  
Analog Output  
MSB  
1111  
1000  
1000  
0111  
0000  
ꢀSB  
VOUTx  
ASYNCHRONOUS CꢀEAR (CꢀR)  
1111  
0000  
0000  
1111  
0000  
1111  
0000  
0000  
1111  
0000  
1111  
0001  
0000  
1111  
0000  
+2 VREF × (32,767/32,768)  
+2 VREF × (1/32,768)  
0 V  
CLR  
is a negative edge triggered clear that allows the outputs to  
be cleared to either ꢀ V (twos complement coding) or negative  
CLR  
full scale (offset binary coding). It is necessary to maintain  
low for a minimum amount of time (see Figure 2) for the operation  
−2 VREF × (1/32,768)  
−2 VREF × (32,767/32,768)  
CLR  
to complete. When the  
remains at the cleared value until a new value is programmed. If  
CLR  
signal is returned high, the output  
Table 8. Ideal Output Voltage to Input Code Relationship—  
Twos Complement Data Coding  
at power-on,  
is at ꢀ V, then all DAC outputs are updated  
with the clear value. A clear can also be initiated through software  
by writing Command ꢀxꢀ4XXXX to the AD5764.  
Digital Input  
Analog Output  
MSB  
0111  
0000  
0000  
1111  
1000  
ꢀSB  
VOUTx  
1111  
0000  
0000  
1111  
0000  
1111  
0000  
0000  
1111  
0000  
1111  
0001  
0000  
1111  
0000  
+2 VREF × (32,767/32,768)  
+2 VREF × (1/32,768)  
0 V  
−2 VREF × (1/32,768)  
−2 VREF × (32,767/32,768)  
Table 9. Input Shift Register Bit Map  
MSB  
ꢀSB  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
DB15:DB0  
R/W  
0
REG2 REG1 REG0 A2  
A1  
A0  
Data  
Table 10. Input Shift Register Bit Functions  
Bit  
Description  
Indicates a read from or a write to the addressed register.  
R/W  
REG2, REG1, REG0  
Used in association with the address bits to determine if a read or write operation is to the data register, offset  
register, coarse gain register, fine gain register, or function register.  
REG2  
REG1  
REG0  
Function  
0
0
0
1
1
0
1
1
0
0
0
0
1
0
1
Function register  
Data register  
Coarse gain register  
Fine gain register  
Offset register  
A2, A1, A0  
These bits are used to decode the DAC channels.  
A2  
A1  
0
A0  
0
Channel Address  
DAC A  
0
0
0
1
DAC B  
0
1
0
DAC C  
0
1
1
DAC D  
1
0
0
All DACs  
Data  
Data bits.  
Rev. F | Page 20 of 28  
 
 
 
 
 
Data Sheet  
AD5764  
FUNCTION REGISTER  
The function register is addressed by setting the three REG bits to ꢀꢀꢀ. The values written to the address bits and the data bits determine  
the function addressed. The functions available via the function register are outlined in Table 11 and Table 12.  
Table 11. Function Register Options  
REG2 REG1 REG0 A2 A1 A0 DB15:DB6 DB5  
DB4  
DB3  
NOP, data = don’t care  
D1 value D0 direction  
DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
0
1
Don’t care Local ground D1 direction  
offset adjust  
D0 value  
SDO disable  
0
0
0
0
0
0
1
1
0
0
0
1
Clear, data = don’t care  
Load, data = don’t care  
Table 12. Explanation of Function Register Options  
Option  
Description  
NOP  
No operation instruction used in readback operations.  
Local Ground Offset Adjust  
Set by the user to enable the local ground offset adjust function. Cleared by the user to disable the local  
ground offset adjust function (default). Refer to the Design Features section for further details.  
D0/D1 Direction  
D0/D1 Value  
Set by the user to enable D0/D1 as outputs. Cleared by the user to enable D0/D1 as inputs (default). Refer  
to the Design Features section for further details.  
I/O port status bits. Logic values written to these locations determine the logic outputs on the D0 and D1  
pins when configured as outputs. These bits indicate the status of the D0 and D1 pins when the I/O port is  
active as an input. When enabled as inputs, these bits are don’t cares during a write operation.  
SDO Disable  
Clear  
Set by the user to disable the SDO output. Cleared by the user to enable the SDO output (default).  
Addressing this function resets the DAC outputs to 0 V in twos complement mode and negative full scale in  
binary mode.  
Load  
Addressing this function updates the data register and consequently the analog outputs.  
DATA REGISTER  
The data register is addressed by setting the three REG bits to ꢀ1ꢀ. The DAC address bits select with which DAC channel the data transfer  
is to take place (see Table 1ꢀ). The data bits are in Position DB15 to Position DBꢀ, as shown in Table 13.  
Table 13. Programming the Data Register Bit Map  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15:DB0  
0
1
0
DAC address  
16-bit DAC data  
COARSE GAIN REGISTER  
The coarse gain register is addressed by setting the three REG bits to ꢀ11. The DAC address bits select with which DAC channel the data  
transfer is to take place (see Table 1ꢀ). The coarse gain register is a 2-bit register and allows the user to select the output range of each  
DAC, as shown in Table 14 and Table 15.  
Table 14. Programming the Coarse Gain Register Bit Map  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15: DB2  
DB1  
DB0  
0
1
1
DAC address  
Don’t care  
CG1  
CG0  
Table 15. Output Range Selection  
Output Range  
CG1  
CG0  
10 V (Default)  
10.2564 V  
10.5263 V  
0
0
1
0
1
0
Rev. F | Page 21 of 28  
 
 
 
 
 
 
AD5764  
Data Sheet  
FINE GAIN REGISTER  
OFFSET REGISTER  
The fine gain register is addressed by setting the three REG bits  
to 1ꢀꢀ. The DAC address bits select with which DAC channel  
the data transfer is to take place (see Table 1ꢀ). The fine gain  
register is a 6-bit register and allows the user to adjust the gain  
of each DAC channel by −32 LꢁBs to +31 LꢁBs in 1 LꢁB  
increments, as shown in Table 16 and Table 17. The adjustment  
is made to both the positive full-scale points and the negative  
full-scale points simultaneously, each point being adjusted by ½  
of one step. The fine gain register coding is twos complement.  
The offset register is addressed by setting the three REG bits to  
1ꢀ1. The DAC address bits select with which DAC channel the  
data transfer is to take place (see Table 1ꢀ). The AD5764 offset  
register is an 8-bit register and allows the user to adjust the offset  
of each channel by −16 LꢁBs to +15.875 LꢁBs in increments of  
⅛ LꢁB, as shown in Table 18 and Table 19. The offset register  
coding is twos complement.  
Table 16. Programming the Fine Gain Register Bit Map  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15:DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
1
0
0
DAC address  
Don’t care  
FG5  
FG4  
FG3  
FG2  
FG1  
FG0  
Table 17. Fine Gain Register Options  
Gain Adjustment  
+31 LSBs  
+30 LSBs  
FG5  
0
0
0
FG4  
1
1
0
FG3  
1
1
0
FG2  
1
1
0
FG1  
FG0  
1
1
1
1
0
0
+2 LSBs  
+1 LSB  
0
0
0
0
0
1
No Adjustment (Default)  
−1 LSB  
0
1
0
1
0
1
0
1
0
1
0
1
−2 LSBs  
1
1
1
1
1
0
−31 LSBs  
−32 LSBs  
1
1
0
0
0
0
0
0
0
0
1
0
Table 18. Programming the Offset Register Bit Map  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15:DB8  
DB7  
DB6  
DB5  
OF5  
DB4  
OF4  
DB3  
DB2  
OF2  
DB1  
DB0  
1
0
1
DAC address  
Don’t care  
OF7  
OF6  
OF3  
OF1  
OF0  
Table 19. AD5764 Offset Register Options  
Offset Adjustment  
+15.875 LSBs  
+15.75 LSBs  
OF7  
0
0
0
OF6  
1
1
0
OF5  
1
1
0
OF4  
OF3  
OF2  
1
1
0
OF1  
OF0  
1
1
0
1
1
0
1
1
1
1
0
0
+0.25 LSBs  
+0.125 LSBs  
No Adjustment (Default)  
−0.125 LSBs  
−0.25 LSBs  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
−15.875 LSBs  
−16 LSBs  
Rev. F | Page 22 of 28  
 
 
 
 
 
 
 
Data Sheet  
AD5764  
Convert this to a negative twos complement number by inverting  
all bits and adding 1 to obtain 1111ꢀꢀꢀꢀ, the value that should  
be programmed to the offset register.  
OFFSET AND GAIN ADJUSTMENT WORKED  
EXAMPꢀE  
Using the information provided in the Fine Gain Register and  
Offset Register sections, the following worked example demon-  
strates how the AD5764 functions can be used to eliminate both  
offset and gain errors. Because the AD5764 is factory calibrated,  
offset and gain errors should be negligible. However, errors can  
be introduced by the system that the AD5764 is operating within;  
for example, a voltage reference value that is not equal to 5 V  
introduces a gain error. An output range of 1ꢀ V and twos  
complement data coding is assumed.  
Note that this twos complement conversion is not necessary in the  
case of a positive offset adjustment. The value to be programmed to  
the offset register is simply the binary representation of the  
adjustment value.  
Removing Gain Error  
The AD5764 can eliminate a gain error at negative full-scale  
output in the range of −9.77 mV to +9.46 mV with a step size of  
½ of a 16-bit LꢁB.  
Removing Offset Error  
Calculate the step size of the gain adjustment.  
2ꢀ  
The AD5764 can eliminate an offset error in the range of −4.88 mV  
to +4.84 mV with a step size of ⅛ of a 16-bit LꢁB.  
GainAdjust StepSize =  
=152.59 ꢂV  
216 × 2  
Calculate the step size of the offset adjustment.  
Measure the gain error by programming ꢀx8ꢀꢀꢀ to the data  
register and measuring the resulting output voltage. The gain  
error is the difference between this value and −1ꢀ V. For this  
example, the gain error is −1.2 mV.  
2ꢀ  
Offset Adjust Step Size =  
= 38.14 ꢂV  
2
16 ×8  
Measure the offset error by programming ꢀxꢀꢀꢀꢀ to the data  
register and measuring the resulting output voltage. For this  
example, the measured value is 614 μV.  
Calculate how many gain adjustment steps this value represents.  
Measured Gain Value  
Number of Steps =  
=
Calculate the number of offset adjustment steps that this value  
represents.  
Gain Step Size  
1.2 mV  
= 8 ꢁteps  
152.59 ꢂV  
Measured Offset Value  
Numberof Steps =  
=
Offset Step Size  
The gain error measured is negative (in terms of magnitude);  
therefore, a positive adjustment of eight steps is required. The  
gain register is 6 bits wide and the coding is twos complement,  
the required gain register value can be determined as follows:  
Convert the adjustment value to binary: ꢀꢀ1ꢀꢀꢀ.  
The value to be programmed to the gain register is simply this  
binary number.  
614 ꢂV  
= 16 ꢁteps  
38.14 ꢂV  
The offset error measured is positive, therefore, a negative  
adjustment of 16 steps is required. The offset register is eight  
bits wide and the coding is twos complement. The required  
offset register value can be calculated as follows:  
Convert the adjustment value to binary: ꢀꢀꢀ1ꢀꢀꢀꢀ.  
Rev. F | Page 23 of 28  
 
AD5764  
Data Sheet  
DESIGN FEATURES  
ANAꢀOG OUTPUT CONTROꢀ  
PROGRAMMABꢀE SHORT-CIRCUIT PROTECTION  
The short-circuit current of the output amplifiers can be pro-  
grammed by inserting an external resistor between the IꢁCC  
pin and PGND. The programmable range for the current is 5ꢀꢀ μA  
to 1ꢀ mA, corresponding to a resistor range of 12ꢀ kΩ to 6 kΩ.  
The resistor value is calculated as follows:  
In many industrial process control applications, it is vital that  
the output voltage be controlled during power-up and during  
brownout conditions. When the supply voltages are changing,  
the VOUTx pins are clamped to ꢀ V via a low impedance path.  
To prevent the output amp being shorted to ꢀ V during this time,  
Transmission Gate G1 is also opened (see Figure 35). These condi-  
tions are maintained until the power supplies stabilize and a  
valid word is written to the data register. At this time, G2 opens and  
G1 closes. Both transmission gates are also externally controllable  
6ꢀ  
IC  
R =  
If the IꢁCC pin is left unconnected, the short-circuit current  
limit defaults to 5 mA. Note that limiting the short-circuit  
current to a small value can affect the slew rate of the output  
when driving into a capacitive load; therefore, the value of the  
programmed short circuit should take into account the size of  
the capacitive load being driven.  
RꢁTIN  
RꢁTIN  
input is  
via the reset logic (  
) control input. For instance, if  
RꢁTIN  
is driven from a battery supervisor chip, the  
driven low to open G1 and close G2 upon power-down or during  
a brownout. Conversely, the on-chip voltage detector output  
RꢁTOUT  
(
) is also available to the user to control other parts of  
DIGITAꢀ I/O PORT  
the system. The basic transmission gate functionality is shown  
in Figure 35.  
The AD5764 contains a 2-bit digital I/O port (D1 and Dꢀ).  
These bits can be configured as inputs or outputs independently,  
and can be driven or have their values read back via the serial  
interface. The I/O port signals are referenced to DVCC and DGND.  
When configured as outputs, they can be used as control signals  
to multiplexers or can be used to control calibration circuitry  
elsewhere in the system. When configured as inputs, the logic  
signals from limit switches can, for example, be applied to Dꢀ  
and D1 and can be read back via the digital interface.  
RSTOUT  
RSTIN  
VOLTAGE  
MONITOR  
AND  
CONTROL  
G1  
VOUTA  
AGNDA  
G2  
ꢀOCAꢀ GROUND OFFSET ADJUST  
The AD5764 incorporates a local ground offset adjust feature  
that, when enabled in the function register, adjusts the DAC  
outputs for voltage differences between the individual DAC ground  
pins, AGNDx, and the REFGND pin, ensuring that the DAC  
output voltages are always with respect to the local DAC ground  
pin. For instance, if Pin AGNDA is at +5 mV with respect to the  
REFGND pin and VOUTA is measured with respect to AGNDA,  
a −5 mV error results, enabling the local ground offset adjust  
feature to adjust VOUTA by +5 mV, eliminating the error.  
Figure 35. Analog Output Control Circuitry  
DIGITAꢀ OFFSET AND GAIN CONTROꢀ  
The AD5764 incorporates a digital offset adjust function with a  
16 LꢁB adjust range and ꢀ.125 LꢁB resolution. The coarse gain  
register allows the user to adjust the AD5764 full-scale output  
range. The full-scale output can be programmed to achieve full-  
scale ranges of 1ꢀ V, 1ꢀ.2564 V, and 1ꢀ.5263 V. A fine gain  
trim is also provided.  
Rev. F | Page 24 of 28  
 
 
 
Data Sheet  
AD5764  
APPLICATIONS INFORMATION  
reference and associated buffers. This leads to an overall savings  
in both cost and board space.  
TYPICAꢀ OPERATING CIRCUIT  
Figure 36 shows the typical operating circuit for the AD5764.  
The only external components needed for this precision 16-bit  
DAC are a reference voltage source, decoupling capacitors on  
the supply pins and reference inputs, and an optional short-  
circuit current setting resistor. Because the device incorporates  
reference buffers, it eliminates the need for an external bipolar  
In Figure 36, AVDD is connected to +15 V and AVꢁꢁ is connected  
to −15 V. However, AVDD can operate with supplies from +11.4 V  
to +16.5 V and AVꢁꢁ can operate with supplies from −11.4 V to  
−16.5 V.  
+15V  
ADR02  
VIN VOUT  
GND  
2
6
4
+15V –15V  
10µF  
10µF  
100nF  
100nF  
100nF  
BIN/2sCOMP  
32 31 30 29 28 27 26 25  
+5V  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SYNC  
SCLK  
SDIN  
SDO  
SYNC  
AGNDA  
VOUTA  
VOUTB  
AGNDB  
AGNDC  
VOUTC  
VOUTD  
AGNDD  
SCLK  
SDIN  
SDO  
CLR  
LDAC  
D0  
VOUTA  
VOUTB  
AD5764  
LDAC  
D0  
VOUTC  
VOUTD  
D1  
D1  
9
10 11 12 13 14 15 16  
RSTOUT  
RSTIN  
10µF  
100nF  
NC = NO CONNECT  
10µF  
+5V  
+15V –15V  
Figure 36. Typical Operating Circuit  
Rev. F | Page 25 of 28  
 
 
AD5764  
Data Sheet  
Precision Voltage Reference Selection  
voltage to a voltage other than the nominal. The trim adjust-  
ment can also be used at temperature to trim out any error.  
To achieve the optimum performance from the AD5764 over its  
full operating temperature range, a precision voltage reference  
must be used. Consideration should be given to the selection of  
a precision voltage reference. The AD5764 has two reference  
inputs, REFAB and REFCD. The voltages applied to the refer-  
ence inputs are used to provide a buffered positive and negative  
reference for the DAC cores. Therefore, any error in the voltage  
reference is reflected in the outputs of the device.  
Long-term drift is a measure of how much the reference output  
voltage drifts over time. A reference with a tight long-term drift  
specification ensures that the overall solution remains relatively  
stable over its entire lifetime.  
The temperature coefficient of a reference output voltage affects  
INL, DNL, and TUE. Choose a reference with a tight temperature  
coefficient specification to reduce the dependence of the DAC  
output voltage on ambient conditions.  
There are four possible sources of error to consider when  
choosing a voltage reference for high accuracy applications:  
initial accuracy, temperature coefficient of the output voltage,  
long-term drift, and output voltage noise.  
In high accuracy applications, which have a relatively low noise  
budget, reference output voltage noise needs to be considered.  
Choosing a reference with as low an output noise voltage as  
practical for the system resolution required is important. Precision  
voltage references such as the ADR435 (XFET® design) produce  
low output noise in the ꢀ.1 Hz to 1ꢀ Hz region. However, as the  
circuit bandwidth increases, filtering the output of the reference  
may be required to minimize the output noise.  
Initial accuracy error on the output voltage of an external refer-  
ence can lead to a full-scale error in the DAC. Therefore, to  
minimize these errors, a reference with low initial accuracy  
error specification is preferred. Choosing a reference with an  
output trim adjustment, such as the ADR425, allows a system  
designer to trim system errors out by setting the reference  
Table 20. Some Precision References Recommended for Use with the AD5764  
Part No. Initial Accuracy (mV Max) ꢀong-Term Drift (ppm Typ) Temp Drift (ppm/°C Max) 0.1 Hz to 10 Hz Noise (μV p-p Typ)  
ADR435  
ADR425  
ADR02  
2
2
5
5
40  
50  
50  
50  
3
3
3
9
8
3.4  
10  
8
ADR395  
Rev. F | Page 26 of 28  
Data Sheet  
AD5764  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure the  
rated performance. The PCB on which the AD5764 is mounted  
must be designed so that the analog and digital sections are sepa-  
rated and confined to certain areas of the board. If the AD5764 is  
in a system where multiple devices require an AGND-to-DGND  
connection, the connection is to be made at one point only. The  
star ground point is established as close as possible to the device.  
The AD5764 must have ample supply bypassing of 1ꢀ μF in parallel  
with ꢀ.1 μF on each supply, located as close to the package as  
possible, ideally right up against the device. The 1ꢀ μF capacitors  
are the tantalum bead type. The ꢀ.1 μF capacitor must have low  
effective series resistance (EꢁR) and low effective series inductance  
(EꢁI), such as the common ceramic types, which provide a low  
impedance path to ground at high frequencies to handle transient  
currents due to internal logic switching.  
interfaces because the number of interface lines is kept to a  
minimum. Figure 37 shows a 4-channel isolated interface to the  
AD5764 using an ADuM14ꢀꢀ. For more information, go to  
www.analog.com.  
MICROCONTROLLER  
ADuM1400*  
VOA  
VIA  
SERIAL CLOCK  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
TO SCLK  
TO SDIN  
TO SYNC  
TO LDAC  
OUT  
VOB  
VOC  
VOD  
VIB  
VIC  
VID  
SERIAL DATA  
OUT  
SYNC OUT  
CONTROL OUT  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 37. Isolated Interface  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5764 is via a serial bus  
that uses a standard protocol that is compatible with micro-  
controllers and DꢁP processors. The communications channel  
is a 3-wire (minimum) interface consisting of a clock signal, a  
data signal, and a synchronization signal. The AD5764 requires  
a 24-bit data-word with data valid on the falling edge of ꢁCLK.  
The power supply lines of the AD5764 must be as large a trace  
as possible to provide low impedance paths and reduce the effects  
of glitches on the power supply line. Fast switching signals, such as  
clocks, must be shielded with digital ground to avoid radiating  
noise to other parts of the board, and must never be run near  
the reference inputs. A ground line routed between the ꢁDIN  
and ꢁCLK lines helps reduce crosstalk between them (not required  
on a multilayer board, which has a separate ground plane; however,  
it is helpful to separate the lines). It is essential to minimize noise  
on the reference inputs because it couples through to the DAC  
output. Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board must run at right angles to each other.  
This reduces the effects of feedthrough on the board. A microstrip  
technique is recommended, but not always possible with a double-  
sided board. In this technique, the component side of the board  
is dedicated to the ground plane, and signal traces are placed on  
the solder side.  
For all the interfaces, the DAC output update can be performed  
automatically when all the data is clocked in, or it can be done  
LDAC  
under the control of  
. The contents of the data register  
can be read using the readback function.  
EVAꢀUATION BOARD  
The AD5764 comes with a full evaluation board to aid designers  
in evaluating the high performance of the part with minimum  
effort. All that is required with the evaluation board is a power  
supply and a PC. The AD5764 evaluation kit includes a populated,  
tested AD5764 PCB. The evaluation board interfaces to the UꢁB  
port of the PC. ꢁoftware is available with the evaluation board,  
which allows the user to easily program the AD5764. The software  
runs on any PC that has Microsoft® Windows® 2ꢀꢀꢀ/NT/XP  
installed.  
GAꢀVANICAꢀꢀY ISOꢀATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. Isocoup-  
lers provide voltage isolation in excess of 2.5 kV. The serial  
loading structure of the AD5764 makes it ideal for isolated  
The EVAL-AD5764EB data sheet is available, which gives full  
details on the operation of the evaluation board.  
Rev. F | Page 27 of 28  
 
 
AD5764  
Data Sheet  
OUTLINE DIMENSIONS  
1.20  
MAX  
0.75  
0.60  
0.45  
9.00 BSC SQ  
25  
32  
1
24  
PIN 1  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
7°  
8
17  
3.5°  
0°  
0.15  
0.05  
9
16  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
VIEW A  
0.80  
0.45  
0.37  
0.30  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-ABA  
Figure 38. 32-Lead Thin Plastic Quad Flat Package [TQFP]  
(SU-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD5764ASUZ  
AD5764ASUZ-REEL7  
AD5764BSUZ  
AD5764BSUZ-REEL7  
AD5764CSUZ  
INꢀ  
4 LSB max  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
32-Lead TQFP  
32-Lead TQFP  
32-Lead TQFP  
32-Lead TQFP  
32-Lead TQFP  
32-Lead TQFP  
Evaluation Board  
Package Option  
SU-32-2  
SU-32-2  
SU-32-2  
SU-32-2  
SU-32-2  
SU-32-2  
4 LSB max  
2 LSB max  
2 LSB max  
1 LSB max  
1 LSB max  
AD5764CSUZ-REEL7  
EVAL-AD5764EBZ  
1 Z = RoHS Compliant Part.  
©2006–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05303-0-9/11(F)  
Rev. F | Page 28 of 28  
 
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!