欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • AD7863ARS-10
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • AD7863ARS-10图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD7863ARS-10 现货库存
  • 数量12500 
  • 厂家AD 
  • 封装28SSOP 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • AD7863ARS-10图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD7863ARS-10 现货库存
  • 数量11500 
  • 厂家AD 
  • 封装SOP-28 
  • 批号24+ 
  • 原装假一赔百,深圳现货,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • AD7863ARS-10图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD7863ARS-10
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装SSOP-28 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • AD7863ARS-10图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD7863ARS-10
  • 数量98500 
  • 厂家AD 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • AD7863ARS-10图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD7863ARS-10
  • 数量8735 
  • 厂家ADI(亚德诺) 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD7863ARS-10图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD7863ARS-10
  • 数量13600 
  • 厂家ANALOG DEVICES 
  • 封装原厂原封装 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • AD7863ARS-10图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • AD7863ARS-10
  • 数量2015 
  • 厂家AD 
  • 封装SOP/DIP 
  • 批号19889 
  • ★一级代理AD原装现货,特价热卖!★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • AD7863ARS-10图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • AD7863ARS-10
  • 数量75200 
  • 厂家ADI/亚德诺 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • AD7863ARS-10REEL图
  • 首天国际(深圳)集团有限公司

     该会员已使用本站17年以上
  • AD7863ARS-10REEL
  • 数量10000 
  • 厂家ADI 
  • 封装原厂封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807088 QQ:528164397QQ:1318502189
  • AD7863ARS-10图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • AD7863ARS-10
  • 数量26700 
  • 厂家ADI(亚德诺) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • AD7863ARS-10Z图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD7863ARS-10Z
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装SSOP-28 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD7863ARS-10图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • AD7863ARS-10
  • 数量6500 
  • 厂家ORIGINAL 
  • 封装 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • AD7863ARS-10REEL7图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • AD7863ARS-10REEL7
  • 数量5000 
  • 厂家AD 
  • 封装28-SSOP 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • AD7863ARS-10图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • AD7863ARS-10
  • 数量12300 
  • 厂家ADI/亚德诺 
  • 封装SSOP28 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • AD7863ARS-10图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • AD7863ARS-10
  • 数量4763 
  • 厂家AD 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • AD7863ARS-10图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • AD7863ARS-10
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装SSOP-28 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • AD7863ARS-10图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD7863ARS-10
  • 数量11500 
  • 厂家AD 
  • 封装SOP-28 
  • 批号2021+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 755-83950019 QQ:3003818780QQ:3003819484
  • AD7863ARS-10图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • AD7863ARS-10
  • 数量3056 
  • 厂家Analog Devices Inc. 
  • 封装28-SSOP 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • AD7863ARS-10图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • AD7863ARS-10
  • 数量15300 
  • 厂家Analog Devices Inc. 
  • 封装28-SSOP 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • AD7863ARS-10图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • AD7863ARS-10
  • 数量7900 
  • 厂家AD 
  • 封装SSOP 
  • 批号2020+ 
  • 一级代理 原装现货供应
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • AD7863ARS-10图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • AD7863ARS-10
  • 数量7602 
  • 厂家AD 
  • 封装SSOP 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • AD7863ARS-10图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • AD7863ARS-10
  • 数量5000 
  • 厂家AD 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • AD7863ARS-10图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • AD7863ARS-10
  • 数量5800 
  • 厂家AD 
  • 封装SSOP 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • AD7863ARS-10图
  • 深圳市中福国际管理有限公司

     该会员已使用本站1年以上
  • AD7863ARS-10
  • 数量21000 
  • 厂家Analog Devices Inc. 
  • 封装28-SSOP 
  • 批号22+ 
  • 大量现货库存,2小时内发货
  • QQ:1664127491QQ:1664127491 复制
    QQ:2115067904QQ:2115067904 复制
  • 0755-82571134 QQ:1664127491QQ:2115067904
  • AD7863ARS-10图
  • 深圳市西昂特科技有限公司

     该会员已使用本站13年以上
  • AD7863ARS-10
  • 数量3000 
  • 厂家AD 
  • 封装SSOP-28 
  • 批号08+/09+ 
  • 全新原装现货特价
  • QQ:2881291855QQ:2881291855 复制
    QQ:1158574719QQ:1158574719 复制
  • 0755-82524647 QQ:2881291855QQ:1158574719
  • AD7863ARS-10图
  • 长荣电子

     该会员已使用本站14年以上
  • AD7863ARS-10
  • 数量
  • 厂家 
  • 封装SSOP 
  • 批号09+ 
  • 现货
  • QQ:172370262QQ:172370262 复制
  • 754-4457500 QQ:172370262
  • AD7863ARS-10图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • AD7863ARS-10
  • 数量23480 
  • 厂家ADI/亚德诺 
  • 封装SOP 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • AD7863ARS-10图
  • 深圳威尔运电子有限公司

     该会员已使用本站10年以上
  • AD7863ARS-10
  • 数量155 
  • 厂家AD 
  • 封装TUBE 
  • 批号15+ 
  • 绝对原装!假一罚十!
  • QQ:276537593QQ:276537593 复制
  • 86-0755-83826550 QQ:276537593
  • AD7863ARS-10图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • AD7863ARS-10
  • 数量660000 
  • 厂家Analog Devices Inc 
  • 封装28-SSOP (0.209 
  • 批号5.30mm Width) 
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • AD7863ARS-10图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • AD7863ARS-10
  • 数量23000 
  • 厂家专营AD全系列 
  • 封装原厂原包装 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • AD7863ARS-10图
  • 北京罗彻斯特电子科技有限公司

     该会员已使用本站18年以上
  • AD7863ARS-10
  • 数量37 
  • 厂家 
  • 封装 
  • 批号2002 
  • ★原装现货,微波军工停产芯片优势,可出售样品研发选型BOM配单服务
  • QQ:674627925QQ:674627925 复制
    QQ:372787046QQ:372787046 复制
  • 13261827936军工芯片优势 QQ:674627925QQ:372787046
  • AD7863ARS-10图
  • 深圳市双微电子科技有限公司

     该会员已使用本站10年以上
  • AD7863ARS-10
  • 数量1589 
  • 厂家ADI 
  • 封装SSOP28 
  • 批号20+ 
  • 询货请加QQ 全新原装 现货库存
  • QQ:1965209269QQ:1965209269 复制
    QQ:1079402399QQ:1079402399 复制
  • 15889219681 QQ:1965209269QQ:1079402399
  • AD7863ARS-10Z图
  • 北京逸博微科技有限公司

     该会员已使用本站16年以上
  • AD7863ARS-10Z
  • 数量2500 
  • 厂家ADI 
  • 封装xxx 
  • 批号18+ 
  • 保证全新进口原装 特价
  • QQ:352981218QQ:352981218 复制
  • 010-62969189 QQ:352981218

产品型号AD7863ARS-10的概述

AD7863ARS-10概述 AD7863ARS-10是一款高性能、低功耗的多通道模拟前端芯片,广泛应用于数模转换器领域。该芯片由Analog Devices公司设计制造,是其AD7863系列的一部分,常用于测量、数据采集和其他需要将模拟信号转换为数字信号的应用中。其具有高分辨率和较快转换速度,支持多通道输入,因此非常适合于多种应用场景,如工业自动化、医疗设备和汽车电子等。 AD7863的主要特点包括具有12位分辨率,兼容SPI(串行外围设备接口)标准的通信格式,以及低功耗特性,这使其在电池供电的设备中表现出色。此外,AD7863还具备内置参考电压,简化了电路设计并提高了系统的稳定性。 AD7863ARS-10详细参数 AD7863ARS-10的主要技术参数如下: - 分辨率:12位 - 输入通道数:4通道(单端输入) - 最大采样速率:100 kSPS(每秒采样次数) - 供电电压:...

产品型号AD7863ARS-10的Datasheet PDF文件预览

Simultaneous Sampling  
Dual 175 kSPS 14-Bit ADC  
a
AD7863  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Two Fast 14-Bit ADCs  
V
DD  
V
REF  
Four Input Channels  
Simultaneous Sampling and Conversion  
5.2 s Conversion Time  
2kꢀ  
+2.5V  
REFERENCE  
AD7863  
Single Supply Operation  
Selection of Input Ranges  
10 V for AD7863-10  
TRACK/  
HOLD  
SIGNAL  
V
A1  
SCALING  
14-BIT  
MUX  
2.5 V for AD7863-3  
ADC  
SIGNAL  
SCALING  
V
B1  
DB0  
0 V to 2.5 V for AD7863-2  
High Speed Parallel Interface  
Low Power, 70 mW Typ  
Power Saving Mode, 105 W Max  
Overvoltage Protection on Analog Inputs  
14-Bit Lead Compatible Upgrade to AD7862  
OUTPUT  
LATCH  
TRACK/  
HOLD  
SIGNAL  
SCALING  
DB13  
V
A2  
14-BIT  
ADC  
MUX  
SIGNAL  
SCALING  
V
CS  
RD  
B2  
CONVERSION  
CONTROL LOGIC  
CLOCK  
APPLICATIONS  
AC Motor Control  
A0  
BUSY  
AGND AGND DGND  
Uninterrupted Power Supplies  
Data Acquisition Systems  
Communications  
CONVST  
GENERAL DESCRIPTION  
The AD7863 is fabricated in Analog DevicesLinear Compat-  
ible CMOS (LC2MOS) process, a mixed technology process  
that combines precision bipolar circuits with low power CMOS  
logic. It is available in 28-lead SOIC and SSOP.  
The AD7863 is a high speed, low power, dual 14-bit A/D con-  
verter that operates from a single +5 V supply. The part contains  
two 5.2 µs successive approximation ADCs, two track/hold amplifi-  
ers, an internal +2.5 V reference and a high speed parallel inter-  
face. Four analog inputs are grouped into two channels (A and  
B) selected by the A0 input. Each channel has two inputs (VA1  
and VA2 or VB1 and VB2), which can be sampled and converted  
simultaneously thus preserving the relative phase information of  
the signals on both analog inputs. The part accepts an analog  
input range of 10 V (AD7863-10), 2.5 V (AD7863-3) and  
0 V2.5 V (AD7863-2). Overvoltage protection on the analog  
inputs for the part allows the input voltage to go to 17 V, 7 V  
or +7 V respectively, without causing damage.  
PRODUCT HIGHLIGHTS  
1. The AD7863 features two complete ADC functions allowing  
simultaneous sampling and conversion of two channels.  
Each ADC has a two-channel input mux. The conversion  
result for both channels is available 5.2 µs after initiating  
conversion.  
2. The AD7863 operates from a single +5 V supply and  
consumes 70 mW typ. The automatic power-down mode,  
where the part goes into power down once conversion is  
complete and wakes upbefore the next conversion cycle,  
makes the AD7863 ideal for battery-powered or portable  
applications.  
A single conversion start signal (CONVST) simultaneously  
places both track/holds into hold and initiates conversion on  
both channels. The BUSY signal indicates the end of conversion  
and at this time the conversion results for both channels are  
available to be read. The first read after a conversion accesses  
the result from VA1 or VB1, while the second read accesses the  
result from VA2 or VB2, depending on whether the multiplexer  
select A0 is low or high respectively. Data is read from the part  
via a 14-bit parallel data bus with standard CS and RD signals.  
3. The part offers a high speed parallel interface for easy  
connection to microprocessors, microcontrollers and digital  
signal processors.  
4. The part is offered in three versions with different analog  
input ranges. The AD7863-10 offers the standard industrial  
input range of 10 V; the AD7863-3 offers the common  
signal processing input range of 2.5 V, while the AD7863-2  
can be used in unipolar 0 V2.5 V applications.  
In addition to the traditional dc accuracy specifications such as  
linearity, gain and offset errors, the part is also specified for  
dynamic performance parameters including harmonic distortion  
and signal-to-noise ratio.  
5. The part features very tight aperture delay matching between  
the two input sample and hold amplifiers.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
MIN to TMAX  
AD7863–SPECIFICATIONS (V = +5 V 5%, AGND = DGND = 0 V, REF = Internal. All specifications T  
unless otherwise noted.)  
DD  
A
B
Parameter  
Version1  
Version1  
Units  
Test Conditions/Comments  
SAMPLE AND HOLD  
3 dB Small Signal Bandwidth  
Aperture Delay2  
7
7
MHz typ  
ns max  
ps typ  
35  
50  
350  
35  
50  
350  
Aperture Jitter2  
Aperture Delay Matching2  
ps max  
DYNAMIC PERFORMANCE3  
Signal to (Noise + Distortion) Ratio4  
@ +25°C  
fIN = 80.0 kHz, fS = 175 kSPS  
78  
77  
82  
82  
78  
77  
82  
82  
dB min  
dB min  
dB max  
dB max  
TMIN to TMAX  
Total Harmonic Distortion4  
Peak Harmonic or Spurious Noise4  
Intermodulation Distortion4  
2nd Order Terms  
Typically 87 dB  
Typically 90 dB  
fa = 49 kHz, fb = 50 kHz  
93  
89  
86  
93  
89  
86  
dB typ  
dB typ  
dB typ  
3rd Order Terms  
Channel-to-Channel Isolation4  
fIN = 50 kHz Sine Wave  
Any Channel  
DC ACCURACY  
Resolution  
14  
14  
Bits  
Minimum Resolution for Which No  
Missing Codes are Guaranteed  
Relative Accuracy4  
14  
2.5  
+2 to 1  
14  
2
+2 to 1  
Bits  
LSB max  
LSB max  
Differential Nonlinearity4  
AD7863-10, AD7863-3  
Positive Gain Error4  
10  
10  
10  
10  
10  
8
8
10  
8
10  
8
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
Positive Gain Error Match4  
Negative Gain Error4  
Negative Gain Error Match4  
Bipolar Zero Error  
Bipolar Zero Error Match  
AD7863-2  
6
Positive Gain Error4  
14  
16  
14  
LSB max  
LSB max  
LSB max  
LSB max  
Positive Gain Error Match4  
Unipolar Offset Error  
Unipolar Offset Error Match  
10  
ANALOG INPUTS  
AD7863-10  
Input Voltage Range  
Input Resistance  
AD7863-3  
10  
9
10  
9
Volts  
ktyp  
Input Voltage Range  
Input Resistance  
AD7863-2  
2.5  
3
2.5  
3
Volts  
ktyp  
Input Voltage Range  
Input Current  
+2.5  
100  
+2.5  
100  
Volts  
nA max  
REFERENCE INPUT/OUTPUT  
REF IN Input Voltage Range  
REF IN Input Current  
2.375/2.625 2.375/2.625  
100 100  
2.5 2.5  
2.5 V 5%  
µA max  
V nom  
REF OUT Output Voltage  
REF OUT Error @ +25°C  
REF OUT Error TMIN to TMAX  
REF OUT Temperature Coefficient  
10  
20  
25  
10  
20  
25  
mV max  
mV max  
ppm/°C typ  
LOGIC INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
2.4  
0.8  
10  
10  
2.4  
0.8  
10  
10  
V min  
VDD = 5 V 5%  
VDD = 5 V 5%  
V max  
µA max  
pF max  
5
Input Capacitance, CIN  
–2–  
REV. A  
AD7863  
A
B
Parameter  
Version1  
Version1  
Units  
Test Conditions/Comments  
LOGIC OUTPUTS  
Output High Voltage, VOH  
Output Low Voltage, VOL  
DB11DB0  
4.0  
0.4  
4.0  
0.4  
V min  
V max  
ISOURCE = 200 µA  
ISINK = 1.6 mA  
Floating-State Leakage Current  
Floating-State Capacitance5  
Output Coding  
10  
10  
10  
10  
µA max  
pF max  
AD7863-10, AD7863-3  
AD7863-2  
Twos Complement  
Straight (Natural) Binary  
CONVERSION RATE  
Conversion Time  
Mode 1 Operation  
5.2  
10.0  
0.5  
5.2  
10.0  
0.5  
µs max  
µs max  
µs max  
For Both Channels  
For Both Channels  
Mode 2 Operation6  
Track/Hold Acquisition Time4, 7  
POWER REQUIREMENTS  
VDD  
+5  
+5  
V nom  
5% for Specified Performance  
IDD  
Normal Mode (Mode 1)  
AD7863-10  
AD7863-3  
17  
15  
10  
17  
15  
10  
mA max  
mA max  
mA max  
AD7863-2  
Power-Down Mode (Mode 2)  
I
DD @ +25°C8  
20  
20  
µA max  
40 nA typ. Logic Inputs = 0 V or VDD  
Power Dissipation  
Normal Mode (Mode 1)  
AD7863-10  
AD7863-3  
AD7863-2  
Power-Down Mode @ +25°C  
89.25  
78.75  
52.5  
89.25  
78.75  
52.5  
mW max  
mW max  
mW max  
µW max  
V
V
V
DD = 5.25 V, Typically 70 mW  
DD = 5.25 V, Typically 70 mW  
DD = 5.25 V, Typically 45 mW  
105  
105  
Typically 210 nW, VDD = 5.25 V  
NOTES  
1Temperature ranges are as follows: A, B Versions: 40°C to +85°C.  
2Sample tested during initial release.  
3Applies to Mode 1 operation. See section on operating modes.  
4See Terminology.  
5Sample tested @ +25°C to ensure compliance.  
6This 10 µs includes the wake-uptime from standby. This wake-uptime is timed from the rising edge of CONVST, whereas conversion is timed from the falling  
edge of CONVST, for a narrow CONVST pulsewidth the conversion time is effectively the wake-uptime plus conversion time, hence 10 µs. This can be seen from  
Figure 6. Note that if the CONVST pulsewidth is greater than 5.2 µs, the effective conversion time will increase beyond 10 µs.  
7Performance measured through full channel (multiplexer, SHA and ADC).  
8For best dynamic performance of the AD7863, ATE device testing has to be performed with power supply decoupling in place. In the AD7863 power-down mode of  
operation, the leakage current associated with these decoupling capacitors is greater than that of the AD7863 supply current. Therefore the 40 nA typical figure shown  
is a characterized and guaranteed by design figure, which reflects the supply current of the AD7863 without decoupling in place. The max figure shown in the Conditions/  
Comments column reflects the AD7863 with supply decoupling in place0.1 µF in parallel with a 10 µF disc ceramic capacitors on the VDD pin and 2 × 0.1 µF disc  
ceramic capacitors on the VREF pin, in both cases to the AGND plane.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD7863  
(VDD = +5 V 5%, AGND = DGND = 0 V, REF = Internal. All specifications TMIN to TMAX unless  
otherwise noted.)  
TIMING CHARACTERISTICS1, 2  
A, B  
Parameter  
Versions  
Units  
Test Conditions/Comments  
tCONV  
tACQ  
Parallel Interface  
5.2  
0.5  
µs max  
µs max  
Conversion Time  
Acquisition Time  
t1  
t2  
t3  
t4  
0
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
CS to RD Setup Time  
CS to RD Hold Time  
CONVST Pulsewidth  
Read Pulsewidth  
Data Access Time after Falling Edge of RD  
Bus Relinquish Time after Rising Edge of RD  
35  
45  
30  
5
30  
10  
400  
3
t54  
t6  
t7  
t8  
Time Between Consecutive Reads  
Quiet Time  
NOTES  
1Sample tested at +25°C to ensure compliance. All input signals are measured with tr = tf = 1 ns (10% to 90% of +5 V) and timed from a voltage level of +1.6 V.  
2See Figure 1.  
3Measured with the load circuit of Figure 2 and defined as the time required for an output to cross 0.8 V or 2.0 V.  
4These times are derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 2. The measured number is then  
extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus  
relinquish times of the part and as such are independent of external bus loading capacitances.  
Specifications subject to change without notice.  
tACQ  
t8  
CONVST  
t3  
BUSY  
tCONV = 5.2s  
A0  
CS  
t1  
t2  
t7  
t4  
RD  
t5  
t6  
V
V
B2  
V
V
A2  
DATA  
B1  
A1  
Figure 1. Timing Diagram  
1.6mA  
TO OUTPUT  
PIN  
50pF  
200A  
Figure 2. Load Circuit for Access Time and Bus Relinquish Time  
–4–  
REV. A  
AD7863  
ABSOLUTE MAXIMUM RATINGS*  
(TA = +25°C unless otherwise noted)  
SOIC Package, Power Dissipation . . . . . . . . . . . . . . . 450 mW  
θ
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . 110°C/W  
Lead Temperature, Soldering  
VDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +7 V  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +7 V  
Analog Input Voltage to AGND  
AD7863-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V  
AD7863-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
AD7863-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V  
Reference Input Voltage to AGND . . . .0.3 V to VDD + 0.3 V  
Digital Input Voltage to DGND . . . . . 0.3 V to VDD + 0.3 V  
Digital Output Voltage to DGND . . . . 0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . .+215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . .+220°C  
SSOP Package, Power Dissipation . . . . . . . . . . . . . . . 450 mW  
θ
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . 110°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . .+215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . .+220°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Commercial (A, B Version) . . . . . . . . . . . . 40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . 65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
ORDERING GUIDE  
Relative Accuracy  
Model  
Input Ranges  
Temperature Range  
Package Options*  
AD7863AR-10  
AD7863BR-10  
AD7863ARS-10  
AD7863AR-3  
AD7863ARS-3  
AD7863BR-3  
AD7863AR-2  
AD7863ARS-2  
10 V  
10 V  
10 V  
2.5 V  
2.5 V  
2.5 V  
0 V to 2.5 V  
0 V to 2.5 V  
2.5 LSB  
2.0 LSB  
2.5 LSB  
2.5 LSB  
2.5 LSB  
2.0 LSB  
2.5 LSB  
2.5 LSB  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
R-28  
R-28  
RS-28  
R-28  
RS-28  
R-28  
R-28  
RS-28  
*R = Small Outline (SOIC), RS = Shrink Small Outline (SSOP).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7863 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
5–  
AD7863  
PIN FUNCTION DESCRIPTIONS  
Pin  
Mnemonic  
Description  
16  
7
DB12DB7  
DGND  
Data Bit 12 to Data Bit 7. Three-state TTL outputs.  
Digital Ground. Ground reference for digital circuitry.  
8
CONVST  
Convert Start Input. Logic Input. A high to low transition on this input puts both track/holds into their hold  
mode and starts conversion on both channels.  
915  
16  
DB6DB0  
AGND  
VB2  
Data Bit 6 to Data Bit 0. Three-state TTL outputs.  
Analog Ground. Ground reference for Mux, track/hold, reference and DAC circuitry.  
17  
Input Number 2 of Channel B. Analog Input voltage ranges of 10 V (AD7863-10), 2.5 V (AD7863-3)  
and 0 V2.5 V (AD7863-2).  
18  
19  
VA2  
Input Number 2 of Channel A. Analog Input voltage ranges of 10 V (AD7863-10), 2.5 V (AD7863-3)  
and 0 V2.5 V (AD7863-2).  
VREF  
Reference Input/Output. This pin is connected to the internal reference through a series resistor and is the  
output reference source for the analog-to-digital converter. The nominal reference voltage is 2.5 V and this  
appears at the pin.  
20  
A0  
Multiplexer Select. This input is used in conjunction with CONVST to determine on which pair of channels  
the conversion is to be performed. If A0 is low when the conversion is initiated then channels VA1, VA2 will  
be selected. If A0 is high when the conversion is initiated, channels VB1, VB2 will be selected.  
21  
22  
CS  
Chip Select Input. Active low logic input. The device is selected when this input is active.  
RD  
Read Input. Active low logic input. This input is used in conjunction with CS low to enable the data out-  
puts and read a conversion result from the AD7863.  
23  
BUSY  
Busy Output. The busy output is triggered high by the falling edge of CONVST and remains high until  
conversion is completed.  
24  
25  
VDD  
VA1  
Analog and Digital Positive Supply Voltage, +5.0 V 5%.  
Input Number 1 of Channel A. Analog Input voltage ranges of 10 V (AD7863-10), 2.5 V (AD7863-3)  
and 0 V2.5 V (AD7863-2).  
26  
VB1  
Input Number 1 of Channel B. Analog Input voltage ranges of 10 V (AD7863-10), 2.5 V (AD7863-3)  
and 0 V2.5 V (AD7863-2).  
27  
28  
AGND  
DB13  
Analog Ground. Ground reference for Mux, track/hold, reference and DAC circuitry.  
Data Bit 13 (MSB). Three-state TTL output. Output coding is twos complement for the AD7863-10 and  
AD7863-3. Output coding is straight (natural) binary for the AD7863-2.  
PIN CONFIGURATION  
DB12  
DB11  
DB10  
DB9  
DB13  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AGND  
V
3
B1  
4
V
A1  
DB8  
V
5
DD  
BUSY  
DB7  
6
AD7863  
TOP VIEW  
(Not to Scale)  
DGND  
7
RD  
8
CONVST  
CS  
DB6  
A0  
9
DB5  
DB4  
DB3  
DB2  
V
10  
11  
12  
13  
REF  
V
A2  
V
B2  
AGND  
DB0  
DB1 14  
6–  
REV. A  
AD7863  
Channel-to-Channel Isolation  
TERMINOLOGY  
Channel-to-Channel isolation is a measure of the level of  
crosstalk between channels. It is measured by applying a full-  
scale 50 kHz sine wave signal to all nonselected channels and  
determining how much that signal is attenuated in the selected  
channel. The figure given is the worst case across all channels.  
Signal to (Noise + Distortion) Ratio  
This is the measured ratio of signal to (noise + distortion) at the  
output of the A/D converter. The signal is the rms amplitude of  
the fundamental. Noise is the rms sum of all nonfundamental  
signals up to half the sampling frequency (fS/2), excluding dc.  
The ratio is dependent upon the number of quantization levels  
in the digitization process; the more levels, the smaller the quan-  
tization noise. The theoretical signal to (noise + distortion) ratio  
for an ideal N-bit converter with a sine wave input is given by:  
Relative Accuracy  
Relative accuracy or endpoint nonlinearity is the maximum  
deviation from a straight line passing through the endpoints of  
the ADC transfer function.  
Signal to (Noise + Distortion) = (6.02N + 1.76) dB  
Differential Nonlinearity  
Thus for a 14-bit converter, this is 86.04 dB.  
This is the difference between the measured and the ideal  
1 LSB change between any two adjacent codes in the ADC.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the rms sum of  
harmonics to the fundamental. For the AD7863 it is defined as:  
Positive Gain Error (AD7863-10, 10 V, AD7863-3, 2.5 V)  
This is the deviation of the last code transition (01 . . . 110 to  
01 . . . 111) from the ideal 4 × VREF 1 LSB (AD7863-10  
10 V range) or VREF 1 LSB (AD7863-3, 2.5 V range), after  
the Bipolar Offset Error has been adjusted out.  
V22 +V32 +V42 +V52  
THD (dB)= 20 log  
V1  
where V1 is the rms amplitude of the fundamental and V2, V3,  
V4 and V5 are the rms amplitudes of the second through the  
fifth harmonics.  
Positive Gain Error (AD7863-2, 0 V to 2.5 V)  
This is the deviation of the last code transition (11 . . . 110 to  
11 . . . 111) from the ideal VREF 1 LSB, after the unipolar  
offset error has been adjusted out.  
Peak Harmonic or Spurious Noise  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/2 and excluding dc) to the rms value of the  
fundamental. Normally, the value of this specification is deter-  
mined by the largest harmonic in the spectrum, but for parts  
where the harmonics are buried in the noise floor, it will be a  
noise peak.  
Bipolar Zero Error (AD7863-10, 10 V, AD7863-3, 2.5 V)  
This is the deviation of the midscale transition (all 0s to all 1s)  
from the ideal 0 V (AGND).  
Unipolar Offset Error (AD7863-2, 0 V to 2.5 V)  
This is the deviation of the first code transition (00 . . . 000 to  
00 . . . 001) from the ideal AGND + 1 LSB.  
Negative Gain Error (AD7863-10, 10 V, AD7863-3, 2.5 V)  
This is the deviation of the first code transition (10 . . . 000 to  
10 . . . 001) from the ideal 4 × VREF + 1 LSB (AD7863-10  
10 V range) or VREF + 1 LSB (AD7863-3, 2.5 V range),  
after Bipolar Zero Error has been adjusted out.  
Intermodulation Distortion  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities will create distortion  
products at sum and difference frequencies of mfa nfb where  
m, n = 0, 1, 2, 3, etc. Intermodulation terms are those for  
which neither m nor n are equal to zero. For example, the  
second order terms include (fa + fb) and (fa fb), while the  
third order terms include (2fa + fb), (2fa fb), (fa + 2fb)  
and (fa 2fb).  
Track/Hold Acquisition Time  
Track/hold acquisition time is the time required for the output  
of the track/hold amplifier to reach its final value, within  
1/2 LSB, after the end of conversion (the point at which the  
track/hold returns to track mode). It also applies to situations  
where a change in the selected input channel takes place or  
where there is a step input change on the input voltage applied  
to the selected VAX/BX input of the AD7863. It means that the  
user must wait for the duration of the track/hold acquisition  
time after the end of conversion or after a channel change/step  
input change to VAX/BX before starting another conversion, to  
ensure that the part operates to specification.  
The AD7863 is tested using two input frequencies. In this case,  
the second and third order terms are of different significance.  
The second order terms are usually distanced in frequency from  
the original sine waves, while the third order terms are usually at  
a frequency close to the input frequencies. As a result, the  
second and third order terms are specified separately. The  
calculation of the intermodulation distortion is as per the THD  
specification where it is the ratio of the rms sum of the indi-  
vidual distortion products to the rms amplitude of the funda-  
mental expressed in dBs.  
REV. A  
7–  
AD7863  
CONVERTER DETAILS  
The track/hold amplifiers acquire input signals to 14-bit accu-  
racy in less than 500 ns. The operation of the track/holds are  
essentially transparent to the user. The two track/hold amplifi-  
ers sample their respective input channels simultaneously, on  
the falling edge of CONVST. The aperture time for the track/  
holds (i.e., the delay time between the external CONVST signal  
and the track/hold actually going into hold) is well matched  
across the two track/holds on one device and also well matched  
from device to device. This allows the relative phase information  
between different input channels to be accurately preserved. It  
also allows multiple AD7863s to simultaneously sample more  
than two channels. At the end of conversion, the part returns to  
its tracking mode. The acquisition time of the track/hold ampli-  
fiers begins at this point.  
The AD7863 is a high speed, low power, dual 14-bit A/D con-  
verter that operates from a single +5 V supply. The part con-  
tains two 5.2 µs successive approximation ADCs, two track/  
hold amplifiers, an internal +2.5 V reference and a high speed  
parallel interface. Four analog inputs are grouped into two  
channels (A and B) selected by the A0 input. Each channel has  
two inputs (VA1 and VA2 or VB1 and VB2) which can be sampled  
and converted simultaneously thus preserving the relative phase  
information of the signals on both analog inputs. The part  
accepts an analog input range of 10 V (AD7863-10), 2.5 V  
(AD7863-3) and 0 V2.5 V (AD7863-2). Overvoltage protec-  
tion on the analog inputs for the part allows the input voltage to  
go to 17 V, 7 V or +7 V respectively, without causing dam-  
age. The AD7863 has two operating modes, the high sampling  
mode and the auto sleep mode where the part automatically  
goes into sleep after the end of conversion. These modes are  
discussed in more detail in the Timing and Control section.  
Reference Section  
The AD7863 contains a single reference pin, labeled VREF  
,
which either provides access to the parts own +2.5 V reference  
or to which an external +2.5 V reference can be connected to  
provide the reference source for the part. The part is specified  
with a +2.5 V reference voltage. Errors in the reference source  
will result in gain errors in the AD7863s transfer function and  
will add to the specified full-scale errors on the part. On the  
AD7863-10 and AD7863-3, it will also result in an offset error  
injected in the attenuator stage.  
Conversion is initiated on the AD7863 by pulsing the CONVST  
input. On the falling edge of CONVST, both on-chip track/  
holds are simultaneously placed into hold and the conversion  
sequence is started on both channels. The conversion clock for  
the part is generated internally using a laser-trimmed clock  
oscillator circuit. The BUSY signal indicates the end of conver-  
sion and at this time the conversion results for both channels  
are available to be read. The first read after a conversion ac-  
cesses the result from VA1 or VB1, while the second read ac-  
cesses the result from VA2 or VB2 depending on whether the  
multiplexer select A0 is low or high respectively before the  
conversion is initiated. Data is read from the part via a 14-bit  
parallel data bus with standard CS and RD signals.  
The AD7863 contains an on-chip +2.5 V reference. To use this  
reference as the reference source for the AD7863, simply  
connect two 0.1 µF disc ceramic capacitors from the VREF pin  
to AGND. The voltage that appears at this pin is internally  
buffered before being applied to the ADC. If this reference is  
required for use external to the AD7863, it should be buffered  
as the part has a FET switch in series with the reference output  
resulting in a source impedance for this output of 5.5 knomi-  
nal. The tolerance on the internal reference is 10 mV at 25°C  
with a typical temperature coefficient of 25 ppm/°C and a maxi-  
mum error over temperature of 25 mV.  
Conversion time for the AD7863 is 5.2 µs in the high sampling  
mode (10 µs for the auto sleep mode), and the track/hold acqui-  
sition time is 0.5 µs. To obtain optimum performance from the  
part, the read operation should not occur during the conversion  
or during the 400 ns prior to the next conversion. This allows  
the part to operate at throughput rates up to 175 kHz and  
achieve data sheet specifications.  
If the application requires a reference with a tighter tolerance or  
the AD7863 needs to be used with a system reference, the user  
has the option of connecting an external reference to this VREF  
pin. The external reference will effectively overdrive the internal  
reference and thus provide the reference source for the ADC.  
The reference input is buffered before being applied to the  
ADC with a maximum input current of 100 µA. A suitable  
reference source for the AD7863 is the AD780 precision  
+2.5 V reference.  
Track/Hold Section  
The track/hold amplifiers on the AD7863 allow the ADCs to  
accurately convert an input sine wave of full-scale amplitude to  
14-bit accuracy. The input bandwidth of the track/hold is  
greater than the Nyquist rate of the ADC, even when the ADC  
is operated at its maximum throughput rate of 175 kHz (i.e.,  
the track/hold can handle input frequencies in excess of 87.5 kHz).  
8–  
REV. A  
AD7863  
The analog input section for the AD7863-2 contains no biasing  
resistors and the VAX/BX pin drives the input directly to the  
multiplexer and track/hold amplifier circuitry. The analog input  
range is 0 V to +2.5 V into a high impedance stage with an  
input current of less than 100 nA. This input is benign, with no  
dynamic charging currents. Once again, the designed code tran-  
sitions occur on successive integer LSB values. Output coding is  
straight (natural) binary with 1 LSB = FS/16384 = 2.5 V/16384  
= 0.15 mV. Table II shows the ideal input/output transfer func-  
tion for the AD7863-2.  
CIRCUIT DESCRIPTION  
Analog Input Section  
The AD7863 is offered as three part types: the AD7863-10,  
which handles a 10 V input voltage range, the AD7863-3,  
which handles input voltage range 2.5 V and the AD7863-2,  
which handles a 0 V to +2.5 V input voltage range.  
+2.5V  
REFERENCE  
2kꢀ  
AD7863-10/AD7863-3  
V
REF  
Table II. Ideal Input/Output Code Table for the AD7863-2  
Digital Output  
TO ADC  
REFERENCE  
CIRCUITRY  
R2  
R3  
Analog Input1  
Code Transition  
R1  
TO INTERNAL  
COMPARATOR  
MUX  
V
AX  
+FSR 1 LSB2  
+FSR 2 LSB  
+FSR 3 LSB  
111 . . . 110 to 111 . . . 111  
111 . . . 101 to 111 . . . 110  
111 . . . 100 to 111 . . . 101  
TRACK/  
HOLD  
AGND  
Figure 3. AD7863-10/-3 Analog Input Structure  
GND + 3 LSB  
GND + 2 LSB  
GND + 1 LSB  
000 . . . 010 to 000 . . . 011  
000 . . . 001 to 000 . . . 010  
000 . . . 000 to 000 . . . 001  
Figure 3 shows the analog input section for the AD7863-10 and  
AD7863-3. The analog input range of the AD7863-10 is 10 V  
into an input resistance of typically 9 k. The analog input  
range of the AD7863-3 is 2.5 V into an input resistance of  
typically 3 k. This input is benign, with no dynamic charging  
currents as the resistor stage is followed by a high input imped-  
ance stage of the track/hold amplifier. For the AD7863-10, R1  
= 8 k, R2 = 2 kand R3 = 2 k. For the AD7863-3, R1 = R2  
= 2 kand R3 is open circuit.  
NOTES  
1FSR is Full-Scale Range and is 2.5 V for AD7863-2 with VREF = +2.5 V.  
21 LSB = FSR/16384 and is 0.15 mV for AD7863-2 with VREF = +2.5 V.  
OFFSET AND FULL-SCALE ADJUSTMENT  
In most Digital Signal Processing (DSP) applications, offset and  
full-scale errors have little or no effect on system performance.  
Offset error can always be eliminated in the analog domain by  
ac coupling. Full-scale error effect is linear and does not cause  
problems as long as the input signal is within the full dynamic  
range of the ADC. Invariably, some applications will require  
that the input signal span the full analog input dynamic range.  
In such applications, offset and full-scale error will have to be  
adjusted to zero.  
For the AD7863-10 and AD7863-3, the designed code transi-  
tions occur on successive integer LSB values (i.e., 1 LSB, 2 LSBs,  
3 LSBs . . .). Output coding is twos complement binary with  
1 LSB = FS/16384. The ideal input/output transfer function for  
the AD7863-10 and AD7863-3 is shown in Table I.  
Table I. Ideal Input/Output Code Table for the AD7863-10/-3  
Digital Output  
Figure 4 shows a typical circuit that can be used to adjust the  
offset and full-scale errors on the AD7863 (VA1 on the AD7863-  
10 version is shown for example purposes only). Where adjust-  
ment is required, offset error must be adjusted before full-scale  
error. This is achieved by trimming the offset of the op amp  
driving the analog input of the AD7863 while the input voltage is  
1/2 LSB below analog ground. The trim procedure is as follows:  
apply a voltage of 0.61 mV (1/2 LSB) at V1 in Figure 4 and  
adjust the op amp offset voltage until the ADC output code  
flickers between 11 1111 1111 1111 and 00 0000 0000 0000.  
Analog Inputl  
Code Transition  
+FSR/2 1 LSB2  
+FSR/2 2 LSBs  
+FSR/2 3 LSBs  
011 . . . 110 to 011 . . . 111  
011 . . . 101 to 011 . . . 110  
011 . . . 100 to 011 . . . 101  
GND + 1 LSB  
GND  
GND 1 LSB  
000 . . . 000 to 000 . . . 001  
111 . . . 111 to 000 . . . 000  
111 . . . 110 to 111 . . . 111  
FSR/2 + 3 LSBs  
FSR/2 + 2 LSBs  
FSR/2 + 1 LSB  
100 . . . 010 to 100 . . . 011  
100 . . . 001 to 100 . . . 010  
100 . . . 000 to 100 . . . 001  
INPUT RANGE = 10V  
V
1
R1  
NOTES  
10kꢀ  
1FSR is full-scale range = 20 V (AD7863-10) and = 5 V (AD7863-3) with  
REF IN = +2.5 V.  
R2  
500ꢀ  
21 LSB = FSR/16384 = 1.22 mV (AD7863-10) and 0.3 mV (AD7863-3) with  
REF IN = +2.5 V.  
V
A1  
R4  
10kꢀ  
R3  
10kꢀ  
AD7863*  
R5  
10kꢀ  
AGND  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 4. Full-Scale Adjust Circuit  
REV. A  
9–  
AD7863  
tACQ  
t8  
CONVST  
t3  
BUSY  
tCONV = 5.2s  
A0  
CS  
t2  
t1  
t7  
t4  
RD  
t6  
t5  
V
V
V
B2  
V
DATA  
A2  
B1  
A1  
Figure 5a. Mode 1 Timing Operation Diagram for High Sampling Performance  
Gain error can be adjusted at either the first code transition (ADC  
negative full scale) or the last code transition (ADC positive full  
scale). The trim procedures for both cases are as follows:  
with standard CS and RD signal, i.e., the read operation con-  
sists of a negative going pulse on the CS pin combined with two  
negative going pulses on the RD pin (while the CS is low),  
accessing the two 14-bit results. Once the read operation has  
taken place, a further 400 ns should be allowed before the next  
falling edge of CONVST to optimize the settling of the track/  
hold amplifier before the next conversion is initiated. The  
achievable throughput rate for the part is 5.2 µs (conversion  
time) plus 100 ns (read time) plus 0.4 µs (quiet time). This  
results in a minimum throughput time of 5.7 µs (equivalent to a  
throughput rate of 175 kHz).  
Positive Full-Scale Adjust (-10 Version)  
Apply a voltage of +9.9927 V (FS/2 1 LSBs) at V1. Adjust R2  
until the ADC output code flickers between 01 1111 1111 1110  
and 01 1111 1111 1111.  
Negative Full-Scale Adjust (-10 Version)  
Apply a voltage of 9.9976 V (FS + 1 LSB) at V1 and adjust  
R2 until the ADC output code flickers between 10 0000 0000  
0000 and 10 0000 0000 0001.  
Read Options  
An alternative scheme for adjusting full-scale error in systems  
that use an external reference is to adjust the voltage at the VREF  
pin until the full-scale error for any of the channels is adjusted  
out. The good full-scale matching of the channels will ensure  
small full-scale errors on the other channels.  
Apart from the Read Operation described above and displayed  
in Figure 5a, other CS and RD combinations can result in dif-  
ferent channels/inputs being read in different combinations.  
Suitable combinations are shown in Figures 5b through 5d.  
TIMING AND CONTROL  
CS  
RD  
Figure 5a shows the timing and control sequence required to  
obtain optimum performance (Mode 1) from the AD7863. In  
the sequence shown, a conversion is initiated on the falling edge  
of CONVST. This places both track/holds into hold simulta-  
neously and new data from this conversion is available in the  
output register of the AD7863 5.2 µs later. The BUSY signal  
indicates the end of conversion and at this time the conversion  
results for both channels are available to be read. A second  
conversion is then initiated. If the multiplexer select A0 is low,  
the first and second read pulses after the first conversion ac-  
cesses the result from Channel A (VA1 and VA2 respectively).  
The third and fourth read pulses, after the second conversion  
and A0 high, accesses the result from Channel B (VB1 and VB2  
respectively). A0s state can be changed any time after the  
CONVST goes high, i.e., track/holds into hold and 500 ns prior  
to the next falling edge of CONVST. Note that A0 should not  
be changed during conversion if the nonselected channels have  
negative voltages applied to them which are outside the input  
range of the AD7863, as this will affect the conversion in  
progress. Data is read from the part via a 14-bit parallel data bus  
V
V
DATA  
A2  
A1  
Figure 5b. Read Option A (A0 Is Low)  
CS  
RD  
V
V
A1  
DATA  
V
A1  
A2  
Figure 5c. Read Option B (A0 Is Low)  
10–  
REV. A  
AD7863  
Mode 2 Operation (Power-Down, Auto-Sleep After  
Conversion)  
A0  
The timing diagram in Figure 6 is for optimum performance in  
operating Mode 2 where the part automatically goes into sleep  
mode once BUSY goes low after conversion and wakes up”  
before the next conversion takes place. This is achieved by keep-  
ing CONVST low at the end of the second conversion, whereas  
it was high at the end of the second conversion for Mode 1  
operation.  
CS  
RD  
V
DATA  
V
A1  
A2  
The operation shown in Figure 6 shows how to access data from  
both Channels A and B, followed by the Auto Sleep mode. One  
can also set up the timing to access data from Channel A only or  
Channel B only (see Read Options section) and then go into  
Auto-Sleep mode. The rising edge of CONVST wakes upthe  
part. This wake-up time is 4.8 µs when using an external refer-  
ence and 5 ms when using the internal reference, at which point  
the track/hold amplifiers go into their hold mode provided the  
CONVST has gone low. The conversion takes 5.2 µs after this  
giving a total of 10 µs (external reference, 5.005 ms for internal  
reference) from the rising edge of CONVST to the conversion  
being complete, which is indicated by the BUSY going low.  
Figure 5d. Read Option C  
OPERATING MODES  
Mode 1 Operation (Normal Power, High Sampling  
Performance)  
The timing diagram in Figure 5a is for optimum performance in  
operating Mode 1 where the falling edge of CONVST starts  
conversion and puts the track/hold amplifiers into their hold  
mode. This falling edge of CONVST also causes the BUSY  
signal to go high to indicate that a conversion is taking place.  
The BUSY signal goes low when the conversion is complete,  
which is 5.2 µs max after the falling edge of CONVST and new  
data from this conversion is available in the output latch of the  
AD7863. A read operation accesses this data. If the multiplexer  
select A0 is low, the first and second read pulses after the first  
conversion accesses the result from Channel A (VA1 and VA2  
respectively). The third and fourth read pulses, after the second  
conversion and A0 high, access the result from Channel B (VB1  
and VB2, respectively). Data is read from the part via a 14-bit  
parallel data bus with standard CS and RD signals. This data  
read operation consists of a negative going pulse on the CS pin  
combined with two negative going pulses on the RD pin (while  
the CS is low), accessing the two 14-bit results. For the fastest  
throughput rate the read operation will take 100 ns. The read  
operation must be complete at least 400 ns before the falling  
edge of the next CONVST and this gives a total time of 5.7 µs  
for the full throughput time (equivalent to 175 kHz). This mode of  
operation should be used for high sampling applications.  
Note that since the wake-up time from the rising edge of CONVST  
is 4.8 µs, if the CONVST pulsewidth is greater than 5.2 µs the  
conversion will take more than the 10 µs (4.8 µs wake-up time  
+5.2 µs conversion time) shown in Figure 6 from the rising edge  
of CONVST. This is because the track/hold amplifiers go into  
their hold mode on the falling edge of CONVST and the con-  
version will not be complete for a further 5.2 µs. In this case, the  
BUSY will be the best indicator of when the conversion is com-  
plete. Even though the part is in sleep mode, data can still be  
read from the part.  
The read operation is identical to that in Mode 1 operation and  
must also be complete at least 400 ns before the falling edge of  
the next CONVST to allow the track/hold amplifiers to have  
enough time to settle. This mode is very useful when the part is  
converting at a slow rate as the power consumption will be  
significantly reduced from that of Mode 1 operation.  
4.8s*/5ms**  
WAKE-UP TIME  
tACQ  
t8  
CONVST  
t3  
t3  
BUSY  
tCONV = 5.2s  
tCONV = 5.2s  
A0  
CS  
RD  
V
V
V
B2  
V
DATA  
A2  
B1  
A1  
* WHEN USING AN EXTERNAL REFERENCE, WAKE-UP TIME = 4.8s  
** WHEN USING AN INTERNAL REFERENCE, WAKE-UP TIME = 5ms  
Figure 6. Mode 2 Timing Diagram Where Automatic Sleep Function Is Initiated  
REV. A  
11–  
AD7863  
AD7863 DYNAMIC SPECIFICATIONS  
0
–10  
The AD7863 is specified and tested for dynamic performance  
specifications as well as traditional dc specifications such as  
Integral and Differential Nonlinearity. These ac specifications  
are required for the signal processing applications such as  
phased array sonar, adaptive filters and spectrum analysis.  
These applications require information on the ADCs effect on  
the spectral content of the input signal. Hence, the parameters  
for which the AD7863 is specified include SNR, harmonic dis-  
tortion, intermodulation distortion and peak harmonics. These  
terms are discussed in more detail in the following sections.  
–20  
–30  
F = 175kHz  
SAMPLE  
F
= 10kHz  
IN  
SNR = +80.72dB  
THD = –92.96dB  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
Signal-to-Noise Ratio (SNR)  
–140  
–150  
SNR is the measured signal to noise ratio at the output of the  
ADC. The signal is the rms magnitude of the fundamental.  
Noise is the rms sum of all the nonfundamental signals up to  
half the sampling frequency (fS/2), excluding dc. SNR is depen-  
dent upon the number of quantization levels used in the digiti-  
zation process; the more levels, the smaller the quantization  
noise. The theoretical signal to noise ratio for a sine wave input  
is given by  
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY – kHz  
Figure 8. AD7863 FFT Plot  
Effective Number of Bits  
The formula given in Equation 1 relates the SNR to the number  
of bits. Rewriting the formula, as in Equation 2, it is possible to  
obtain a measure of performance expressed in effective number  
of bits (N).  
SNR = (6.02N + 1.76) dB  
(1)  
where N is the number of bits.  
SNR 1. 76  
Thus for an ideal 14-bit converter, SNR = 86.04 dB.  
N =  
(2)  
6.02  
Figure 7 shows a histogram plot for 8,192 conversions of a dc  
input using the AD7863 with 5 V supply. The analog input was  
set at the center of a code transition. It can be seen that the  
codes appear mainly in the one output bin, indicating very good  
noise performance from the ADC.  
The effective number of bits for a device can be calculated di-  
rectly from its measured SNR.  
Figure 9 shows a typical plot of effective number of bits versus  
frequency for an AD7863-2 with a sampling frequency of  
175 kHz. The effective number of bits typically falls between  
13.11 and 11.05 corresponding to SNR figures of +80.68 dB  
and +68.28 dB.  
8000  
7000  
6000  
5000  
4000  
3000  
14.0  
13.5  
13.0  
12.5  
2000  
1000  
12.0  
11.5  
0
11.0  
10.5  
746 747 748 749 750 751 752 753 754 755  
CODE  
Figure 7. Histogram of 8,192 Conversions of a DC Input  
10.0  
200  
400  
600  
800  
1000  
0
The output spectrum from the ADC is evaluated by applying a  
sine wave signal of very low distortion to the VAX/BX input,  
which is sampled at a 175 kHz sampling rate. A Fast Fourier  
Transform (FFT) plot is generated from which the SNR data  
can be obtained. Figure 8 shows a typical 8,192 point FFT plot  
of the AD7863 with an input signal of 10 kHz and a sampling  
frequency of 175 kHz. The SNR obtained from this graph is  
80.72 dB. It should be noted that the harmonics are taken into  
account when calculating the SNR.  
FREQUENCY kHz  
Figure 9. Effective Numbers of Bits vs. Frequency  
12–  
REV. A  
AD7863  
Total Harmonic Distortion (THD)  
1
0.5  
0
Total Harmonic Distortion (THD) is the ratio of the rms sum  
of harmonics to the rms value of the fundamental. For the  
AD7863, THD is defined as  
V22 +V32 +V42 +V52  
THD (dB)= 20 log  
V1  
where V1 is the rms amplitude of the fundamental and V2, V3,  
V4 and V5 are the rms amplitudes of the second through the  
sixth harmonic. The THD is also derived from the FFT plot of  
the ADC output spectrum.  
0.5  
1  
Intermodulation Distortion  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities will create distortion  
products at sum and difference frequencies of mfa nfb where  
m, n = 0, 1, 2, 3 . . ., etc. Intermodulation terms are those for  
which neither m nor n are equal to zero. For example, the second  
order terms include (fa + fb) and (fa fb) while the third order  
terms include (2fa + fb), (2fa fb), (fa + 2fb) and (fa 2fb).  
0
2048  
4096 6144 8192 10240 12288 14336 16383  
ADC CODE  
Figure 11. DC DNL Plot  
1
0.5  
0
In this case, the second and third order terms are of different  
significance. The second order terms are usually distanced in  
frequency from the original sine waves while the third order  
terms are usually at a frequency close to the input frequencies.  
As a result, the second and third order terms are specified sepa-  
rately. The calculation of the intermodulation distortion is as  
per the THD specification where it is the ratio of the rms sum  
of the individual distortion products to the rms amplitude of the  
fundamental expressed in dBs. In this case, the input consists of  
two equal amplitude, low distortion sine waves. Figure 10 shows  
a typical IMD plot for the AD7863.  
0.5  
1  
0
2048 4096  
6144 8192 10240 12288 14336 16383  
ADC CODE  
0
Figure 12. DC INL Plot  
Power Considerations  
10  
20  
30  
40  
50  
60  
70  
80  
INPUT FREQUENCIES  
F1 = 50.13kHz  
F2 = 49.13kHz  
In the automatic power-down mode then the part may be oper-  
ated at a sample rate that is considerably less than 175 kHz. In  
this case, the power consumption will be reduced and will de-  
pend on the sample rate. Figure 13 shows a graph of the power  
consumption versus sampling rates from 1 Hz to 100 kHz in the  
automatic power-down mode. The conditions are 5 V supply  
25°C.  
F
= 175kHz  
SAMPLE  
IMD:  
2ND ORDER TERM  
98.21dB  
3RD ORDER TERM  
93.91dB  
90  
100  
110  
120  
130  
140  
150  
50  
45  
40  
35  
30  
25  
20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY kHz  
Figure 10. IMD Plot  
Peak Harmonic or Spurious Noise  
Harmonic or Spurious Noise is defined as the ratio of the rms  
value of the next largest component in the ADC output spec-  
trum (up to fS/2 and excluding dc) to the rms value of the fun-  
damental. Normally, the value of this specification will be  
determined by the largest harmonic in the spectrum, but for  
parts where the harmonics are buried in the noise floor the peak  
will be a noise peak.  
15  
10  
5
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
FREQUENCY kHz  
DC Linearity Plot  
Figures 11 and 12 show typical DNL and INL plots for the  
AD7863.  
Figure 13. Power vs. Sample Rate in Auto Power-Down  
Mode  
REV. A  
13–  
AD7863  
MICROPROCESSOR INTERFACING  
OPTIONAL  
PA2  
PA0  
The AD7863 high speed bus timing allows direct interfacing to  
DSP processors as well as modern 16-bit microprocessors.  
Suitable microprocessor interfaces are shown in Figures 14  
through 18.  
ADDRESS BUS  
CONVST  
ADDR  
DECODE  
TMS32010  
CS  
EN  
A0  
MEN  
INT  
AD7863–ADSP-2100 Interface  
BUSY  
AD7863*  
Figure 14 shows an interface between the AD7863 and the  
ADSP-2100. The CONVST signal can be supplied from the  
ADSP-2100 or from an external source. The AD7863 BUSY  
line provides an interrupt to the ADSP-2100 when conversion is  
completed on both channels. The two conversion results can  
then be read from the AD7863 using two successive reads to the  
same memory address. The following instruction reads one of  
the two results:  
DEN  
RD  
DB13  
DB0  
D15  
D0  
DATA BUS  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 15. AD7863TMS32010 Interface  
AD7863–TMS320C25 Interface  
MR0 = DM (ADC)  
where MR0 is the ADSP-2100 MR0 register and ADC is the  
AD7863 address.  
Figure 16 shows an interface between the AD7863 and the  
TMS320C25. As with the two previous interfaces, conversion  
can be initiated from the TMS320C25 or from an external  
source, and the processor is interrupted when the conversion  
sequence is completed. The TMS320C25 does not have a sepa-  
rate RD output to drive the AD7863 RD input directly. This  
has to be generated from the processor STRB and R/W outputs  
with the addition of some logic gates. The RD signal is OR-  
gated with the MSC signal to provide the one WAIT state re-  
quired in the read cycle for correct interface timing. Conversion  
results are read from the AD7863 using the following instruction:  
OPTIONAL  
DMA13  
ADDRESS BUS  
DMA0  
CONVST  
ADDR  
DECODE  
ADSP-2100  
(ADSP-2101/  
ADSP-2102)  
CS  
EN  
DMS  
IRQn  
A0  
BUSY  
AD7863*  
DMRD (RD)  
RD  
IN D, ADC  
DB13  
DB0  
where D is Data Memory address and ADC is the AD7863  
DMD15  
DMD0  
address.  
DATA BUS  
*ADDITIONAL PINS OMITTED FOR CLARITY  
OPTIONAL  
A15  
Figure 14. AD7863ADSP-2100 Interface  
ADDRESS BUS  
A0  
AD7863–ADSP-2101/ADSP-2102 Interface  
CONVST  
ADDR  
DECODE  
TMS320C25  
CS  
The interface outlined in Figure 14 also forms the basis for an  
interface between the AD7863 and the ADSP-2101/ADSP-2102.  
The READ line of the ADSP-2101/ADSP-2102 is labeled RD.  
In this interface, the RD pulsewidth of the processor can be  
programmed using the Data Memory Wait State Control Regis-  
ter. The instruction used to read one of the two results is as  
outlined for the ADSP-2100.  
EN  
A0  
IS  
BUSY  
INTn  
AD7863*  
STRB  
RD  
R/ W  
READY  
MSC  
AD7863–TMS32010 Interface  
DB13  
DB0  
An interface between the AD7863 and the TMS32010 is  
shown in Figure 15. Once again the CONVST signal can be  
supplied from the TMS32010 or from an external source,  
and the TMS32010 is interrupted when both conversions have  
been completed. The following instruction is used to read the  
conversion results from the AD7863:  
DMD15  
DMD0  
DATA BUS  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 16. AD7863TMS320C25 Interface  
IN D, ADC  
Some applications may require that the conversion is initiated  
by the microprocessor rather than an external timer. One option  
is to decode the AD7863 CONVST from the address bus so  
that a write operation starts a conversion. Data is read at the  
end of the conversion sequence as before. Figure 18 shows an  
example of initiating conversion using this method. Note that  
for all interfaces, it is preferred that a read operation not be  
attempted during conversion.  
where D is Data Memory address and ADC is the AD7863  
address.  
14–  
REV. A  
AD7863  
AD7863–MC68000 Interface  
Vector Motor Control  
An interface between the AD7863 and the MC68000 is shown  
in Figure 17. As before, conversion can be supplied from the  
MC68000 or from an external source. The AD7863 BUSY line  
can be used to interrupt the processor or, alternatively, software  
delays can ensure that conversion has been completed before a  
read to the AD7863 is attempted. Because of the nature of its  
interrupts, the MC68000 requires additional logic (not shown in  
Figure 18) to allow it to be interrupted correctly. For further  
information on MC68000 interrupts, consult the MC68000 users  
manual.  
The current drawn by a motor can be split into two compo-  
nents: one produces torque and the other produces magnetic  
flux. For optimal performance of the motor, these two compo-  
nents should be controlled independently. In conventional  
methods of controlling a three-phase motor, the current (or  
voltage) supplied to the motor and the frequency of the drive are  
the basic control variables. However, both the torque and flux  
are functions of current (or voltage) and frequency. This cou-  
pling effect can reduce the performance of the motor because,  
for example, if the torque is increased by increasing the fre-  
quency, the flux tends to decrease.  
The MC68000 AS and R/W outputs are used to generate a  
separate RD input signal for the AD7863. CS is used to drive the  
68000 DTACK input to allow the processor to execute a normal  
read operation to the AD7863. The conversion results are read  
using the following 68000 instruction:  
Vector control of an ac motor involves controlling phase in  
addition to drive and current frequency. Controlling the phase  
of the motor requires feedback information on the position of  
the rotor relative to the rotating magnetic field in the motor.  
Using this information, a vector controller mathematically trans-  
forms the three phase drive currents into separate torque and  
flux components. The AD7863 is ideally suited for use in vector  
motor control applications.  
MOVE.W ADC, D0  
where D0 is the 68000 D0 register and ADC is the AD7863  
address.  
A block diagram of a vector motor control application using the  
AD7863 is shown in Figure 19. The position of the field is  
derived by determining the current in each phase of the motor.  
Only two phase currents need to be measured because the third  
can be calculated if two phases are known. VA1 and VA2 of the  
AD7863 are used to digitize this information.  
OPTIONAL  
A15  
ADDRESS BUS  
A0  
CONVST  
ADDR  
DECODE  
EN  
MC68000  
A0  
CS  
Simultaneous sampling is critical to maintain the relative phase  
information between the two channels. A current sensing isola-  
tion amplifier, transformer or Hall effect sensor is used between  
the motor and the AD7863. Rotor information is obtained by  
measuring the voltage from two of the inputs to the motor. VB1  
and VB2 of the AD7863 are used to obtain this information.  
Once again the relative phase of the two channels is important.  
A DSP microprocessor is used to perform the mathematical  
transformations and control loop calculations on the informa-  
tion fed back by the AD7863.  
DTACK  
AD7863*  
AS  
RD  
R/ W  
DB13  
DB0  
D15  
D0  
DATA BUS  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 17. AD7863MC68000 Interface  
AD7863–80C196 Interface  
Figure 18 shows an interface between the AD7863 and the  
80C196 microprocessor. Here, the microprocessor initiates  
conversion. This is achieved by gating the 80C196 WR signal  
with a decoded address output (different from the AD7863 CS  
address). The AD7863 BUSY line is used to interrupt the mi-  
croprocessor when the conversion sequence is completed.  
DSP  
MICROPROCESSOR  
I
I
C
DAC  
DAC  
DAC  
TORQUE & FLUX  
CONTROL LOOP  
CALCULATIONS &  
TWO TO THREE  
PHASE  
3
V
B
B
PHASE  
MOTOR  
DRIVE  
CIRCUITRY  
I
A
V
A
INFORMATION  
TORQUE  
A15  
SETPOINT  
ISOLATION  
AMPLIFIERS  
ADDRESS BUS  
A1  
FLUX  
SETPOINT  
V
A1  
CS  
ADDR  
DECODE  
V
TRANSFORMATION  
TO TORQUE &  
FLUX CURRENT  
COMPONENTS  
A2  
A0  
80C196  
AD7863*  
EN  
AD7863*  
V
B1  
V
B2  
BUSY  
*ADDITIONAL PINS OMITTED  
FOR CLARITY  
WR  
RD  
VOLTAGE  
ATTENUATORS  
RD  
Figure 19. Vector Motor Control Using the AD7863  
DB13  
DB0  
D15  
D0  
DATA BUS  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 18. AD786380C196 Interface  
REV. A  
15–  
AD7863  
APPLICATIONS HINTS  
MULTIPLE AD7863  
S
PC Board Layout Considerations  
Figure 20 shows a system where a number of AD7863s can be  
configured to handle multiple input channels. This type of con-  
figuration is common in applications such as sonar, radar, etc.  
The AD7863 is specified with typical limits on aperture delay.  
This means that the user knows the difference in the sampling  
instant between all channels. This allows the user to maintain  
relative phase information between the different channels.  
The AD7863 is optimally designed for lowest noise perfor-  
mance, both radiated and conducted noise. To complement the  
excellent noise performance of the AD7863 it is imperative that  
great care be given to the PC board layout. Figure 21 shows a  
recommended connection diagram for the AD7863.  
Ground Planes  
The AD7863 and associated analog circuitry should have a  
separate ground plane referred to as the analog ground plane  
(AGND). This analog ground plane should encompass all  
AD7863 ground pins (including the DGND pin), voltage refer-  
ence circuitry, power supply bypass circuitry, the analog input  
traces and any associated input/buffer amplifiers.  
V
A1  
RD  
CS  
RD  
V
B1  
AD7863  
(1)  
V
A2  
V
B2  
V
REF  
The regular PCB ground plane (referred to as the DGND for this  
discussion) area should encompass all digital signal traces,  
excluding the ground pins, leading up to the AD7863.  
V
A1  
RD  
CS  
V
B1  
AD7863  
(2)  
V
A2  
Power Planes  
V
ADDRESS  
DECODE  
B2  
ADDRESS  
The PC board layout should have two distinct power planes,  
one for analog circuitry and one for digital circuitry. The analog  
power plane should encompass the AD7863 (VDD) and all asso-  
ciated analog circuitry. This power plane should be connected  
to the regular PCB power plane (VCC) at a single point, if neces-  
sary through a ferrite bead, as illustrated in Figure 21. This bead  
(part numbers for reference: Fair-Rite 274300111 or Murata  
BL01/02/03) should be located within three inches of the AD7863.  
V
REF  
V
RD  
CS  
REF  
V
A1  
AD7863  
(n)  
V
B1  
V
A2  
V
B2  
The PCB power plane (VCC) should provide power to all digital  
Figure 20. Multiple AD7863s in Multichannel System  
logic on the PC board, and the analog power plane (VDD  
)
A common read signal from the microprocessor drives the RD  
input of all AD7863s. Each AD7863 is designated a unique  
address selected by the address decoder. The reference output  
of AD7863 number 1 is used to drive the reference input of all  
other AD7863s in the circuit shown in Figure 20. One VREF  
can be used to provide the reference to several other AD7863s.  
Alternatively, an external or system reference can be used to  
drive all VREF inputs. A common reference ensures good  
full-scale tracking between all channels.  
should provide power to all AD7863 power pins, voltage refer-  
ence circuitry and any input amplifiers, if needed. A suitable low  
noise amplifier for the AD7863 is the AD797, one for each  
input. Ensure that the +VS and the VS supplies to each ampli-  
fier are individually decoupled to AGND.  
The PCB power (VCC) and ground (DGND) should not overlay  
portions of the analog power plane (VDD). Keeping the VCC  
power and the DGND planes from overlaying the VDD will  
contribute to a reduction in plane-to-plane noise coupling.  
16–  
REV. A  
AD7863  
Supply Decoupling  
Noise on the analog power plane (VDD) can be further reduced  
by use of multiple decoupling capacitors (Figure 21).  
external or an internal reference) should be individually  
decoupled to the analog ground plane (AGND). This should  
be done by placing the capacitors as close as possible to the  
AD7863 pins with the capacitor leads as short as possible, thus  
minimizing lead inductance.  
Optimum performance is achieved by the use of disc ceramic  
capacitors. The VDD and reference pins (whether using an  
L
(FERRITE BEAD)  
ANALOG  
SUPPLY  
+5V  
0.1F  
10F  
47F  
V
IN  
TEMP  
AD780  
0.1F  
V
V
OUT  
DD  
+15V  
V
REF  
0.1F  
0.1F  
0.1F  
AGND  
DGND  
AGND  
+V  
S
V
A1  
V
A1  
AD7863  
V
B1  
V
B1  
V
A2  
V
A2  
V
B2  
V
B2  
ANALOG  
SUPPLY  
15V  
V  
S
0.1F  
4 AD797s  
Figure 21. Typical Connections Diagram Including the Relevant Decoupling  
REV. A  
17–  
AD7863  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead Wide Body (SOIC)  
(R-28)  
0.7125 (18.10)  
0.6969 (17.70)  
28  
15  
14  
1
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
28-Lead Shrink Small Outline (SSOP)  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
1
14  
0.07 (1.79)  
0.066 (1.67)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.03 (0.762)  
0.022 (0.558)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
18–  
REV. A  
配单直通车
AD7863ARS-10产品参数
型号:AD7863ARS-10
Source Url Status Check Date:2013-05-01 14:56:21.235
是否无铅: 含铅
是否Rohs认证: 不符合
生命周期:Obsolete
IHS 制造商:ANALOG DEVICES INC
零件包装代码:SSOP
包装说明:MO-150AH, SSOP-28
针数:28
Reach Compliance Code:not_compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.2
最大模拟输入电压:10 V
最小模拟输入电压:-10 V
最长转换时间:5.2 µs
转换器类型:ADC, SUCCESSIVE APPROXIMATION
JESD-30 代码:R-PDSO-G28
JESD-609代码:e0
长度:10.2 mm
最大线性误差 (EL):0.0153%
湿度敏感等级:1
模拟输入通道数量:4
位数:14
功能数量:1
端子数量:28
最高工作温度:85 °C
最低工作温度:-40 °C
输出位码:2'S COMPLEMENT BINARY
输出格式:PARALLEL, WORD
封装主体材料:PLASTIC/EPOXY
封装代码:SSOP
封装等效代码:SSOP28,.3
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, SHRINK PITCH
峰值回流温度(摄氏度):240
电源:5 V
认证状态:Not Qualified
采样速率:0.175 MHz
采样并保持/跟踪并保持:TRACK
座面最大高度:2 mm
子类别:Analog to Digital Converters
标称供电电压:5 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Tin/Lead (Sn85Pb15)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:30
宽度:5.3 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!