欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • AD8092ARMZ-REEL7图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • AD8092ARMZ-REEL7 现货库存
  • 数量5000 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号23+ 
  • 全新原装,欢迎查询
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • AD8092ARMZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • AD8092ARMZ 现货库存
  • 数量8500 
  • 厂家ADI(亚德诺)/LINEAR 
  • 封装MSOP-8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • AD8092ARMZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • AD8092ARMZ 现货库存
  • 数量4200 
  • 厂家AD 
  • 封装MSOP8 
  • 批号23+ 
  • 原装现货公司特价销售!
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • AD8092ARMZ图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • AD8092ARMZ 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • AD8092ARMZ图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • AD8092ARMZ 现货库存
  • 数量6851 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • AD8092ARMZ-REEL7图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • AD8092ARMZ-REEL7 现货库存
  • 数量5000 
  • 厂家AD 
  • 封装MSOP8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • AD8092ARMZ-REEL7图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • AD8092ARMZ-REEL7 现货库存
  • 数量18500 
  • 厂家ADI(亚德诺) 
  • 封装MSOP-8 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • AD8092ARMZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD8092ARMZ 现货库存
  • 数量98500 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177
  • AD8092ARMZ-REEL7图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • AD8092ARMZ-REEL7
  • 数量5300 
  • 厂家ADI(亚德诺) 
  • 封装MSOP-8 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • AD8092ARMZ图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • AD8092ARMZ
  • 数量5600 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • AD8092ARMZ图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD8092ARMZ
  • 数量500 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD8092ARMZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • AD8092ARMZ
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • AD8092ARMZ图
  • 集好芯城

     该会员已使用本站13年以上
  • AD8092ARMZ
  • 数量17628 
  • 厂家ADI/亚德诺 
  • 封装MSOP-8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • AD8092ARMZ图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • AD8092ARMZ
  • 数量9800 
  • 厂家ADI/亚德诺 
  • 封装MSOP-8 
  • 批号23+ 
  • 进口原装原盘原标签假一赔十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • AD8092ARMZ-REEL7图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD8092ARMZ-REEL7
  • 数量13448 
  • 厂家ADI(亚德诺) 
  • 封装MSOP8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • AD8092ARMZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • AD8092ARMZ
  • 数量3500 
  • 厂家AD 
  • 封装8-MSOP 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • AD8092ARMZ-REEL7图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • AD8092ARMZ-REEL7
  • 数量14500 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • AD8092ARMZ图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD8092ARMZ
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装MSOP-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD8092ARMZ-REEL7图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD8092ARMZ-REEL7
  • 数量32953 
  • 厂家AD 
  • 封装MSOP8 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • AD8092ARMZ-REE图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • AD8092ARMZ-REE
  • 数量8050 
  • 厂家√ 欧美㊣品 
  • 封装贴◆插 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • AD8092ARMZ图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • AD8092ARMZ
  • 数量3000 
  • 厂家ADI 
  • 封装MSOP 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • AD8092ARMZ-REEL7图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • AD8092ARMZ-REEL7
  • 数量6000 
  • 厂家AD 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • AD8092ARMZ-REEL图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • AD8092ARMZ-REEL
  • 数量9328 
  • 厂家ADI-亚德诺 
  • 封装MSOP-8 
  • 批号▉▉:2年内 
  • ▉▉¥9.4元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • AD8092ARMZ图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • AD8092ARMZ
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装MSOP-8 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • AD8092ARMZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • AD8092ARMZ
  • 数量4200 
  • 厂家AD 
  • 封装MSOP8 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • AD8092ARMZ-REEL7图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • AD8092ARMZ-REEL7
  • 数量12245 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • AD8092ARMZ-REEL7图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • AD8092ARMZ-REEL7
  • 数量9000 
  • 厂家Analog Devices Inc. 
  • 封装8-TSSOP,8-MSOP(0.118,3.00mm 宽) 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • AD8092ARMZ图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • AD8092ARMZ
  • 数量6328 
  • 厂家ADI-亚德诺 
  • 封装MSOP-8 
  • 批号▉▉:2年内 
  • ▉▉¥20.6元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • AD8092ARMZ图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • AD8092ARMZ
  • 数量804 
  • 厂家Analog Devices Inc. 
  • 封装8-TSSOP,8-MSOP(0.118,3.00mm 宽) 
  • 批号23+ 
  • ▉原装正品▉力挺实单全系列可订
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • AD8092ARMZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • AD8092ARMZ
  • 数量8500 
  • 厂家ADI(亚德诺)/LINEAR 
  • 封装MSOP-8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • AD8092ARMZ图
  • 深圳市三得电子有限公司

     该会员已使用本站15年以上
  • AD8092ARMZ
  • 数量91752 
  • 厂家ADI/亚德诺 
  • 封装SOP-8 
  • 批号2024 
  • 深圳原装现货库存,欢迎咨询合作
  • QQ:414322027QQ:414322027 复制
    QQ:565106636QQ:565106636 复制
  • 15026993318 QQ:414322027QQ:565106636
  • AD8092ARMZ-REEL7图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • AD8092ARMZ-REEL7
  • 数量38200 
  • 厂家ADI(亚德诺) 
  • 封装MSOP-8 
  • 批号1年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • AD8092ARMZ图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • AD8092ARMZ
  • 数量1467 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • AD8092ARMZ图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • AD8092ARMZ
  • 数量99000 
  • 厂家AD 
  • 封装MSOP8 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • AD8092ARMZ图
  • 北京顺科电子科技有限公司

     该会员已使用本站8年以上
  • AD8092ARMZ
  • 数量5500 
  • 厂家ADI/亚德诺 
  • 封装MSOP 
  • 批号21+ 
  • 进口品牌//国产品牌代理商18911556207
  • QQ:729566152QQ:729566152 复制
    QQ:1138731127QQ:1138731127 复制
  • 18911556207 QQ:729566152QQ:1138731127
  • AD8092ARMZ图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • AD8092ARMZ
  • 数量13000 
  • 厂家AD 
  • 封装MSOP8 
  • 批号24+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • AD8092ARMZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • AD8092ARMZ
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • AD8092ARMZ图
  • 深圳市婷轩实业有限公司

     该会员已使用本站6年以上
  • AD8092ARMZ
  • 数量5000 
  • 厂家Analog Devices Inc 
  • 封装8-MSOP 
  • 批号23+ 
  • 进口原装现货热卖
  • QQ:2881943288QQ:2881943288 复制
    QQ:3026548067QQ:3026548067 复制
  • 0755-89608519 QQ:2881943288QQ:3026548067

产品型号AD8092ARMZ的概述

AD8092ARMZ芯片概述 AD8092ARMZ是一款高性能、低噪声双路运算放大器,广泛应用于各种电子设备中。它由Analog Devices公司研发,特别适合高带宽应用,足以满足现代工业界的需求。AD8092具有优异的线性度和频宽特性,使其在图像处理、视频放大及传感器信号处理等领域得到广泛应用。 该芯片的工作电压范围非常灵活,支持从5V到15V的电源输入,这对于不同的应用需求提供了很大的适应性。由于其高增益带宽积、低失真和较低的静态功耗,AD8092不仅能实现目标信号的精确放大,同时又可以在保持低功耗的情况下工作。 AD8092ARMZ的详细参数 AD8092ARMZ的主要技术参数包括: - 增益带宽积:50MHz - 输入噪声:7nV/√Hz(1kHz) - 灵敏度:±0.5mV - 供电电压范围:5V至15V - 漂移率:15μV/°C - 输出摆幅:0.4V至(V+ - 0....

产品型号AD8092ARMZ的Datasheet PDF文件预览

Low Cost, High Speed  
Rail-to-Rail Amplifiers  
AD8091/AD8092  
FEATURES  
CONNECTION DIAGRAMS  
Low cost single (AD8091), dual (AD8092) amplifiers  
Fully specified at +3 V, +5 V, and 5 V supplies  
Single-supply operation  
Output swings to within 25 mV of either rail  
High-speed and fast settling on 5 V  
110 MHz, −3 dB bandwidth (G = +1)  
145 V/µs slew rate  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
AD8091  
+V  
S
V
OUT  
–V  
S
NC  
NC = NO CONNECT  
Figure 1. SOIC-8 (R-8)  
AD8091  
50 ns settling time to 0.1%  
V
1
2
3
5
+V  
S
OUT  
Good video specifications (G = +2)  
Gain flatness of 0.1 dB to 20 MHz; RL = 150 Ω  
0.03% differential gain error; RL = 1 kΩ  
0.03° differential phase error; RL = 1 kΩ  
Low distortion  
−80 dBc total harmonic @ 1 MHz; RL = 100 Ω  
Outstanding load drive capability  
Drives 45 mA, 0.5 V from supply rails  
Drives 50 pF capacitive load (G = +1)  
Low power of 4.4 mA/Amplifier  
–V  
S
+IN  
4
–IN  
Figure 2. SOT23-5 (RT-5)  
AD8092  
OUT1  
–IN1  
+IN1  
1
2
3
4
8
7
6
5
+V  
S
OUT  
–IN2  
+IN2  
–V  
S
NC = NO CONNECT  
APPLICATIONS  
Figure 3. MSOP-8 and SOIC-8 (RM-8, R-8)  
Coaxial cable drivers  
Active filters  
Video switchers  
Professional cameras  
CCD imaging systems  
CDs/DVDs  
GENERAL DESCRIPTION  
The AD8091 (single) and AD8092 (dual) are low cost, voltage  
feedback, high speed amplifiers designed to operate on +3 V,  
+5 V, or ±5 V supplies. They have true single-supply capability,  
with an input voltage range extending 200 mV below the  
negative rail and within 1 V of the positive rail.  
The AD8091/AD8092 offer a low power supply current and can  
operate on a single 3 V power supply. These features are ideally  
suited for portable and battery-powered applications where size  
and power are critical.  
The wide bandwidth and fast slew rate make these amplifiers  
useful in many general-purpose, high speed applications where  
dual power supplies of up to ±± V and single supplies from +3  
V to +12 V are needed.  
Despite their low cost, the AD8091/AD8092 provide excellent  
overall performance and versatility. The output voltage swing  
extends to within 25 mV of each rail, providing the maximum  
output dynamic range with excellent overdrive recovery. This  
makes the AD8091/AD8092 useful for video electronics, such  
as cameras, video switchers, or any high speed portable  
equipment. Low distortion and fast settling make them ideal for  
active filter applications.  
This low cost performance is offered in an 8-lead SOIC  
(AD8091/AD8092), along with a tiny SOT23-5 (AD8091) and a  
MSOP (AD8092).  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
A8091/AD8092  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Input-to-Output Coupling........................................................ 13  
Driving Capacitive Loads.............................................................. 14  
Overdrive Recovery ................................................................... 14  
Active Filters ............................................................................... 14  
Sync Stripper............................................................................... 15  
Single-Supply Composite Video Line Driver ......................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Absolute Maximum Ratings............................................................ 7  
Maximum Power Dissipation ..................................................... 7  
ESD Caution.................................................................................. 7  
Typical Performance Characteristics ............................................. 9  
Layout, Grounding, and Bypassing Considerations .................. 13  
Power Supply Bypassing ............................................................ 13  
Grounding ................................................................................... 13  
Input Capacitance....................................................................... 13  
REVISION HISTORY  
3/05—Rev. A to Rev. B  
Changes to Format .............................................................Universal  
Changes to Features.......................................................................... 1  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
5/02–Rev. 0 to Rev. A  
Edits to Product Description ...........................................................1  
Edit to TPC ± .....................................................................................7  
Edits to TPCs 21–24........................................................................10  
Edits to Figure 3...............................................................................11  
2/02—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
AD8091/AD8092  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RL = 2 kΩ to 2.5 V, unless otherwise noted.  
Table 1.  
AD8091A/AD8092A  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = −1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
70  
110  
50  
20  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RL = 150 Ω to 2.5 V, RF = 806 Ω  
Slew Rate  
G = −1, VO = 2 V step  
G = +1, VO = 2 V p-p  
G = −1, VO = 2 V step  
100  
145  
35  
50  
V/µs  
MHz  
ns  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion (See Figure 11) fC = 5 MHz, VO = 2 V p-p, G = +2  
−67  
16  
dB  
Input Voltage Noise  
f = 10 kHz  
nV/√Hz  
fA/√Hz  
%
Input Current Noise  
f = 10 kHz  
850  
0.09  
0.03  
0.19  
0.03  
−60  
Differential Gain Error (NTSC)  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
f = 5 MHz, G = +2  
%
Differential Phase Error (NTSC)  
Degrees  
Degrees  
dB  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.7  
10  
25  
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
2.5  
TMIN to TMAX  
3.25  
0.75  
µA  
µA  
dB  
dB  
dB  
dB  
Input Offset Current  
Open-Loop Gain  
0.1  
98  
96  
82  
78  
RL = 2 kΩ to 2.5 V  
TMIN to TMAX  
RL = 150 Ω to 2.5 V  
TMIN to TMAX  
86  
76  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
290  
1.4  
−0.2 to +4  
88  
kΩ  
pF  
V
VCM = 0 V to 3.5 V  
72  
dB  
RL = 10 kΩ to 2.5 V  
RL = 2 kΩ to 2.5 V  
RL = 150 Ω to 2.5 V  
VOUT = 0.5 V to 4.5 V  
TMIN to TMAX  
Sourcing  
Sinking  
G = +1  
0.015 to 4.985  
0.025 to 4.975  
0.200 to 4.800  
45  
45  
80  
130  
50  
V
V
V
mA  
mA  
mA  
mA  
pF  
0.100 to 4.900  
0.300 to 4.625  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
5
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.4  
80  
mA  
dB  
°C  
∆VS = 1 V  
70  
−40  
+85  
Rev. B | Page 3 of 20  
 
A8091/AD8092  
TA = 25°C, VS = +3 V, RL = 2 kΩ to +1.5 V, unless otherwise noted.  
Table 2.  
AD8091A/AD8092A  
Typ  
Parameter  
Conditions  
Min  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = −1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
70  
110  
50  
17  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RL = 150 Ω to 2.5 V, RF = 402 Ω  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
G = −1, VO = 2 V step  
G = +1, VO = 1 V p-p  
G = −1, VO = 2 V step  
90  
135  
65  
55  
V/µs  
MHz  
ns  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion (see Figure 11)  
fC = 5 MHz, VO = 2 V p-p, G = −1,  
RL = 100 Ω to 1.5 V  
−47  
dB  
Input Voltage Noise  
f = 10 kHz  
16  
nV/√Hz  
Input Current Noise  
f = 10 kHz  
600  
fA/√Hz  
Differential Gain Error (NTSC)  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
f = 5 MHz, G = +2  
0.11  
0.09  
%
%
Differential Phase Error (NTSC)  
0.24  
0.10  
−60  
Degrees  
Degrees  
dB  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.6  
10  
25  
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
10  
1.3  
2.6  
TMIN to TMAX  
3.25  
0.8  
µA  
µA  
dB  
dB  
dB  
dB  
Input Offset Current  
Open-Loop Gain  
0.15  
96  
94  
82  
76  
RL = 2 kΩ  
80  
74  
TMIN to TMAX  
RL = 150 Ω  
TMIN to TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
290  
1.4  
−0.2 to +2.0  
88  
kΩ  
pF  
V
VCM = 0 V to 1.5 V  
72  
dB  
RL = 10 kΩ to 1.5 V  
RL = 2 kΩ to 1.5 V  
RL = 150 Ω to 1.5 V  
VOUT = 0.5 V to 2.5 V  
TMIN to TMAX  
Sourcing  
Sinking  
G = +1  
0.01 to 2.99  
0.02 to 2.98  
0.125 to 2.875  
45  
45  
60  
90  
45  
V
V
V
mA  
mA  
mA  
mA  
pF  
0.075 to 2.9  
0.20 to 2.75  
Output Current  
Short Circuit Current  
Capacitive Load Drive  
Rev. B | Page 4 of 20  
AD8091/AD8092  
AD8091A/AD8092A  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
POWER SUPPLY  
Operating Range  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.2  
80  
4.8  
mA  
dB  
°C  
∆VS = +0.5 V  
68  
−40  
+85  
Rev. B | Page 5 of 20  
A8091/AD8092  
TA = 25°C, VS = ±5 V, RL = 2 kΩ to ground, unless otherwise noted.  
Table 3.  
AD8091A/AD8092A  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = −1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 Ω, RF = 1.1 kΩ  
70  
110  
50  
20  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
G = −1, VO = 2 V step  
G = +1, VO = 2 V p-p  
G = −1, VO = 2 V step  
105  
170  
40  
50  
V/µs  
MHz  
ns  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
f = 10 kHz  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
−71  
16  
dB  
nV/√Hz  
fA/√Hz  
%
Input Current Noise  
Differential Gain Error (NTSC)  
900  
0.02  
0.02  
0.11  
0.02  
−60  
%
Differential Phase Error (NTSC)  
Degrees  
Degrees  
dB  
Crosstalk  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.8  
11  
27  
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
2.6  
TMIN to TMAX  
3.5  
µA  
Input Offset Current  
Open-Loop Gain  
0.1  
96  
96  
82  
80  
0.75  
µA  
dB  
dB  
dB  
RL = 2 kΩ  
88  
78  
TMIN to TMAX  
RL = 150 Ω  
TMIN to TMAX  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
290  
1.4  
−5.2 to +4.0  
88  
kΩ  
pF  
V
VCM = −5 V to +3.5 V  
72  
dB  
RL = 10 kΩ  
−4.98 to +4.98  
V
RL = 2 kΩ  
RL = 150 Ω  
−4.85 to +4.85  
−4.45 to +4.30  
−4.97 to +4.97  
−4.60 to +4.60  
V
V
Output Current  
VOUT = −4.5 V to +4.5 V  
TMIN to TMAX  
Sourcing  
Sinking  
G = +1 (AD8091/AD8092)  
45  
45  
100  
160  
50  
mA  
mA  
mA  
mA  
pF  
Short Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.8  
80  
5.5  
mA  
dB  
°C  
∆VS = 1 V  
68  
−40  
+85  
Rev. B | Page 6 of 20  
AD8091/AD8092  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
The still-air thermal properties of the package (θJA), ambient  
temperature (TA), and the total power dissipated in the package  
(PD) can be used to determine the junction temperature of the die.  
Rating  
Supply Voltage  
Power Dissipation  
12.6 V  
See Figure 4  
VS  
The junction temperature can be calculated as  
Common-Mode Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature Range (Soldering 10 sec)  
2.5 V  
TJ =TA +  
(
PD ×θJA  
)
See Figure 4  
−65°C to +125°C  
−40°C to +85°C  
300°C  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, then the total drive power is VS/2 × IOUT, some of  
which is dissipated in the package and some in the load  
(VOUT × IOUT). The difference between the total drive power and  
the load power is the drive power dissipated in the package.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
PD = quiescent power +  
(
total drive power load power  
)
MAXIMUM POWER DISSIPATION  
2
V
2
VOUT  
RL  
V
OUT  
RL  
S
The maximum safe power dissipation in the AD8091/AD8092  
package is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die locally reaches  
the junction temperature. At approximately 150°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit may change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8091/AD8092.  
Exceeding a junction temperature of 175°C for an extended  
period of time can result in changes in the silicon devices,  
potentially causing failure.  
PD =  
(
VS × IS  
)
+
×
− ⎜  
RMS output voltages should be considered. If RL is referenced to  
VS−, as in single-supply operation, then the total drive power is  
VS × IOUT  
.
If the rms signal levels are indeterminate, then consider the  
worst case, when VOUT = VS/4 for RL to midsupply  
2
V
4
RL  
S
PD =  
(
VS × IS +  
)
In single-supply operation with RL referenced to VS−, worst case  
is VOUT = VS/2.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degrada-  
tion or loss of functionality.  
Rev. B | Page 7 of 20  
 
A8091/AD8092  
2.0  
1.5  
1.0  
0.5  
0
Airflow increases heat dissipation, effectively reducing θJA. Also,  
more metal directly in contact with the package leads from  
metal traces, through holes, ground, and power planes reduces  
the θJA. Care must be taken to minimize parasitic capacitances  
at the input leads of high speed op amps as discussed in the  
board layout section.  
T
= 150°C  
J
SOIC-8  
MSOP-8  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the SOIC-8  
(125°C/W), SOT23-5 (180°C/W), and MSOP-8 (150°C/W) on a  
JEDEC standard four-layer board.  
SOT23-5  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs.  
Temperature for a Four-Layer Board  
Rev. B | Page 8 of 20  
 
AD8091/AD8092  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
2
G = +2  
F
R
= 2kΩ  
1
0
G = +5  
F
–1  
–2  
–3  
–4  
R
= 2kΩ  
G = +1  
= 0Ω  
G = +10  
= 2kΩ  
R
F
R
F
V
= 5V  
V
= 5V  
S
S
–5 GAIN AS SHOWN  
G = +2  
R
R
V
AS SHOWN  
= 2kΩ  
= 0.2V p-p  
R
R
V
= 150kΩ  
= 806Ω  
= 0.2V p-p  
F
L
L
F
–6  
–7  
O
O
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 5. Normalized Gain vs. Frequency; VS = +5 V  
Figure 8. 0.1 dB Gain Flatness vs. Frequency; G = +2  
3
2
9
8
V
= +3V  
V
= +5V  
S
S
1
7
0
6
V
V
= +5V  
= 2V p-p  
S
–1  
–2  
–3  
–4  
–5  
–6  
–7  
5
O
V
= ±5V  
S
V
V
= ±5V  
= 4V p-p  
S
4
O
3
2
V
AS SHOWN  
S
1
V
AS SHOWN  
G = +2  
S
G = +1  
R
V
R
R
V
= 2kΩ  
= 2kΩ  
AS SHOWN  
L
F
0
= 2kΩ  
= 0.2V p-p  
L
O
O
–1  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Gain vs. Frequency vs. Supply  
Figure 9. Large Signal Frequency Response; G = +2  
3
2
70  
V
R
= 5V  
= 2kΩ  
S
L
60  
50  
–40°C  
1
0
40  
+85°C  
+25°C  
GAIN  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
30  
0
20  
–45  
–90  
–135  
–180  
PHASE  
10  
V
= 5V  
S
G = +1  
0
R
V
= 2kΩ  
= 0.2V p-p  
L
50° PHASE  
MARGIN  
–10  
–20  
O
TEMPERATURE AS SHOWN  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 7. Gain vs. Frequency vs. Temperature  
Figure 10. Open-Loop Gain and Phase vs. Frequency  
Rev. B | Page 9 of 20  
 
A8091/AD8092  
–20  
0.10  
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
R
R
= 150  
L
NTSC SUBSCRIBER (3.58MHz)  
V
= 2V p-p  
O
V
R
= 3V, G = –1  
S
–30  
–40  
= 2k, R = 100Ω  
F
L
V
R
= 5V, G = +2  
S
= 2k, R = 100Ω  
F
L
V
R
= 5V, G = +1  
= 100Ω  
S
–50  
= 1kΩ  
L
V
S
= 5, G = +2  
L
R
F
= 2k, R AS SHOWN  
L
–60  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.10  
0.05  
–70  
R
= 1kΩ  
L
V
R
= 5V, G = +1  
= 2kΩ  
S
–80  
0
L
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
V
R
= 5V, G = +2  
S
–90  
R
= 150Ω  
L
= 2k, R = 2kΩ  
F
L
–100  
–110  
V
R
= 5, G = +2  
S
= 2k, R AS SHOWN  
F
L
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
1
2
3
4
5
6
7
8
9 10  
FUNDAMENTAL FREQUENCY (MHz)  
MODULATING RAMP LEVEL (IRE)  
Figure 11. Total Harmonic Distortion  
Figure 14. Differential Gain and Phase Errors  
–30  
–40  
1000  
100  
10  
V
= 5V  
S
10MHz  
–50  
–60  
–70  
–80  
5MHz  
–90  
1MHz  
–100  
–110  
–120  
–130  
V
R
= 5V  
= 2kΩ  
S
L
G = +2  
1
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V p-p)  
FREQUENCY (Hz)  
Figure 12. Worst Harmonic vs. Output Voltage  
Figure 15. Input Voltage Noise vs. Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
10  
1
V
= 5V  
S
V
= 5V  
S
G = –1  
R
R
= 2kΩ  
= 2kΩ  
F
L
0.1  
10  
0.1  
1
10  
50  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 13. Low Distortion Rail-to-Rail Output Swing  
Figure 16. Input Current Noise vs. Frequency  
Rev. B | Page 10 of 20  
AD8091/AD8092  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
10  
V
R
R
V
= 5V  
V
= 5V  
S
S
= 2kΩ  
= 2kΩ  
= 2V p-p  
F
L
O
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–PSRR  
+PSRR  
0.1  
1
10  
100  
500  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. AD8092 Crosstalk (Output-to-Output) vs. Frequency  
Figure 20. PSRR vs. Frequency  
0
70  
V
= 5V  
V
= 5V  
S
S
G = –1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
60  
50  
40  
30  
20  
10  
0
R
= 2kΩ  
L
0.03  
0.1  
1
10  
100  
500  
0.5  
1.0  
1.5  
2.0  
FREQUENCY (MHz)  
INPUT STEPS (V p-p)  
Figure 18. CMRR vs. Frequency  
Figure 21. Setting Time vs. Input Step  
100.000  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
V = 5V  
S
V
= +85°C  
OH  
G = +1  
31.000  
10.000  
3.100  
1.000  
0.310  
0.100  
0.031  
0.010  
V
= +25°C  
OH  
V
= –40°C  
OH  
V
= +85°C  
OL  
V
= +25°C  
OL  
V
= –40°C  
OL  
0.1  
1
10  
100  
500  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
LOAD CURRENT (mA)  
FREQUENCY (MHz)  
Figure 19. Closed-Loop Output Resistance vs. Frequency  
Figure 22. Output Saturation Voltage vs. Load Current  
Rev. B | Page 11 of 20  
A8091/AD8092  
100  
V
= 5V  
S
R
= 2kΩ  
L
G = +2  
R
= 2kΩ  
= 1V p-p  
L
V
IN  
90  
80  
70  
3.5V  
R
= 150Ω  
L
2.5V  
1.5V  
V
= 5V  
0.5  
S
60  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Figure 26. Large Signal Step Response; VS = +5 V, G = +2  
OUTPUT VOLTAGE (V)  
Figure 23. Open-Loop Gain vs. Output Voltage  
V
= 5V  
S
G = –1  
R
R
= 2kΩ  
= 2kΩ  
F
L
V
= 0.1V p-p  
IN  
G = +1  
5V  
R
= 2k  
L
S
V
= 3V  
2.5V  
1.50V  
1V  
2µs  
Figure 27. Output Swing; G = −1, RL = 2 kΩ  
20mV  
20ns  
Figure 24. 100 mV Step Response; G = +1  
V
=
±
5V  
G = +1  
= 2kΩ  
S
4V  
3V  
2V  
1V  
R
L
V
= 5V  
S
G = +1  
R
= 2kΩ  
L
2.60V  
–1V  
–2V  
–3V  
–4V  
2.50V  
2.40V  
1V  
20ns  
Figure 28. Large Signal Step Response; VS = 5 V, G = +1  
50mV  
20ns  
Figure 25. 200 mV Step Response; VS = +5 V, G = +1  
Rev. B | Page 12 of 20  
AD8091/AD8092  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
The length of the high frequency bypass capacitor leads are  
most critical. A parasitic inductance in the bypass grounding  
works against the low impedance created by the bypass  
capacitor. Place the ground leads of the bypass capacitors at the  
same physical location. Because load currents flow from the  
supplies as well, the ground for the load impedance should be at  
the same physical location as the bypass capacitor grounds. For  
the larger value capacitors, which are intended to be effective at  
lower frequencies, the current return path distance is less  
critical.  
POWER SUPPLY BYPASSING  
Power supply pins are actually inputs and care must be taken so  
that a noise-free stable dc voltage is applied. The purpose of  
bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering a  
majority of the noise.  
Decoupling schemes are designed to minimize the bypassing  
impedance at all frequencies with a parallel combination of  
capacitors. Chip capacitors of 0.01 µF or 0.001 µF (X7R or  
NPO) are critical and should be as close as possible to the  
amplifier package. Larger chip capacitors, such as the 0.1 µF  
capacitor, can be shared among a few closely spaced active  
components in the same signal path. A 10 µF tantalum  
capacitor is less critical for high frequency bypassing and, in  
most cases, only one per board is needed at the supply inputs.  
INPUT CAPACITANCE  
Along with bypassing and ground, high speed amplifiers can  
be sensitive to parasitic capacitance between the inputs and  
ground. A few pF of capacitance reduces the input impedance  
at high frequencies, in turn increasing the amplifiers gain,  
causing peaking of the frequency response or even oscillations,  
if severe enough. It is recommended that the external passive  
components, which are connected to the input pins, be placed  
as close as possible to the inputs to avoid parasitic capacitance.  
The ground and power planes must be kept at a distance of at  
least 0.05 mm from the input pins on all layers of the board.  
GROUNDING  
A ground plane layer is important in densely packed PC boards  
to spread the current-minimizing parasitic inductances.  
However, an understanding of where the current flows in a  
circuit is critical to implementing effective high speed circuit  
design. The length of the current path is directly proportional to  
the magnitude of parasitic inductances and thus the high  
frequency impedance of the path. High speed currents in an  
inductive ground return create an unwanted voltage noise.  
INPUT-TO-OUTPUT COUPLING  
The input and output signal traces should not be parallel to  
minimize capacitive coupling between the inputs and output  
and to avoid any positive feedback.  
Rev. B | Page 13 of 20  
 
A8091/AD8092  
DRIVING CAPACITIVE LOADS  
10000  
1000  
100  
10  
A highly capacitive load reacts with the output of the amplifiers,  
causing a loss in phase margin and subsequent peaking or even  
oscillation, as shown in Figure 29 and Figure 30. There are two  
methods to effectively minimize its effect.  
V
= 5V  
S
30%  
OVERSHOOT  
R
= 3Ω  
S
Put a small value resistor in series with the output to isolate  
the load capacitor from the amplifiers output stage.  
R
= 0Ω  
S
Increase the phase margin with higher noise gains or by  
adding a pole with a parallel resistor and capacitor from  
−IN to the output.  
R
R
F
G
R
S
V
IN  
100mV STEP  
V
OUT  
C
L
50Ω  
8
6
1
1
2
3
4
5
6
4
A
(V/V)  
CL  
2
Figure 31. Capacitive Load Drive vs. Closed-Loop Gain  
0
OVERDRIVE RECOVERY  
–2  
–4  
–6  
Overdrive of an amplifier occurs when the output and/or input  
range is exceeded. The amplifier must recover from this  
overdrive condition. The AD8091/AD8092 recover within ±0 ns  
from negative overdrive and within 45 ns from positive  
overdrive, as shown in Figure 32.  
V
= 5V  
S
–8  
–10  
–12  
G = +1  
R
C
= 2kΩ  
= 50pF  
= 200mV p-p  
L
L
V
O
0.1  
1
10  
100  
500  
V
=
±
5V  
S
FREQUENCY (MHz)  
G = +5  
R
R
= 2kΩ  
= 2kΩ  
F
L
Figure 29. Closed-Loop Frequency Response: CL = 50 pF  
INPUT 1V/DIV  
OUTPUT 2V/DIV  
V
= 5V  
S
G = +1  
R
C
= 2kΩ  
= 50pF  
L
L
2.60V  
2.55V  
2.50V  
2.45V  
2.40V  
V/DIV AS SHOWN  
100ns  
Figure 32. Overdrive Recovery  
50mV  
100ns  
ACTIVE FILTERS  
Active filters at higher frequencies require wider bandwidth op  
amps to work effectively. Excessive phase shift produced by  
lower frequency op amps can significantly impact active filter  
performance.  
Figure 30. 200 mV Step Response: CL = 50 pF  
As the closed-loop gain is increased, the larger phase margin  
allows for large capacitor loads with less peaking. Adding a low  
value resistor in series with the load at lower gains has the same  
effect. Figure 31 shows the effect of a series resistor for various  
voltage gains. For large capacitive loads, the frequency response  
of the amplifier is dominated by the series resistor and  
capacitive load.  
Figure 33 shows an example of a 2 MHz biquad bandwidth filter  
that uses three op amps. Such circuits are sometimes used in  
medical ultrasound systems to lower the noise bandwidth of the  
analog signal before A/D conversion. Note that the unused  
amplifiers’ inputs should be tied to ground.  
Rev. B | Page 14 of 20  
 
 
 
 
 
AD8091/AD8092  
VIDEO WITHOUT SYNC  
VIDEO WITH SYNC  
C1  
50pF  
R6  
1k  
R2  
2kΩ  
R4  
2kΩ  
C2  
R1  
3kΩ  
50pF  
V
BLANK  
GROUND  
+0.4V  
R3  
2
3
V
IN  
2kΩ  
R5  
2kΩ  
1
6
5
GROUND  
7
2
3
3V OR 5V  
6
V
OUT  
AD8092  
+
AD8092  
0.1µF  
10µF  
100Ω  
AD8091  
Figure 33. 2 MHz Biquad Band-Pass Filter  
7
V
3
2
IN  
TO A/D  
6
AD8091  
4
The frequency response of the circuit is shown in Figure 34.  
R2  
1kΩ  
0
R1  
1kΩ  
+0.8V  
(OR 2  
–10  
–20  
–30  
–40  
×
V
)
BLANK  
Figure 35. Sync Stripper  
The video signal plus sync is applied to the noninverting input  
with the proper termination. The amplifier gain is set equal to 2  
via the two 1 kΩ resistors in the feedback circuit. A bias voltage  
must be applied to R1 for the input signal to have the sync  
pulses stripped at the proper level.  
The blanking level of the input video pulse is the desired place  
to remove the sync information. The amplifier multiplies this  
level by 2. This level must be at ground at the output in order  
for the sync stripping action to take place. Because the gain of  
the amplifier from the input of R1 to the output is −1, a voltage  
equal to 2 × VBLANK must be applied to make the blanking level  
come out at ground.  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 34. Frequency Response of 2 MHz Band-Pass Biquad Filter  
SYNC STRIPPER  
Synchronizing pulses are sometimes carried on video signals so  
as not to require a separate channel to carry the synchronizing  
information. However, for some functions, such as A/D  
conversion, it is not desirable to have the sync pulses on the  
video signal. These pulses reduce the dynamic range of the  
video signal and do not provide any useful information for such  
a function.  
SINGLE-SUPPLY COMPOSITE VIDEO LINE DRIVER  
Many composite video signals have their blanking level at  
ground and have video information that is both positive and  
negative. Such signals require dual-supply amplifiers to pass  
them. However, by ac level-shifting, a single-supply amplifier  
can be used to pass these signals. The following complications  
may arise from such techniques.  
A sync stripper removes the synchronizing pulses from a video  
signal while passing all the useful video information. Figure 35  
shows a practical single-supply circuit that uses only a single  
AD8091. It is capable of directly driving a reverse terminated  
video line.  
Signals of bounded peak-to-peak amplitude that vary in duty  
cycle require larger dynamic swing capacity than their  
(bounded) peak-to-peak amplitude after they are ac-coupled.  
As a worst case, the dynamic signal swing approaches twice the  
peak-to-peak value. One of two conditions that define the  
maximum dynamic swing requirements is a signal that is  
mostly low but goes high with a duty cycle that is a small  
fraction of a percent. The opposite condition defines the second  
condition.  
The worst case of composite video is not quite this demanding.  
One bounding condition is a signal that is mostly black for an  
entire frame but has a white (full amplitude) minimum width  
spike at least once in a frame.  
Rev. B | Page 15 of 20  
 
 
 
A8091/AD8092  
5V  
The other extreme is a full white video signal. The blanking  
intervals and sync tips of such a signal have negative-going  
excursions in compliance with the composite video  
specifications. The combination of horizontal and vertical  
blanking intervals limit such a signal to being at the highest  
(white) level for a maximum of about 75% of the time.  
4.99kΩ  
+
4.99kΩ  
10µF  
+
0.1µF  
10µF  
47µF  
7
COMPOSITE  
VIDEO IN  
+
R
BT  
75Ω  
3
1000µF  
R
75Ω  
+
T
V
10kΩ  
6
AD8091  
OUT  
R
L
2
75Ω  
4
0.1µF  
R
F
1kΩ  
As a result of the duty cycles between the two extremes, a 1 V p-  
p composite video signal that is multiplied by a gain of 2  
requires about 3.2 V p-p of dynamic voltage swing at the output  
for an op amp to pass a composite video signal of arbitrary  
varying duty cycle without distortion.  
R
1kΩ  
G
220µF  
Figure 36. Single-Supply Composite Video Line Driver  
The feedback circuit provides unity gain for the dc biasing of  
Some circuits use a sync tip clamp to hold the sync tips at a  
relatively constant level to lower the amount of dynamic signal  
swing required. However, these circuits can have artifacts like  
sync tip compression unless they are driven by a source with a  
very low output impedance. The AD8091/AD8092 have  
adequate signal swing when running on a single 5 V supply to  
handle an ac-coupled composite video signal.  
the input and provides a gain of 2 for any signals that are in the  
video bandwidth. The output is ac-coupled and terminated to  
drive the line.  
The capacitor values were selected for providing minimum tilt  
or field time distortion of the video signal. These values would  
be required for video that is considered to be studio or  
broadcast quality. However, if a lower consumer grade of video,  
sometimes referred to as consumer video, is all that is desired,  
the values and the cost of the capacitors can be reduced by as  
much as a factor of 5 with minimum visible degradation in the  
picture.  
The input to the circuit in Figure 3± is a standard composite  
(1 V p-p) video signal that has the blanking level at ground. The  
input network level shifts the video signal by means of ac  
coupling. The noninverting input of the op amp is biased to half  
of the supply voltage.  
Rev. B | Page 16 of 20  
 
AD8091/AD8092  
OUTLINE DIMENSIONS  
3.00  
BSC  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
4.90  
BSC  
3.00  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
PIN 1  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.65 BSC  
0.25 (0.0098)  
0.10 (0.0040)  
1.10 MAX  
0.15  
0.00  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.80  
0.60  
0.40  
0.40 (0.0157)  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
COPLANARITY  
0.10  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 37. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Figure 38. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
2.90 BSC  
5
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
1.30  
BSC  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
Figure 39. 5-Lead Small Outline Transistor Package [SOT-23]  
(RT-5)  
Dimensions shown in millimeters  
Rev. B | Page 17 of 20  
 
A8091/AD8092  
ORDERING GUIDE  
Model  
AD8091AR  
AD8091AR-REEL  
AD8091AR-REEL7  
AD8091ARZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Outline  
R-8  
R-8  
R-8  
R-8  
Branding Information  
8-Lead SOIC  
8-Lead SOIC, 13” Tape and Reel  
8-Lead SOIC, 7” Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13” Tape and Reel  
8-Lead SOIC, 7” Tape and Reel  
5-Lead SOT-23  
5-Lead SOT-23, 13” Tape and Reel  
5-Lead SOT-23, 7” Tape and Reel  
5-Lead SOT-23  
5-Lead SOT-23, 7” Tape and Reel  
5-Lead SOT-23, 13” Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13” Tape and Reel  
8-Lead SOIC, 7” Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13” Tape and Reel  
8-Lead SOIC, 7” Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
AD8091ARZ-REEL1  
AD8091ARZ-REEL71  
AD8091ART-R2  
AD8091ART-REEL  
AD8091ART-REEL7  
AD8091ARTZ-R21  
AD8091ARTZ-R71  
AD8091ARTZ-RL1  
AD8092AR  
AD8092AR-REEL  
AD8092AR-REEL7  
AD8092ARZ1  
AD8092ARZ-REEL1  
AD8092ARZ-REEL71  
AD8092ARM  
R-8  
R-8  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
R-8  
R-8  
R-8  
R-8  
R-8  
HVA  
HVA  
HVA  
HVA#  
HVA#  
HVA#  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
HWA  
HWA  
HWA  
HWA#  
HWA#  
HWA#  
AD8092ARM-REEL  
AD8092ARM-REEL7  
AD8092ARMZ1  
AD8092ARMZ-REEL1  
AD8092ARMZ-REEL71  
1 Z = Pb-free part. # denotes lead-free, may be top or bottom marked.  
Rev. B | Page 18 of 20  
 
 
 
AD8091/AD8092  
NOTES  
Rev. B | Page 19 of 20  
A8091/AD8092  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02859–0–3/05(B)  
Rev. B | Page 20 of 20  
配单直通车
AD8092ARMZ产品参数
型号:AD8092ARMZ
是否无铅:不含铅
是否Rohs认证:符合
生命周期:Active
IHS 制造商:ROCHESTER ELECTRONICS LLC
零件包装代码:TSSOP
包装说明:ROHS COMPLIANT, MO-187AA, MSOP-8
针数:8
Reach Compliance Code:unknown
风险等级:5.29
Is Samacsys:N
放大器类型:OPERATIONAL AMPLIFIER
最大平均偏置电流 (IIB):3.5 µA
标称共模抑制比:88 dB
最大输入失调电压:27000 µV
JESD-30 代码:S-PDSO-G8
JESD-609代码:e3
长度:3 mm
湿度敏感等级:1
负供电电压上限:-6.3 V
标称负供电电压 (Vsup):-5 V
功能数量:2
端子数量:8
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP
封装形状:SQUARE
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):260
座面最大高度:1.1 mm
标称压摆率:170 V/us
子类别:Operational Amplifier
供电电压上限:6.3 V
标称供电电压 (Vsup):5 V
表面贴装:YES
温度等级:INDUSTRIAL
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:3 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!