欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • AD8321ARZ图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • AD8321ARZ 现货库存
  • 数量29500 
  • 厂家ADI 
  • 封装SOP 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • AD8321ARZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD8321ARZ
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装SOP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • AD8321ARZ图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • AD8321ARZ
  • 数量19500 
  • 厂家ADI 
  • 封装SOP 
  • 批号2018+ 
  • ADI一级代理商全新原装进口现货
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • AD8321ARZ图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD8321ARZ
  • 数量3356 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD8321ARZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • AD8321ARZ
  • 数量26800 
  • 厂家ADI/亚德诺 
  • 封装SOP-20 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • AD8321ARZ图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD8321ARZ
  • 数量56075 
  • 厂家ADI 
  • 封装SOP 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD8321ARZ图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • AD8321ARZ
  • 数量90000 
  • 厂家AD 
  • 封装SOP20 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • AD8321ARZ图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • AD8321ARZ
  • 数量12300 
  • 厂家ADI/亚德诺 
  • 封装SOP-20 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • AD8321ARZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD8321ARZ
  • 数量15862 
  • 厂家ADI 
  • 封装SOP 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • AD8321ARZ图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • AD8321ARZ
  • 数量75200 
  • 厂家ADI/亚德诺 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • AD8321ARZ图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • AD8321ARZ
  • 数量31832 
  • 厂家AD 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • AD8321ARZ图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • AD8321ARZ
  • 数量5000 
  • 厂家AD 
  • 封装SOP-20P 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • AD8321ARZ图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • AD8321ARZ
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装SOP 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • AD8321ARZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD8321ARZ
  • 数量15862 
  • 厂家ADI 
  • 封装SOP 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • AD8321ARZ图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • AD8321ARZ
  • 数量795 
  • 厂家AD 
  • 封装SOP20 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • AD8321ARZ图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • AD8321ARZ
  • 数量32269 
  • 厂家Analog Devices Inc. 
  • 封装20-SOIC(0.295,7.50mm 宽) 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • AD8321ARZ图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • AD8321ARZ
  • 数量15300 
  • 厂家Analog Devices Inc. 
  • 封装20-SOIC(0.295,7.50mm 宽) 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • AD8321ARZ图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • AD8321ARZ
  • 数量10000 
  • 厂家AD 
  • 封装SOP20 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • AD8321ARZ-REEL图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • AD8321ARZ-REEL
  • 数量26976 
  • 厂家AD 
  • 封装SOP20 
  • 批号2018+ 
  • ★★代理原装现货,特价热卖!★★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • AD8321ARZ图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • AD8321ARZ
  • 数量8000 
  • 厂家AD 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • AD8321ARZ图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • AD8321ARZ
  • 数量99000 
  • 厂家AD 
  • 封装SOP20 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • AD8321ARZ图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • AD8321ARZ
  • 数量13000 
  • 厂家AD 
  • 封装SOIC20 
  • 批号24+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • AD8321ARZ图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • AD8321ARZ
  • 数量20000 
  • 厂家ADI/亚德诺 
  • 封装SOP20 
  • 批号24+ 
  • 百域芯优势 实单必成 可开13点增值税发票
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • AD8321ARZ图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • AD8321ARZ
  • 数量29500 
  • 厂家ADI 
  • 封装SOP 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • AD8321ARZ图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • AD8321ARZ
  • 数量23480 
  • 厂家ADI/亚德诺 
  • 封装SOP20 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • AD8321ARZ图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • AD8321ARZ
  • 数量660000 
  • 厂家Analog Devices Inc 
  • 封装20-SOIC (0.295 
  • 批号7.50mm Width) 
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • AD8321ARZ图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • AD8321ARZ
  • 数量15000 
  • 厂家AD 
  • 封装SOP20 
  • 批号22+ 
  • 一级代理,公司优势产品,可开增值票
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • AD8321ARZ图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • AD8321ARZ
  • 数量3300 
  • 厂家ADI/亚德诺 
  • 封装 
  • 批号2020+ 
  • 绝对全新原装,一片也是批量价.
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • AD8321ARZ图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • AD8321ARZ
  • 数量5000 
  • 厂家ADI 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381

产品型号AD8321ARZ的概述

AD8321ARZ概述 AD8321ARZ是一款高性能的宽带增益控制放大器(Variable Gain Amplifier, VGA),由著名的模拟集成电路制造商Analog Devices公司(ADI)生产。该芯片在多个应用场景中表现出色,广泛用于通信系统、音频处理、信号采集和各种需要动态增益调节的地方。AD8321ARZ具有低噪声、高线性度、宽带宽等特点,使其成为现代电子设计中不可或缺的一个组件。 该芯片主要用于拉普拉斯放大器结构的设计,可以在宽频率范围内提供稳定的增益,适用于高频信号的处理。AD8321ARZ能够在特定增益范围内快速调整增益,提供灵活的信号处理选项。这使得它非常适合于无线电接收器、视频信号处理以及雷达信号处理等应用中。 AD8321ARZ的详细参数 AD8321ARZ在其技术规格中揭示了多个关键参数,主要包括以下几项: 1. 工作频率:该芯片可以在DC到1000M...

产品型号AD8321ARZ的Datasheet PDF文件预览

Gain Programmable  
CATV Line Driver  
a
AD8321  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Linear in dB Gain Response Over >53 dB Range  
Drives Low Distortion >11 dBm Signal into 75 Load:  
–53 dBc SFDR at 42 MHz  
VCC  
GND  
Very Low Output Noise Level  
Maintains Constant 75 Output Impedance  
Power-Up and Power-Down Condition  
No Line Transformer Required  
Upper Bandwidth: 235 MHz (Min Gain)  
9 V Single Supply Operation  
Power-Down Functionality  
PWR  
AMP  
AD8321  
VOUT  
VIN+  
VIN–  
REVERSE  
AMP  
INV  
ATTENUATOR CORE  
DATA LATCH  
Supports SPI Interface  
Low Cost  
POWER-  
DOWN/  
SWITCH  
INTER  
PD  
DATA SHIFT REGISTER  
SDATA  
APPLICATIONS  
Gain Programmable Line Driver  
HFC High Speed Data Modems  
Interactive CATV Set-Top Boxes  
CATV Plant Test Equipment  
General Purpose IF Variable Gain Block  
DATEN CLK  
DESCRIPTION  
The AD8321 is packaged in a low cost 20-lead SOIC, operates  
from a single +9 V supply, and has an operational temperature  
range of –40C to +85C.  
The AD8321 is a low cost digitally controlled variable gain  
amplifier optimized for coaxial line driving applications such as  
cable modems that are designed to the DOCSIS* (upstream)  
standard. An 8-bit serial word determines the desired output gain  
over a 53.4 dB range, resulting in gain changes of 0.75 dB/LSB.  
–40  
f
= 42MHz  
O
V
= 137mV p-p  
IN  
(P = –15dBm)  
IN  
The AD8321 comprises a digitally controlled variable attenuator  
of 0 dB to –53.4 dB, which is preceded by a low noise, fixed  
gain buffer and followed by a low distortion high power ampli-  
fier. The AD8321 accepts a differential or single-ended input  
signal. The output is specified for driving a 75 W load, such as  
coaxial cable, although the AD8321 is capable of driving other  
loads. Performance of –53 dBc is achieved with an output level  
up to 11 dBm at 42 MHz bandwidth using a 9 V supply.  
–50  
–60  
(P  
= 11dBm @  
OUT  
MAX GAIN)  
HD3  
HD2  
–70  
–80  
–90  
A key performance and cost advantage of the AD8321 results  
from the ability to maintain a constant 75 W output impedance  
during power-up and power-down conditions. This eliminates  
the need for external 75 W termination, resulting in twice the  
effective output voltage when compared to a standard opera-  
tional amplifier, thus eliminating the need for a transformer.  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
GAIN CONTROL – Decimal  
Figure 1. Harmonic Distortion vs. Gain Control  
*Data-Over-Cable Service Interface Specifications  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/461-3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
(@ VCC = +9 V, TA = +25C, VIN = 0.137 V p-p, single-ended input, RL = 75 , RIN =  
75 unless otherwise noted)  
AD8321–SPECIFICATIONS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Specified AC Voltage  
Noise Figure  
Output = 11 dBm, Max Gain  
Max Gain, f = 10 MHz  
Single-Ended Input  
0.137  
15  
820  
900  
2.0  
V p-p  
dB  
W
Input Resistance  
Differential Input  
W
Input Capacitance  
pF  
GAIN CONTROL INTERFACE  
Gain Range  
Maximum Gain  
Minimum Gain  
Gain Scaling Factor  
52.4  
25.25  
–28.15 –27.4  
0.7526  
53.4  
26  
54.4  
26.75  
–26.4  
dB  
dB  
dB  
dB/LSB  
OUTPUT CHARACTERISTICS  
Bandwidth (–3 dB)  
Bandwidth Roll-Off  
All Gain Codes  
f = 65 MHz  
f = 65 MHz  
120  
0.8  
0
MHz  
dB  
dB  
Bandwidth Peaking  
Output Offset Voltage  
Output Noise Spectral Density  
All Gain Codes, Full Temperature Range  
Max Gain, f = 10 MHz  
Min Gain, f = 10 MHz  
±30  
mV  
60  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz/C  
nV/÷Hz  
dBm  
20  
0.02  
1
19.5  
75  
Output Noise Temperature Sensitivity 0 £ TA £ +70C, Min Gain  
Power-Down Spectral Density  
1 dB Compression Point  
Output Impedance  
Max Gain, f = 10 MHz  
Power-Up and Power-Down  
60  
90  
W
OVERALL PERFORMANCE  
Worst Harmonic Distortion  
f = 42 MHz, POUT = 11 dBm, VCC = +9 V  
f = 65 MHz, POUT = 11 dBm, VCC = +9 V  
–40C £ TA £ +85C  
–53  
–51  
0.03  
±0.2  
0.004  
dBc  
dBc  
dBc/C  
dB  
dB/C  
Distortion Temperature Sensitivity  
Gain Accuracy  
Gain Temperature Sensitivity  
Output Settling to 1 mV  
Gain Change @ TDATEN = 1  
Input Change  
f = 10 MHz, All Gain Codes  
0 £ TA £ +70C  
Min to Max Gain, VIN = 0 V  
Max Gain, VIN = 0.15 V Step  
Power Down, 65 MHz, Min Gain  
VIN = 0.137 V p-p  
60  
30  
–80  
ns  
ns  
dBc  
Signal Feedthrough  
POWER CONTROL  
Power-Down Settling Time to 1 mV  
Power-Up Settling Time to 1 mV  
Power-Up/Down Pedestal Offset  
Power-Up/Down Glitch  
Max Gain, VIN = 0  
Max Gain, VIN = 0  
Max Gain, VIN = 0  
Max Gain, VIN = 0  
40  
ns  
ns  
mV  
mV p-p  
300  
±30  
40  
POWER SUPPLY  
Quiescent Current  
Power-Up, VCC = +9 V  
Power-Down, VCC = +9 V  
82  
45  
90  
52  
97  
60  
mA  
mA  
Specifications subject to change without notice.  
REV. A  
–2–  
AD8321  
LOGIC INPUTS (TTL/CMOS Logic) (DATEN, CLK, SDATA, VCC = +9 V; Full Temperature Range)  
Parameter  
Min  
Typ  
Max  
Unit  
Logic “1” Voltage  
Logic “0” Voltage  
2.1  
0
5.0  
0.8  
V
V
Logic “1” Current (VINH = 5 V) CLK, SDATA, DATEN  
Logic “0” Current (VINL = 0 V) CLK, SDATA, DATEN  
Logic “1” Current (VINH = 5 V) PD  
Logic “0” Current (VINL = 0 V) PD  
0
–600  
50  
20  
nA  
nA  
mA  
mA  
–100  
190  
–30  
–250  
(Full Temperature Range, V = +9 V, T = T = 4 ns, fCLK = 8 MHz unless otherwise noted.)  
TIMING REQUIREMENTS  
CC  
R
F
Parameter  
Min  
Typ  
Max  
Unit  
Clock Pulsewidth (TWH  
Clock Period (TC)  
Setup Time SDATA vs. Clock (TDS  
Setup Time DATEN vs. Clock (TES  
Hold Time SDATA vs. Clock (TDH  
)
16.0  
32.0  
5.0  
15.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
)
)
)
)
Hold Time DATEN vs. Clock (TEH  
Input Rise and Fall Times, SDATA, DATEN, Clock (TR, TF)  
3.0  
10  
Specifications subject to change without notice.  
T
DS  
VALID DATA WORD G1  
VALID DATA WORD G2  
SDATA  
CLK  
MSB. . . .LSB  
T
C
T
WH  
EH  
T
T
ES  
8 CLOCK CYCLES  
DATEN  
PD  
GAIN TRANSFER (G1)  
GAIN TRANSFER (G2)  
T
OFF  
T
GS  
T
ON  
ANALOG  
OUTPUT  
PEDESTAL  
SIGNAL AMPLITUDE (p-p)  
Figure 2. Serial Interface Timing  
VALID DATA BIT  
MSB-1  
SDATA MSB  
MSB-2  
T
T
DH  
DS  
CLK  
Figure 3. SDATA Timing  
–3–  
REV. A  
AD8321  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage +VS  
PIN CONFIGURATION  
Pins 7, 8, 9, 17, 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . +11 V  
Input Voltages  
Pins 18, 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5 V  
Pins 1, 2, 3, 6 . . . . . . . . . . . . . . . . . . . . . . . –0.8 V to +5.5 V  
Internal Power Dissipation  
Small Outline (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.90 W  
Operating Temperature Range . . . . . . . . . . . –40C to +85C  
Storage Temperature Range . . . . . . . . . . . . –65C to +150C  
Lead Temperature, Soldering 60 seconds . . . . . . . . . . +300C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
1
2
20 VCC  
SDATA  
CLK  
19  
VIN–  
3
18  
VIN+  
DATEN  
4
17  
16  
15  
14  
13  
12  
11  
VCC  
GND  
GND  
GND  
5
BYP1  
PD  
AD8321  
TOP VIEW  
(Not to Scale)  
6
7
VCC  
VCC  
VCC  
VOUT  
BYP2  
GND  
8
9
GND  
GND  
10  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description JA  
Package Option  
AD8321AR  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
20-Lead SOIC  
20-Lead SOIC  
20-Lead SOIC  
20-Lead SOIC  
Evaluation Board  
58C/W1  
58C/W1  
58C/W1  
58C/W1  
R-20  
R-20  
R-20  
R-20  
AD8321AR-REEL  
AD8321ARZ2  
AD8321ARZ-REEL2  
AD8321-EVAL  
1Thermal Resistance measured on SEMI standard 4-layer board.  
2Z = Pb-free part.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8321 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
PIN FUNCTION DESCRIPTIONS  
Pin  
Function  
Description  
1
SDATA  
Serial Data Input. This digital input allows for an 8-bit serial (gain) word to be loaded into the internal  
register with the MSB (most significant bit) first.  
2
3
CLK  
Clock Input. The clock port controls the serial attenuator data transfer rate to the 8-bit master-slave  
register. A Logic 0-to-1 transition latches the data bit and a 1-to-0 transfers the data bit to the slave.  
This requires the input serial data word to be valid at or before this clock transition.  
DATEN  
Data Enable Low Input. This port controls the 8-bit parallel data latch and shift register. A Logic 0-to-  
1 transition transfers the latched data to the attenuator core (updates the gain) and simultaneously  
inhibits serial data transfer into the register. A 1-to-0 transition inhibits the data latch (holds the previ-  
ous gain state) and simultaneously enables the register for serial data load.  
4, 11, 12,  
13, 15, 16  
GND  
BYP1  
Common External Ground Reference.  
5
VCC/2 Reference Pin. A dc output reference level that is equal to 1/2 of the supply voltage (VCC). This  
port should be externally ac-decoupled (0.1 mF capacitor). For external use of this reference voltage,  
buffering is required.  
6
PD  
Power-Down Low Logic Input. A Logic 0 powers down (shuts off) the power amplifier disabling the  
output signal and enabling the reverse amplifier. A Logic 1 enables the output power amplifier and  
disables the reverse amplifier.  
7, 8, 9, 17, 20 VCC  
Common Positive External Supply Voltage.  
10  
14  
18  
VOUT  
Output Signal Port. DC-biased to approximately VCC/2.  
Internal Bypass. This pin must be externally ac-decoupled (0.1 mF capacitor).  
BYP2  
VIN+  
Noninverting Input. DC-biased to approximately VCC/2. For single-ended inverting operation, use  
0.1 mF decoupling capacitor between VIN+ and ground.  
19  
VIN–  
Inverting Input. DC-biased to approximately VCC/2. Should be ac-coupled with a 0.1 mF capacitor.  
REV. A  
–4–  
Typical Performance Characteristics–AD8321  
70  
30  
20  
0.6  
0.3  
f = 10MHz  
PD =1  
71D  
60  
f = 10MHz  
f = 42MHz  
10  
50  
0
0
46D  
40  
–0.3  
–0.6  
–10  
–20  
23D  
30  
20  
10  
f = 65MHz  
–0.9  
–1.2  
–30  
–40  
00D  
0
8
16 24 32 40 48 56 64 72  
GAIN CONTROL – Decimal  
0
8
16 24 32 40 48 56 64 72  
GAIN CONTROL – Decimal  
1000  
0.1  
1
10  
100  
FREQUENCY – MHz  
Figure 4. Gain Error vs. Gain Control  
Figure 5. AC Response  
Figure 6. Output Referred Noise vs.  
Gain Control  
70  
–30  
–40  
–50  
–60  
–70  
–80  
–47  
P
= –14dBm  
= 12dBm @  
IN  
(P  
P
= –15dBm  
= 11dBm @  
PD = 1  
IN  
(P  
OUT  
MAX GAIN)  
OUT  
MAX GAIN)  
60  
MAX GAIN  
–50  
(71D)  
P
= –13dBm  
= 13dBm @  
50  
IN  
(P  
OUT  
MAX GAIN)  
40  
30  
–53  
–56  
–59  
HD3  
MIN GAIN  
(00D)  
HD2  
P
= –17dBm  
IN  
(P  
20  
= 9dBm @  
OUT  
MAX GAIN)  
10  
0
8
16 24 32 40 48 56 64 72  
GAIN CONTROL – Decimal  
5
15  
25  
35  
45  
55  
65  
1
10  
100  
FUNDAMENTAL FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 7. Output Referred Noise vs.  
Frequency  
Figure 8. Harmonic Distortion vs.  
Gain Control  
Figure 9. Second Order Harmonic  
Distortion vs. Frequency for Various  
Input Levels  
20  
30  
–47  
P
(P  
= –13dBm  
P
= 11dBm  
IN  
OUT  
MAX GAIN  
P
= 11dBm  
OUT  
MAX GAIN  
= 13dBm @  
29  
28  
27  
26  
25  
24  
OUT  
MAX GAIN)  
0
–20  
–40  
P
(P  
= –14dBm  
IN  
–50  
= 12dBm @  
OUT  
MAX GAIN)  
–53  
–56  
–59  
P
= –15dBm  
IN  
(P  
= 11dBm @  
OUT  
MAX GAIN)  
–60  
–80  
P
(P  
= –17dBm  
IN  
23  
22  
= 9dBm @  
OUT  
MAX GAIN)  
5
15  
25  
35  
45  
55  
65  
35  
45  
41.0  
41.4  
41.8  
42.2  
42.6  
43.0  
5
15  
25  
55  
65  
FUNDAMENTAL FREQUENCY – MHz  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 10. Third Order Harmonic  
Distortion vs. Frequency for Various  
Input Levels  
Figure 11. Two-Tone Intermodula-  
tion Distortion  
Figure 12. Third Order Intercept vs.  
Frequency  
REV. A  
–5–  
AD8321  
34  
5mV  
15mV  
MIN GAIN  
= 0V p-p  
MAX GAIN  
MAX GAIN  
= 11dBm  
V
V
= 0V p-p  
IN  
IN  
P
OUT  
30  
26  
22  
V
V
C
= 10pF  
OUT  
OUT  
L
C
= 0pF  
L
C
= 20pF  
L
C
= 50pF  
L
PD  
PD  
18  
14  
5V  
75ns  
5V  
75ns  
1
10  
FREQUENCY – MHz  
100  
Figure 13. AC Response for Various  
Capacitor Loads  
Figure 14. Power Up/Power Down  
Glitch  
Figure 15. Power Up/Power Down  
Glitch  
0
MAX GAIN  
IN  
7.5mV  
0.75V  
PD = 0  
V
= 0V p-p – 0.137V p-p  
–20  
V
OUT  
V
OUT  
MAX GAIN  
V
= 0V p-p  
–40  
IN  
MAX GAIN  
tr(CLK) = 3ns  
–60  
CLK  
V
IN  
–80  
DATEN  
MIN GAIN  
5V  
150ns  
200mV  
30ns  
–100  
1000  
0.1  
1
10  
100  
FREQUENCY – MHz  
Figure 16. Clock Feedthrough  
Figure 17. Input Signal Feedthrough  
vs. Frequency  
Figure 18. Output Settling Time Due  
to Input Change  
90  
85  
100  
1.5V  
MAX GAIN  
PD =1  
90  
V
OUT  
80  
80  
70  
PD = 0  
75  
PD = 1  
70  
65  
60  
60  
PD = 0  
V
IN  
50  
0.5V  
30ns  
40  
–50  
–25  
0
25  
50  
75  
100  
1
10  
100  
FREQUENCY – MHz  
TEMPERATURE – C  
Figure 19. Overload Recovery  
Figure 20. Output Impedance vs.  
Frequency  
Figure 21. Supply Current vs.  
Temperature  
REV. A  
–6–  
AD8321  
OPERATIONAL DESCRIPTION  
The gain transfer function is as follows:  
The AD8321 is a digitally controlled variable gain power ampli-  
fier that is optimized for driving a 75 W cable. As a multifunc-  
tional bipolar device on a single silicon die, it incorporates all the  
analog features necessary to accommodate reverse path (upstream)  
high speed (5 MHz to 65 MHz) cable data modem requirements.  
The AD8321 has an overall gain range of approximately 53 dB  
and is capable of greater than 100 MHz operation at output  
signal levels exceeding 12 dBm. Overall, when considering  
the device’s wide gain range, low distortion, wide bandwidth  
and variable load drive, the device can be used in many variable  
gain block applications.  
AV = 26 dB – ((71 – CODE) ¥ 0.7526 dB) for CODE £ 71  
AV = 26 dB for 71 £ CODE £ 127  
AV = 26 dB + ((199 – CODE) ¥ 0.7526 dB) for 128 £  
CODE £ 199  
AV = 26 dB for 199 £ CODE £ 255  
where CODE is the decimal equivalent of the 8-bit word loaded in  
the AD8321’s data latch (see Figure 23).  
30  
20  
VCC  
GND  
10  
PWR  
AMP  
0
AD8321  
VOUT  
VIN+  
VIN–  
REVERSE  
AMP  
–10  
–20  
–30  
INV  
ATTENUATOR CORE  
DATA LATCH  
POWER-  
DOWN/  
SWITCH  
INTER  
0
32  
64  
96  
128  
160  
192  
224  
256  
PD  
GAIN CODE – Decimal  
DATA SHIFT REGISTER  
Figure 23. Linear-In dB Gain vs. Gain Control  
The AD8321 is composed of four analog functions in the  
power-up or forward mode. The input amplifier (preamp) which  
can be used single-endedly or differentially and provides a maxi-  
mum of 12 dB of attenuation. If the input is used in the differ-  
ential configuration, it is imperative that the input signals are  
180 degrees out of phase and of equal amplitudes. This will  
ensure the proper gain accuracy and harmonic performance.  
DATEN CLK  
SDATA  
Figure 22. Functional Block Diagram  
The digitally programmable gain is controlled by the three-wire  
“SPI” compatible inputs. These inputs are called SDATA  
(serial data input port), DATEN (data enable low input port)  
and CLK (clock input port). See Pin Function Descriptions  
and Functional Block diagram. The AD8321 is programmed by  
an 8-bit “attenuator” word. When a standard 8-bit word is  
used, the first data bit MSB will be shifted out of the 7-bit shift  
register during the eighth rising CLK edge. The lower seven  
bits will then be loaded into the AD8321’s digital decode sec-  
tion when the DATEN input is taken high.  
The preamp stage drives a vernier stage that provides the fine  
tune gain adjustment. The 0.7526 dB step resolution is imple-  
mented in this stage. After the vernier stage, a DAC provides the  
bulk of the AD8321’s attenuation (six bits or 36 dB). The signals  
in the preamp and vernier gain blocks are differential to improve  
the PSRR and linearity. A single-ended current is fed from the  
DAC into the output stage, which amplifies this current to the  
appropriate level necessary to drive a 75 W load. The output  
stage utilizes negative feedback to implement a 75 W output  
impedance. This eliminates the need for an external 75 W match-  
ing resistor needed in typical video (or video filter) termination  
requirements.  
The gain of the AD8321 is linear in steps of 0.7526 dB. The  
gain transfer function starts at –27.43 dB (at decimal code 0)  
and increases 0.7526 dB/LSB. The gain increases up to decimal  
code 71. At this point the gain is at its maximum level of 26 dB.  
If a decimal word between 71 and 127 is entered, the gain is no  
longer incremented and stays at 26 dB. Since the MSB of an 8-bit  
word is a “don’t care” bit, at decimal code 128, the AD8321’s  
gain returns to its minimum value. The gain vs. gain control  
relationship repeats itself as shown in Figure 23 for the upper  
127 codes.  
REV. A  
–7–  
AD8321  
The attenuation setting in the AD8321 is determined by the  
8-bit word in the data latch. The SDATA load sequence is  
initiated by a falling edge on DATEN. The gain control data  
(SDATA) is serially loaded (MSB first) into the 7-bit shift register  
at each rising edge of the clock. See Figure 24. While DATEN  
is low, the data latch holds the previous data word allowing the  
attenuation level to remain unchanged. After eight clock cycles  
the new data word is fully loaded and DATEN is switched high.  
This enables the data latch and the loaded register data is passed to  
the attenuator with the updated gain value. Also at this DATEN  
transition, the internal clock is disabled, thus inhibiting new  
serial input data.  
APPLICATIONS  
General Application  
The AD8321 is primarily intended for use as the return path  
(also called upstream path) Power Amplifier (PA) or line driver  
in cable modem applications. Upstream data is modulated in  
either QPSK or QAM format. This is done either in DSP or by  
a dedicated QPSK/QAM modulator such as the AD9853 or  
other modem/modulator chip. The amplifier receives its input  
signal either from the dedicated QPSK/QAM modulator or from  
a DAC. In both cases, the signal must be low-pass filtered  
before being applied to the line driving amplifier. Because the  
distance to the central office varies from cable modem sub-  
scriber to subscriber, resulting in various line losses, signals from  
various subscribers will require attenuation while others may  
require gain. As a result, the AD8321 line driver is required to  
vary its output applying attenuation or gain as needed so that all  
signals arriving at the central office are of the same amplitude.  
The power amplifier has two basic modes of operation. A for-  
ward mode (or power-up mode) and a reverse mode (or power-  
down) mode. In the power-up mode (PD = 1), the power  
amplifier stage is enabled and the AD8321 has a maximum gain  
of 20 V/V or 26 dB (into 75 W). With a total attenuation of  
53.43 dB in the DAC, vernier and preamp, the AD8321’s total  
gain range is 26 dB to –27.43 dB. In both the forward or reverse  
mode the single-ended output signal maintains a dc level of  
VCC/2. This dc output level provides for optimum large signal  
linearity.  
DOCSIS (Data Over Cable Service Interface Specifications)  
requires a cable modem output signal ranging in power from a  
minimum of 8 dBmV to a maximum of 58 dBmV. In cable  
modem applications where DOCSIS compliance is desired, the  
AD8321 amplifier must be used in conjunction with a 75 W  
matching attenuator connected between the AD8321 output  
and the low-pass input port of the diplexer. See the schematic in  
Figure 28. The matching attenuator is used to achieve DOCSIS-  
compliant noise levels at the lower end of the AD8321 output  
power range. The insertion loss of a diplexer is typically less  
than 1 dB. As a result of these combined losses, the PA line  
driver must be capable of delivering sufficient power into a 75 W  
load while maintaining reasonable distortion performance at the  
output of the modem. (See sections containing “DOCSIS” for  
further information. All references to DOCSIS pertain to  
SP-RFI-I04-980724 entitled Radio Frequency Interface  
Specification.)  
In the power-down mode (PD = 0), the power amplifier is  
turned off and a “reverse” amplifier (the inner triangle in Figure  
22) is enabled. During this 1-to-0 transition, the output power  
is disabled. This assures that S11 and S22 remain approximately  
equal to zero thus minimizing line reflections. In the time domain,  
as PD switches states, a transitional glitch and pedestal offset  
results (See Figures 14 and 15). These anomalies have been  
minimized by temperature compensated internal circuitry and  
laser trimming. The powered down supply current drops to 52 mA  
versus 90 mA in the power-up mode.  
T
DS  
VALID DATA WORD G1  
VALID DATA WORD G2  
SDATA  
CLK  
MSB. . . .LSB  
T
C
T
WH  
EH  
T
T
ES  
8 CLOCK CYCLES  
DATEN  
PD  
GAIN TRANSFER (G1)  
GAIN TRANSFER (G2)  
T
OFF  
T
GS  
T
ON  
ANALOG  
OUTPUT  
SIGNAL AMPLITUDE (p-p)  
PEDESTAL  
Figure 24. Serial Interface Timing  
REV. A  
–8–  
AD8321  
Basic Connection  
Input Bias, Impedance and Termination  
Figure 25 shows the basic schematic for operating the AD8321  
in single-ended inverting mode. To operate in inverting mode,  
connect the input signal through an ac coupling capacitor to  
VIN–; VIN+ should be decoupled to ground with a 0.1 mF  
capacitor. Because the amplifier operates from a single supply,  
and the differential input pins are biased to approximately  
VCC/2, the differential inputs must be ac-coupled using 0.1 mF  
capacitors. For operation in the noninverting mode, the VIN–  
pin should be decoupled to ground via a 0.1 mF capacitor, with  
the input signal being fed to the AD8321 through the (ac-coupled)  
VIN+ pin. Inverting mode should be chosen if the AD8321 is  
being used as a drop-in replacement for the AD8320 (the  
AD8321 predecessor). Balanced differential inputs to the  
AD8321 may also be applied at an amplitude that is one-half  
the specified single-ended input amplitude. See the Differential  
Inputs section for more on this mode of operation.  
On the input side, the VIN+ and VIN– have a dc bias level  
equal to (VCC/2) – 0.2 V. The input signal must therefore be  
ac-coupled before being applied to either input pin. The input  
impedance, when operated in single-ended mode is roughly  
820 W (900 W in differential mode). An external shunt resis-  
tance (R1) to ground of 82.5 W is required to create a single-  
ended input impedance of close to 75 W. If single-ended 50 W  
termination is required, a 53.6 W shunt resistor may be used.  
Differential input operation may be achieved by using a shunt  
resistor of 41 W to ground on each of the inputs, or 82.6 W  
across the inputs resulting in a differential input impedance of  
approximately 75 W. Note: to avoid dc loading of either the  
VIN+ or VIN– pin, the ac-coupling capacitor must be placed  
between the input pin(s) and the shunt resistor(s). Refer to the  
Differential Inputs section for more details on this mode of  
operation.  
Power Supply and Decoupling  
Output Bias, Impedance and Termination  
The AD8321 should be powered with a good quality (i.e., low  
noise) single supply of 9 V. Although the AD8321 circuit will  
function at voltages lower than 9 V, optimum performance will  
not be achieved at lower supply settings. Careful attention must  
be paid to decoupling the power supply pins. A 10 mF capacitor  
located in near proximity to the AD8321 is required to provide  
good decoupling for lower frequency signals. In addition, and  
more importantly, five 0.1 mF decoupling capacitors should be  
located close to each of the five power supply pins (7, 8, 9, 17,  
and 20). A 0.1 mF capacitor must also be connected to the pins  
labeled BYP1 and BYP2 (Pins 5 and 14) to provide decoupling  
to internal nodes of the device. All six ground pins should be  
connected to a common low impedance ground plane.  
On the output side, the VOUT pin is also dc-biased to VCC/2 or  
midway between the supply voltage and ground. The output  
signal must therefore be ac-coupled before being applied to the  
load. The dc-bias voltage is available on the BYP1 and BYP2  
pins (Pins 5 and 14 respectively) and can be used in dc-biasing  
schemes. These nodes must be decoupled to ground using a  
0.1 mF capacitor as shown in Figure 25. If the BYP1 and/or  
BYP2 voltages are used externally, they should be buffered.  
External back termination resistors are not required when using  
the AD8321. The output impedance of the AD8321 is 75 W and  
is maintained dynamically. This on chip back termination is  
maintained regardless of whether the amplifier is in forward  
transmit mode or reverse powered down mode. If the output  
signal is being evaluated on 50 W test equipment such as a  
spectrum analyzer, a 75 W to 50 W adapter (commonly called  
a minimum loss pad) should be used to maintain a properly  
matched circuit.  
VCC  
+9V  
C4  
0.1F  
C5  
0.1F  
C7  
C8  
C9  
C10  
C11  
C6  
10F  
0.1F 0.1F 0.1F 0.1F 0.1F  
VCC  
VIN+  
VCC  
VCC  
VCC  
VCC BYP1 BYP2  
VOUT  
C2  
Ce  
0.1F  
0.1F  
TO  
AD8321  
DIPLEXER  
R
= 75�  
IN  
C1  
0.1F  
ATTENUATOR  
CORE  
VIN–  
INPUT  
R1  
82.5�  
POWER-  
DOWN/  
SWITCH  
INTER  
DATA LATCH  
DATA SHIFT  
REGISTER  
CLK  
GND GND GND GND GND  
SDATA  
DATEN  
DATEN  
CLK  
SDATA  
PD  
Figure 25. Basic Connection for Single-Ended Inverting Operation  
REV. A  
–9–  
AD8321  
Varying the Gain and SPI Programming  
Between Burst On/Off Transients, Asynchronous Power-  
Down and DOCSIS  
The gain of the AD8321 can be varied over a range of 53 dB from  
approximately –27 dB to +26 dB, in increments of approximately  
0.7526 dB per LSB. Programming the gain of the AD8321 is  
accomplished using conventional Serial Peripheral Interface or  
SPI protocol. Three digital lines, DATEN, CLK and SDATA,  
are used to stream eight bits of data into the serial shift register  
of the AD8321. Changing the state of the DATEN port from  
Logic 1-to-0 starts the load sequence by activating the CLK  
line. No changes in output signal are realized during this transi-  
tion. Subsequently, any data applied to SDATA is clocked into  
the serial shift register Most Significant Bit (MSB) first and on  
the rising edge of each CLK pulse. The AD8321 may be pro-  
grammed to deliver maximum gain (+26 dB) at decimal code  
71. As a result, only the last seven bits of a typical 8-bit SPI  
word effect the gain resulting in the gain response depicted in  
Figure 22. Since the SPI codes from 0 through 71 appear digi-  
tally identical to codes 128 through 199 for all bits except the  
MSB, the AD8321 repeats the gain vs. decimal code response  
twice in the 256 available codes (see Operational Description for  
gain equations and Figure 23 for Gain Response). The MSB of  
a typical SPI word (i.e., the first data bit presented to the SDATA  
line after the DATEN transition from Logic 1 to 0 and prior to  
the rising edge of the first clock pulse) is disregarded or ignored.  
Data enters the serial shift register through the SDATA port  
on the rising edge of the next seven CLK pulses. Returning the  
DATEN line to Logic 1 latches the content of the shift register  
into the attenuator core resulting in a well controlled change in  
output signal level. The timing diagram for AD8321’s serial  
interface is shown in Figure 24.  
A 42% reduction in consumed power may be achieved asynchro-  
nously by applying Logic 0 to PD Pin 6 activating the on-chip  
“reverse amplifier.” The supply current is then reduced to  
approximately 52 mA and the modem can no longer transmit in  
the upstream direction. The on-chip reverse amplifier is designed  
to reduce “between burst noise” and maintain a 75 W source  
impedance to the low pass port of the modem’s diplexer while  
minimizing power consumption. Changing the logic level applied  
to the PD pin will result in a Burst On/Off Transient at the  
output of the AD8321. The transient results from switching  
between the forward transmit amplifier and the powered down  
(reverse) amplifier. Although the resulting transient meets the  
DOCSIS transient amplitude requirements at maximum gain, it  
is the lower gain range (i.e., 8 dBmV to 31 dBmV) where the  
AD8321 may exceed the 7 mV maximum. The diplexer may  
further reduce the glitch amplitude. An external RF switch, such  
as Alpha Industries AS128-73 GaAs 2 Watt High Linearity  
SPDT RF switch, may be used to further reduce the spurious  
emissions, improve the isolation between the cable plant and the  
upstream line driver and switch in a 75 W back termination  
required to maintain proper line termination to the LP port of  
the diplexer (see Figure 28).  
Noise and DOCSIS  
One of the most difficult issues facing designers of DOCSIS  
compliant modems is maintaining a quiet output from the PA  
during times when no information is being transmitted upstream.  
In addition, maintaining proper signal-to-noise ratios serves to  
ensure the quality of transmitted data. This is extremely critical  
when the output signal of the modem is set to the minimum  
DOCSIS specified output level or 8 dBmV. The AD8321 output  
noise spectral density at minimum gain (or 8 dBmV) is 20 nV/÷Hz  
measured at 10 MHz. Considering the “Spurious Emissions  
in 5 MHz to 42 MHz” of Table 4–8 in DOCSIS, the calculated  
noise power in dBmV for 160 KSYM/SEC is:  
Gain Dependence on Load Impedance  
The AD8321 has a dynamic output impedance of 75 W. This  
dynamic output impedance is trimmed to provide a maximum  
gain of +26 dB when loaded with 75 W. Operating the AD8321  
at load impedances other than 75 W will only change the gain of  
the AD8321 while the specified gain range of 53 dB is unchanged.  
Varying the load impedance will result in 6 dB of additional gain  
when RLOAD approaches infinity. The relationship between  
RLOAD and gain is depicted in Figure 26 and is described by the  
following equation:  
Ê
Á
ˆ
˜
Ê
Á
ˆ
Ê
Ë
ˆ2  
˜
20log  
20nV / Hz ¥160E + 3 + 60 or - 41.5 dBmV  
¯
Á
Ë
˜
Á
Ë
˜
¯
¯
Gain (dB) = [20 log ((2 ¥ RLOAD)/(RLOAD +75))]+(26–(0.7526 ¥  
(71-Code)))  
Comparing the computed noise power to the signal at 8 dBmV  
yields –49.5 dBc or 3.5 dB higher than the required –53 dBc in  
DOCSIS Table 4–8. An attenuator designed to match the  
AD8321 75 W source to the 75 W load may be required. Refer-  
ring to the schematic of Figure 28 and the evaluation board  
silkscreen of Figure 31, the matching attenuator is comprised of  
the three resistors referred to as Rc, Rd and Re. Select the at-  
tenuation level from Table I such that noise floor is reduced to  
levels specified in DOCSIS.  
35  
30  
25  
20  
15  
10  
5
Table I.  
Rc ()  
Rd ()  
Re ()  
Attenuation (dB)  
1304  
654.3  
432  
8.65  
17.42  
26.1  
1304  
654.3  
432  
–1  
–2  
–3  
–4  
0
0
100  
200  
300  
 
400  
500  
331.5  
35.75  
331.5  
R
LOAD  
Figure 26. Maximum Gain vs. RLOAD  
REV. A  
–10–  
AD8321  
Distortion and DOCSIS  
Overshoot on PC Printer Ports  
Care must be taken when selecting attenuation levels specified  
in Table I as the output signal from the AD8321 must compen-  
sate for the losses resulting from any added attenuation as well  
as the insertion losses associated with the diplexer. An increase  
in input signal becomes apparent at the upper end of the gain  
range and will be needed to achieve the 58 dBmV at the modem  
output. The insertion losses of the diplexer may vary, depend-  
ing on the quality of the diplexer and whether the frequency of  
operation is in near proximity to the cut-off frequency of the  
low-pass filter. Figures 9 and 10 show the expected second  
and third harmonic distortion performance vs. fundamental  
frequency at various input power levels. These graphs indicate  
the worst harmonic levels exhibited over the entire output range  
of the AD8321 (i.e., –27 dB to +26 dB). Figures 9 and 10 are  
useful when it is necessary to determine inband harmonic levels  
(5 MHz to 42 MHz or 5 MHz to 65 MHz). Harmonics that  
are higher in frequency, as compared to the cutoff frequency of  
the low-pass filter of the diplexer, will be further suppressed by  
the stop band attenuation level of the LP filter in the diplexer.  
Designers must balance the need to improve noise performance  
by adding attenuation with the resulting need for increased  
signal amplitude while maintaining DOCSIS specified dis-  
tortion performance.  
The data lines on some PC parallel printer ports have excessive  
overshoot. Overshoot presented to the CLK pin (TP7 on the  
evaluation board) may cause communications problems. The  
evaluation board layout was designed to accommodate a series  
resistor and shunt capacitor (R6 and C12) if required to filter or  
condition the CLK data.  
Between Burst Transient Reduction  
In order to reduce the amplitude of the “Burst On/Off Tran-  
sient” glitch at the output of the AD8321, when switching from  
forward transmit mode to reverse powered down mode, position  
the SWb switch in Figure 28 to position “a” before changing the  
logic applied to PD Pin 6 of the AD8321 from Logic 1-to-0  
(and also 0-to-1). Use the “Enable Output Switch” feature in  
the evaluation board control software (see Figure 31) to select  
the appropriate position of the AS128-73 switch. A check in this  
box enables the switch to pass upstream data to the output of the  
evaluation board. The AS128-73 produces a glitch of approxi-  
mately 5 mV p-p regardless of the AD8321 gain setting. The  
AD8321-EVAL board comes with resistors and capacitors  
installed on the logic lines controlling the RF switch (R8, R9,  
C16, C17). These values were selected to reduce the glitch  
amplitude to DOCSIS acceptable levels and may be modified  
if required. The SPDT function of the AS128-73 RF switch  
accommodates the need to maintain proper termination when  
the diplexer is disconnected from the output of the AD8321.  
The AD8321-EVAL board accommodates the needed back  
termination (refer to the Cb and Rb of the evaluation circuit).  
Evaluation Board Features and Operation  
The AD8321 evaluation board (p/n AD8321-EVAL) and com-  
panion software program written in Microsoft Visual Basic are  
available through Analog Devices, Inc. and can be used to  
control the AD8321 Variable Gain Upstream Power Amplifier  
via the parallel port of a PC. This evaluation package provides a  
convenient way to program the gain/attenuation of the AD8321  
without the addition of any external glue logic. AD8321-EVAL  
has been developed to facilitate the use of the AD8321 in an  
application targeted at DOCSIS compliance. A low cost Alpha  
Industries AS128-73 GaAs 2 Watt High Linearity SPDT RF  
switch (referred to as SWb) is included on the evaluation board  
(see Figure 28) along with accommodations for a user specified  
75 W matching attenuator (See Table I for a table of resistor  
values of attenuators ranging from –1 dB to –4 dB). The  
AD8321 DATEN, CLK and SDATA digital lines are pro-  
grammed according to the gain setting and mode of operation  
selected using the Windows® interface of the control software  
(see Figure 30). The serial interface of the AD8321 is ad-  
dressed through the parallel port of a PC using four or more  
bits (plus ground). Two additional bits from the parallel port  
are used to control the RF switch(s). This software programs  
the AD8321 gain or attenuation, incorporates asynchronous  
control of the power-down feature (PD Pin 6) as well as asyn-  
chronous control of the Alpha Industries RF switch(es) AS128-  
73.* A standard printer cable is used to feed the necessary data  
to the AD8321-EVAL board. These features allow the designer  
to fully develop and evaluate the upstream signal path begin-  
ning at the input to the PA.  
Differential Inputs  
When evaluating the AD8321 in differential input mode, termi-  
nation resistor(s) should be selected and applied such that the  
combined resistance of the termination resistor(s) and the input  
impedance of the AD8321 results in a match between the signal  
source impedance and the input impedance of the AD8321. The  
evaluation board is designed to accommodate Mini-Circuits T1-  
6T-KK81 1:1 transformer for the purposes of converting a  
single-ended (i.e., ground referenced) input signal to differen-  
tial inputs. The following paragraphs identify three options for  
providing differential input signals to the AD8321 evaluation  
board. Option 1 uses a transformer to produce a truly differen-  
tial input signal. The termination resistor(s) specified in Option  
1 and 2 may also be used without the transformer if a differen-  
tial signal source is available. Option 2 uses a transformer and-  
produces ground referenced input signals that are separated in  
phase by 180. Option 3 relies on differential signals provided  
by the user and does not employ a transformer for single-to-  
differential conversion.  
Differential Input Option 1: Install the Mini-Circuits T1-6T-  
KK81 1:1 transformer in the T1 location of the evaluation  
board. Jumpers J1, J2 and J3 should be applied pointing in the  
direction of the transformer. A differential input termination  
resistor of 82.5 W can be used in the R3 position. This value  
should be used when the single-ended input signal has a source  
impedance of 75 W. In this configuration, the input signal must  
be applied to the VIN+/DIFF IN port of the evaluation board.  
An open circuit is required in R1, R2 and J4 positions resulting  
in a 75 W differential input termination to the AD8321. If a  
50 W single-ended input source is applied to the VIN+/DIFF IN  
port, the R3 value should be 53.6 W.  
Windows is a registered trademark of Microsoft Corporation.  
*Alpha Industries @ www.alphaind.com  
REV. A  
–11–  
AD8321  
Differential Input Option 2: Install the Mini-Circuits T1-6T-  
KK81 1:1 transformer in the T1 location of the evaluation  
board. Jumpers J1, J2 and J3 should be applied pointing in the  
direction of the transformer. Apply an open circuit in the R3  
position while J4 is applied connecting the center-tap of the  
secondary to ground. A 41 W resistor should be used between  
each input and ground at R1 and R2. This option will also  
result in a 75 W differential input termination to the AD8321.  
If a 50 W single-ended input source is applied to the VIN+/  
DIFF IN port, the R1 and R2 values should be 26.7 W.  
Controlling the Evaluation Board from a PC  
The AD8321-EVAL package comes with the circuit described  
by Figure 28 and includes a –2 dB attenuator (reference Rc, Rd  
and Re) and the control software allowing the user to program  
the gain/attenuation of the AD8321 via a standard printer cable  
connected to the parallel port of a PC.  
Install Software  
To install the “CABDRIVE” software that controls the AD8321-  
EVAL evaluation circuit, close all Windows applications and  
select the “SETUP” file located on Disk 1 of the AD8321-  
EVAL software. Follow the on screen instructions (see Figure  
29) and insert Disk 2 when prompted to do so. Enter the path  
of the directory into which the control software will be installed.  
Select the button in the upper left corner to begin the installa-  
tion of “CABDRIVE” software into the specified directory.  
Differential Input Option 3: A differential input may be  
applied to both VIN– and VIN+ inputs of the evaluation board.  
In this example, no transformer is employed. Jumpers J1, J2 and  
J3 are installed in line with the input signals. Select the differen-  
tial input termination configuration of either Option 1 or Option 2.  
Apply Option 1 resistor value to R3 for a true differential input  
or apply Option 2 values to R1 and R2 to produce ground refer-  
enced inputs that are separated in phase by 180. If the differen-  
tial input signal source impedance is anything other than 75 W  
or 50 W, calculate the appropriate value according to the equa-  
tions below:  
Running the Software  
To invoke the control software, select the “AD8321” icon from  
the directory containing the installed software. After invoking  
the control software, choose the appropriate printer port from  
the display portrayed in Figure 30.  
Controlling the Gain/Attenuation of AD8321  
For Option 1 Configurations:  
The AD8321 control panel has four different functions. The  
slide bar controls the gain/attenuation of the AD8321. Adjust  
the slider to the gain/attenuation displayed in units of dB. The  
additional displays show the selection in units of Volts (output)/  
Volts (input), and the corresponding control codes in decimal,  
binary and hexadecimal. (See Figure 31.)  
Desired Input Impedance = R3900  
For Option 2 and 3 (R1 = R2 = R):  
Desired Input Impedance = 2 ¥ (R450)  
DIFF IN  
“POWER UP” and “POWER DOWN”  
R3  
T1  
AD8321  
The buttons marked “Power Up” and “Power Down” select the  
mode of operation of the AD8321. The “Power Up” button  
puts the AD8321 in forward transmit mode feeding the condi-  
tioned signal to the VOUT port on the evaluation board. Con-  
versely, the “Power Down” button selects the reverse mode  
where the forward signal transmission is disabled and the low  
noise reverse amplifier actively maintains a 75 W back termina-  
tion. These features may be selected asynchronously (at any  
time). (See the section on Between Burst Transient Reduction  
for more specific details.)  
OPTION 1 DIFFERENTIAL INPUT TERMINATION  
R2  
DIFF IN  
T1  
AD8321  
R1  
OPTION 2 DIFFERENTIAL INPUT TERMINATION  
Enable Output Switch  
R2  
An Alpha Industries AS128-73 GaAs 2W Hi Linearity switch is  
installed on a standard AD8321-EVAL circuit and is controlled  
by the check box on the control panel portrayed in Figure 31.  
This feature is intended to remove the output of the AD8321  
from the VOUT port prior to using the “Power Up” and  
“Power Down” feature described above. This application circuit  
may be used to reduce any transients created between bursts to  
DOCSIS compliant levels. (See the section on Between Burst  
Transient Reduction for more specific details.)  
VIN+  
AD8321  
VIN–  
R1  
OPTION 3 DIFFERENTIAL INPUT TERMINATION  
Figure 27. Differential Input Termination Options  
REV. A  
–12–  
AD8321  
TP1  
C1  
0.1F  
J3  
VIN–  
R1  
82.5�  
TP4  
VCC  
TP6  
C10  
C11  
C5  
SDATA  
CLK  
P1–5  
P1–6  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TP7  
R6  
C12  
1000pF  
3
TP8  
DATEN  
PD  
C2  
0.1F  
P1–2  
P1–3  
4
AD8321  
C4  
5
TP9  
6
NOTE:  
C7  
C8  
C9  
BYPASS CAPACITORS C4, C5, C7,  
C8, C9, C10 AND C11 ARE 0.1F.  
7
8
V
CT  
9
C14  
10F  
10  
C15  
0.1F  
TPd  
TP12  
Vct  
Jb  
AS128-73  
SWb  
TPa  
Cd  
Cc  
0.1F  
0.1F  
Rf  
10k�  
TPc  
Rd  
Rc  
TP5  
TPe  
V1  
b
TO  
DIPLEXER  
Re  
GND  
Ce  
0.1F  
TP13  
V
CC  
Cb  
V2  
0.1F  
C10  
0.1F  
C6  
10F  
Rb  
75�  
R8  
1k�  
V1  
V2  
P1–8  
P1–7  
C16  
1000pF  
R9  
1k�  
C17  
1000pF  
Figure 28. AD8321-EVAL Schematic of Single-Ended Inverting Input, Upstream PA Driver Solution Using AD8321,  
Matching Attenuator and Alpha Industries AS128-73 RF Switch  
REV. A  
–13–  
AD8321  
EVALUATION BOARD FEATURES AND OPERATION  
Figure 29. Evaluation Board Software Installation  
Figure 30. Evaluation Board Control Software  
REV. A  
–14–  
AD8321  
Figure 31. Screen Display of Windows-Based Control Software  
REV. A  
–15–  
AD8321  
Figure 32. Evaluation Board Silkscreen (Component Side)  
REV. A  
–16–  
AD8321  
Figure 33. Evaluation Board Layout (Component Side)  
Figure 34. Evaluation Board Layout (Solder Side)  
–17–  
REV. A  
AD8321  
EVALUATION BOARD BILL OF MATERIALS  
AD8321 Evaluation Board Rev. B SINGLE- ENDED INVERTING INPUT March 17, 1999  
Qty.  
Description  
Vendor  
Ref Desc.  
2
14  
3
1
3
2
1
2
1
1
1
2
1
6
2
3
1
2
2
5
2
1
4
1
1
4
4
2
2
2
2
10 mF 16 V. 1350 size tantalum chip capacitor  
0.1 mF 50 V. 1206 size ceramic chip capacitor  
1,000 pF 50 V. 1206 size ceramic chip capacitor  
82.5 W 1% 1/8 W. 1206 size chip resistor  
0 W 5% 1/8 W. 1206 size chip resistor  
1.00 kW 1% 1/8 W. 1206 size chip resistor  
75.0 W 1% 1/8 W. 1206 size chip resistor  
649 W 1% 1/8 W. 1206 size chip resistor  
10.0 kW 1% 1/8 W. 1206 size chip resistor  
17.4 W 1% 1/8 W. 1206 size chip resistor  
Alpha # AS 128-73 GaAs Hi Linearity switch  
Pink Test Point  
Blue Test Point [Vct]  
Grey Test Point [Bus lines]  
Yellow Test Point [INPUTS]  
Orange Test Point [OUTPUTS]  
Red Test Point [DUT VCC]  
Black Test Point [GND]  
ADS# 4-7-6  
ADS# 4-5-18  
ADS# 4-5-20  
C6 & C14  
C1–C5, C7–C11, Cb–e  
C12, C16 & C17  
R1  
R2 & R6, Ca  
R8 & 9  
Rb  
Rc & Re  
Rf  
Rd  
SWb  
TPc & TPd  
TP14  
TP6–TP9, TP12 & TP13  
TP1 & TP2  
TPa, TPb & TPe  
TP4  
TP5 & TP15  
J3 & Jb  
J3, Ja, Jb, Jc, Jd  
INPUTS, OUTPUT  
P1  
DUT VCC, GND, Vct  
D.U.T.  
D -K # P 82.5 FCT-ND  
ADS# 3-18- 88  
ADS# 3-18-11  
ADS# 3-18-145  
D -K # P 649 FCT-ND  
ADS# 3-18-119  
D -K # P17.4 FCT-ND  
Alpha # AS 128-73  
ADS# 12-18-63  
ADS# 12-18-62  
ADS# 12-18-64  
ADS# 12-18-32  
ADS# 12-18-60  
ADS# 12-18-43  
ADS# 12-18-44  
ADS# 11-2-38  
ADS# 11-2-37  
Comp. Mktg. Services  
ADS# 12-3-50  
ADS# 12-7-7  
2 pin .1 inch ctr. shunt Berg # 65474 - 001  
2 pin .1 inch ctr. male Header Berg # 69157 - 102  
75 W right-angle BNC Telegartner # J01003A1949  
Conn. 36 pin Centronics Right Angle  
5-way Metal Binding Post  
AD8321 AR  
ADS# AD8321AR  
E.M.C.  
ADS# 30-1-1  
ADS# 30-16-3  
ADS# 30-1-17  
ADS# 30-6-6  
AD8321 REV. B Evaluation PC board  
#4 - 40 ¥ 1/4 inch ss panhead machine screw  
#4 - 40 ¥ 3/4 inch long aluminum round stand-off  
# 2 - 56 ¥ 3/8 inch ss panhead machine screw  
# 2 steel flat washer  
Evaluation PC board  
(p1 hardware)  
(p1 hardware)  
(p1 hardware)  
(p1 hardware)  
# 2 steel internal tooth lockwasher  
# 2 ss hex. machine nut  
ADS# 30-5-2  
ADS# 30-7-6  
Optional Components J1, J2, J4, R3, Ra, SWa, T1, +VIN+  
REV. A  
–18–  
AD8321  
OUTLINE DIMENSIONS  
20-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(R-20)  
Dimensions shown in millimeters and (inches)  
Revision History  
Location  
Page  
6/05—Data Sheet Changed from REV. 0 to REV. A.  
Changes to ORDERING GUIDE....................................................................................................................................................4  
Updated OUTLINE DIMENSIONS.............................................................................................................................................19  
REV. A  
–19–  
–20–  
配单直通车
AD8321ARZ产品参数
型号:AD8321ARZ
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:ROCHESTER ELECTRONICS LLC
零件包装代码:SOIC
包装说明:LEAD FREE, MS-013AC, SOIC-20
针数:20
Reach Compliance Code:unknown
风险等级:5.54
差分输出:NO
驱动器位数:1
输入特性:DIFFERENTIAL
接口集成电路类型:LINE DRIVER
接口标准:GENERAL PURPOSE
JESD-30 代码:R-PDSO-G20
JESD-609代码:e3
长度:12.8 mm
湿度敏感等级:1
功能数量:1
端子数量:20
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
座面最大高度:2.65 mm
标称供电电压:9 V
表面贴装:YES
温度等级:INDUSTRIAL
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:7.5 mm
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!