欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • AD9280ARSZRL图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • AD9280ARSZRL 现货库存
  • 数量15899 
  • 厂家ADI 
  • 封装SSOP 
  • 批号21+ 
  • ■正纳电子专业元器件代理
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • AD9280ARSZRL图
  • 深圳市楷兴电子科技有限公司

     该会员已使用本站7年以上
  • AD9280ARSZRL 现货库存
  • 数量89700 
  • 厂家ADI/亚德诺 
  • 封装SSOP28 
  • 批号21+ 
  • 全新进口原装现货,代理渠道假一赔十
  • QQ:2881475151QQ:2881475151 复制
  • 0755-83016042 QQ:2881475151
  • AD9280ARSZRL图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • AD9280ARSZRL 现货库存
  • 数量8500 
  • 厂家AD原装 
  • 封装SSOP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • AD9280ARSZ图
  • 集好芯城

     该会员已使用本站13年以上
  • AD9280ARSZ 现货库存
  • 数量19225 
  • 厂家ADI(亚德诺) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • AD9280ARSZ图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD9280ARSZ 现货库存
  • 数量12500 
  • 厂家AD 
  • 封装SSOP-28 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • AD9280ARSZ图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD9280ARSZ 现货库存
  • 数量5000 
  • 厂家AD 
  • 封装TSOP28 
  • 批号24+ 
  • 原装假一赔百,深圳现货,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • AD9280ARSZ图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • AD9280ARSZ 现货库存
  • 数量8000 
  • 厂家ADI(亚德诺) 
  • 封装NA 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • AD9280ARSZ图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • AD9280ARSZ 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装TSSOP 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • AD9280ARSZRL图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • AD9280ARSZRL 现货库存
  • 数量2100 
  • 厂家ADI 
  • 封装SSOP28 
  • 批号2412+ 
  • 全新原装,价优.欢迎来电查询
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • AD9280ARSZ图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • AD9280ARSZ 现货库存
  • 数量
  • 厂家AD 
  • 封装0949+ 
  • 批号SSOP 
  • 9元原装现货13661385246
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • AD9280ARSZ图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • AD9280ARSZ 现货库存
  • 数量4003 
  • 厂家AD 
  • 封装TSSOP28 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • AD9280ARSZRL图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • AD9280ARSZRL 现货库存
  • 数量18500 
  • 厂家ADI(亚德诺) 
  • 封装SSOP-28_208mil 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • AD9280ARSZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9280ARSZ 现货库存
  • 数量98500 
  • 厂家ADI/亚德诺 
  • 封装SSOP-28 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177
  • AD9280ARSZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • AD9280ARSZ 现货热卖
  • 数量5000 
  • 厂家AD 
  • 封装SSOP28 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • AD9280ARSZ图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • AD9280ARSZ 现货热卖
  • 数量5216 
  • 厂家AD 
  • 封装SSOP-28 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • AD9280ARSZ图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • AD9280ARSZ 优势库存
  • 数量
  • 厂家AD 
  • 封装0949+ 
  • 批号SSOP 
  • 9元原装现货13661385246
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • AD9280ARSZ图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • AD9280ARSZ
  • 数量5300 
  • 厂家ADI(亚德诺) 
  • 封装SSOP-28 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • AD9280ARSZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9280ARSZ
  • 数量65000 
  • 厂家AD 
  • 封装SSOP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • AD9280ARSZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9280ARSZ
  • 数量36000 
  • 厂家AD 
  • 封装SSOP-28 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • AD9280ARSZ图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • AD9280ARSZ
  • 数量18084 
  • 厂家ADI/亚德诺 
  • 封装TSSOP 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • AD9280ARSZ图
  • 深圳亿景融荣科技有限公司

     该会员已使用本站2年以上
  • AD9280ARSZ
  • 数量329 
  • 厂家AD 
  • 封装28-Lead SSOP 
  • 批号23+ 
  • 查报价_www.quaic.com
  • QQ:236255295QQ:236255295 复制
    QQ:2560388062QQ:2560388062 复制
  • 15092623555 QQ:236255295QQ:2560388062
  • AD9280ARSZ图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • AD9280ARSZ
  • 数量35898 
  • 厂家AnalogDevicesInc 
  • 封装28-SSOP 
  • 批号21+ 
  • ■原装现货长期供应电子元器件代理经销WWW.ZN-IC.COM
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • AD9280ARSZ图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • AD9280ARSZ
  • 数量5000 
  • 厂家ADI 
  • 封装SSOP 
  • 批号2019+ 
  • ADI一级代理商全新原装进口现货
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • AD9280ARSZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • AD9280ARSZ
  • 数量4500 
  • 厂家AD 
  • 封装SSOP28 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • AD9280ARSZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • AD9280ARSZ
  • 数量3200 
  • 厂家AD 
  • 封装SSOP 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • AD9280ARSZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • AD9280ARSZ
  • 数量8800 
  • 厂家ANALOGDEVICESINC 
  • 封装28-SSOP 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • AD9280ARSZ图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • AD9280ARSZ
  • 数量5500 
  • 厂家AD 
  • 封装SSOP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • AD9280ARSZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • AD9280ARSZ
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • AD9280ARSZ图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • AD9280ARSZ
  • 数量5600 
  • 厂家ADI/亚德诺 
  • 封装SSOP-28 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • AD9280ARSZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD9280ARSZ
  • 数量15862 
  • 厂家AD 
  • 封装SSOP-2.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • AD9280ARSZ图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD9280ARSZ
  • 数量3303 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD9280ARSZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • AD9280ARSZ
  • 数量6800 
  • 厂家ADI/亚德诺 
  • 封装SOP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • AD9280ARSZ图
  • 集好芯城

     该会员已使用本站13年以上
  • AD9280ARSZ
  • 数量18084 
  • 厂家ADI/亚德诺 
  • 封装TSSOP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • AD9280ARSZ图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • AD9280ARSZ
  • 数量15300 
  • 厂家Analog Devices Inc. 
  • 封装28-SSOP 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • AD9280ARSZ图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • AD9280ARSZ
  • 数量12300 
  • 厂家ADI/亚德诺 
  • 封装SSOP28 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • AD9280ARSZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD9280ARSZ
  • 数量15862 
  • 厂家AD 
  • 封装SSOP-2.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • AD9280ARSZ图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • AD9280ARSZ
  • 数量30000 
  • 厂家ADI/亚德诺 
  • 封装SSOP 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115

产品型号AD9280ARSZ的概述

芯片 AD9280ARSZ 概述 AD9280ARSZ 是一款高性能的模数转换器(ADC),由知名的模拟器件制造商 Analog Devices 生产。该芯片特别适用于医疗成像、工业自动化、通讯和视频系统等领域,具有高分辨率和快速采样率的优势。AD9280ARSZ 的设计专注于在各种应用中提供卓越的性能,满足高标准的数据采集及处理要求。 详细参数 AD9280ARSZ 的主要技术参数如下: 1. 采样率:最大采样率达 80 MSPS(百万样本每秒),适合快速信号处理应用。 2. 分辨率:提供 12 位的分辨率,能准确地捕捉信号的微小变化。 3. 输入电压范围:支持 0V 至 2V 的输入范围,适应多种信号源。 4. 功耗:在工作状态下,典型功耗为 225 mW,设计上有助于系统的热管理。 5. 时钟频率:工作时钟频率可达 40 MHz,确保数据采集的实时性。 6. 信噪比(SNR):在...

产品型号AD9280ARSZ的Datasheet PDF文件预览

Complete 8-Bit, 32 MSPS, 95 mW  
CMOS A/D Converter  
a
AD9280  
FEATURES  
A single clock input is used to control all internal conversion  
cycles. The digital output data is presented in straight binary  
output format. An out-of-range signal (OTR) indicates an over-  
flow condition which can be used with the most significant bit  
to determine low or high overflow.  
CMOS 8-Bit 32 MSPS Sampling A/D Converter  
Pin-Compatible with AD876-8  
Power Dissipation: 95 mW (3 V Supply)  
Operation Between +2.7 V and +5.5 V Supply  
Differential Nonlinearity: 0.2 LSB  
Power-Down (Sleep) Mode  
Three-State Outputs  
Out-of-Range Indicator  
Built-In Clamp Function (DC Restore)  
Adjustable On-Chip Voltage Reference  
IF Undersampling to 135 MHz  
The AD9280 can operate with a supply range from +2.7 V to  
+5.5 V, ideally suiting it for low power operation in high speed  
applications.  
The AD9280 is specified over the industrial (–40°C to +85°C)  
temperature range.  
PRODUCT HIGHLIGHTS  
Low Power  
PRODUCT DESCRIPTION  
The AD9280 is a monolithic, single supply, 8-bit, 32 MSPS  
analog-to-digital converter with an on-chip sample-and-hold  
amplifier and voltage reference. The AD9280 uses a multistage  
differential pipeline architecture at 32 MSPS data rates and  
guarantees no missing codes over the full operating temperature  
range.  
The AD9280 consumes 95 mW on a 3 V supply (excluding the  
reference power). In sleep mode, power is reduced to below  
5 mW.  
Very Small Package  
The AD9280 is available in a 28-lead SSOP package.  
Pin Compatible with AD876-8  
The AD9280 is pin compatible with the AD876-8, allowing  
older designs to migrate to lower supply voltages.  
The input of the AD9280 has been designed to ease the devel-  
opment of both imaging and communications systems. The user  
can select a variety of input ranges and offsets and can drive the  
input either single-ended or differentially.  
300 MHz Onboard Sample-and-Hold  
The versatile SHA input can be configured for either single-  
ended or differential inputs.  
The sample-and-hold amplifier (SHA) is equally suited for both  
multiplexed systems that switch full-scale voltage levels in suc-  
cessive channels and sampling single-channel inputs at frequen-  
cies up to and beyond the Nyquist rate. AC-coupled input  
signals can be shifted to a predetermined level, with an onboard  
clamp circuit. The dynamic performance is excellent.  
Out-of-Range Indicator  
The OTR output bit indicates when the input signal is beyond  
the AD9280’s input range.  
Built-In Clamp Function  
Allows dc restoration of video signals.  
The AD9280 has an onboard programmable reference. An  
external reference can also be chosen to suit the dc accuracy and  
temperature drift requirements of the application.  
FUNCTIONAL BLOCK DIAGRAM  
CLAMP  
IN  
DRVDD  
CLAMP  
CLK  
AVDD  
STBY  
SHA  
GAIN  
SHA  
GAIN  
SHA  
GAIN  
SHA  
GAIN  
SHA  
MODE  
VINA  
A/D  
REFTF  
REFTS  
THREE-  
STATE  
D/A  
A/D  
D/A  
D/A  
A/D  
D/A  
A/D  
A/D  
CORRECTION LOGIC  
OUTPUT BUFFERS  
REFBS  
REFBF  
OTR  
VREF  
D7 (MSB)  
D0 (LSB)  
AD9280  
1V  
REFSENSE  
AVSS  
DRVSS  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc.,  
2010  
(AVDD = +3 V, DRVDD = +3 V, FS = 32 MHz (50% Duty Cycle), MODE = AVDD, 2 V Input  
AD9280–SPECIFICATIONS Span from 0.5 V to 2.5 V, External Reference, TMIN to TMAX unless otherwise noted)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Bits  
Condition  
RESOLUTION  
CONVERSION RATE  
8
FS  
32  
MHz  
DC ACCURACY  
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
DNL  
INL  
EZS  
±0.2  
±0.3  
±0.2  
±1.2  
±1.0  
±1.5  
±1.8  
±3.9  
LSB  
LSB  
% FSR  
% FSR  
REFTS = 2.5 V, REFBS = 0.5 V  
Gain Error  
EFS  
REFERENCE VOLTAGES  
Top Reference Voltage  
Bottom Reference Voltage  
Differential Reference Voltage  
Reference Input Resistance1  
REFTS  
REFBS  
1
AVDD  
AVDD – 1 V  
V p-p  
V
GND  
2
10  
4.2  
kΩ  
kΩ  
REFTS, REFBS: MODE = AVDD  
Between REFTF & REFBF: MODE = AVSS  
ANALOG INPUT  
Input Voltage Range  
Input Capacitance  
AIN  
CIN  
tAP  
tAJ  
BW  
REFBS  
REFTS  
V
REFBS Min = GND: REFTS Max = AVDD  
Switched  
1
4
2
pF  
ns  
ps  
Aperture Delay  
Aperture Uncertainty (Jitter)  
Input Bandwidth (–3 dB)  
Full Power (0 dB)  
300  
43  
MHz  
µA  
DC Leakage Current  
Input = ±FS  
INTERNAL REFERENCE  
Output Voltage (1 V Mode)  
Output Voltage Tolerance (1 V Mode)  
Output Voltage (2 V Mode)  
Load Regulation (1 V Mode)  
VREF  
VREF  
1
±10  
2
V
mV  
V
REFSENSE = VREF  
±25  
REFSENSE = GND  
1 mA Load Current  
0.5  
2
mV  
POWER SUPPLY  
Operating Voltage  
AVDD  
DRVDD  
IAVDD  
PD  
2.7  
2.7  
3
3
31.7  
95  
4
5.5  
5.5  
36.7  
110  
V
V
mA  
mW  
mW  
Supply Current  
Power Consumption  
Power-Down  
AVDD = 3 V, MODE = AVSS  
AVDD = DRVDD = 3 V, MODE = AVSS  
STBY = AVDD, MODE and CLOCK  
= AVSS  
Gain Error Power Supply Rejection  
PSRR  
1
% FS  
DYNAMIC PERFORMANCE (AIN = 0.5 dBFS)  
Signal-to-Noise and Distortion  
f = 3.58 MHz  
f = 16 MHz  
Effective Bits  
f = 3.58 MHz  
f = 16 MHz  
Signal-to-Noise  
f = 3.58 MHz  
SINAD  
46.4  
47.8  
49  
48  
dB  
dB  
7.8  
7.7  
Bits  
Bits  
SNR  
49  
48  
dB  
dB  
f = 16 MHz  
Total Harmonic Distortion  
f = 3.58 MHz  
f = 16 MHz  
Spurious Free Dynamic Range  
f = 3.58 MHz  
f = 16 MHz  
THD  
SFDR  
–62  
–58  
–49.5  
51.4  
dB  
dB  
66  
61  
dB  
dB  
Differential Phase  
Differential Gain  
DP  
DG  
0.2  
0.08  
Degree NTSC 40 IRE Mod Ramp  
%
REV. E  
–2–  
AD9280  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
DIGITAL INPUTS  
High Input Voltage  
Low Input Voltage  
VIH  
VIL  
2.4  
V
V
0.3  
DIGITAL OUTPUTS  
High-Z Leakage  
Data Valid Delay  
Data Enable Delay  
Data High-Z Delay  
IOZ  
tOD  
tDEN  
tDHZ  
–10  
+10  
µA  
ns  
ns  
ns  
Output = GND to VDD  
CL = 20 pF  
25  
25  
13  
LOGIC OUTPUT (with DRVDD = 3 V)  
High Level Output Voltage (IOH = 50 µA)  
High Level Output Voltage (IOH = 0.5 mA)  
Low Level Output Voltage (IOL = 1.6 mA)  
Low Level Output Voltage (IOL = 50 µA)  
VOH  
VOH  
VOL  
VOL  
+2.95  
+2.80  
V
V
V
V
+0.4  
+0.05  
LOGIC OUTPUT (with DRVDD = 5 V)  
High Level Output Voltage (IOH = 50 µA)  
High Level Output Voltage (IOH = 0.5 mA)  
Low Level Output Voltage (IOL = 1.6 mA)  
Low Level Output Voltage (IOL = 50 µA)  
VOH  
VOH  
VOL  
VOL  
+4.5  
+2.4  
V
V
V
V
+0.4  
+0.1  
CLOCKING  
Clock Pulsewidth High  
Clock Pulsewidth Low  
Pipeline Latency  
tCH  
tCL  
14.7  
14.7  
ns  
ns  
Cycles  
3
CLAMP  
Clamp Error Voltage  
EOC  
±60  
±80  
mV  
CLAMPIN = +0.5 V to +2.0 V,  
RIN = 10 Ω  
Clamp Pulsewidth  
tCPW  
2
µs  
CIN = 1 µF (Period = 63.5 µs)  
NOTES  
1See Figures 1a and 1b.  
Specifications subject to change without notice.  
REFTS  
10k  
10k⍀  
AD9280  
AD9280  
REFTS  
REFTF  
REFBF  
4.2k⍀  
REFBS  
MODE  
0.4 
؋
 V  
DD  
REFBS  
MODE  
AV  
DD  
a.  
Figure 1. Equivalent Input Load  
b.  
REV. E  
–3–  
AD9280  
ABSOLUTE MAXIMUM RATINGS*  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum  
ratings for extended periods may effect device reliability.  
With  
Respect  
to  
Parameter  
Min  
Max  
Units  
AVDD  
DRVDD  
AVSS  
AVDD  
MODE  
CLK  
Digital Outputs  
AIN  
AVSS  
DRVSS  
DRVSS  
–0.3  
–0.3  
–0.3  
+6.5  
+6.5  
+0.3  
+6.5  
AVDD + 0.3  
AVDD + 0.3  
DRVDD + 0.3 V  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
+150  
V
V
V
V
V
V
DRVDD –6.5  
AVSS  
AVSS  
DRVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
V
V
V
V
°C  
°C  
VREF  
REFSENSE  
REFTF, REFTB  
REFTS, REFBS  
Junction Temperature  
Storage Temperature  
Lead Temperature  
10 sec  
–65  
+150  
+300  
°C  
AVDD  
DRVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVSS  
DRVSS  
DRVSS  
AVSS  
AVSS  
AVSS  
AVSS  
a. D0–D7, OTR  
b. Three-State, Standby, Clamp  
c. CLK  
AVDD  
AVDD  
22  
REFTF  
REFTS  
25  
REFBS  
AVDD  
AVSS  
AVSS  
AVDD  
AVDD  
21  
24  
REFBF  
AVSS  
AVSS  
AVSS  
d. AIN  
e. Reference  
AVDD  
AVDD  
AVDD  
AVDD  
AVSS  
AVSS  
AVSS  
AVSS  
f. CLAMPIN  
g. MODE  
h. REFSENSE  
i. VREF  
Figure 2. Equivalent Circuits  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9280 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. E  
–4–  
AD9280  
PIN CONFIGURATION  
28-Lead Wide Body (SSOP)  
1
2
28  
27  
26  
25  
24  
23  
AVDD  
AIN  
AVSS  
DRVDD  
3
DNC  
DNC  
VREF  
REFBS  
REFBF  
MODE  
4
5
D0  
D1  
AD9280  
TOP VIEW  
6
(Not to Scale)  
7
D2  
22 REFTF  
8
21  
D3  
REFTS  
9
20 CLAMPIN  
D4  
10  
11  
19  
18  
17  
16  
15  
D5  
CLAMP  
D6  
REFSENSE  
STBY  
12  
13  
14  
D7  
OTR  
DRVSS  
THREE-STATE  
CLK  
DNC = DO NOT CONNECT  
PIN FUNCTION DESCRIPTIONS  
SSOP  
Pin No.  
Name  
Description  
1
2
3
AVSS  
DRVDD  
DNC  
Analog Ground  
Digital Driver Supply  
Do Not Connect  
Do Not Connect  
DNC  
4
5
D0  
Bit 0  
6
D1  
Bit 1  
7
D2  
Bit 2  
8
D3  
Bit 3  
9
D4  
Bit 4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
D5  
D6  
D7  
OTR  
DRVSS  
CLK  
THREE-STATE  
STBY  
REFSENSE  
CLAMP  
CLAMPIN  
REFTS  
REFTF  
MODE  
REFBF  
REFBS  
VREF  
AIN  
Bit 5  
Bit 6  
Bit 7, Most Significant Bit  
Out-of-Range Indicator  
Digital Ground  
Clock Input  
HI: High Impedance State. LO: Normal Operation  
HI: Power-Down Mode. LO: Normal Operation  
Reference Select  
HI: Enable Clamp Mode. LO: No Clamp  
Clamp Reference Input  
Top Reference  
Top Reference Decoupling  
Mode Select  
Bottom Reference Decoupling  
Bottom Reference  
Internal Reference Output  
Analog Input  
Analog Supply  
AVDD  
REV. E  
–5–  
AD9280  
DEFINITIONS OF SPECIFICATIONS  
Offset Error  
Integral Nonlinearity (INL)  
The first transition should occur at a level 1 LSB above “zero.”  
Offset is defined as the deviation of the actual first code transi-  
tion from that point.  
Integral nonlinearity refers to the deviation of each individual  
code from a line drawn from “zero” through “full scale.” The  
point used as “zero” occurs 1/2 LSB before the first code transi-  
tion. “Full scale” is defined as a level 1 1/2 LSB beyond the last  
code transition. The deviation is measured from the center of  
each particular code to the true straight line.  
Gain Error  
The first code transition should occur for an analog value 1 LSB  
above nominal negative full scale. The last transition should  
occur for an analog value 1 LSB below the nominal positive full  
scale. Gain error is the deviation of the actual difference be-  
tween first and last code transitions and the ideal difference  
between the first and last code transitions.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. It is often  
specified in terms of the resolution for which no missing codes  
(NMC) are guaranteed.  
Pipeline Delay (Latency)  
The number of clock cycles between conversion initiation and  
the associated output data being made available. New output  
data is provided every rising edge.  
(AVDD = +3 V, DRVDD = +3 V, FS = 32 MHz (50% Duty Cycle), MODE = AVDD, 2 V Input  
Span from 0.5 V to 2.5 V, External Reference, unless otherwise noted)  
Typical Characterization Curves  
60  
55  
1.0  
0.5  
0
50  
–0.5 AMPLITUDE  
45  
–6.0 AMPLITUDE  
40  
35  
–0.5  
–1.0  
30  
–20.0 AMPLITUDE  
25  
20  
0
32  
64  
96  
128  
160  
192  
224  
240  
1.00E+05  
1.00E+06  
1.00E+07  
1.00E+08  
INPUT FREQUENCY – Hz  
CODE OFFSET  
Figure 3. Typical DNL  
Figure 5. SNR vs. Input Frequency  
60  
55  
50  
45  
40  
35  
30  
1.0  
0.5  
–0.5 AMPLITUDE  
–6.0 AMPLITUDE  
0
–0.5  
–1.0  
–20.0 AMPLITUDE  
25  
20  
0
32  
64  
96  
128  
160  
192  
224  
240  
1.00E+05  
1.00E+06  
1.00E+07  
1.00E+08  
INPUT FREQUENCY – Hz  
CODE OFFSET  
Figure 6. SINAD vs. Input Frequency  
Figure 4. Typical INL  
REV. E  
–6–  
AD9280  
–30  
–35  
–40  
105  
100  
95  
–45  
–50  
–55  
–60  
–65  
–20.0 AMPLITUDE  
–6.0 AMPLITUDE  
90  
85  
80  
–0.5 AMPLITUDE  
1.00E+07  
–70  
1.00E+05  
75  
0
5
10  
15  
20  
25  
30  
35  
40  
1.00E+06  
1.00E+08  
CLOCK FREQUENCY – MHz  
INPUT FREQUENCY – Hz  
Figure 10. Power Consumption vs. Clock Frequency  
(MODE = AVSS)  
Figure 7. THD vs. Input Frequency  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
1M  
1M  
900k  
800k  
700k  
600k  
500k  
400k  
300k  
200k  
AIN = –0.5dBFS  
100k  
0
0
0
0
N–1  
N
N+1  
1.00E+06  
1.00E+07  
CLOCK FREQUENCY – Hz  
1.00E+08  
CODE  
Figure 8. THD vs. Clock Frequency  
Figure 11. Grounded Input Histogram  
30  
20  
1.01  
F
F
= 1MHz  
= 32MHz  
CLOCK = 32MHz  
IN  
S
10  
FUND  
1.009  
0
–10  
–20  
1.008  
1.007  
1.006  
–30  
–40  
–50  
2nd  
3rd  
–60  
–70  
9th  
5th  
7th  
8th  
6th  
–80  
4th  
–90  
–100  
–110  
–120  
1.005  
–50  
–30  
–10  
10  
30  
50  
70  
90  
0E+0  
4E+6  
8E+6  
12E+6  
16E+6  
SINGLE-TONE FREQUENCY DOMAIN  
TEMPERATURE – °C  
Figure 12. Single-Tone Frequency Domain  
Figure 9. Voltage Reference Error vs. Temperature  
REV. E  
–7–  
AD9280  
0
APPLYING THE AD9280  
THEORY OF OPERATION  
–3  
The AD9280 implements a pipelined multistage architecture to  
achieve high sample rate with low power. The AD9280 distrib-  
utes the conversion over several smaller A/D subblocks, refining  
the conversion with progressively higher accuracy as it passes  
the results from stage to stage. As a consequence of the distrib-  
uted conversion, the AD9280 requires a small fraction of the  
256 comparators used in a traditional flash type A/D. A sample-  
and-hold function within each of the stages permits the first  
stage to operate on a new input sample while the second, third  
and fourth stages operate on the three preceding samples.  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
1.0E+6  
1.0E+7  
1.0E+8  
1.0E+9  
OPERATIONAL MODES  
FREQUENCY – Hz  
The AD9280 is designed to allow optimal performance in a  
wide variety of imaging, communications and instrumentation  
applications, including pin compatibility with the AD876-8 A/D.  
To realize this flexibility, internal switches on the AD9280 are  
used to reconfigure the circuit into different modes. These modes  
are selected by appropriate pin strapping. There are three parts  
of the circuit affected by this modality: the voltage reference, the  
reference buffer, and the analog input. The nature of the appli-  
cation will determine which mode is appropriate: the descrip-  
tions in the following sections, as well as Table I should assist in  
selecting the desired mode.  
Figure 13. Full Power Bandwidth  
50  
40  
30  
20  
REFBS = 0.5V  
REFTS = 2.5V  
CLOCK = 32MHz  
10  
0
–10  
–20  
–30  
–40  
–50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
INPUT VOLTAGE – V  
Figure 14. Input Bias Current vs. Input Voltage  
Table I. Mode Selection  
Input  
Connect  
Input  
Span  
MODE  
Pin  
REFSENSE  
Pin  
Modes  
REF  
REFTS  
REFBS Figure  
TOP/BOTTOM AIN  
AIN  
1 V  
2 V  
AVDD  
AVDD  
Short REFSENSE, REFTS and VREF Together  
AGND Short REFTS and VREF Together  
AGND  
AGND  
18  
19  
CENTER SPAN AIN  
AIN  
1 V  
2 V  
AVDD/2 Short VREF and REFSENSE Together  
AVDD/2 AGND No Connect  
AVDD/2 Short VREF and REFSENSE Together  
AVDD/2  
AVDD/2  
AVDD/2 20  
AVDD/2  
Differential  
AIN Is Input 1  
1 V  
AVDD/2  
AVDD/2 29  
REFTS and  
REFBS Are  
Shorted Together  
for Input 2  
2 V  
AVDD/2 AGND  
No Connect  
No Connect  
AVDD/2  
AVDD/2  
External Ref  
AD876-8  
AIN  
2 V max AVDD  
AVDD  
Span = REFTS  
21, 22  
– REFBS (2 V max)  
AGND  
Short to  
VREFTF  
Short to 23  
VREFBF  
AIN  
2 V  
Float or AVDD  
AVSS  
No Connect  
Short to  
VREFTF  
Short to 30  
VREFBF  
REV. E  
–8–  
AD9280  
SUMMARY OF MODES  
VOLTAGE REFERENCE  
1 V Mode the internal reference may be set to 1 V by connect-  
ing REFSENSE and VREF together.  
AIN  
A/D  
CORE  
SHA  
REFTS  
2 V Mode the internal reference my be set to 2 V by connecting  
REFSENSE to analog ground  
AD9280  
External Divider Mode the internal reference may be set to a  
point between 1 V and 2 V by adding external resistors. See  
Figure 16f.  
REFBS  
Figure 15. AD9280 Equivalent Functional Input Circuit  
In single-ended operation, the input spans the range,  
REFBS AIN REFTS  
External Reference Mode enables the user to apply an exter-  
nal reference to REFTS, REFBS and VREF pins. This mode  
is attained by tying REFSENSE to VDD.  
where REFBS can be connected to GND and REFTS con-  
nected to VREF. If the user requires a different reference range,  
REFBS and REFTS can be driven to any voltage within the  
power supply rails, so long as the difference between the two is  
between 1 V and 2 V.  
REFERENCE BUFFER  
Center Span Mode midscale is set by shorting REFTS and  
REFBS together and applying the midscale voltage to that point  
The MODE pin is set to AVDD/2. The analog input will swing  
about that midscale point.  
In differential operation, REFTS and REFBS are shorted to-  
gether, and the input span is set by VREF,  
Top/Bottom Mode sets the input range between two points.  
The two points are between 1 V and 2 V apart. The Top/Bottom  
Mode is enabled by tying the MODE pin to AVDD.  
(REFTS VREF/2) AIN (REFTS + VREF/2)  
where VREF is determined by the internal reference or brought  
in externally by the user.  
ANALOG INPUT  
Differential Mode is attained by driving the AIN pin as one  
differential input, shorting REFTS and REFBS together and  
driving them as the second differential input. The MODE pin  
is tied to AVDD/2. Preferred mode for optimal distortion  
performance.  
The best noise performance may be obtained by operating the  
AD9280 with a 2 V input range. The best distortion perfor-  
mance may be obtained by operating the AD9280 with a 1 V  
input range.  
Single-Ended is attained by driving the AIN pin while the  
REFTS and REFBS pins are held at dc points. The MODE pin is  
tied to AVDD.  
REFERENCE OPERATION  
The AD9280 can be configured in a variety of reference topolo-  
gies. The simplest configuration is to use the AD9280’s onboard  
bandgap reference, which provides a pin-strappable option to  
generate either a 1 V or 2 V output. If the user desires a refer-  
ence voltage other than those two, an external resistor divider  
can be connected between VREF, REFSENSE and analog  
ground to generate a potential anywhere between 1 V and 2 V.  
Another alternative is to use an external reference for designs  
requiring enhanced accuracy and/or drift performance. A  
third alternative is to bring in top and bottom references,  
bypassing VREF altogether.  
Single-Ended/Clamped (AC Coupled) the input may be  
clamped to some dc level by ac coupling the input. This is done  
by tying the CLAMPIN to some dc point and applying a pulse  
to the CLAMP pin. MODE pin is tied to AVDD.  
SPECIAL  
AD876-8 Mode enables users of the AD876-8 to drop the  
AD9280 into their socket. This mode is attained by floating or  
grounding the MODE pin.  
Figures 16d, 16e and 16f illustrate the reference and input ar-  
chitecture of the AD9280. In tailoring a desired arrangement,  
the user can select an input configuration to match drive circuit.  
Then, moving to the reference modes at the bottom of the  
figure, select a reference circuit to accommodate the offset and  
amplitude of a full-scale signal.  
INPUT AND REFERENCE OVERVIEW  
Figure 16, a simplified model of the AD9280, highlights the  
relationship between the analog input, AIN, and the reference  
voltages, REFTS, REFBS and VREF. Like the voltages applied  
to the resistor ladder in a flash A/D converter, REFTS and  
REFBS define the maximum and minimum input voltages to  
the A/D.  
Table I outlines pin configurations to match user requirements.  
The input stage is normally configured for single-ended opera-  
tion, but allows for differential operation by shorting REFTS  
and REFBS together to be used as the second input.  
REV. E  
–9–  
AD9280  
V*  
MIDSCALE  
MODE  
REFTF  
AD9280  
AIN  
+FS  
–FS  
AVDD/2  
SHA  
AD9280  
AIN  
MODE  
(AVDD)  
SHA  
0.1F  
+F/S RANGE  
OBTAINED FROM  
VREF PIN OR  
10k⍀  
0.1F  
10k⍀  
REFTF  
10k⍀  
10k⍀  
EXTERNAL REF  
REFTS  
REFBS  
A2  
10F  
0.1F  
10k⍀  
10k⍀  
REFTS  
REFBS  
A/D  
CORE  
4.2k⍀  
TOTAL  
A2  
0.1F  
4.2k⍀  
TOTAL  
A/D  
CORE  
10F  
INTERNAL  
REF  
0.1F  
10k⍀  
–F/S RANGE  
OBTAINED FROM  
VREF PIN OR  
0.1F  
REFBF  
10k⍀  
MIDSCALE OFFSET  
VOLTAGE IS DERIVED  
FROM INTERNAL OR  
EXTERNAL REF  
EXTERNAL REF  
REFBF  
* MAXIMUM MAGNITUDE OF V IS DETERMINED  
BY INTERNAL REFERENCE  
a. Top/Bottom Mode  
b. Center Span Mode  
MAXIMUM MAGNITUDE OF V  
IS DETERMINED BY INTERNAL  
REFERENCE AND TURNS RATIO  
V
MODE  
REFTF  
AD9280  
AIN  
AVDD/2  
SHA  
AVDD/2  
0.1F  
10k⍀  
10k⍀  
10k⍀  
REFTS  
REFBS  
A2  
10F  
0.1F  
4.2k⍀  
TOTAL  
A/D  
CORE  
INTERNAL  
REF  
0.1F  
10k⍀  
REFBF  
c. Differential Mode  
VREF  
(2V)  
VREF  
(1V)  
A1  
1.0F  
0.1F  
1V  
A1  
1V  
10k⍀  
REFSENSE  
AVSS  
1.0F  
0.1F  
REFSENSE  
AVSS  
10k⍀  
AD9280  
AD9280  
d. 1 V Reference  
e. 2 V Reference  
VREF  
(= 1 + R /R  
)
A
B
A1  
1V  
VREF  
A1  
1.0F  
0.1F  
R
A
1V  
REFSENSE  
REFSENSE  
AVDD  
R
B
AD9280  
AVSS  
AD9280  
INTERNAL 10K REF RESISTORS ARE  
SWITCHED OPEN BY THE PRESENSE  
OF R AND R  
.
A
B
g. Internal Reference Disable  
(Power Reduction)  
f. Variable Reference  
(Between 1 V and 2 V)  
Figure 16.  
–10–  
REV. E  
AD9280  
The actual reference voltages used by the internal circuitry of  
the AD9280 appear on REFTF and REFBF. For proper opera-  
tion, it is necessary to add a capacitor network to decouple these  
pins. The REFTF and REFBF should be decoupled for all  
internal and external configurations as shown in Figure 17.  
Figure 19 shows the single-ended configuration for 2 V p-p  
operation. REFSENSE is connected to GND, resulting in a 2 V  
reference output.  
2V  
0V  
AIN  
AD9280  
MODE  
REFTF  
SHA  
AVDD  
0.1F  
REFTF  
10k⍀  
10F  
0.1F  
AD9280  
10k⍀  
10k⍀  
REFTS  
REFBS  
A2  
REFBF  
10F  
0.1F  
4.2k⍀  
TOTAL  
A/D  
CORE  
0.1F  
0.1F  
0.1F  
10k⍀  
Figure 17. Reference Decoupling Network  
REFBF  
VREF  
A1  
1V  
Note: REFTF = reference top, force  
REFBF = reference bottom, force  
REFTS = reference top, sense  
1.0F  
0.1F  
REF  
SENSE  
REFBS = reference bottom, sense  
INTERNAL REFERENCE OPERATION  
Figure 19. Internal Reference, 2 V p-p Input Span  
(Top/Bottom Mode)  
Figures 18, 19 and 20 show sample connections of the AD9280  
internal reference in its most common configurations. (Figures  
18 and 19 illustrate top/bottom mode while Figure 20 illustrates  
center span mode). Figure 29 shows how to connect the AD9280  
for 1 V p-p differential operation. Shorting the VREF pin  
directly to the REFSENSE pin places the internal reference  
amplifier, A1, in unity-gain mode and the resultant reference  
output is 1 V. In Figure 18 REFBS is grounded to give an input  
range from 0 V to 1 V. These modes can be chosen when the  
supply is either +3 V or +5 V. The VREF pin must be bypassed to  
AVSS (analog ground) with a 1.0 µF tantalum capacitor in  
parallel with a low inductance, low ESR, 0.1 µF ceramic capacitor.  
Figure 20 shows the single-ended configuration that gives the  
good high frequency dynamic performance (SINAD, SFDR).  
To optimize dynamic performance, center the common-mode  
voltage of the analog input at approximately 1.5 V. Connect the  
shorted REFTS and REFBS inputs to a low impedance 1.5 V  
source. In this configuration, the MODE pin is driven to a volt-  
age at midsupply (AVDD/2).  
Maximum reference drive is 1 mA. An external buffer is re-  
quired for heavier loads.  
2V  
1V  
AIN  
AD9280  
MODE  
SHA  
AVDD/2  
1V  
0V  
AIN  
AD9280  
MODE  
REFTF  
SHA  
AVDD  
0.1F  
10k⍀  
REFTF  
0.1F  
10k⍀  
10k  
10k⍀  
REFTS  
REFBS  
A2  
+1.5V  
10F  
0.1F  
10k⍀  
10k⍀  
REFTS  
REFBS  
4.2k⍀  
TOTAL  
A/D  
CORE  
A2  
10F  
0.1F  
4.2k⍀  
TOTAL  
A/D  
CORE  
0.1F  
10k⍀  
REFBF  
0.1F  
10k⍀  
VREF  
A1  
REFBF  
1V  
REF  
SENSE  
1.0F  
0.1F  
VREF  
A1  
1V  
1.0F  
0.1F  
REF  
SENSE  
Figure 20. Internal Reference 1 V p-p Input Span  
(Center Span Mode)  
Figure 18. Internal Reference—1 V p-p Input Span  
(Top/Bottom Mode)  
REV. E  
–11–  
AD9280  
EXTERNAL REFERENCE OPERATION  
Figure 23a shows an example of the external references driving  
the REFTF and REFBF pins that is compatible with the  
AD876. REFTS is shorted to REFTF and driven by an external  
4 V low impedance source. REFBS is shorted to REFBF and  
driven by a 2 V source. The MODE pin is connected to GND  
in this configuration.  
Using an external reference may provide more flexibility and  
improve drift and accuracy. Figures 21 through 23 show ex-  
amples of how to use an external reference with the AD9280.  
To use an external reference, the user must disable the internal  
reference amplifier by connecting the REFSENSE pin to VDD.  
The user then has the option of driving the VREF pin, or driv-  
ing the REFTS and REFBS pins.  
4V  
VIN  
The AD9280 contains an internal reference buffer (A2), that  
simplifies the drive requirements of an external reference. The  
external reference must simply be able to drive a 10 kload.  
2V  
REFTS  
4V  
2V  
REFTF  
10F  
0.1F  
0.1F  
AD9280  
REFBF  
Figure 21 shows an example of the user driving the top and bottom  
references. REFTS is connected to a low impedance 2 V source  
and REFBS is connected to a low impedance 1 V source. REFTS  
and REFBS may be driven to any voltage within the supply as long  
as the difference between them is between 1 V and 2 V.  
0.1F  
REFBS  
VREF  
REFSENSE  
MODE  
AVDD  
2V  
1V  
AIN  
AD9280  
SHA  
Figure 23a. External Reference—2 V p-p Input Span  
0.1F  
10k⍀  
REFTF  
10k⍀  
10k⍀  
REFTS  
REFBS  
REFTS  
2V  
1V  
+5V  
C4  
A2  
10F  
0.1F  
4.2k⍀  
TOTAL  
A/D  
CORE  
0.1F  
6
5
8
7
REFTF  
REF  
SENSE  
REFT  
C3  
0.1F  
C6  
0.1F  
0.1F  
10k⍀  
AD9280  
REFBS  
AVDD  
C2  
10F  
MODE  
REFBF  
C5  
0.1F  
2
3
6
Figure 21. External Reference Mode—1 V p-p Input Span  
REFBF  
REFB  
C1  
0.1F  
4
Figure 22 shows an example of an external reference generating  
2.5 V at the shorted REFTS and REFBS inputs. In this in-  
stance, a REF43 2.5 V reference drives REFTS and REFBS. A  
resistive divider generates a 1 V VREF signal that is buffered by  
A3. A3 must be able to drive a 10 k, capacitive load. Choose  
this op amp based on noise and accuracy requirements.  
Figure 23b. Kelvin Connected Reference Using the AD9280  
STANDBY OPERATION  
The ADC may be placed into a powered down (sleep) mode by  
driving the STBY (standby) pin to logic high potential and  
holding the clock at logic low. In this mode the typical power  
drain is approximately 4 mW.  
AD9280  
3.0V  
2.5V  
2.0V  
AIN  
AVDD  
AVDD  
The ADC will “wake up” in 400 ns (typ) after the standby pulse  
goes low.  
REFTS  
REFBS  
0.1F  
REFTF  
10F  
0.1F  
0.1F  
1.5k⍀  
A3  
CLAMP OPERATION  
0.1F  
10F  
VREF  
The AD9280ARS features an optional clamp circuit for dc  
restoration of video or ac coupled signals. Figure 24 shows the  
internal clamp circuitry and the external control signals needed  
for clamp operation. To enable the clamp, apply a logic high to  
the CLAMP pin. This will close the switch SW1. The clamp  
amplifier will then servo the voltage at the AIN pin to be equal  
to the clamp voltage applied at the CLAMPIN pin. After the  
desired clamp level is attained, SW1 is opened by taking  
CLAMP back to a logic low. Ignoring the droop caused by the  
input bias current, the input capacitor CIN will hold the dc  
voltage at AIN constant until the next clamp interval. The input  
resistor RIN has a minimum recommended value of 10 , to  
maintain the closed-loop stability of the clamp amplifier.  
1.0F  
0.1F  
REFBF  
0.1F  
1k⍀  
AVDD/2  
AVDD  
MODE  
+5V  
REFSENSE  
REF43  
0.1F  
Figure 22. External Reference Mode—1 V p-p Input  
Span 2.5 VCM  
REV. E  
–12–  
AD9280  
The allowable voltage range that can be applied to CLAMPIN  
depends on the operational limits of the internal clamp ampli-  
fier. The recommended clamp range is between 0.5 volts and  
2.0 volts.  
back porch to truncate the SYNC below the AD9280’s mini-  
mum input voltage. With a CIN = 1 µF, and RIN = 20 , the  
acquisition time needed to set the input dc level to one volt  
with 1 mV accuracy is about 140 µs, assuming a full 1 volt VC.  
The input capacitor should be sized to allow sufficient acquisi-  
tion time of the clamp voltage at AIN within the CLAMP inter-  
val, but also be sized to minimize droop between clamping  
intervals. Specifically, the acquisition time when the switch is  
closed will equal:  
With a 1 µF input coupling capacitor, the droop across one  
horizontal can be calculated:  
IBIAS = 22 µA, and t = 63.5 µs, so dV = 1.397 mV, which is less  
than one LSB.  
After the input capacitor is initially charged, the clamp pulse  
width only needs to be wide enough to correct small voltage  
errors such as the droop. The fine scale settling characteristics  
of the clamp circuitry are shown in Table II.  
VC  
TACQ = RINCIN ln  
VE  
where VC is the voltage change required across CIN, and VE is  
the error voltage. VC is calculated by taking the difference be-  
tween the initial input dc level at the start of the clamp interval  
and the clamp voltage supplied at CLAMPIN. VE is a system  
dependent parameter, and equals the maximum tolerable devia-  
tion from VC. For example, if a 2-volt input level needs to be  
clamped to 1 volt at the AD9280’s input within 10 millivolts,  
then VC equals 2 – 1 or 1 volt, and VE equals 10 mV. Note that  
once the proper clamp level is attained at the input, only a very  
small voltage change will be required to correct for droop.  
Depending on the required accuracy, a CLAMP pulse width of  
1 µs–3 µs should work in most applications. The OFFSET val-  
ues ignore the contribution of offset from the clamp amplifier;  
they simply compare the output code with a “final value” mea-  
sured with a much longer CLAMP pulse duration.  
Table II.  
CLAMP  
OFFSET  
8 µs  
4 µs  
3 µs  
2 µs  
1 µs  
<1 LSB  
<2 LSBs  
2 LSBs  
5 LSBs  
9 LSBs  
The voltage droop is calculated with the following equation:  
IBIAS  
dV =  
t
( )  
CIN  
where t = time between clamping intervals.  
The bias current of the AD9280 will depend on the sampling  
rate, FS, and the difference between the reference midpoint,  
(REFTS–REFBS)/2 and the input voltage. For a fixed sampling  
rate of 32 MHz, Figure 14 shows the input bias current for a  
given input. For a 1 V input range, the maximum input bias  
current from Figure 14 is 22 µA. For lower sampling rates the  
input bias current will scale proportionally.  
AD9280  
CLAMP IN  
CLAMP  
SW1  
CIN  
RIN  
AIN  
TO  
If droop is a critical parameter, then the minimum value of CIN  
should be calculated first based on the droop requirement.  
Acquisition time—the width of the CLAMP pulse—can be  
adjusted accordingly once the minimum capacitor value is cho-  
sen. A tradeoff will often need to be made between droop and  
acquisition time, or error voltage VE.  
SHA  
Figure 24a. Clamp Operation  
AIN  
Clamp Circuit Example  
A single supply video amplifier outputs a level-shifted video  
signal between 2 and 3 volts with the following parameters:  
0.1F  
REFTF  
REFTS  
0.1F  
10F  
AD9280  
REFBF  
horizontal period = 63.56 µs,  
horizontal sync interval = 10.9 µs,  
horizontal sync pulse = 4.7 µs,  
sync amplitude = 0.3 volts,  
video amplitude of 0.7 volts,  
reference black level = 2.3 volts  
0.1F  
REFBS  
AVDD  
2
MODE  
CLAMP  
SHORT TO REFBS  
OR EXTERNAL DC  
CLAMPIN  
The video signal must be dc restored from a 2- to 3-volt range  
down to a 1- to 2-volt range. Configuring the AD9280 for a  
one volt input span with an input range from 1 to 2 volts (see  
Figure 24), the CLAMPIN voltage can be set to 1 volt with an  
external voltage or by direct connection to REFBS. The CLAMP  
pulse may be applied during the SYNC pulse, or during the  
Figure 24b. Video Clamp Circuit  
REV. E  
–13–  
AD9280  
DRIVING THE ANALOG INPUT  
In many cases, particularly in single-supply operation, ac cou-  
pling offers a convenient way of biasing the analog input signal  
at the proper signal range. Figure 27 shows a typical configura-  
tion for ac-coupling the analog input signal to the AD9280.  
Maintaining the specifications outlined in the data sheet  
requires careful selection of the component values. The most  
important is the f–3 dB high-pass corner frequency. It is a function of  
R2 and the parallel combination of C1 and C2. The f–3 dB point  
can be approximated by the equation:  
Figure 25 shows the equivalent analog input of the AD9280, a  
sample-and-hold amplifier (switched capacitor input SHA).  
Bringing CLK to a logic low level closes Switches 1 and 2 and  
opens Switch 3. The input source connected to AIN must  
charge capacitor CH during this time. When CLK transitions  
from logic “low” to logic “high,” Switches 1 and 2 open, placing  
the SHA in hold mode. Switch 3 then closes, forcing the output  
of the op amp to equal the voltage stored on CH. When CLK  
transitions from logic “high” to logic “low,” Switch 3 opens  
first. Switches 1 and 2 close, placing the SHA in track mode.  
f
–3 dB = 1/(2 × pi × [R2] CEQ)  
where CEQ is the parallel combination of C1 and C2. Note that  
C1 is typically a large electrolytic or tantalum capacitor that  
becomes inductive at high frequencies. Adding a small ceramic  
or polystyrene capacitor (on the order of 0.01 µF) that does not  
become inductive until negligibly higher frequencies, maintains  
a low impedance over a wide frequency range.  
The structure of the input SHA places certain requirements on  
the input drive source. The combination of the pin capacitance,  
CP, and the hold capacitance, CH, is typically less than 5 pF.  
The input source must be able to charge or discharge this ca-  
pacitance to 8-bit accuracy in one half of a clock cycle. When  
the SHA goes into track mode, the input source must charge or  
discharge capacitor CH from the voltage already stored on CH  
to the new voltage. In the worst case, a full-scale voltage step on  
the input, the input source must provide the charging current  
through the RON (50 ) of Switch 1 and quickly (within 1/2 CLK  
period) settle. This situation corresponds to driving a low input  
impedance. On the other hand, when the source voltage equals  
the value previously stored on CH, the hold capacitor requires  
no input current and the equivalent input impedance is ex-  
tremely high.  
NOTE: AC coupled input signals may also be shifted to a desired  
level with the AD9280’s internal clamp. See Clamp Operation.  
C1  
R1  
V
AIN  
IN  
R2  
V
I
B
AD9280  
C2  
BIAS  
Adding series resistance between the output of the source and  
the AIN pin reduces the drive requirements placed on the  
source. Figure 26 shows this configuration. The bandwidth of  
the particular application limits the size of this resistor. To  
maintain the performance outlined in the data sheet specifica-  
tions, the resistor should be limited to 20 or less. For applica-  
tions with signal bandwidths less than 16 MHz, the user may  
proportionally increase the size of the series resistor. Alterna-  
tively, adding a shunt capacitance between the AIN pin and  
analog ground can lower the ac load impedance. The value of  
this capacitance will depend on the source resistance and the  
required signal bandwidth.  
Figure 27. AC Coupled Input  
There are additional considerations when choosing the resistor  
values. The ac-coupling capacitors integrate the switching tran-  
sients present at the input of the AD9280 and cause a net dc  
bias current, IB, to flow into the input. The magnitude of the  
bias current increases as the signal magnitude deviates from  
V midscale and the clock frequency increases; i.e., minimum  
bias current flow when AIN = V midscale. This bias current  
will result in an offset error of (R1 + R2) × IB. If it is necessary  
to compensate this error, consider making R2 negligibly small or  
modifying VBIAS to account for the resultant offset.  
In systems that must use dc coupling, use an op amp to level-  
shift a ground-referenced signal to comply with the input re-  
quirements of the AD9280. Figure 28 shows an AD8041 config-  
ured in noninverting mode.  
The input span of the AD9280 is a function of the reference  
voltages. For more information regarding the input range, see  
the Internal and External Reference sections of the data sheet.  
CH  
+V  
CC  
AIN  
0.1F  
S1  
CP  
SHA  
S3  
NC  
1
AD9280  
7
0V  
1V p-p  
DC  
S2  
2
3
(REFTS  
REFBS)  
CH  
20⍀  
AD8041  
6
AIN  
CP  
5
AD9280  
4
MIDSCALE  
NC  
OFFSET  
VOLTAGE  
Figure 25. AD9280 Equivalent Input Structure  
Figure 28. Bipolar Level Shift  
< 20⍀  
AIN  
V
S
AD9280  
Figure 26. Simple AD9280 Drive Configuration  
REV. E  
–14–  
AD9280  
DIFFERENTIAL INPUT OPERATION  
The pipelined architecture of the AD9280 operates on both  
rising and falling edges of the input clock. To minimize duty  
cycle variations the recommended logic family to drive the clock  
input is high speed or advanced CMOS (HC/HCT, AC/ACT)  
logic. CMOS logic provides both symmetrical voltage threshold  
levels and sufficient rise and fall times to support 32 MSPS  
operation. The AD9280 is designed to support a conversion rate  
of 32 MSPS; running the part at slightly faster clock rates may  
be possible, although at reduced performance levels. Conversely,  
some slight performance improvements might be realized by  
clocking the AD9280 at slower clock rates.  
The AD9280 will accept differential input signals. This function  
may be used by shorting REFTS and REFBS and driving them  
as one leg of the differential signal (the top leg is driven into  
AIN). In the configuration below, the AD9280 is accepting a  
1 V p-p signal. See Figure 29.  
AD9280  
AIN  
2V  
0.1F  
1V  
AVDD/2  
REFTF  
REFTS  
REFBS  
0.1F  
10F  
0.1F  
S1  
S2  
VREF  
REFBF  
ANALOG  
INPUT  
S4  
tC  
1.0F  
0.1F  
S3  
REFSENSE  
MODE  
tCH  
tCL  
INPUT  
AVDD/2  
CLOCK  
25ns  
Figure 29. Differential Input  
AD876-8 MODE OF OPERATION  
The AD9280 may be dropped into the AD876-8 socket. This  
will allow AD876-8 users to take advantage of the reduced  
power consumption realized when running the AD9280 on a  
3.0 V analog supply.  
DATA  
OUTPUT  
DATA 1  
Figure 31. Timing Diagram  
The power dissipated by the output buffers is largely propor-  
tional to the clock frequency; running at reduced clock rates  
provides a reduction in power consumption.  
Figure 30 shows the pin functions of the AD876-8 and AD9280.  
The grounded REFSENSE pin and floating MODE pin effec-  
tively put the AD9280 in the external reference mode. The  
external reference input for the AD876-8 will now be placed  
on the reference pins of the AD9280.  
DIGITAL INPUTS AND OUTPUTS  
Each of the AD9280 digital control inputs, THREE-STATE  
and STBY are reference to analog ground. The clock is also  
referenced to analog ground.  
The format of the digital output is straight binary (see Figure  
32). A low power mode feature is provided such that for STBY  
= HIGH and the clock disabled, the static power of the AD9280  
will drop below 5 mW.  
The clamp controls will be grounded by the AD876-8 socket.  
The AD9280 has a 3 clock cycle delay compared to a 3.5 cycle  
delay of the AD876-8.  
4V  
OTR  
AIN  
AD9280  
2V  
REFTS  
REFTF  
4V  
2V  
10F  
0.1F  
0.1F  
REFBF  
REFBS  
0.1F  
NC MODE  
AVDD  
REFSENSE  
+FS  
–FS+1LSB  
–FS  
CLAMP  
CLAMPIN  
OTR  
+FS–1LSB  
Figure 32. Output Data Format  
VREF  
0.1F  
THREE-  
STATE  
Figure 30. AD876 Mode  
tDHZ  
tDEN  
DATA  
(D0–D9)  
CLOCK INPUT  
HIGH  
IMPEDANCE  
The AD9280 clock input is buffered internally with an inverter  
powered from the AVDD pin. This feature allows the AD9280  
to accommodate either +5 V or +3.3 V CMOS logic input sig-  
nal swings with the input threshold for the CLK pin nominally  
at AVDD/2.  
Figure 33. Three-State Timing Diagram  
REV. E  
–15–  
AD9280  
that the bandlimited IF signal aliases back into the center of the  
ADC’s baseband region (i.e., FS/4). For example, if an IF sig-  
nal centered at 45 MHz is sampled at 20 MSPS, an image of  
this IF signal will be aliased back to 5.0 MHz which corre-  
sponds to one quarter of the sample rate (i.e., FS/4). This  
demodulation technique typically reduces the complexity of the  
post digital demodulator ASIC which follows the ADC.  
APPLICATIONS  
DIRECT IF DOWN CONVERSION USING THE AD9280  
Sampling IF signals above an ADC’s baseband region (i.e., dc  
to FS/2) is becoming increasingly popular in communication  
applications. This process is often referred to as Direct IF Down  
Conversion or Undersampling. There are several potential ben-  
efits in using the ADC to alias (i.e., or mix) down a narrowband  
or wideband IF signal. First and foremost is the elimination of a  
complete mixer stage with its associated amplifiers and filters,  
reducing cost and power dissipation. Second is the ability to  
apply various DSP techniques to perform such functions as  
filtering, channel selection, quadrature demodulation, data  
reduction, detection, etc. A detailed discussion on using this  
technique in digital receivers can be found in Analog Devices  
Application Notes AN-301 and AN-302.  
To maximize its distortion performance, the AD9280 is config-  
ured in the differential mode with a 1 V span using a transformer.  
The center tap of the transformer is biased at midsupply via a  
resistor divider. Preceding the AD9280 is a bandpass filter as  
well as a 32 dB gain stage. A large gain stage may be required  
to compensate for the high insertion losses of a SAW filter used  
for image rejection. The gain stage will also provide adequate  
isolation for the SAW filter from the charge “kick back” currents  
associated with AD9280’s input stage.  
In Direct IF Down Conversion applications, one exploits the  
inherent sampling process of an ADC in which an IF signal  
lying outside the baseband region can be aliased back into the  
baseband region in a similar manner that a mixer will down-  
convert an IF signal. Similar to the mixer topology, an image  
rejection filter is required to limit other potential interfering  
signals from also aliasing back into the ADC’s baseband region.  
A tradeoff exists between the complexity of this image rejection  
filter and the sample rate as well as dynamic range of the ADC.  
The gain stage can be realized using one or two cascaded  
AD8009 op amps amplifiers. The AD8009 is a low cost, 1 GHz,  
current-feedback op amp having a 3rd order intercept character-  
ized up to 250 MHz. A passive bandpass filter following the  
AD8009 attenuates its dominant 2nd order distortion products  
which would otherwise be aliased back into the AD9280’s  
baseband region. Also, it reduces any out-of-band noise which  
would also be aliased back due to the AD9280’s noise band-  
width of 220+ MHz. Note, the bandpass filters specifications  
are application dependent and will affect both the total distor-  
tion and noise performance of this circuit.  
The AD9280 is well suited for various narrowband IF sampling  
applications. The AD9280’s low distortion input SHA has a  
full-power bandwidth extending to 300 MHz thus encompassing  
many popular IF frequencies. The AD9280 will typically yield  
an improvement in SNR when configured for the 2 V span, the  
1 V span provides the optimum full-scale distortion perfor-  
mance. Furthermore, the 1 V span reduces the performance  
requirements of the input driver circuitry and thus may be  
more practical for system implementation purposes.  
The distortion and noise performance of an ADC at the given  
IF frequency is of particular concern when evaluating an ADC  
for a narrowband IF sampling application. Both single-tone and  
dual-tone SFDR vs. amplitude are very useful in assessing an  
ADC’s noise performance and noise contribution due to aper-  
ture jitter. In any application, one is advised to test several units  
of the same device under the same conditions to evaluate the  
given applications sensitivity to that particular device.  
Figure 34 shows a simplified schematic of the AD9280 config-  
ured in an IF sampling application. To reduce the complexity of  
the digital demodulator in many quadrature demodulation ap-  
plications, the IF frequency and/or sample rate are selected such  
G
= 20dB  
G
= 12dB  
L-C  
1
2
SAW  
FILTER  
OUTPUT  
MINI CIRCUITS  
BANDPASS  
FILTER  
AD9280  
AIN  
50⍀  
T4 - 6T  
1:4  
50⍀  
50⍀  
200⍀  
200⍀  
REFTS  
REFBS  
280⍀  
22.1⍀  
93.1⍀  
VREF  
1.0F  
0.1F  
REFSENSE  
1k⍀  
1k⍀  
AVDD  
0.1F  
Figure 34. Simplified AD9280 IF Sampling Circuit  
REV. E  
–16–  
AD9280  
Figures 35–38 combine the dual-tone SFDR as well as single  
tone SFDR and SNR performance at IF frequencies of 45 MHz,  
70 MHz, 85 MHz and 135 MHz. Note, the SFDR vs. ampli-  
tude data is referenced to dBFS while the single tone SNR data  
is referenced to dBc. The AD9280 was operated in the differen-  
tial mode (via transformer) with a 1 V span. The analog sup-  
ply (AVDD) and the digital supply (DRVDD) were set to +5 V  
and 3.3 V, respectively.  
70  
80  
DUAL TONE SFDR  
70  
60  
50  
40  
30  
20  
SINGLE TONE SFDR  
60  
SINGLE TONE SFDR  
50  
40  
DUAL TONE SFDR  
30  
SNR  
SNR  
20  
CLK = 25.7MHz  
CLK = 30.9MHz  
SINGLE TONE = 45.5MHz  
DUAL TONE F1 = 44.5MHz  
F2 = 45.5MHz  
SINGLE TONE = 85.5MHz  
DUAL TONE F1 = 84.5MHz  
F2 = 85.5MHz  
10  
0
10  
0
–0.5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–0.5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
INPUT POWER LEVEL – dBFS  
INPUT POWER LEVEL – dBFS  
Figure 35. SNR/SFDR for IF @ 45 MHz  
Figure 37. SNR/SFDR for IF @ 85 MHz  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
SINGLE TONE SFDR  
DUAL TONE SFDR  
DUAL TONE SFDR  
SINGLE TONE SFDR  
SNR  
SNR  
FS = 32MHz  
SINGLE TONE = 135.5MHz  
F1 = 134.5MHz  
CLK = 31.1MHz  
SINGLE TONE = 70.5MHz  
DUAL TONE F1 = 69.5MHz  
F2 = 70.5MHz  
F2 = 135.5MHz  
10  
0
10  
0
–0.5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–0.5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
INPUT POWER LEVEL – dBFS  
INPUT POWER LEVEL – dBFS  
Figure 36. SNR/SFDR for IF @ 70 MHz  
Figure 38. SNR/SFDR for IF @ 135 MHz  
REV. E  
–17–  
AD9280  
R11  
15k⍀  
R10  
5k⍀  
+3–5A  
R15  
R17  
316⍀  
+3–5A  
TP14  
AD822  
U2  
5
6
0.626V TO 4.8V  
AD822  
R7  
1k⍀  
7
Q1  
2N3906  
TP16  
2
3
5.49k⍀  
4
XXXX  
1
U2  
ADJ.  
R8  
10k⍀  
C7  
0.1F  
EXTT  
8
D1  
AD1580  
CW  
R9  
C11  
0.1F  
C8  
10/10V  
C13  
C12  
0.1F  
R19  
178⍀  
10/10V  
+3–5A  
1.5k⍀  
CM  
R13  
11k⍀  
R20  
178⍀  
TP17  
R12  
10k⍀  
C29  
0.1F  
AD822  
2
3
XXXX  
ADJ.  
4
AD822  
U3  
EXTB  
1
6
5
U3  
C14  
0.1F  
C15  
10/10V  
7
Q2  
2N3904  
8
CW  
C10  
0.1F  
R16  
1k⍀  
C9  
10/10V  
R18  
316k⍀  
TP11  
+3–5A  
J7  
JP5  
JP17  
JP18  
CLAMP  
R37  
1k⍀  
DRVDD  
R53  
49.9⍀  
B
B
1
S3  
2
2
THREE-STATE  
STBY  
3
1
R38  
1k⍀  
A
S4  
GND  
3
A
R39  
1k⍀  
7
10  
13  
11  
9
J8  
J8  
J8  
J8  
J8  
RN1  
22⍀  
DRVDD  
AVDD  
27  
25  
3
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
J8  
6
4
11  
C16  
0.1F  
C19  
0.1F  
RN1  
22⍀  
C18  
10/10V  
C17  
10/10V  
2
12  
5
4
RN1  
22⍀  
6
28  
2
OTR  
TP19  
WHITE  
16  
8
9
3
4
5
6
7
10  
1
2
13  
B
B
B
B
B
B
B
B
VCCB  
NC1  
OE  
GD1  
A
A
A
A
A
A
A
A
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
8
AVDD  
DRVDD  
7
15  
21  
20  
19  
18  
17  
14  
24  
23  
22  
13  
RN1  
22⍀  
D5  
10  
12  
14  
16  
18  
20  
22  
24  
26  
39  
28  
29  
30  
31  
32  
34  
35  
36  
37  
38  
40  
AD9280  
D6  
D7  
D8  
D9  
13  
U1  
OTR  
2
15  
5
RN1  
3
4
5
6
7
8
9
D0  
D1  
D2  
D3  
D4  
D5  
D6  
15  
NC  
NC  
DUTCLK  
THREE-STATE  
STBY  
REFSENSE  
CLAMP  
CLAMPIN  
REFTS  
CLK  
16  
B 1  
22⍀  
S2  
THREE-STATE  
STBY  
REFSENSE  
CLAMP  
CLAMPIN  
REFTS  
2
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
+3–5D  
DRVDD  
VCCA  
T/R  
GD2  
GD3  
1
16  
BIT0  
BIT1  
BIT2  
BIT3  
BIT4  
BIT5  
BIT6  
BIT7  
3
1
J8  
C20  
C40  
11  
12  
0.1F  
RN1  
22⍀  
A
0.1F  
GND  
U4  
GND  
GND GND  
JP21  
1
10 D7  
11 D8  
12 D9  
CLK  
74LVXC4245WM  
REFTF  
REFTF  
MODE  
3
WHITE  
MODE  
+3–5D  
2
6
11  
REFBF  
REFBF  
REFBS  
VREF  
19  
20  
21  
5
4
3
NC  
U5  
U5  
U5  
U5  
U5  
U5  
U5  
U5  
CLK  
B
B
B
B
B
B
B
B
VCCB  
NC1  
OE  
GD1  
33  
J8  
A
A
A
A
A
A
A
A
REFBS  
C42  
0.1F  
RN2  
22⍀  
VREF  
CLK_OUT  
AIN  
AIN  
5
3
12  
RN2  
18  
17  
16  
15  
14  
24  
23  
22  
6
D0  
D1  
D2  
D3  
D4  
23  
21  
19  
J8  
J8  
J8  
7
+
AVSS DRVSS  
14  
C33  
8
22⍀  
10/10V  
1
9
10  
1
13  
4
+3–5D  
VCCA  
T/R  
GD2  
GD3  
RN2  
22⍀  
2
11  
12  
C21  
DRVDD  
NOTE:  
THE AD9280 IS EXERCISED IN  
AN AD9200 EVALUATION BOARD  
0.1F  
NC  
NC  
13  
14  
C41  
0.1F  
U5  
GND  
1
RN2  
22⍀  
74LVXC4245WM  
3
GND  
GND  
2
15  
2
17 J8  
RN2  
22⍀  
JP20  
C43  
0.1F  
GND  
16  
RN2  
1
15  
J8  
GND  
22⍀  
Figure 39a. Evaluation Board Schematic  
REV. E  
–18–  
AD9280  
REFSENSE  
EXTB  
JP1  
JP2  
JP10  
JP14  
AVDD  
AVDD  
TP3  
TP4  
C3  
0.1F  
TP1  
R5  
10k⍀  
MODE  
REFBF  
REFTF  
C5  
10/10V  
C4  
0.1F  
JP15  
JP16  
+
JP9  
JP3  
JP4  
R6  
10k⍀  
C6  
0.1F  
VREF  
B
1
TP5  
GND  
EXTT  
S5  
2
CLAMPIN  
EXTT  
3
JP11  
GND  
TP6  
A
JP6  
REFTS  
JP22  
GND  
JP12  
AVDDCLK  
AVDD  
C36  
C37  
C38  
C35  
0.1F 0.1F 0.1F  
10/10V  
TP7  
R35  
REFBS  
EXTB  
4.99k⍀  
GND  
JP13  
JP7  
R34  
2k⍀  
CW  
U6  
B
T1–1T  
U6  
AIN  
1
2
5
6
J1  
3
2
R36  
4.99k⍀  
A
2
3
4
S8  
TP12  
2
B
1
R1  
49.9⍀  
1
TP8  
S6  
6
B
A
C30  
0.1F  
P
1
3
3
1
S7  
S
JP8  
2
REFBS  
CM  
T1  
A
R51  
49.9⍀  
TP9  
R2  
J5  
JP26  
S1  
100⍀  
C1  
0.1F  
ADC_CLK  
CLK  
TP10  
R3  
R4  
49.9⍀  
A
3
TP13  
DCIN  
2
R52  
49.9⍀  
100⍀  
U6  
3
4
C2  
1
DUTCLK  
47/10V  
B
TP29  
L4  
+3–5D  
J9  
J2  
J3  
J4  
C32  
C31  
10/10V  
0.1F  
TP20  
TP21  
TP22  
U6 DECOUPLING  
AVDDCLK  
U6  
8
L1  
L2  
9
DRVDD  
C22  
0.1F  
C23  
10/10V  
U6  
10  
14  
11  
13  
74AHC14  
PWR  
U6  
C28  
0.1F  
U6  
12  
AVDD  
+3–5A  
GND  
7
C24  
0.1F  
C25  
33/16V  
L3  
C26  
0.1F  
C27  
10/10V  
TP23 TP24 TP25 TP26 TP27 TP28  
GND J6  
GND J10  
Figure 39b. Evaluation Board Schematic  
REV. E  
–19–  
AD9280  
Figure 40a. Evaluation Board, Component Signal (Not to Scale)  
Figure 40b. Evaluation Board, Solder Signal (Not to Scale)  
–20–  
REV. E  
AD9280  
Figure 40c. Evaluation Board Power Plane (Not to Scale)  
Figure 40d. Evaluation Board Ground Plane (Not to Scale)  
–21–  
REV. E  
AD9280  
Figure 40e. Evaluation Board Component Silk (Not to Scale)  
C33 C6  
C18 C19  
C4  
C3  
C5  
C16  
C17  
Figure 40f. Evaluation Board Solder Silk (Not to Scale)  
REV. E  
–22–  
AD9280  
DIGITAL OUTPUTS  
GROUNDING AND LAYOUT RULES  
Each of the on-chip buffers for the AD9280 output bits  
(D0–D7) is powered from the DRVDD supply pins, separate  
from AVDD. The output drivers are sized to handle a variety  
of logic families while minimizing the amount of glitch energy  
generated. In all cases, a fan-out of one is recommended to  
keep the capacitive load on the output data bits below the speci-  
fied 20 pF level.  
As is the case for any high performance device, proper ground-  
ing and layout techniques are essential in achieving optimal  
performance. The analog and digital grounds on the AD9280  
have been separated to optimize the management of return  
currents in a system. Grounds should be connected near the  
ADC. It is recommended that a printed circuit board (PCB) of  
at least four layers, employing a ground plane and power planes,  
be used with the AD9280. The use of ground and power planes  
offers distinct advantages:  
For DRVDD = 5 V, the AD9280 output signal swing is com-  
patible with both high speed CMOS and TTL logic families.  
For TTL, the AD9280 on-chip, output drivers were designed to  
support several of the high speed TTL families (F, AS, S). For  
applications where the clock rate is below 32 MSPS, other TTL  
families may be appropriate. For interfacing with lower voltage  
CMOS logic, the AD9280 sustains 32 MSPS operation with  
DRVDD = 3 V. In all cases, check your logic family data sheets  
for compatibility with the AD9280 Digital Specification table.  
1. The minimization of the loop area encompassed by a signal  
and its return path.  
2. The minimization of the impedance associated with ground  
and power paths.  
3. The inherent distributed capacitor formed by the power plane,  
PCB insulation and ground plane.  
These characteristics result in both a reduction of electro-  
magnetic interference (EMI) and an overall improvement in  
performance.  
THREE-STATE OUTPUTS  
The digital outputs of the AD9280 can be placed in a high  
impedance state by setting the THREE-STATE pin to HIGH.  
This feature is provided to facilitate in-circuit testing or evaluation.  
It is important to design a layout that prevents noise from cou-  
pling onto the input signal. Digital signals should not be run in  
parallel with the input signal traces and should be routed away  
from the input circuitry. Separate analog and digital grounds  
should be joined together directly under the AD9280 in a solid  
ground plane. The power and ground return currents must be  
carefully managed. A general rule of thumb for mixed signal  
layouts dictates that the return currents from digital circuitry  
should not pass through critical analog circuitry.  
REV. E  
–23–  
AD9280  
OUTLINE DIMENSIONS  
10.50  
10.20  
9.90  
15  
28  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
14  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
0.05 MIN  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AH  
Figure 1. 28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD9280ARS  
AD9280ARSRL  
AD9280ARSZ  
AD9280ARSZRL  
AD9280-EB  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
Package Option2  
RS-28  
RS-28  
RS-28  
RS-28  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 RS = Shrink Small Outline.  
REVISION HISTORY  
8/10—Rev. D to Rev. E  
Changes to Pin Configuration and Pin Function Descriptions..5  
Updated Outline Dimensions........................................................24  
Changes to Ordering Guide...........................................................24  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00582-0-8/10(E)  
-24-  
REV. E  
配单直通车
AD9280ARSZ产品参数
型号:AD9280ARSZ
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:SSOP
包装说明:SSOP,
针数:28
Reach Compliance Code:unknown
风险等级:5.75
最大模拟输入电压:5.5 V
最小模拟输入电压:
转换器类型:ADC, PROPRIETARY METHOD
JESD-30 代码:R-PDSO-G28
JESD-609代码:e3
长度:10.2 mm
最大线性误差 (EL):0.5859%
湿度敏感等级:1
模拟输入通道数量:1
位数:8
功能数量:1
端子数量:28
最高工作温度:85 °C
最低工作温度:-40 °C
输出位码:BINARY
输出格式:PARALLEL, 8 BITS
封装主体材料:PLASTIC/EPOXY
封装代码:SSOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, SHRINK PITCH
峰值回流温度(摄氏度):260
采样速率:32 MHz
采样并保持/跟踪并保持:SAMPLE
座面最大高度:2 mm
标称供电电压:3 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:5.3 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!