欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • AD9411BSVZ-200
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • AD9411BSVZ-200图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • AD9411BSVZ-200 现货库存
  • 数量22000 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • AD9411BSVZ-200图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • AD9411BSVZ-200 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装TQFP100 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • AD9411BSVZ-200图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • AD9411BSVZ-200 现货库存
  • 数量3500 
  • 厂家AD 
  • 封装QFP 
  • 批号21+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • AD9411BSVZ-200【优势库存】图
  • 齐创科技(上海北京青岛)有限公司

     该会员已使用本站14年以上
  • AD9411BSVZ-200【优势库存】 现货库存
  • 数量7600 
  • 厂家ADI代理 
  • 封装100TQFP 
  • 批号24+热销 
  • 中国区代理全新热卖原装正品
  • QQ:2394092314QQ:2394092314 复制
    QQ:792179102QQ:792179102 复制
  • 021-62153656 QQ:2394092314QQ:792179102
  • AD9411BSVZ-200图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9411BSVZ-200
  • 数量98500 
  • 厂家AD 
  • 封装TQFP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • AD9411BSVZ-200图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9411BSVZ-200
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • AD9411BSVZ-200图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • AD9411BSVZ-200
  • 数量40416 
  • 厂家AD 
  • 封装QFP 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • AD9411BSVZ-200图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • AD9411BSVZ-200
  • 数量3945 
  • 厂家ADI 
  • 封装QFP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • AD9411BSVZ-200图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD9411BSVZ-200
  • 数量8735 
  • 厂家ADI(亚德诺) 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD9411BSVZ-200图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • AD9411BSVZ-200
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装TQFP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • AD9411BSVZ-200图
  • 深圳市芯达科技有限公司

     该会员已使用本站9年以上
  • AD9411BSVZ-200
  • 数量30000 
  • 厂家ADI 
  • 封装QFP 
  • 批号2018+ 
  • ADI一级代理原装现货假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • AD9411BSVZ-200图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • AD9411BSVZ-200
  • 数量30000 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • AD9411BSVZ-200图
  • 集好芯城

     该会员已使用本站13年以上
  • AD9411BSVZ-200
  • 数量7771 
  • 厂家ADI 
  • 封装TQFP100 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • AD9411BSVZ-200图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD9411BSVZ-200
  • 数量64802 
  • 厂家AD 
  • 封装QFP 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • AD9411BSVZ-200图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD9411BSVZ-200
  • 数量15862 
  • 厂家ADI 
  • 封装TQFP-1.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • AD9411BSVZ-200图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • AD9411BSVZ-200
  • 数量12300 
  • 厂家ADI/亚德诺 
  • 封装TQFP 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • AD9411BSVZ-200图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • AD9411BSVZ-200
  • 数量8800 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • AD9411BSVZ-200图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • AD9411BSVZ-200
  • 数量9500 
  • 厂家ADI(亚德诺) 
  • 封装100-TQFP 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • AD9411BSVZ-200图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • AD9411BSVZ-200
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • AD9411BSVZ-200图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • AD9411BSVZ-200
  • 数量5000 
  • 厂家ADI 
  • 封装TQFP100 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • AD9411BSVZ-200图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • AD9411BSVZ-200
  • 数量12245 
  • 厂家ADI/亚德诺 
  • 封装TQFP100 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • AD9411BSVZ-200图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • AD9411BSVZ-200
  • 数量9000 
  • 厂家Analog Devices Inc. 
  • 封装100-TQFP-EP(14x14) 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • AD9411BSVZ-200图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • AD9411BSVZ-200
  • 数量75200 
  • 厂家ADI/亚德诺 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • AD9411BSVZ-200图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • AD9411BSVZ-200
  • 数量26700 
  • 厂家ADI(亚德诺) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • AD9411BSVZ-200图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • AD9411BSVZ-200
  • 数量8599 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号07+ 
  • ▉原装正品▉低价力挺实单全系列可订
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • AD9411BSVZ-200图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • AD9411BSVZ-200
  • 数量6582 
  • 厂家ADI【原装正品专卖★价格最低】 
  • 封装【原厂原包装】 
  • 批号▊ NEW ▊ 
  • ◆★█【专注原装正品现货】★价格最低★!量大可定!欢迎惠顾!(长期高价回收全新原装正品电子元器件)
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • AD9411BSVZ-200图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD9411BSVZ-200
  • 数量315 
  • 厂家ADI 
  • 封装BGA 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • AD9411BSVZ-200图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • AD9411BSVZ-200
  • 数量45200 
  • 厂家ADI(亚德诺) 
  • 封装100-TQFP 裸露焊盘 
  • 批号2年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • AD9411BSVZ-200图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • AD9411BSVZ-200
  • 数量30000 
  • 厂家ADI 
  • 封装TQFP-100P 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • AD9411BSVZ-200图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • AD9411BSVZ-200
  • 数量13000 
  • 厂家AD 
  • 封装TQFP100 
  • 批号2234+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • AD9411BSVZ-200图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • AD9411BSVZ-200
  • 数量3300 
  • 厂家ADI/亚德诺 
  • 封装TQFP 
  • 批号2020+ 
  • 绝对全新原装,一片也是批量价.
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • AD9411BSVZ-200图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • AD9411BSVZ-200
  • 数量8800 
  • 厂家ADI 
  • 封装原厂原装 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:840638855QQ:840638855 复制
  • 0755-84876394 QQ:840638855
  • AD9411BSVZ-200图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD9411BSVZ-200
  • 数量15862 
  • 厂家ADI 
  • 封装TQFP-1.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • AD9411BSVZ-200图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • AD9411BSVZ-200
  • 数量16680 
  • 厂家AD 
  • 封装QFP 
  • 批号16+ 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • AD9411BSVZ-200图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • AD9411BSVZ-200
  • 数量660000 
  • 厂家Analog Devices Inc 
  • 封装100-TQFP Exposed Pad 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • AD9411BSVZ-200图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • AD9411BSVZ-200
  • 数量5300 
  • 厂家AD 
  • 封装QFP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • AD9411BSVZ-200图
  • 深圳市诚达吉电子有限公司

     该会员已使用本站2年以上
  • AD9411BSVZ-200
  • 数量8405 
  • 厂家AD 
  • 封装TQFP100 
  • 批号2024+ 
  • 原装正品 一手现货 假一赔百
  • QQ:2881951980QQ:2881951980 复制
  • 15873513267 QQ:2881951980

产品型号AD9411BSVZ-200的概述

芯片AD9411BSVZ-200概述 AD9411BSVZ-200是一款高性能、低功耗的模数转换器(ADC),由著名的模拟器件公司Analog Devices(ADI)所设计和制造。该芯片特别适合于高速数据采集系统、雷达和通信应用等领域。AD9411BSVZ-200可以实现高达1 GSPS(吉赫每秒)的采样速率,能够处理频带宽达1000 MHz的信号,极大地提高了系统的适应能力和实时性。这款ADC的设计理念致力于在高分辨率与高效能之间寻求最佳平衡,特别适合需要高动态范围及低失真的应用。 详细参数 AD9411BSVZ-200的许多技术参数使其在众多ADC芯片中脱颖而出。其主要参数包括: - 分辨率:12位 - 采样率:高达1 GSPS - 输入带宽:大于 1000 MHz - DNL(差分非线性):典型值为 ±0.5 LSB - INL(积分非线性):典型值为 ±1 LSB - 电源电...

产品型号AD9411BSVZ-200的Datasheet PDF文件预览

10-Bit, 170/200 MSPS  
3.3 V A/D Converter  
Data Sheet  
AD9411  
FEATURES  
SNR = 60 dB @ fIN up to 70 MHz @ 200 MSPS  
ENOB of 9.8 @ fIN up to 70 MHz @ 200 MSPS (–0.5 dBFS)  
SFDR = 80 dBc @ fIN up to 70 MHz @ 200 MSPS (–0.5 dBFS)  
Excellent linearity:  
FUNCTIONAL BLOCK DIAGRAM  
SENSE VREF AGND DRGND DRVDD AVDD  
SCALABLE  
REFERENCE  
DNL = 0.15 LSB (typical)  
AD9411  
INL = 0.25 LSB (typical)  
LVDS output levels  
700 MHz full-power analog bandwidth  
On-chip reference and track-and-hold  
Power dissipation = 1.25 W typical @ 200 MSPS  
1.5 V input voltage range  
DATA,  
OVERRANGE  
IN LVDS  
ADC  
10-BIT  
PIPELINE  
ORE  
VIN+  
VIN–  
1
/
TR
D  
OLD  
LVDS  
OUTPUTS  
3.3 V supply operation  
Output data format option  
CLK+  
CLK–  
Clock duty cycle stabilizer  
Pin compatible to LVDS mode AD9430  
CL
MANMENT  
LVDS TIMING  
DCO+  
DCO–  
S1  
S5  
APPLICATIONS  
Wireless and wired broadband communications  
Cable reverse path  
Figure 1.  
Communications test equipment  
Radar and satellite subsystems  
Power amplifier linearization  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9411 is a 10-bit mononalog-to-digital  
converter optimized for high ppower, and ease  
of use. The product operates up to S conversion rate  
and is optimized fog dynperformance in  
wideband carrier ystems. All necessary  
functions, includid (T/H) and reference, are  
included on the chicomplete conversion solution.  
1. High performance.  
Maintains 60 dB SNR @ 200 MSPS with a 70 MHz input.  
2. Low power.  
Consumes only 1.25 W @ 200 MSPS.  
3. Ease of use.  
LVDS output data and output clock signal allow interface  
to current FPGA technology. The on-chip reference and  
sample-and-hold function provide flexibility in system  
design. Use of a single 3.3 V supply simplifies system  
power supply design.  
The ADC requires a 3.3 V power supply and a differential  
sample clock for full performance operation. The digital outputs  
are LVDS compatible and support both twos complement and  
offset binary format. A data clock output is available to ease  
data capture.  
4. Out-of-range (OR).  
The OR output bit indicates when the input signal is  
beyond the selected input range.  
Fabricated on an advanced BiCMOS process, the AD9411 is  
available in a 100-lead surface-mount plastic package (e-PAD  
TQFP-100) specified over the industrial temperature range  
(–40°C to +85°C).  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights ofthird parties that may result fromits use. Specifications subject to change without notice. No  
licenseis granted byimplication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2004–2012 Analog Devices, Inc. All rights reserved.  
AD9411  
Data Sheet  
TABLE OF CONTENTS  
DC Specifications ............................................................................. 3  
Clock Outputs (DCO+, DCO–)............................................... 19  
Voltage Reference ....................................................................... 19  
Noise Power Ratio Testing (NPR)............................................ 19  
Evaluation Board ............................................................................ 21  
Power Connector........................................................................ 21  
Analog Inputs ......................................................................... 21  
Gain.................................................................................... 21  
Clock .............................................................................. 21  
Voltage Referenc............................................................. 21  
Data FormaSelect............................................................... 21  
Data tputs........................................................................... 21  
CLOCK L ........................................................................ 21  
Outline Dimensi....................................................................... 27  
rdering ide .......................................................................... 27  
AC Specifications.............................................................................. 4  
Digital Specifications........................................................................ 5  
Switching Specifications .................................................................. 6  
Explanation of Test Levels........................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Terminology .................................................................................... 10  
Equivalent Circuits......................................................................... 12  
Typical Performance Characteristics ........................................... 13  
Application Notes ........................................................................... 18  
Clock Input.................................................................................. 18  
Analog Input ............................................................................... 18  
LVDS Outputs............................................................................
REVISION HISTORY  
1/12—Data Sheet Changed from Rev. A Rev. B  
Added Exposed Pad Notation to Fig..................... 8  
Added Pin 55 to Table 6................................... 9  
Changes to Ordering Guide ............................... 27  
7/04—Data Sheet Ch0 to Rev. A  
Added 200 MSPS Gra..........................Universal  
Updated Outline Dimen......................................... 27  
Changes to Ordering Guide ............................................... 27  
1/04—Revision 0: Initial Version  
Rev. B | Page 2 of 28  
Data Sheet  
AD9411  
DC SPECIFICATIONS  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, fIN = –0.5 dBFS, internal reference, full scale = 1.536 V, unless  
otherwise noted.  
Table 1.  
AD9411-170  
AD9411-200  
Test  
Parameter  
RESOLUTION  
ACCURACY  
Temp Level Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
12  
12  
Bits  
No Missing Codes  
Offset Error  
Gain Error  
Differential Nonlinearity (DNL)  
Full  
VI  
I
I
I
VI  
I
Guaranteed  
–3  
–5  
Guaraned  
–3  
25°C  
25°C  
25°C  
Full  
25°C  
Full  
+3  
+5  
+0.5  
+0.6  
.8  
+1  
+3  
mV  
+5  
% FS  
LSB  
LSB  
LSB  
LSB  
–0.5  
–0.6  
–0.8  
–1  
0.15  
0.25  
0.5  
–0.5  
–0.6  
–0.8  
0.15  
0.2
+0.5  
+0.6  
+0.8  
+1  
Integral Nonlinearity (INL)  
VI  
0.5  
0.5  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
V
V
V
58  
0.02  
+0.12/  
–0.24  
58  
0.02  
+0.12/  
–0.24  
μV/°C  
%/°C  
mV/°C  
Gain Error  
Reference Out (VREF)  
REFERENCE  
Reference Out (VREF)  
Output Current1  
25°C  
25°C  
25°C  
25°C  
I
IV  
I
1.15  
1.235  
1.3  
3.0  
20  
1.15  
1.235  
1.3  
3.0  
20  
V
mA  
mA  
mA  
IVREF Input Current2  
ISENSE Input Current2  
ANALOG INPUTS (VIN+, VIN–)3  
Differential Input Voltage Range  
(S5 = GND)  
1.6  
5.0  
1.6  
5.0  
Fu
V
V
1.536  
0.766  
1.536  
0.766  
V
V
Differential Input Voltage Range  
(S5 = AVDD)  
Input Common-Mode Voltage  
Input Resistance  
Input Capacitance  
POWER SUPPLY (LVDS Mode)  
AVDD  
Ful
Full  
5°C  
I  
VI  
V
2.65  
2.2  
2.8  
3
5
2.9  
3.8  
2.65  
2.2  
2.8  
3
5
2.9  
3.8  
V
kΩ  
pF  
Full  
Full  
IV  
IV  
3.1  
3.0  
3.3  
3.3  
3.6  
3.6  
3.2  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
DRVDD  
Supply Curren
IANALOG (AVDD
IDIGITAL (DRVDD = 3
Power Dissipation4  
Power Supply Rejection  
Full  
Full  
Full  
25°C  
VI  
VI  
VI  
V
335  
49  
1.27  
–7.5  
372  
57  
1.42  
385  
49  
1.43  
–7.5  
425  
57  
1.59  
mA  
mA  
W
mV/V  
1 Internal reference mode; SENSE = floats.  
2 External reference mode; SENSE = DRVDD; VREF driven by external 1.23 V reference.  
3 S5 (Pin 1) = GND. See the Analog Input section. S5 = GND in all dc, ac tests, unless otherwise specified  
4 IAVDD and IDRVDD are measured with an analog input of 10.3 MHz, –0.5 dBFS, sine wave, rated clock rate, and in LVDS output mode. See the Typical Performance  
Characteristics and Application Notes sections for IDRVDD. Power consumption is measured with a dc input at rated clock rate in LVDS output mode.  
Rev. B | Page 3 of 28  
 
AD9411  
Data Sheet  
AC SPECIFICATIONS1  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, fIN = –0.5 dBFS, internal reference, full scale = 1.536 V, unless  
otherwise noted.  
Table 2.  
AD9411-170  
Typ  
AD9411-200  
Test  
Level  
Parameter  
Temp  
Min  
Max Min  
Typ  
Max  
Unit  
SNR  
Analog Input @ –0.5 dBFS  
10 MHz  
70 MHz  
100 MHz  
240 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
59  
59  
60.2  
60.1  
60  
5
9  
60.2  
60.1  
60  
dB  
dB  
dB  
dB  
59.1  
59.1  
SINAD  
Analog Input @ –0.5 dBFS  
10 MHz  
70 MHz  
100 MHz  
240 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
58.5  
58.5  
60  
59.5  
57.
58.5  
58.5  
60  
60  
59.5  
57.5  
dB  
dB  
dB  
dB  
EFFECTIVE NUMBER OF BITS (ENOB)  
10 MHz  
70 MHz  
100 MHz  
240 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
V
V
9.5  
9.5  
9
9.8  
97  
9.3  
9.5  
9.5  
9.8  
9.8  
9.7  
9.3  
Bits  
Bits  
Bits  
Bits  
WORST HARMONIC (Second or Third)  
Analog Input @ –0.5 dBFS 10 MHz  
10 MHz  
70 MHz  
100 MHz  
240 MHz  
25°C  
25°C  
25°C  
2
V
V
–80  
–80  
−74  
−69  
–73  
–73  
–80  
–80  
−74  
−69  
–70  
–70  
dBc  
dBc  
dBc  
dBc  
WORST HARMONIC (Fourth or Higher)  
Analog Input @ –0.5 dBFS 10 MHz  
10 MHz  
70 MHz  
100 MHz  
240 MHz  
2
25°C  
25°C  
25°C  
I
I
V
V
–82  
–82  
−76  
−70  
–75  
–75  
–82  
–82  
−76  
−70  
–75  
–75  
dBc  
dBc  
dBc  
dBc  
TWO-TONE IMD2  
F1, F2 @ –7 dBFS  
ANALOG INPUT BANDW
25°C  
25°C  
V
V
70  
70  
dBc  
700  
700  
MHz  
1 All ac specifications tested by driving CLK+ and CLK– differentially.  
2 F1 = 30.5 MHz, F2 = 31 MHz.  
Rev. B | Page 4 of 28  
 
 
 
 
 
Data Sheet  
AD9411  
DIGITAL SPECIFICATIONS  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, unless otherwise noted.  
Table 3.  
AD9411-170  
AD9411-200  
Typ  
Parameter  
Temp Test Level Min  
Typ  
Max  
Min  
Max  
Unit  
CLOCK INPUTS  
(CLK+, CLK–)1  
Differential Input Voltage2  
Common-Mode Voltage3  
Input Resistance  
Full  
Full  
Full  
25°C  
IV  
VI  
VI  
V
0.2  
1.375  
3.2  
0.2  
1.375 1.5  
3.2  
V
V
kΩ  
pF  
1.5  
5.5  
4
1.575  
6.5  
1.575  
6.5  
5
4
Input Capacitance  
LOGIC INPUTS (S1, S2, S4, S5)  
Logic 1 Voltage  
Full  
Full  
Full  
Full  
25°C  
25°C  
IV  
IV  
VI  
VI  
V
2.0  
0  
V
V
μA  
μA  
kΩ  
pF  
Logic 0 Voltage  
0.8  
19
10  
0.8  
190  
10  
Logic 1 Input Current  
Logic 0 Input Current  
Input Resistance  
30  
4
0  
4
Input Capacitance  
LVDS LOGIC OUTPUTS4  
VOD Differential Output Voltage  
VOS Output Offset Voltage  
Output Coding  
V
Full  
Full  
VI  
VI  
247  
1.125  
454  
247  
1.125  
454  
1.375  
mV  
V
Twoomplement or Binary Twos Complement or Binary  
1 See the Equivalent Circuits section.  
2 All ac specifications tested by driving CLK+ and CLK– differentiall200 mV.  
3 Clock inputs’ common mode can be externally set, such that 0.9 V
4 LVDS RTERM = 100 Ω, LVDS output current set resistor (RSET) = 3.74 k
Rev. B | Page 5 of 28  
 
AD9411  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 3.3 V, DRVDD = 3.3 V, TMIN = –40°C, TMAX = +85°C, unless otherwise noted.  
Table 4.  
AD9411-170  
AD9411-200  
Parameter (Conditions)  
Temp Test  
Level  
Min  
Typ  
Max Min  
Typ  
Max Unit  
Maximum Conversion Rate1  
Minimum Conversion Rate1  
Full  
Full  
Full  
Full  
VI  
V
170  
200  
40  
MSPS  
40  
MSPS  
ns  
1
CLK+ Pulse Width High (tEH  
)
IV  
IV  
2
2
12.5  
12.5  
2
2
12.5  
12.5  
CLK+ Pulse Width Low (tEL)1  
OUTPUT (LVDS Mode)  
Valid Time (tV)  
ns  
Full  
Full  
25°C  
25°C  
Full  
Full  
Full  
25°C  
25°C  
VI  
VI  
V
2.0  
2.
ns  
ns  
ns  
ns  
ns  
ns  
Cycles  
ns  
ps  
Propagation Delay (tPD  
)
3.2  
0.5  
0.5  
2.7  
0.
4  
4.3  
3.2  
0.5  
2.7  
0.5  
14  
4.3  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
DCO Propagation Delay (tCPD  
Data to DCO Skew (tPD–tCPD  
Latency  
V
)
VI  
IV  
IV  
V
1.8  
0.2  
3.8  
0.8  
0.2  
3.8  
0.8  
)
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
0.2
1.2  
0.25  
V
rms  
Out-of-Range Recovery Time  
25°C  
V
1
1
Cycles  
1 All ac specifications tested by driving CLK+ and CLK– differentially.  
EXPLANATION OF TEST LEVELS  
I. 100% production tested.  
II. 100% production tested at 25°C and samtested at specified temperatures.  
III. Sample tested only.  
IV. Parameter is guaranteed by design d characterizatitesting.  
V. Parameter is a typical value on
VI. 100% production tested at 2y design and characterization testing for industrial temperature range; 100%  
production tested at temperatuor military devices.  
N
N+1  
A
IN  
L  
tEH  
1/f  
S
CLK+  
CLK–  
tPD  
N–14  
N–13  
N
N+1  
DATA OUT  
14 CYCLES  
DCO+  
DCO–  
tCPD  
Figure 2. LVDS Timing Diagram  
Rev. B | Page 6 of 28  
 
 
 
 
 
Data Sheet  
AD9411  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
AVDD, DRVDD  
Analog Inputs  
Digital Inputs  
REFIN Inputs  
4 V  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions outside of those indicated in the operation  
section of this specification is not implied. Exposure to absolute  
maximum ratings conditions for extended periods may affect  
device reliability.  
–0.5 V to AVDD +0.5 V  
–0.5 V to DRVDD +0.5 V  
–0.5 V to AVDD +0.5 V  
20 mA  
–55ºC to +125°C  
–65ºC to +150°C  
150°C  
Digital Output Current  
Operating Temperature  
Storage Temperature  
Maximum Junction Temperature  
Maximum Case Temperature  
150°C  
25°C/W, 32°C/W  
1
θJA  
1 Typical θJA = 32°C/W (heat slug not soldered); typical θJA = 25°C/W (heat slug  
soldered) for multilayer board in still air with solid ground plane.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 40V ready accumulate on  
the human body and test equipment and can discharge without detection. Augh ts product features  
proprietary ESD protection circuitry, permanent damage may occur on devices sed to hienergy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avperfance  
degradation or loss of functionality.  
Rev. B | Page 7 of 28  
 
 
AD9411  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
S5  
DNC  
1
2
75 DRVDD  
74  
73  
72  
DRGND  
D6+  
AGND  
AGND  
3
D6–  
4
AVDD  
S1  
5
71 D5
6
70  
69  
8  
67  
66  
6
63  
62  
61  
7
LVDSBIAS  
AVDD  
8
D4–  
9
AGND  
SENSE  
VREF  
DRGND  
D3+  
10  
11  
12  
13  
14  
15  
D3–  
AGND  
AGND  
AVDD  
O+  
DRVDD  
DRGND  
AD9411  
TOP VIEW  
(Not to Scale)  
AVDD  
AGND 16  
AGND 17  
60 D2+  
59 D2–  
18  
58  
AVDD  
D1+  
AVDD 19  
AGND 20  
57 D1–  
56 D0+  
VIN+ 21  
VIN– 22  
55 D0–  
54 DRVDD  
AGND  
AVDD  
AGND  
DRGND  
DNC  
23  
24  
25  
53  
52  
51  
DNC  
NOTES  
1. THE AD9411 HAS TIVE HEAO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVINDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGCONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL  
TRACES OR VR THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHIROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE  
DEVICE WHICH MAL IN HIGH TEMPERATURE ENVIRONMENTS.  
Figure 3. TQFP_EP Pinout  
Rev. B | Page 8 of 28  
 
 
 
 
 
Data Sheet  
AD9411  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Function  
1
S5  
Full-Scale Adjust Pin. AVDD sets FS = 0.768 V p-p differential;  
GND sets FS = 1.536 V p-p differential.  
Do Not Connect.  
2, 42–46,49–52  
DNC  
3, 4, 9, 12, 13, 16, 17, 20, 23, 25, 26, 30, 31,  
32, 35, 38, 41, 86, 87, 91, 92, 93, 96, 97, 100  
AGND  
Analog Ground. AGND and DRGND should be tied together to a common  
ground plane.  
5, 8, 14, 15, 18, 19, 24, 27, 28, 29, 33, 34,  
39, 40, 88, 89, 90, 94, 95, 98, 99  
AVDD  
3.3 V Analog Supply.  
6
7
S1  
Data Format Select. GND = binary; AVDD = twos complement.  
Set Pin for LVDS Output Current. Place a 3.7kΩ resistor terminated to  
ground.  
LVDSBIAS  
10  
11  
21  
SENSE  
VREF  
VIN+  
Reference Mode Select Pin. Float for iernal rerence operation.  
1.235 V Reference Input/Output. Funn dends on SENSE.  
Analog Input. True.  
22  
VIN–  
Analog Input. Complement
36  
37  
CLK+  
CLK–  
DRVDD  
DRGND  
Clock Input. True (LVPEClevel
Clock Input. Compleent (LVPECL els).  
3.3 V Digital OutpSupply (3.0 V to 3V).  
Digital Output ound. ND and DRGND should be tied together to a  
common groupla
47, 54, 62, 75, 83  
48, 53, 61, 67, 74, 82  
55  
56  
57  
58  
59  
60  
63  
64  
65  
66  
68  
69  
70  
71  
72  
73  
76  
77  
78  
79  
80  
81  
84  
85  
D0–  
D0+  
D1–  
D1+  
D2–  
D2+  
DCO–  
DCO+  
D
D3+  
4
D4+  
D5–  
+  
6+  
D7–  
D7+  
D8–  
D8+  
D9–  
D9+  
OR–  
OR+  
D0 Complement Out Bit.  
D0 True Output Bit.  
D1 mplement Output Bit.  
D1 Truutput Bit
Complenutput Bit.  
e Outpt Bit.  
ck Output. Complement.  
ck Output. True.  
mplement Output Bit.  
D3 True Output Bit.  
D4 Complement Output Bit.  
D4 True Output Bit.  
D5 Complement Output Bit.  
D5 True Output Bit.  
D6 Complement Output Bit.  
D6 True Output Bit.  
D7 Complement Output Bit.  
D7 True Output Bit.  
D8 Complement Output Bit.  
D8 True Output Bit.  
D9 Complement Output Bit.  
D9 True Output Bit.  
Overrange Complement Output Bit.  
Overrange True Output Bit.  
Rev. B | Page 9 of 28  
AD9411  
Data Sheet  
TERMINOLOGY  
Analog Bandwidth  
Clock Pulse Width/Duty Cycle  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Pulse width high is the minimum amount of time the clock  
pulse should be left in the Logic 1 state to achieve rated  
performance; pulse width low is the minimum time the clock  
pulse should be left in the low state. Refer to the timing  
implications of changing tENCH in the Application Notes, Clock  
Input section. At a given clock rate, these specifications define  
an acceptable CLOCK duty cycle.  
Aperture Delay  
The delay between the 50% point of the rising edge of the clock  
command and the instant at which the analog input is sampled.  
Full-Scale Input Power  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Crosstalk  
Expressed in dBm. Computed ug e followig equation:  
V 2  
FULLSCALE  
RMS  
Coupling onto one channel being driven by a low level (–40 dBFS)  
signal when the adjacent interfering channel is driven by a full-  
scale signal.  
PowerLLSCALE 1og  
ZINPUT  
0.001  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance, and Differential Analog Input Impedance  
Gain Error  
The difference beteen the measured and ideal full-scale input  
tage range the ADC.  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically and the  
capacitance and differential input impedances are measured  
with a network analyzer.  
HarmDistortion, Second  
e ratio of the rms signal amplitude to the rms value of the  
cond harmonic component, reported in dBc.  
Differential Analog Input Voltage Range  
Harmonic Distortion, Third  
The peak-to-peak differential voltage that must applied to  
the converter to generate a full-scale response. ak dent
voltage is computed by observing the voltage on a single pin  
and subtracting the voltage from the o, which is 18
out of phase. Peak-to-peak differenued by rotating  
the input’s phase 180° and again tasurement.  
The difference is then computed betwk  
measurements.  
The ratio of the rms signal amplitude to the rms value of the  
third harmonic component, reported in dBc.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
Differential Nonlinea
Minimum Conversion Rate  
The deviation of any codan ideal 1 LSB step.  
Effective Number of Bits (ENOB)  
The CLOCK rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Calculated from the measured SNR based on the equation  
Maximum Conversion Rate  
SNRMEASURED 1.76 dB  
ENOB   
The CLOCK rate at which parametric testing is performed.  
Output Propagation Delay  
6.02  
The delay between a differential crossing of CLK+ and CLK–  
and the time when all output data bits are within valid logic  
levels.  
Rev. B | Page 10 of 28  
 
 
Data Sheet  
AD9411  
Noise (for Any Range within the ADC)  
Two-Tone Intermodulation Distortion Rejection  
Calculated as follows:  
The ratio of the rms value of either input tone to the rms value of  
the worst third-order intermodulation product, reported in dBc.  
FS  
SNRdBc SignaldBFS  
dBM  
VNOISE  
Z 0.00110  
Two-Tone SFDR  
10  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. May be reported in dBc  
(i.e., degrades as signal level is lowered) or in dBFS (always  
related back to converter full sle).  
where Z is the input impedance, FS is the full scale of the device  
for the frequency in question, SNR is the value of the particular  
input level, and Signal is the signal level within the ADC reported  
in dB below full scale. This value includes both thermal and  
quantization noise.  
Worst Other Spur  
Power Supply Rejection Ratio (PSRR)  
The ratio of the rms ignal amude to e rms value of the  
worst spurious conent (exclnhe second and third  
harmonics) rorted dBc.  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Signal-to-Noise-and-Distortion (SINAD)  
TransieResponse Tim
The ratio of the rms signal amplitude (set 1 dB below full scale)  
to the rms value of the sum of all other spectral components,  
including harmonics but excluding dc.  
Thme it tes for the ADC to reacquire the analog input  
after a sient fro10% above negative full scale to 10%  
below pove fuscale.  
Signal-to-Noise Ratio (without Harmonics)  
Out-of-Range Recovery Time  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral com
nents, excluding the first five harmonics and dc.  
he tie it takes for the ADC to reacquire the analog input  
afa transient from 10% above positive full scale to 10% above  
negative full scale, or from 10% below negative full scale to 10%  
below positive full scale.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the s value of the  
peak spurious spectral component. The pespuriompo-  
nent may or may not be a harmonic. May bted in c  
(i.e., degrades as signal level is loweror dBFS (always lated  
back to converter full scale).  
Rev. B | Page 11 of 28  
AD9411  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD  
FULL  
SCALE  
K
12k  
150  
10k  
12k  
0.1F  
VREF  
CLK+  
CLK–  
150  
A1  
1V  
10k  
200  
SENSE  
1k  
DISABLE  
A1  
Figure 4. Clock Inputs  
AVDD  
e 7. VREF, SEN
3.5k  
3.5k  
20k  
DR
VIN+  
VIN–  
20k  
V+  
V–  
V–  
DX+  
V+  
Figure 5. Analog Inputs  
VDD  
Figure 8. Data Outputs  
S1,S5  
30k  
Figure 6. S1 to
Rev. B | Page 12 of 28  
 
Data Sheet  
AD9411  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–10  
0
SNR = 59.7dB  
SINAD = 59.5dB  
H2 = –83.6dBc  
H3 = –72.6dBc  
SFDR = 72.5dBc  
–10  
SNR = 60.1dB  
SINAD = 59.9dB  
H2 = –91.3dBc  
–20  
–20  
–30  
–30  
–40  
H3 = –75.2dBc  
SFDR = 75.3dBc  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
30  
40  
6
70  
80  
90  
100  
0
0
0
10  
20  
30  
40  
MHz  
50  
60  
70  
80  
M
Figre 12. FFT: fS = MSPS, AIN = 10.3 MHz @ −0.5 dBFS  
Figure 9. FFT: fS = 170 MSPS, AIN = 10.3 MHz @ −0.5 dBFS  
0
0
–10  
SNR = 59.5dB  
SINAD = 59.4dB  
H2 = –82.5dBc  
H3 = –72.8dBc  
SFDR = 72.7dBc  
–2
SNR = 59.8dB  
SINAD = 59.8dB  
H2 = –91.9dBc  
H3 = –80.6dBc  
SFDR = 73.2dBc  
–20  
–30  
–30  
–40  
–40  
–5
–50  
0  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
MHz  
50  
60  
80  
MHz  
Figure 13. FFT: fS = 200 MSPS, AIN = 65 MHz @ −0.5 dBFS  
Figure 10. FFT: fS = 170 M–0.5 dBFS  
0
–10  
0
–10  
SNR = 50.6dB  
SINAD = 43.8dB  
H2 = –44.8dBc  
H3 = –67.4dBc  
SFDR = 43.6dBc  
S
H
S
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
MHz  
50  
60  
70  
80  
MHz  
Figure 14. FFT: fS = 200 MSPS, AIN = 70 MHz @ −0.5 dBFS,  
Single-Ended Drive, 1.5 V Input Range  
Figure 11. FFT: fS = 170 MSPS, AIN = 10.3, MHz @ –0.5 dBFS,  
Single-Ended Input, 0.76 V Input Range  
Rev. B | Page 13 of 28  
 
AD9411  
Data Sheet  
100  
0
–10  
SFDR = 71.5dBc  
90  
–20  
–30  
80  
–40  
THIRD  
–50  
SFDR  
SECOND  
70  
60  
50  
40  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
10  
20  
30  
MHz  
50  
60  
70  
80  
A
(MHz)  
IN  
Figure 15. Harmonic Distortion (Second and Third) and SFDR vs. AIN  
Frequency @ 170 MSPS  
Figure 18ne IntermoduDistortion  
(30MHz a1.0 MHz; fS = 170 MSPS)  
100  
0
90  
–40  
SECOND  
80  
70  
–60  
THIRD  
SFDR = 78.8dBc  
SFDR  
60  
50  
40  
–100  
–120  
0
50  
100  
150  
200  
250  
300  
50  
400  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
(MHz)  
(MHz)  
Figure 16. Harmonic Distortion (Second and Third) and SFDR vs. AIN  
Frequency @ 200 MS
Figure 19. Two-Tone Intermodulation Distortion  
(69.3 MHz and 70.3 MHz; fS = 200 MSPS)  
61  
80  
75  
70  
65  
60  
55  
50  
45  
40  
SFDR_170  
59  
57  
SN
SFDR_200  
SINAD_170  
55  
SINAD_170  
53  
SINAD_200  
51  
SINAD_200  
49  
47  
45  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
0
50  
100  
150  
200  
250  
(MHz)  
(MSPS)  
Figure 20. SINAD and SFDR vs. Clock Rate  
(AIN = 10.3 MHz @ –0.5 dBFS) 170/200 grade  
Figure 17. SNR and SINAD vs. AIN Frequency; fS = 170/200 MSPS,  
AIN @ –0.5 dBFS Full Scale = 1.536 V  
Rev. B | Page 14 of 28  
Data Sheet  
AD9411  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
75  
70  
65  
60  
55  
50  
ANALOG SUPPLY  
CURRENT  
SFDR  
OUTPUT SUPPLY  
CURRENT  
SNR  
SINAD  
0
100  
20  
30  
4
5
60  
70  
80  
120  
140  
160  
180  
200  
220  
240  
SAME CLITIVE DUTYCLE  
ENCODE (MSPS)  
Figure 2AD and SFDR lPulse Width High  
AIN .3 MHz @ –0.5 FS, 200 MSPS)  
Figure 21. IAVDD and IDRVDD vs. Clock Rate, 170 MSPS Grade, CLOAD = 5 pF  
(AIN = 10.3 MHz @ –0.5 dBFS)  
1.4  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
0
2  
0.8  
0.6  
0.4  
0.2  
0
R
= 13TYP  
O
ANALOG SUPPLY CURRENT  
OUTPUT SUPPLY CURRENT  
0
100  
120  
140  
160  
180  
200  
20  
240  
0
1
2
3
4
5
6
7
8
SAMPLE RATE (MSPS)  
I
(mA)  
LOAD  
Figure 22. IAVDD and IDRVDD vs. Clock Rate, 200 MSPS Grade, CLO= 5 pF  
(AIN = 10.3 MHz BFS)  
Figure 25. VREFOUT vs. ILOAD (Both Speed Grades)  
75  
80  
73  
SFDR  
75  
70  
65  
60  
55  
50  
71  
69  
67  
65  
63  
SNR  
61  
SINAD  
59  
SINAD  
57  
55  
20  
30  
40  
50  
60  
70  
80  
90  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
V
(V)  
REF  
ENCODE POSITIVE DUTY CYCLE (%)  
Figure 23. SINAD and SFDR vs. Clock Pulse Width High  
(AIN = 10.3 MHz @ –0.5 dBFS, 170 MSPS)  
Figure 26. Sinad, SFDR vs. VREF in External Reference Mode  
(AIN = 70 MHz @ –0.5 dBFS, 200 MSPS)  
Rev. B | Page 15 of 28  
AD9411  
Data Sheet  
2.0  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.5  
1.0  
0.5  
% GAIN ERROR  
USING EXT REF  
SFDR  
0
–0.5  
–1.0  
–1.5  
SNR  
SINAD  
–2.0  
–50  
–30  
–10  
10  
30  
50  
70  
90  
–50  
–30  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TPERATC)  
Figure 27. Full-Scale Gain Error vs. Temperature  
(AIN = 10.3 MHz @ –0.5 dBFS, 170/200 MSPS)  
Figure 30. INAD, and SFDmperature  
(AI10.3 z @ –0.5 dBFS, 70 MSPS)  
60  
59  
58  
57  
56  
1.00  
0.75  
0.50  
0.25  
0
AVDD = 3.6V  
AVDD = 3.3V  
AVDD = 3.15V  
5  
–0.50  
–0.75  
–1.00  
AVDD = 3.0V  
55  
–40  
–20  
0
20  
40  
60  
80  
0
100 200 300 400 500 600 700 800 900 1000  
CODE  
TEMPERATURE (°C)  
Figure 28. SINAD vs. TemperatAVDD  
(AIN = 10.3 MHz @ –0.5 dPS)  
Figure 31. Typical INL Plot  
(AIN = 10.3 MHz @ –0.5 dBFS, 170/200 MSPS)  
1.0  
0.8  
1.250  
1.245  
1.240  
1.235  
1.230  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1.225  
2.5  
0
100 200 300 400 500 600 700 800 900 1000  
CODE  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
AVDD (V)  
Figure 29. VREF Output Voltage vs. AVDD (Both Speed Grades)  
Figure 32. Typical DNL Plot (AIN = 10.3 MHz @ –0.5 dBFS) 170/200 MSPS  
Rev. B | Page 16 of 28  
Data Sheet  
AD9411  
110  
100  
90  
0
–20  
NPR = 51 dB  
CLK = 200MSPS  
NOTCH AT 18.5MHz  
SFDR –dBFS  
80  
–40  
70  
60  
–60  
50  
40  
80dB  
–80  
REFERENCE LINE  
30  
20  
10  
0
SFDR –dBc  
–100  
–120  
0
5
10  
2
25  
30  
35  
40  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
z  
ANALOG INPUT LEVEL (dBFS)  
Figure 33. SFDR vs. AIN Input Level 10.3 MHz, AIN @ 170 MSPS  
Figur6ise Power Rati(200 MSPS Grade)  
90  
80  
70  
4.5  
4.
3.5  
3.0  
2.5  
60  
SFDR –dBc  
SFDR –dBFS  
50  
40  
30  
T
T
PD  
70dB REFERENCE LIN
20  
CPD  
10  
0
–70  
–60  
–50  
–40  
–30  
–10  
0
–40  
–20  
0
20  
40  
60  
80  
100  
ANALOG INPUT LEVEL (dB
TEMPERATURE (°C)  
Figure 37. Propagation Delay vs. Temperature (Both Speed Grades)  
Figure 34. SFDR vs. AIN Input LevHz, AIN @ 200 MS
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
NPR = 51.2dB  
ENCODE = 170MSPS  
NOTCHz  
–20  
V
OS  
–40  
–60  
–80  
V
OD  
–100  
–120  
–140  
0
10  
20  
MHz  
30  
40  
0
2
4
6
8
10  
12  
14  
RSET (k  
Figure 35. Noise Power Ratio Plot (170 MSPS Grade)  
Figure 38. LVDS Output Swing, Common-Mode Voltage vs. RSET,  
Placed at LVDSBIAS (Both Speed Grades)  
Rev. B | Page 17 of 28  
AD9411  
Data Sheet  
APPLICATION NOTES  
The AD9411 architecture is optimized for high speed and ease  
of use. The analog inputs drive an integrated high bandwidth  
track-and-hold circuit that samples the signal prior to quantiza-  
tion by the 10-bit core. For ease of use, the part includes an on-  
board reference and input logic that accepts TTL, CMOS, or  
LVPECL levels. The digital output’s logic levels are LVDS  
(ANSI-644) compatible.  
Table 7. Output Select Coding1  
S5 (Full-Scale  
S1 (Data Format  
Select)  
Select)2  
Mode  
1
0
X
X
X
1
0
Twos Complement  
Offset Binary  
Full Scale = 0.768 V  
Full Scale = 1.536 V  
CLOCK INPUT  
X
1 X = Don’t Care.  
Any high speed A/D converter is extremely sensitive to the  
quality of the sampling clock provided by the user. A track-and-  
hold circuit is essentially a mixer, and any noise, distortion, or  
timing jitter on the clock is combined with the desired signal at  
the A/D output. For this reason, considerable care has been  
taken in the design of the clock inputs of the AD9411, and the  
user is advised to give careful thought to the clock source.  
2 S5 full-scale adjust (refer to the Aog Inpuection).  
ANALOG INPUT  
The analog input to thD9411 is a fertial buffer. For best  
dynamic performae, iedances at VN+ and VIN– should  
match. The analog input is mized to provide superior wide-  
band perforance and requireat the analog inputs be driven  
differently. SNR nd SINAD performance degrades signifi-  
cantly if tang input is driven with a single-ended signal.  
The AD9411 has an internal clock duty cycle stabilization  
circuit that locks to the rising edge of CLK+ and optimizes  
timing internally. This allows a wide range of input duty cycles  
at the input without degrading performance. Jitter in the rising  
edge of the input is still of paramount concern and is not  
reduced by the internal stabilization circuit. The duty cycle  
control loop does not function for clock rates less than 30 MHz  
nominally. The time constant associated with the loop shoul
be considered in applications where the clock rate changes  
dynamically, requiring a wait time of 1.5 μs to 5 μs after a  
dynamic clock frequency increase before valid data avilable.  
This circuit is always on and cannot be disabled y the use
A wideband trsforer, such as Mini-Circuits’ ADT1-1WT,  
can provide the derential analog inputs for applications that  
uire a singl-ended-to-differential conversion. Both analog  
inpare s-biased by an on-chip resistor divider to a  
nomin.8 V (refer to the Equivalent Circuits section). Note  
at the input common-mode can be overdriven by  
proximately +/−150 mV around the self-bias point, as shown  
n Figure 42.  
Special care was taken in the design of the analog input section  
of the AD9411 to prevent damage and corruption of data when  
the input is overdriven. The nominal differential input range is  
approximately 1.5 V p-p ~ (768 mV × 2). Note that the best  
performance is achieved with S5 = 0 (full-scale = 1.5). See  
Figure 40 and Figure 41.  
The clock inputs are internally biased to 1.5 V (nominal) and  
support either differential or single-ennals. For best  
dynamic performance, a differentiaecommended. An  
MC100LVEL16 performs well in ththe clock  
inputs, as illustrated in Figure 39. Notlow voltage  
PECL device, the ac coupional.  
AD9411  
CLK+  
S5 = GND  
VIN+  
PECL  
GATE  
CLK–  
0.1F  
510  
510  
768mV 2.8V  
2.8V  
Figure 39. Driving Clock Inputs with LVEL16  
VIN–  
DIGITALOUT = ALL 1s  
DIGITALOUT = ALL 0s  
Figure 40. Differential Analog Input Range  
Rev. B | Page 18 of 28  
 
 
 
 
 
Data Sheet  
AD9411  
providing a low skew clocking solution (see Figure 2). The on-  
chip clock buffers should not drive more than 5 pF of capacitance  
to limit switching transient effects on performance. The output  
clocks are LVDS signals requiring 100 Ω differential termination  
at receiver.  
S5 = AVDD  
VIN+  
768mV 2.8V  
2.8V  
VOLTAGE REFERENCE  
VIN– = 2.8V  
A stable and accurate 1.23 V voltage reference is built into the  
AD9411 (VREF). The analog input full-scale range is linearly  
proportional to the voltage at VREF. Note that an external  
reference can be used by conneng the SENSE pin to VDD  
(disabling internal referencend driving VREF with the  
external reference sourceo apprable degradation in  
performance occurs when Es adjuste5%. A 0.1 μF  
capacitor to grouns recommded at he VREF pin in  
internal and extreference aptions. Float the SENSE  
pin for internal referee operation.  
Figure 41. Single-Ended Analog Input Range  
61  
60  
59  
58  
57  
SINAD  
FULL  
CALE  
K
S5 = 0  
S5 = 1  
K = 1.24  
K = 0.62  
0.1F  
VREF  
A1  
1V  
EXTERNAL 1.23V  
REFERENCE  
200  
56  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
SENSE  
ANALOG INPUT COMMON MODE (V)  
1k  
3.3V  
Figure 42. SINAD Sensitivity to Analog Input Comon-Mode Voltage,  
(Ain = −.5 dBfs Differential Drive= 0)  
DISABLE  
A1  
VDD  
LVDS OUTPUTS  
Figure 43. Using an External Reference  
The off-chip drivers provide output levels. A  
3.74 kΩ RSET resistor placed at AS) to ground  
sets the LVDS output current. The tor current is  
ratioed on-chip, setut curat each output equal  
to a nominal 3.5 . A 100 Ω differential termi-  
nation resistor plareceiver inputs results in a  
nominal 350 mV sweiver. LVDS mode facilitates  
interfacing with LVDS receivers in custom ASICs and FPGAs  
that have LVDS capability for superior switching performance  
in noisy environments. Single point-to-point network topologies  
are recommended with a 100 Ω termination resistor as close to  
the receiver as possible. It is recommended to keep the trace  
lengths < 4 inches and to keep differential output trace lengths  
as equal as possible.  
NOISE POWER RATIO TESTING (NPR)  
NPR is a test that is commonly used to characterize the return  
path of cable systems where the signals are typically QAM sig-  
nals with a “noise-like” frequency spectrum. NPR performance  
of the AD9411 was characterized in the lab yielding an effective  
NPR = 51.2 dB at an analog input of 18 MHz. This agrees with a  
theoretical maximum NPR of 51.6 dB for a 10-bit ADC at 13 dB  
backoff. The rms noise power of the signal inside the notch is  
compared with the rms noise level outside the notch using an  
FFT. This test requires sufficiently long record lengths to  
guarantee a large number of samples inside the notch. A high-  
order band-stop filter that provides the required notch depth  
for testing is also needed.  
CLOCK OUTPUTS (DCO+, DCO–)  
The input clock is buffered on-chip and available off-chip at  
DCO+ and DCO–. These clocks can facilitate latching off-chip,  
Rev. B | Page 19 of 28  
 
 
 
 
 
AD9411  
Data Sheet  
3.3V  
3.3V  
3.3V  
+
+
+
AVDD GND DRVDD GND  
VDL GND  
SIGNAL  
GENERATOR  
BAND-PASS  
FILTER  
ANALOG  
J4  
REFIN  
DATA  
CAPTURE  
AND  
AD9411 EVALUATION BOARD  
PROCENG  
10MHz  
CLOCK  
J5  
REFOUT  
SIGNAL  
GENERATOR  
Figure 44. Evaluation Board Connections  
Rev. B | Page 20 of 28  
Data Sheet  
AD9411  
EVALUATION BOARD  
The AD9411 evaluation board offers an easy way to test the  
AD9411 in LVDS mode. It requires a clock source, an analog  
input signal, and a 3.3 V power supply. The clock source is  
buffered on the board to provide the clocks for the ADC,  
latches, and a data-ready signal. The digital outputs and output  
clocks are available at a 40-pin connector, P23. The board has  
several different modes of operation and is shipped in the  
following configurations:  
GAIN  
Full scale is set at E17–E19, E17–E18 sets S5 low, full scale =  
1.5 V differential; E17–E19 sets S5 high, full scale = 0.75 V  
differential. Best performance is obtained at 1.5 V full scale.  
CLOCK  
The clock input is terminated to ground through 50 Ω resistor  
at SMB connector J5. The input is ac-coupled to a high speed  
differential receiver (LVEL16) at provides the required low  
jitter, fast edge rates needed or optimum performance. J5 input  
should be > 0.5 V p-p. Por to thLVEL16 is set at Jumper  
E47. E47–E45 powerthe burom AVD; E47–E46 powers  
the buffer from VK/V_XTA
Offset binary  
Internal voltage reference  
Full-scale adjust = low  
POWER CONNECTOR  
VOLTAGE REFERCE  
Power is supplied to the board via a detachable 12-lead power  
strip (three 4-pin blocks).  
The AD11 has an inter1.23 V voltage reference. The ADC  
uses te internl reference as the default when Jumpers E24–E27  
and 5–Eare left open. The full scale can be increased by  
placinoptional sistor (R3). The required value varies with  
the procesnd eds to be tuned for the specific application.  
Full scale can imilarly be reduced by placing R4; tuning is  
required ere as well. An external reference can be used by  
hortithe SENSE pin to 3.3 V (place Jumper E26–E25).  
Juer E27–E24 connects the ADC VREF pin to the  
EXT_VREF pin at the power connector.  
Table 8. Power Connector, LVDS Mode  
AVDD1 3.3 V  
DRVDD1 3.3 V  
VDL1 3.3 V  
Analog Supply for ADC (350 mA)  
Output Supply for ADC (50 mA)  
Supply for Support Logic  
VCLK/V_XTAL  
EXT_VREF2  
Supply for Clock Buffer/Optional XTAL  
Optional External Reference Inpu
1 AVDD, DRVDD, and VDL are the minimum required power connec
2 LVEL16 clock buffer can be powered from AVDD or VCLK at E47 ju
DATA FORMAT SELECT  
ANALOG INPUTS  
Data format select (DFS) sets the output data format of the  
ADC. Setting DFS (E1–E2) low sets the output format to be  
offset binary; setting DFS high (E1–E3) sets the output to twos  
complement.  
The evaluation board accepts a 1.3 V p-p aog input signal  
centered at ground at SMB connector J4. Ts sigs  
terminated to ground through 50 Ω by R16. The input cabe  
alternatively terminated at the T1 rmer secondaby  
R13 and R14. T1 is a wideband rmer that provides a  
single-ended-to-differential cog the ADC to be  
driven differentially, which minider harmonics.  
An optional second ter, T2, placed following T1  
if desired. This prformance advantage (~1 dB to  
2 dB) for high anncies (>100 MHz). If T2 is  
placed, cut the two at the pads. The analog  
signal can be low-pass by R41, C12 and R42, C13 at the  
ADC input. The footprint for transformer T2 can be modified  
to accept a wideband differential amplifier (AD8351) for low  
frequency applications where gain is required. See the PCB  
schematic for more information.  
DATA OUTPUTS  
The ADC LVDS digital outputs are routed directly to the  
connector at the card edge. Resistor pads placed at the output  
connector allow for termination if the connector receiving logic  
lack the differential termination for the data bits and DCO.  
Each output trace pair should be terminated differentially at  
the far end of the line with a single 100 ohm resistor.  
CLOCK XTAL  
An optional XTAL oscillator can be placed on the board to  
serve as a clock source for the PCB. Power to the XTAL is  
through the VCLK/VXTAL pin at the power connector. If an  
oscillator is used, ensure proper termination for best results.  
The board was tested with a Valpey Fisher VF561 and a Vectron  
JN00158-163.84.  
Rev. B | Page 21 of 28  
 
 
 
 
 
 
 
 
 
AD9411  
Data Sheet  
Table 9. Evaluation Board Bill of Material—AD9411 PCB  
No. Quantity  
Reference Designator  
Device  
Package  
Value  
1
33  
4
C1, C3*, C4–C11, C15–C17, C18*,  
C19–C32, C35, C36, C39*, C40*, C58-C62  
Capacitor  
0603  
0.1 μF  
2
3
4
5
Capacitor  
0402  
0.1 μF  
C33*, C34*, C37*, C38*  
C63–C66  
4
1
Capacitor  
Capacitor  
Capacitor  
TAJD CAPL  
0603  
10 μF  
10 pF  
20 pF  
C2*  
2
C12*, C13*  
0603  
6
7
2
2
J4, J5  
P21, P22  
Jacks  
SMB  
25.2.5453.0  
land  
Power Connectors—Top  
8
9
2
1
P21, P22  
P23  
Power Connectors—Posts  
Z5.25.0  
Wielan
Digi-Key  
40-Pin Right Angle Connecr  
2131-20-ND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
16  
1
3
2
2
2
2
2
2
6
5
2
1
2
2
1
R1, R6–R12*, R15*, R31–R37*  
Resistor  
Resistor  
Resistor  
Resior  
Resisto
or  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
RF Transformer  
0
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0402  
0402  
0402  
0402  
0402  
100  
3.7 kΩ  
50  
R2  
R5, R16, R27  
R17, R18  
510  
150  
1 kΩ  
25  
R19, R20  
R29, R30  
R41, R42  
R3, R4  
3.8 kΩ  
25  
R13, R14  
R22*, R23*, R24*, R25*, R26*
100  
25  
R38*, R39*, R40*, 7*  
R43*, R44*  
10 kΩ  
1.2 kΩ  
0
R46*  
R4
R
1 kΩ  
T1, T
Mini Circuits  
ADT1-1WT  
26  
27  
28  
29  
1
1
1
1
U2  
U9  
U1  
U3  
RF Amp  
AD8351  
Optional XTAL  
AD9411  
JN00158 or VF561  
TQFP-100  
MC100LVEL16  
SO8NB  
* C2, C3, C12, C13, C18, C33, C34, C37, C38, C39, C40, R1, R6–R12, R15, R22–R26, R28, R31–R40, R43–R51 and T2 not placed.  
Rev. B | Page 22 of 28  
Data Sheet  
AD9411  
7 6 – D 7  
7 7 + D 7  
5 0  
D N C  
4 9  
D N C  
7 8  
4 8  
D R G N D  
D 8  
7 9 + D 8  
8 0 – D 9  
8 1 + D 9  
8 2  
4 7  
D R V  
D D R V  
4 6  
N C  
D R G N D  
D N
G N D  
D D D R V  
8 3  
R D D V  
D N C 4 3  
4 2  
8 4 – O R  
D N C  
A G N 4 1 D  
4 0  
8 5  
8 6  
8 7  
O R +  
G N D  
A G N D  
A G N D  
D D A V  
D D A V 3 9  
3 8  
G N D  
G N D  
C V C  
C
C
V C  
C
C
C
V C  
8 8 D D A V  
8 9 D D A V  
9 0 D D A V  
A G N D  
G N D  
3 7  
3 6  
V C  
– K C L  
K + C L  
N C ~ E  
V C  
G N D  
G N D  
G N D  
V C  
9 1  
9 2  
9 3  
A G N D  
3 5  
A G N D  
G N D  
V C  
A G N D  
A G N D  
3 4  
3 3  
D D A V  
D D A V  
C
C
D D A V  
9 4  
A G N 3 2 D  
A G N 3 1 D  
9 5 D D A V  
V C  
G N D  
G N D  
V C  
G N D  
G N D  
V C  
9 6  
9 7  
A G N D  
A G N D  
3 0  
A G N D  
D D A V 2 9  
C
C
C
C
C
9 8 D D A V  
9 9 D D A V  
2 8  
D D A V  
D D A V 2 7  
2 6  
V C  
V C  
V C  
G N D  
1 0 0  
A G N D  
A G N D  
G N D  
P T M 1 C R O 4  
P 2 1  
P T M 1 C R O 4  
P 2 2  
Figure 45. Evaluation Board Schematic  
Rev. B | Page 23 of 28  
AD9411  
Data Sheet  
VCC  
+
C64  
10F  
C23  
0.1F  
C22  
0.1F  
C25  
0.1F  
C24  
0.1F  
C27  
0.1F  
C26  
0.1F  
C29  
0.1F  
C28  
0.1F  
C31  
0.1F  
C16  
0.1F  
C17  
0.1F  
C32  
0.1F  
C35  
0.1F  
C19  
0.1F  
C21  
0.1F  
C20  
0.1F  
GND  
VDL  
DRVDD  
VREF  
+
C66  
10F  
+
+
C65  
10F  
C61  
0.1F  
C62  
0.1F  
C18  
0.1F  
C60  
0.1F  
C59  
0.1F  
C58  
0.1F  
C63  
10F  
GND  
GND  
GND  
TO USE VF561 CRYSTAL  
GND  
VDL  
R28  
100  
JN00158  
R23  
100  
1
2
3
E/D  
VCC  
6
5
4
VDL  
NC  
OUTPUTB  
OUTPUT  
P4  
R22  
100  
GND  
GND  
R25  
100  
U9  
GND  
VDL  
R24  
100  
P5  
R26  
100  
GND  
Figure 46. Evalmatic (ntinued)  
R51  
1k  
R50  
1k  
VDL  
GND  
VDL  
PWN  
R44  
C38  
0.1F  
C37  
0.1F  
GND  
GND  
10
U2  
AD8351  
GN
R47  
25k  
R3
1
2
3
4
5
PWUP  
VOCM 10  
25k  
C39  
R49  
39  
RGP1  
INHI  
VPOS  
OPHI  
9
8
7
6
0.1F  
0  
k  
AMPINB  
AMPIN  
OPLO  
INLO  
C34  
0.1F  
R40  
25k  
C40  
0.1F  
R48  
0  
AMP IN  
AMP  
GND  
RPG2  
COMM  
R45  
25k  
R46  
1.2k  
Figure 47. Evaluation Board Schematic (continued)  
Rev. B | Page 24 of 28  
Data Sheet  
AD9411  
Figure 50. PCB Ground Layer  
Figure 48. PCB Top Side Silkscreen  
Figure 51. PCB Split Power Plane  
Figure 49. PCB Top Side Copper Routing  
Rev. B | Page 25 of 28  
AD9411  
Data Sheet  
Figure 52. PCB Bottom Side Copper Routing  
Figure 53. PCB Bottom Side Silkscreen  
Rev. B | Page 26 of 28  
Data Sheet  
AD9411  
OUTLINE DIMENSIONS  
16.00 BSC SQ  
1.20  
MAX  
0.75  
0.60  
0.45  
14.00 BSC SQ  
100  
1
76  
75  
76  
100  
75  
1
SEATING  
PLANE  
PIN 1  
BOTTOM VIEW  
(PINS UP)  
TOP VIEW  
(PINS DOWN)  
CONDUCTIVE  
HEAT SINK  
51  
51  
2
25  
26  
50  
50  
26  
0.20  
0.09  
1.05  
1.00  
0.95  
6.50  
N
7°  
3.5°  
0°  
FOR PR CONNECTION OF  
THE EXPD PAD, REFER TO  
THE PIN CGURATION AND  
FUNCTION DSCRIPTIONS  
0.15  
0.05  
COPLANARI
0.08  
0.27  
0.22  
0.17  
0.50 BSC  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MS-026-AD  
Figure 54. 100-Lead Thin Quad Fackage, Exposed Pad [TQFP_EP]  
(SV-1
Dimenshown iillime
ORDERING GUIDE  
Model1  
Temperature Range  
ckage n  
Package Option  
SV-100  
SV-100  
AD9411BSVZ-170  
AD9411BSVZ-200  
–40°C to +85°C  
–40°C to +85°C  
100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
-LeThin Quad Flat Package, Exposed Pad [TQFP_EP]  
1 Z = RoHS Compliant Part.  
Rev. B | Page 27 of 28  
 
 
AD9411  
NOTES  
Data Sheet  
©2004–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04530-0-1/12(B)  
Rev. B | Page 28 of 28  
 
配单直通车
AD9430BST-170产品参数
型号:AD9430BST-170
是否Rohs认证: 不符合
生命周期:Obsolete
零件包装代码:QFP
包装说明:HEAT SINK, PLASTIC, TQFP-100
针数:100
Reach Compliance Code:compliant
ECCN代码:3A991.C.2
HTS代码:8542.39.00.01
风险等级:5.8
转换器类型:ADC, PROPRIETARY METHOD
JESD-30 代码:R-PQFP-G100
JESD-609代码:e0
长度:14 mm
最大线性误差 (EL):0.0122%
模拟输入通道数量:1
位数:12
功能数量:1
端子数量:100
最高工作温度:85 °C
最低工作温度:-40 °C
输出位码:OFFSET BINARY, 2'S COMPLEMENT BINARY
输出格式:PARALLEL, WORD
封装主体材料:PLASTIC/EPOXY
封装代码:HTFQFP
封装形状:RECTANGULAR
封装形式:FLATPACK, HEAT SINK/SLUG, THIN PROFILE, FINE PITCH
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
采样速率:170 MHz
采样并保持/跟踪并保持:TRACK
座面最大高度:1.2 mm
标称供电电压:3.3 V
表面贴装:YES
技术:BICMOS
温度等级:INDUSTRIAL
端子面层:TIN LEAD
端子形式:GULL WING
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:14 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!