欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • AD9887AKS-140
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • AD9887AKS-140图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD9887AKS-140 现货库存
  • 数量2800 
  • 厂家ADI 
  • 封装MQFP160 
  • 批号24+ 
  • 原装假一赔百,深圳现货,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • AD9887AKS-140图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • AD9887AKS-140 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装QFP160 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • AD9887AKS-140图
  • 深圳市欧昇科技有限公司

     该会员已使用本站2年以上
  • AD9887AKS-140 现货库存
  • 数量43 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号515 
  • 只做原装现货实单可谈
  • QQ:2885514619QQ:2885514619 复制
  • 0755-89345486 QQ:2885514619
  • AD9887AKS-140图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9887AKS-140 现货库存
  • 数量98500 
  • 厂家ADI/亚德诺 
  • 封装QFP160 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177
  • AD9887AKS-140图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9887AKS-140
  • 数量85000 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • AD9887AKS-140图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • AD9887AKS-140
  • 数量13880 
  • 厂家ADI/亚德诺 
  • 封装 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • AD9887AKS-140图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • AD9887AKS-140
  • 数量5600 
  • 厂家ADI/亚德诺 
  • 封装QFP160 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • AD9887AKS-140图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • AD9887AKS-140
  • 数量111 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • AD9887AKS-140图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • AD9887AKS-140
  • 数量68000 
  • 厂家ADI/亚德诺 
  • 封装MQFP160 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • AD9887AKS-140图
  • 集好芯城

     该会员已使用本站13年以上
  • AD9887AKS-140
  • 数量13140 
  • 厂家ADI/亚德诺 
  • 封装QFP160 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • AD9887AKS-140图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • AD9887AKS-140
  • 数量20000 
  • 厂家AD 
  • 封装深圳原装现货0755-83975781 
  • 批号QFP160 
  • QQ:767621813QQ:767621813 复制
    QQ:541766577QQ:541766577 复制
  • 0755-83975781 QQ:767621813QQ:541766577
  • AD9887AKS-140图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • AD9887AKS-140
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装QFP160 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • AD9887AKS-140图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • AD9887AKS-140
  • 数量293 
  • 厂家AD 
  • 封装QFP160 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • AD9887AKS-140图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • AD9887AKS-140
  • 数量3000 
  • 厂家ADI 
  • 封装MQFP160 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • AD9887AKS-140图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • AD9887AKS-140
  • 数量12300 
  • 厂家ADI/亚德诺 
  • 封装MQFP160 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • AD9887AKS-140图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD9887AKS-140
  • 数量15862 
  • 厂家ADI 
  • 封装03+ 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • AD9887AKS-140图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • AD9887AKS-140
  • 数量20447 
  • 厂家AD 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • AD9887AKS-140图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • AD9887AKS-140
  • 数量3000 
  • 厂家ADI 
  • 封装QFP 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • AD9887AKS-140图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • AD9887AKS-140
  • 数量5000 
  • 厂家
  • 封装AD 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • AD9887AKS-140图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • AD9887AKS-140
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • AD9887AKS-140图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • AD9887AKS-140
  • 数量15862 
  • 厂家ADI 
  • 封装03+ 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • AD9887AKS-140图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • AD9887AKS-140
  • 数量21103 
  • 厂家ADI 
  • 封装QFP160 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • AD9887AKS-140图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • AD9887AKS-140
  • 数量4816 
  • 厂家AD 
  • 封装QFP160 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • AD9887AKS-140图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • AD9887AKS-140
  • 数量5300 
  • 厂家AD 
  • 封装QFP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • AD9887AKS-140图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • AD9887AKS-140
  • 数量255 
  • 厂家ADI 
  • 封装QFP 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • AD9887AKS-140图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • AD9887AKS-140
  • 数量66772 
  • 厂家AD 
  • 封装QFP 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • AD9887AKS-140图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • AD9887AKS-140
  • 数量20800 
  • 厂家AD 
  • 封装MQFP160 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • AD9887AKS-140图
  • 深圳市意好科技有限公司

     该会员已使用本站15年以上
  • AD9887AKS-140
  • 数量3550 
  • 厂家ADI 
  • 封装原厂 
  • 批号24+ 
  • 中华地区销售
  • QQ:2853107358QQ:2853107358 复制
    QQ:2853107357QQ:2853107357 复制
  • 0755-88608316 QQ:2853107358QQ:2853107357
  • AD9887AKS-140图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • AD9887AKS-140
  • 数量275 
  • 厂家ADI 
  • 封装QFP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • AD9887AKS-140图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • AD9887AKS-140
  • 数量13000 
  • 厂家AD 
  • 封装QFP-160 
  • 批号24+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • AD9887AKS-140图
  • 北京睿科新创电子中心

     该会员已使用本站9年以上
  • AD9887AKS-140
  • 数量
  • 厂家21+ 
  • 封装50000 
  • 批号面议 
  • 北京深圳现货010-62556580
  • QQ:765972029QQ:765972029 复制
    QQ:744742559QQ:744742559 复制
  • 010-62556580 QQ:765972029QQ:744742559
  • AD9887AKS-140图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • AD9887AKS-140
  • 数量23480 
  • 厂家ADI/亚德诺 
  • 封装QFP 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • AD9887AKS-140图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • AD9887AKS-140
  • 数量16680 
  • 厂家ADI 
  • 封装QFP 
  • 批号16+ 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • AD9887AKS-140图
  • 上海振基实业有限公司

     该会员已使用本站13年以上
  • AD9887AKS-140
  • 数量2500 
  • 厂家AD 
  • 封装QFP 
  • 批号23+ 
  • 全新原装现货/另有约30万种现货,欢迎来电!
  • QQ:330263063QQ:330263063 复制
    QQ:1985476892QQ:1985476892 复制
  • 021-59159268 QQ:330263063QQ:1985476892

产品型号AD9887AKS-140的概述

芯片AD9887AKS-140概述 AD9887AKS-140是一款高性能模拟到数字转换器(ADC),由著名的模拟器件公司Analog Devices生产。该芯片广泛应用于视频处理、显示器接口、以及其他需要高带宽和高分辨率处理的领域。AD9887的设计旨在提供132MHz的信号带宽,支持高达1440p的视频输入,特别适合在图像和视频处理系统中进行高清分辨率的信号处理。 该芯片不仅兼容传统的VGA和VESA标准,还具备DVI和HDMI等数字接口的功能,方便在多种视图场合中实现高效的数据转换。此外,AD9887AKS-140的高动态范围和信噪比使其在接收和处理复杂视频信号时表现出色。 芯片AD9887AKS-140的详细参数 AD9887AKS-140的主要参数包括: - 输入电压范围:0V至1.2V - 采样率:最高可达140 MSPS - 输入带宽:132 MHz的频带宽度 - 分辨率...

产品型号AD9887AKS-140的Datasheet PDF文件预览

Dual Interface for  
Flat Panel Displays  
AD9887A  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Analog Interface  
170 MSPS Maximum Conversion Rate  
Programmable Analog Bandwidth  
0.5 V to 1.0 V Analog Input Range  
500 ps p-p PLL Clock Jitter at 170 MSPS  
3.3 V Power Supply  
Full Sync Processing  
Midscale Clamping  
4:2:2 Output Format Mode  
ANALOG INTERFACE  
REF  
REFOUT  
REFIN  
R
OUTA  
8
8
8
8
8
R
CLAMP  
CLAMP  
CLAMP  
A/D  
A/D  
A/D  
AIN  
R
OUTB  
G
OUTA  
8
8
G
AIN  
G
OUTB  
B
8
8
OUTA  
B
B
AIN  
OUTB  
Digital Interface  
DVI 1.0 Compatible Interface  
DATACK  
HSOUT  
2
HSYNC  
VSYNC  
COAST  
CLAMP  
CKINV  
CKEXT  
FILT  
170 MHz Operation (2 Pixel/Clock Mode)  
High Skew Tolerance of 1 Full Input Clock  
Sync Detect for “Hot Plugging”  
SYNC  
VSOUT  
PROCESSING  
AND CLOCK  
GENERATION  
8
SOGOUT  
R
OUTA  
Supports High Bandwidth Digital Content Protection  
S
8
8
8
8
8
2
CDT  
R
OUTB  
SOGIN  
G
APPLICATIONS  
OUTA  
SCL  
SDA  
RGB Graphics Processing  
LCD Monitors and Projectors  
Plasma Display Panels  
Scan Converters  
Micro Displays  
Digital TVs  
M
U
X
E
S
G
OUTB  
SERIAL REGISTER  
AND  
B
A
A
OUTA  
1
0
POWER MANAGEMENT  
B
OUTB  
DATACK  
R
DIGITAL INTERFACE  
8
8
8
8
OUTA  
HSOUT  
VSOUT  
SOGOUT  
8
8
8
R
OUTB  
Rx0+  
Rx0–  
Rx1+  
Rx1–  
Rx2+  
G
OUTA  
GENERAL DESCRIPTION  
G
OUTB  
The AD9887A offers designers the flexibility of an analog interface  
and digital visual interface (DVI) receiver integrated on a single  
chip. Also included is support for High Bandwidth Digital Content  
Protection (HDCP). The AD9887A is software and pin-to-pin  
compatible with the AD9887.  
DE  
B
8
8
OUTA  
Rx2–  
RxC+  
RxC–  
B
DVI  
OUTB  
RECEIVER  
2
DATACK  
DE  
R
TERM  
HSOUT  
VSOUT  
Analog Interface  
The AD9887A is a complete 8-bit 170 MSPS monolithic analog  
interface optimized for capturing RGB graphics signals from  
personal computers and workstations. Its 170 MSPS encode  
rate capability and full-power analog bandwidth of 330 MHz  
supports resolutions up to UXGA (1600 × 1200 at 60 Hz).  
DDCSCL  
DDCSDA  
MCL  
HDCP  
AD9887A  
MDA  
The analog interface includes a 170 MHz triple ADC with  
internal 1.25 V reference, a phase-locked loop (PLL), and pro-  
grammable gain, offset, and clamp control. The user provides  
only a 3.3 V power supply, analog input, and HSYNC. Three-  
state CMOS outputs may be powered from 2.5 V to 3.3 V.  
Digital Interface  
The AD9887A contains a DVI 1.0 compatible receiver and  
supports display resolutions up to UXGA (1600 ϫ 1200 at 60 Hz).  
The receiver operates with true color (24-bit) panels in 1 or  
2 pixel(s)/clock mode and features an intrapair skew tolerance  
of up to one full clock cycle.  
The AD9887As on-chip PLL generates a pixel clock from  
HSYNC. Pixel clock output frequencies range from 12 MHz to  
170 MHz. PLL clock jitter is typically 500 ps p-p at 170 MSPS.  
The AD9887A also offers full sync processing for composite  
sync and sync-on-green (SOG) applications.  
With the inclusion of HDCP, displays may now receive encrypted  
video content. The AD9887A allows for authentication of a  
video receiver, decryption of encoded data at the receiver, and  
renewability of that authentication during transmission as specified  
by the HDCP v1.0 protocol.  
Fabricated in an advanced CMOS process, the AD9887A is  
provided in a 160-lead MQFP surface-mount plastic package  
and is specified over the 0°C to 70°C temperature range.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
 
AD9887A  
TABLE OF CONTENTS  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . 1  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
ANALOG INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DIGITAL INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . 7  
EXPLANATION OF TEST LEVELS . . . . . . . . . . . . . . . . . 7  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DESCRIPTIONS OF PINS SHARED BETWEEN  
ANALOG AND DIGITAL INTERFACES . . . . . . . . . . . . 10  
Serial Port (2-Wire) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Various . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SCAN Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PIN FUNCTION DETAILS (ANALOG INTERFACE) . . 11  
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
THEORY OF OPERATION (INTERFACE DETECTION)13  
Active Interface Detection and Selection . . . . . . . . . . . . . 13  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
THEORY OF OPERATION AND DESIGN GUIDE  
TIMING MODE DIAGRAMS (DIGITAL INTERFACE) 27  
2-Wire Serial Register Map . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2-WIRE SERIAL CONTROL REGISTER DETAIL . . . . . 32  
CHIP IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . 32  
PLL DIVIDER CONTROL . . . . . . . . . . . . . . . . . . . . . . . . 32  
CLOCK GENERATOR CONTROL . . . . . . . . . . . . . . . . . 32  
CLAMP TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
INPUT GAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
INPUT OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
MODE CONTROL 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
MODE CONTROL 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
SYNC DETECTION AND CONTROL . . . . . . . . . . . . . . 36  
DIGITAL CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
CONTROL BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2-Wire Serial Control Port . . . . . . . . . . . . . . . . . . . . . . . . 39  
Data Transfer via Serial Interface . . . . . . . . . . . . . . . . . . . 39  
Serial Interface Read/Write Examples . . . . . . . . . . . . . . . 40  
THEORY OF OPERATION (SYNC PROCESSING) . . . . 40  
Sync Stripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Sync Seperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
PCB LAYOUT RECOMMENDATIONS . . . . . . . . . . . . . 41  
Analog Interface Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Digital Interface Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . 42  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Outputs (Both Data and Clocks) . . . . . . . . . . . . . . . . . . . 42  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 43  
(ANALOG INTERFACE) . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input Signal Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
HSYNC, VSYNC Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Serial Control Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Signal Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
RGB Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
YUV Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Gain and Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Sync-on-Green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Scan Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Alternate Pixel Sampling Mode . . . . . . . . . . . . . . . . . . . . 19  
Timing (Analog Interface) . . . . . . . . . . . . . . . . . . . . . . . . 20  
Hsync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Coast Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DIGITAL INTERFACE PIN DESCRIPTIONS . . . . . . . . 25  
Digital Video Data Inputs . . . . . . . . . . . . . . . . . . . . . . . . 25  
Digital Clock Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Termination Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
THEORY OF OPERATION (DIGITAL INTERFACE) . . 25  
Capturing of the Encoded Data . . . . . . . . . . . . . . . . . . . . 25  
Data Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Special Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Channel Resynchronization . . . . . . . . . . . . . . . . . . . . . . . 25  
Data Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
HDCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
GENERAL TIMING DIAGRAMS  
TABLE INDEX  
Table I. Complete Pinout List . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table II. Analog Interface Pin List . . . . . . . . . . . . . . . . . . . 11  
Table III. Interface Selection Controls . . . . . . . . . . . . . . . . 14  
Table IV. Power-Down Mode Descriptions . . . . . . . . . . . . . 14  
Table V. VCO Frequency Ranges . . . . . . . . . . . . . . . . . . . . 17  
Table VI. Charge Pump Current/Control Bits . . . . . . . . . . . 17  
Table VII. Recommended VCO Range and Charge Pump  
Current Settings for Standard Display Formats . . . . . . . . . . 18  
Table VIII. Digital Interface Pin List . . . . . . . . . . . . . . . . . . 24  
Table IX. Control Register Map . . . . . . . . . . . . . . . . . . . . . 28  
Table X. VCO Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table XI. Charge Pump Currents . . . . . . . . . . . . . . . . . . . . 32  
Table XII. Channel Mode Settings . . . . . . . . . . . . . . . . . . . 33  
Table XIII. Output Mode Settings . . . . . . . . . . . . . . . . . . . 33  
Table XIV. Output Port Settings . . . . . . . . . . . . . . . . . . . . . 33  
Table XV. HSYNC Output Polarity Settings . . . . . . . . . . . 34  
Table XVI. VSYNC Output Polarity Settings . . . . . . . . . . . 34  
Table XVII. HSNYC Input Polarity Settings . . . . . . . . . . . 34  
Table XVIII. COAST Input Polarity Settings . . . . . . . . . . . 34  
Table XIX. Clamp Input Signal Source Settings . . . . . . . . . 34  
Table XX. CLAMP Input Signal Polarity Settings . . . . . . . 34  
Table XXI. External Clock Select Settings . . . . . . . . . . . . . 34  
Table XXII. Red Clamp Select Settings . . . . . . . . . . . . . . . 35  
Table XXIII. Green Clamp Select Settings . . . . . . . . . . . . . 35  
Table XXIV. Blue Clamp Select Settings . . . . . . . . . . . . . . 35  
Table XXV. Clock Output Invert Settings . . . . . . . . . . . . . . 35  
Table XXVI. Pix Select Settings . . . . . . . . . . . . . . . . . . . . . 35  
Table XXVII. Output Drive Strength Settings . . . . . . . . . . 35  
Table XXVIII. Power-Down Output Settings . . . . . . . . . . . 35  
(DIGITAL INTERFACE) . . . . . . . . . . . . . . . . . . . . . . . . . 27  
–2–  
REV. 0  
AD9887A  
TABLE INDEX (continued)  
Table XXIX. Sync Detect Polarity Settings . . . . . . . . . . . . . 35  
Table XXX. HSYNC Detection Results . . . . . . . . . . . . . . . 36  
Table XXXI. Sync-on-Green Detection Results . . . . . . . . . 36  
Table XXXII. VSYNC Detection Results . . . . . . . . . . . . . . 36  
Table XXXIII. Digital Interface Clock Detection Results . . 36  
Table XXXIV. Active Interface Results . . . . . . . . . . . . . . . . 36  
Table XXXV. Active HSYNC Results . . . . . . . . . . . . . . . . . 36  
Table XXXVI. Active VSYNC Results . . . . . . . . . . . . . . . . 37  
Table XXXVII. Active Interface Override Settings . . . . . . . 37  
Table XXXVIII. Active Interface Select Settings . . . . . . . . . 37  
Table XXXIX. Active Hsync Override Settings . . . . . . . . . . 37  
Table XL. Active HSYNC Select Settings . . . . . . . . . . . . . . 37  
Table XLI. Active VSYNC Override Settings . . . . . . . . . . . 37  
Table XLII. Active VSYNC Select Settings . . . . . . . . . . . . . 37  
Table XLIII. COAST Select Settings . . . . . . . . . . . . . . . . . 37  
Table XLIV. Power-Down Settings . . . . . . . . . . . . . . . . . . . 37  
Table XLV. Scan Enable Settings . . . . . . . . . . . . . . . . . . . . 38  
Table XLVI. Coast Input Polarity Override Settings . . . . . . 38  
Table XLVII. HSYNC Input Polarity Override Settings . . . 38  
Table XLVIII. Detected HSYNC Input Polarity Status . . . 38  
Table XLIX. Detected VSYNC Input Polarity Status . . . . . 38  
Table L. Detected Coast Input Polarity Status . . . . . . . . . . 38  
Table LI. 4:2:2 Input/Output Configuration . . . . . . . . . . . . 39  
Table LII. 4:2:2 Output Mode Select . . . . . . . . . . . . . . . . . 39  
Table LIII. Serial Port Addresses . . . . . . . . . . . . . . . . . . . . 39  
Table LIV. Control of the Sync Block Muxes via the Serial  
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
REV. 0  
–3–  
AD9887A–SPECIFICATIONS  
(V = 3.3 V, V = 3.3 V, ADC Clock = Maximum Conversion Rate, unless otherwise noted.)  
ANALOG INTERFACE  
D
DD  
Test  
AD9887AKS-100  
AD9887AKS-140  
Min Typ Max  
AD9887AKS-170  
Min Typ Max  
Parameter  
Temp Level Min Typ Max  
Unit  
RESOLUTION  
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
25°C  
Full  
25°C  
Full  
I
VI  
I
VI  
I
0.5 +1.15/1.0  
+1.15/1.0  
0.5 1.40  
1.75  
0.5 +1.25/1.0  
+1.25/1.0  
0.5 1.4  
2.5  
Guaranteed  
0.8 +1.25/1.0 LSB  
+1.50/1.0 LSB  
Integral Nonlinearity  
No Missing Codes  
1.0 2.25  
2.75  
LSB  
LSB  
25°C  
Guaranteed  
Guaranteed  
ANALOG INPUT  
Input Voltage Range  
Minimum  
Maximum  
Gain Tempco  
Full  
Full  
25°C  
25°C  
Full  
Full  
Full  
VI  
VI  
V
IV  
IV  
VI  
VI  
0.5  
0.5  
0.5  
V p-p  
V p-p  
ppm/°C  
µA  
1.0  
43  
1.0  
43  
1.0  
43  
135  
1
150  
1
150  
1
Input Bias Current  
1
8.0  
53  
1
8.0  
53  
1
8.0  
53  
µA  
Input Full-Scale Matching  
Offset Adjustment Range  
% FS  
% FS  
48  
48  
48  
REFERENCE OUTPUT  
Output Voltage  
Temperature Coefcient  
Full  
Full  
V
V
1.3  
90  
1.3  
90  
1.3  
90  
V
ppm/°C  
SWITCHING PERFORMANCE1  
Maximum Conversion Rate  
Minimum Conversion Rate  
Clock to Data Skew, tSKEW  
Full  
Full  
Full  
VI  
IV  
IV  
100  
140  
170  
MSPS  
MSPS  
ns  
10  
+2.5  
10  
+2.5  
10  
+2.5  
1.5  
1.5  
1.5  
Serial Port Timing  
tBUFF  
tSTAH  
tDHO  
tDAL  
tDAH  
tDSU  
tSTASU  
tSTOSU  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
Full  
Full  
VI  
VI  
VI  
VI  
VI  
VI  
VI  
VI  
IV  
VI  
IV  
IV  
IV  
IV  
4.7  
4.0  
0
4.7  
4.0  
250  
4.7  
4.0  
15  
4.7  
4.0  
0
4.7  
4.0  
250  
4.7  
4.0  
15  
4.7  
4.0  
0
4.7  
4.0  
250  
4.7  
4.0  
15  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
HSYNC Input Frequency  
Maximum PLL Clock Rate  
Minimum PLL Clock Rate  
PLL Jitter  
110  
12  
110  
12  
110  
12  
kHz  
MHz  
MHz  
ps p-p  
ps p-p  
ps/°C  
100  
140  
170  
500 7002  
440 6503  
7003  
10  
370 5004  
7004  
10  
10002  
Sampling Phase Tempco  
DIGITAL INPUTS  
10  
Input Voltage, High (VIH  
Input Voltage, Low (VIL)  
Input Current, High (VIH  
Input Current, Low (VIL)  
Input Capacitance  
)
Full  
Full  
Full  
Full  
25°C  
VI  
VI  
IV  
IV  
V
2.6  
2.6  
2.6  
V
V
µA  
µA  
pF  
0.8  
1.0  
+1.0  
3
0.8  
1.0  
+1.0  
3
0.8  
1.0  
+1.0  
3
)
DIGITAL OUTPUTS  
Output Voltage, High (VOH  
)
Full  
Full  
VI  
VI  
2.4  
45  
2.4  
45  
2.4  
45  
V
V
Output Voltage, Low (VOL  
Duty Cycle  
)
0.4  
0.4  
0.4  
DATACK, DATACK  
Output Coding  
Full  
IV  
55  
60  
Binary  
55  
60  
Binary  
55  
65  
Binary  
%
–4–  
REV. 0  
AD9887A  
Test  
AD9887AKS-100  
AD9887AKS-140  
Min Typ Max  
AD9887AKS-170  
Min Typ Max  
Parameter  
Temp Level Min Typ Max  
Unit  
POWER SUPPLY  
V
V
D Supply Voltage  
DD Supply Voltage  
Full  
Full  
Full  
25°C  
25°C  
25°C  
Full  
IV  
IV  
IV  
V
V
V
3.15 3.3 3.45  
2.2 3.3 3.45  
3.15 3.3 3.45  
3.15 3.3 3.45  
2.2 3.3 3.45  
3.15 3.3 3.45  
3.15 3.3 3.45  
2.2 3.3 3.45  
3.15 3.3 3.45  
V
V
V
mA  
mA  
mA  
mA  
mA  
PVD Supply Voltage  
I
I
D Supply Current (VD)  
DD Supply Current (VDD  
140  
34  
15  
155  
48  
16  
230  
55  
60  
5
)
IPVD Supply Current (PVD  
)
Total Supply Current5  
VI  
VI  
300 330  
335 360  
345 390  
Power-Down Supply Current  
Full  
90  
120  
90  
120  
90  
120  
DYNAMIC PERFORMANCE  
Analog Bandwidth, Full Power  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SNR)6  
fIN = 40.7 MHz  
25°C  
25°C  
25°C  
25°C  
V
V
V
V
330  
2
1.5  
46  
330  
2
1.5  
46  
330  
2
1.5  
45  
MHz  
ns  
ns  
dB  
Crosstalk  
Full  
V
V
60  
37  
60  
37  
60  
37  
dBc  
THERMAL CHARACTERISTICS  
θ
JA Junction-to-Ambient7  
Thermal Resistance  
°C/W  
NOTES  
1Drive Strength = 11.  
2VCO Range = 01, Charge Pump Current = 001, PLL Divider = 1693.  
3VCO Range = 10, Charge Pump Current = 110, PLL Divider = 1600.  
4VCO Range = 11, Charge Pump Current = 110, PLL Divider = 2159.  
5DEMUX = 1, DATACK and DATACK Load = 10 pF, Data Load = 5 pF.  
6Using external pixel clock.  
7Simulated typical performance with package mounted to a 4-layer board.  
Specications subject to change without notice.  
REV. 0  
–5–  
AD9887A–SPECIFICATIONS  
(V = 3.3 V, V = 3.3 V, Clock = Maximum.)  
DIGITAL INTERFACE  
D
DD  
Test  
AD9887AKS  
Parameter  
Conditions  
Temp Level Min Typ Max  
Unit  
RESOLUTION  
8
Bits  
DC DIGITAL I/O SPECIFICATIONS  
High Level Input Voltage (VIH  
Low Level Input Voltage (VIL)  
)
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
IV  
IV  
IV  
IV  
IV  
2.6  
2.4  
V
V
V
V
V
V
V
V
µA  
0.8  
High Level Output Voltage (VOH  
Low Level Output Voltage (VOL  
Input Clamp Voltage (VCINL  
Input Clamp Voltage (VCIPL  
Output Clamp Voltage (VCONL  
Output Clamp Voltage (VCOPL  
)
)
0.4  
)
)
(ICL = 18 mA)  
(ICL = +18 mA)  
(ICL = 18 mA)  
(ICL = +18 mA)  
(High Impedance)  
GND 0.8  
VDD + 0.8  
GND 0.8  
VDD + 0.8  
+10  
)
)
Output Leakage Current (IOL  
)
Full  
10  
DC SPECIFICATIONS  
Output High Drive  
Output Drive = High  
Output Drive = Med  
Output Drive = Low  
Full  
Full  
Full  
IV  
IV  
IV  
13  
8
5
mA  
mA  
mA  
(IOHD) (VOUT = VOH  
)
Output Drive = High  
Output Drive = Med  
Output Drive = Low  
Full  
Full  
Full  
IV  
IV  
IV  
9  
7  
5  
mA  
mA  
mA  
(IOLD) (VOUT = VOL  
)
Output Drive = High  
Output Drive = Med  
Output Drive = Low  
Full  
Full  
Full  
IV  
IV  
IV  
25  
12  
8
mA  
mA  
mA  
(VOHC) (VOUT = VOH  
)
DATACK Low Drive  
(VOLC) (VOUT = VOL  
Output Drive = High  
Output Drive = Med  
Output Drive = Low  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
25  
19  
8  
mA  
mA  
mA  
mV  
)
Differential Input Voltage Single-Ended Amplitude  
POWER SUPPLY  
75  
800  
V
D Supply Voltage  
Full  
IV  
3.15 3.3  
3.45  
V
VDD Supply Voltage  
Minimum Value for 2 Pixels per  
Clock Mode  
Full  
Full  
25°C  
25°C  
25°C IV  
IV  
IV  
V
2.2 3.3  
3.15 3.3  
350  
3.45  
3.45  
V
V
mA  
mA  
mA  
mA  
P
VD Supply Voltage  
ID Supply Current1  
IDD Supply Current1, 2  
V
40  
130  
520 560  
IPVD Supply Current1  
Total Supply Current with HDCP1, 2  
VI  
AC SPECIFICATIONS  
Intrapair (+ to ) Differential Input Skew (TDPS  
Channel-to-Channel Differential Input Skew (TCCS  
)
Full  
Full  
IV  
IV  
360  
1.0  
ps  
)
Clock  
Period  
ns  
ns  
ns  
Low-to-High Transition Time for Data and  
Output Drive = High; CL = 10 pF Full  
IV  
IV  
IV  
2.5  
3.1  
5.4  
Controls (DLHT  
)
Output Drive = Med; CL = 7 pF  
Output Drive = Low; CL = 5 pF  
Full  
Full  
Low-to-High Transition Time for DATACK (DLHT  
)
Output Drive = High; CL = 10 pF Full  
IV  
IV  
IV  
1.2  
1.6  
2.3  
ns  
ns  
ns  
Output Drive = Med; CL = 7 pF  
Full  
Full  
Output Drive = Low; CL = 5 pF  
High-to-Low Transition Time for Data (DHLT  
)
Output Drive = High; CL = 10 pF Full  
IV  
IV  
IV  
2.6  
3.0  
3.7  
ns  
ns  
ns  
Output Drive = Med; CL = 7 pF  
Full  
Full  
Output Drive = Low; CL = 5 pF  
–6–  
REV. 0  
 
AD9887A  
Test  
AD9887AKS  
Parameter  
Conditions  
Temp Level Min Typ Max  
Unit  
AC SPECIFICATIONS (continued)  
High-to-Low Transition Time for DATACK (DHLT  
)
Output Drive = High; CL =10 pF Full  
IV  
IV  
IV  
IV  
IV  
1.4  
1.6  
2.4  
4.0  
55  
ns  
ns  
ns  
ns  
% of  
Period  
High  
MHz  
MHz  
Output Drive = Med; CL = 7 pF  
Output Drive = Low; CL = 5 pF  
Full  
Full  
Full  
Full  
3
Clock to Data Skew, tSKEW  
0
45  
Duty Cycle, DATACK, DATACK3  
DATACK Frequency (fCIP) (1 Pixel/Clock)  
DATACK Frequency (fCIP) (2 Pixels/Clock)  
Full  
Full  
VI  
IV  
20  
10  
140  
85  
NOTES  
1The typical pattern contains a gray scale area, Output Drive = High.  
2DATACK and DATACK Load = 10 pF, Data Load = 5 pF, HDCP disabled.  
3Drive Strength = 11  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
ABSOLUTE MAXIMUM RATINGS*  
VD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 V  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . VD to 0.0 V  
VREF IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VD to 0.0 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V to 0.0 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . . . 25°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . 65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . . 150°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specication is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
Test  
Level  
Explanation  
I
II  
100% production tested.  
100% production tested at 25°C and sample  
tested at specied temperatures.  
Sample tested only.  
Parameter is guaranteed by design and charac-  
terization testing.  
Parameter is a typical value only.  
100% production tested at 25°C; guaranteed  
by design and characterization testing.  
III  
IV  
V
VI  
ORDERING GUIDE  
Max Speed (MHz)  
DVI  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Analog  
AD9887AKS-170  
AD9887AKS-140  
AD9887AKS-100  
AD9887A/PCB  
170  
140  
100  
170  
140  
100  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
25°C  
Metric Quad Flatpack  
Metric Quad Flatpack  
Metric Quad Flatpack  
Evaluation Board  
S-160  
S-160  
S-160  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9887A features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. 0  
–7–  
 
AD9887A  
PIN CONFIGURATION  
V
1
2
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
R
V
DD  
GND  
MIDSC  
PIN 1  
IDENTIFIER  
R
AIN  
3
4
GREEN A<7>  
GREEN A<6>  
GREEN A<5>  
GREEN A<4>  
GREEN A<3>  
GREEN A<2>  
GREEN A<1>  
GREEN A<0>  
R
V
CLAMP  
V
D
5
GND  
6
V
V
D
D
7
8
GND  
GND  
G
G
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
V
MIDSC  
V
DD  
AIN  
GND  
GREEN B<7>  
GREEN B<6>  
GREEN B<5>  
GREEN B<4>  
GREEN B<3>  
GREEN B<2>  
GREEN B<1>  
GREEN B<0>  
G
V
CLAMP  
SOGIN  
V
D
GND  
V
V
D
D
AD9887A  
GND  
GND  
B
TOP VIEW  
(Not to Scale)  
V
MIDSC  
V
B
DD  
AIN  
GND  
BLUE A<7>  
BLUE A<6>  
BLUE A<5>  
BLUE A<4>  
BLUE A<3>  
BLUE A<2>  
BLUE A<1>  
BLUE A<0>  
B
V
CLAMP  
98  
V
D
97  
GND  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
V
D
GND  
CKINV  
CLAMP  
SDA  
SCL  
A0  
A1  
PV  
PV  
GND  
GND  
V
DD  
GND  
BLUE B<7>  
BLUE B<6>  
BLUE B<5>  
BLUE B<4>  
BLUE B<3>  
BLUE B<2>  
BLUE B<1>  
BLUE B<0>  
D
D
COAST  
CKEXT  
HSYNC  
VSYNC  
–8–  
REV. 0  
 
AD9887A  
Table I. Complete Pinout List  
Pin  
Type  
Pin  
Mnemonic  
Pin  
Number Interface  
Function  
Value  
Analog Video  
Inputs  
RAIN  
GAIN  
BAIN  
Analog Input for Converter R  
Analog Input for Converter G  
Analog Input for Converter B  
0.0 V to 1.0 V  
0.0 V to 1.0 V  
0.0 V to 1.0 V  
119  
110  
100  
Analog  
Analog  
Analog  
External  
Sync/Clock  
Inputs  
HSYNC  
VSYNC  
SOGIN  
CLAMP  
COAST  
CKEXT  
CKINV  
Horizontal SYNC Input  
Vertical SYNC Input  
Input for Sync-on-Green  
Clamp Input (External CLAMP Signal)  
PLL COAST Signal Input  
3.3 V CMOS  
3.3 V CMOS  
0.0 V to 1.0 V  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
82  
81  
108  
93  
84  
83  
94  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
External Pixel Clock Input (to Bypass the PLL) to VDD or Ground  
ADC Sampling Clock Invert  
Sync Outputs  
HSOUT  
VSOUT  
SOGOUT  
HSYNC Output Clock (Phase-Aligned with DATACK)  
VSYNC Output Clock  
Composite Sync  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
139  
138  
140  
Both  
Both  
Analog  
Voltage  
Reference  
REFOUT  
REFIN  
Internal Reference Output (Bypass with 0.1 µF to Ground)  
Reference Input (1.25 V 10%)  
1.25 V  
1.25 V 10%  
126  
125  
Analog  
Analog  
Clamp Voltages RMIDSC  
CLAMPV  
MIDSCV  
GCLAMP  
V
Red Channel Midscale Clamp Voltage Output  
Red Channel Midscale Clamp Voltage Input  
Green Channel Midscale Clamp Voltage Output  
Green Channel Midscale Clamp Voltage Input  
Blue Channel Midscale Clamp Voltage Output  
Blue Channel Midscale Clamp Voltage Input  
120  
118  
111  
109  
101  
99  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
R
G
0.0 V to 0.75 V  
0.0 V to 0.75 V  
0.0 V to 0.75 V  
V
B
MIDSCV  
BCLAMP  
V
PLL Filter  
FILT  
Connection for External Filter Components for Internal PLL  
78  
Analog  
Power Supply  
VD  
Analog Power Supply  
Output Power Supply  
PLL Power Supply  
Ground  
3.3 V 10%  
3.3 V 10%  
3.3 V 10%  
0 V  
Both  
Both  
Both  
Both  
VDD  
PVD  
GND  
Serial Port  
(2-Wire  
Serial Interface) A0  
A1  
SDA  
SCL  
Serial Port Data I/O  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
92  
91  
90  
89  
Both  
Both  
Both  
Both  
Serial Port Data Clock (100 kHz Max)  
Serial Port Address Input 1  
Serial Port Address Input 2  
Data Outputs  
Red B[7:0]  
Green B[7:0]  
Blue B[7:0]  
Red A[7:0]  
Green A[7:0]  
Blue A[7:0]  
Port B/Odd Outputs of Converter Red,Bit 7 Is the MSB  
Port B/Odd Outputs of Converter Green,Bit 7 Is the MSB  
Port B/Odd Outputs of Converter Blue,Bit 7 Is the MSB  
Port A/Even Outputs of Converter Red,Bit 7 Is the MSB  
Port A/Even Outputs of Converter Green,Bit 7 Is the MSB  
Port A/Even Outputs of Converter Blue,Bit 7 Is the MSB  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
153160 Both  
1320  
3340  
Both  
Both  
143150 Both  
310  
2330  
Both  
Both  
Data Clock  
Outputs  
DATACK  
DATACK  
Data Output Clock for the Analog and Digital Interface  
Data Output Clock Complement for the Analog Interface Only  
3.3 V CMOS  
3.3 V CMOS  
134  
135  
Both  
Both  
Sync Detect  
SCDT  
Sync Detect Output  
3.3 V CMOS  
136  
Both  
Scan Function  
SCANIN  
SCANOUT  
SCANCLK  
Input for SCAN Function  
Output for SCAN Function  
Clock for SCAN Function  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
129  
45  
50  
Both  
Both  
Both  
Digital Video  
Data Inputs  
Rx0+  
Rx0–  
Rx1+  
Rx1–  
Rx2+  
Rx2–  
Digital Input Channel 0 True  
Digital Input Channel 0 Complement  
Digital Input Channel 1 True  
Digital Input Channel 1 Complement  
Digital Input Channel 2 True  
Digital Input Channel 2 Complement  
62  
63  
59  
60  
56  
57  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
REV. 0  
–9–  
 
AD9887A  
P
Type  
in  
Pin  
Mnemonic  
Pin  
Number  
Function  
Value  
Interface  
Digital Video  
Clock Inputs  
RxC+  
RxC–  
Digital Data Clock True  
Digital Data Clock Complement  
65  
66  
Digital  
Digital  
Data Enable  
Control Bits  
RTERM  
DE  
Data Enable  
3.3 V CMOS  
3.3 V CMOS  
137  
4648  
53  
Digital  
Digital  
Digital  
CTL[0:2]  
RTERM  
Decoded Control Bits  
Sets Internal Termination Resistance  
HDCP  
DDCSCL  
DDCSDA  
MCL  
HDCP Slave Serial Port Data Clock  
HDCP Slave Serial Port Data I/O  
HDCP Master Serial Port Data Clock  
HDCP Master Serial Port Data I/O  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
73  
72  
49  
71  
Digital  
Digital  
Digital  
Digital  
MDA  
DESCRIPTIONS OF PINS SHARED BETWEEN ANALOG  
AND DIGITAL INTERFACES  
Data Clock Outputs  
DATACK  
Data Output Clock  
HSOUT  
Horizontal Sync Output  
DATACK  
Data Output Clock Complement  
A reconstructed and phase-aligned version of  
the video HSYNC. The polarity of this output  
can be controlled via a serial bus bit. In analog  
interface mode, the placement and duration  
are variable. In digital interface mode, the  
placement and duration are set by the graphics  
transmitter.  
Just like the data outputs, the data clock outputs  
are shared between the two interfaces. They  
also behave differently depending on which  
interface is active. Refer to the sections on the  
two interfaces to determine how these pins  
behave.  
Various  
SCDT  
VSOUT  
Vertical Sync Output  
Chip Active/Inactive Detect Output  
The separated VSYNC from a composite  
signal or a direct pass through of the VSYNC  
input. The polarity of this output can be con-  
trolled via a serial bus bit. The placement and  
duration in all modes is set by the graphics  
transmitter.  
The logic for the SCDT pin is [analog interface  
HSYNC detection] OR [digital interface DE  
detection]. So, the SCDT pin will switch to logic  
LOW under two conditions, when neither  
interface is active or when the chip is in full  
chip power-down mode. The data outputs are  
automatically three-stated when SCDT is LOW.  
This pin can be read by a controller in order  
to determine periods of inactivity.  
Serial Port (2-Wire)  
SDA  
SCL  
A0  
Serial Port Data I/O  
Serial Port Data Clock  
Serial Port Address Input 1  
Serial Port Address Input 2  
SCAN Function  
SCANIN  
Data Input for SCAN Function  
A1  
For a full description of the 2-wire serial regis-  
ter and how it works, refer to the Control  
Register section.  
Data can be loaded serially into the 48-bit  
SCAN register through this pin, clocking it in  
with the SCANCLK pin. It then comes out of  
the 48 data outputs in parallel. This function is  
useful for loading known data into a graphics  
controller chip for testing purposes.  
Data Outputs  
RED A  
RED B  
GREEN A  
GREEN B  
BLUE A  
Data Output, Red Channel, Port A/Even  
Data Output, Red Channel, Port B/Odd  
Data Output, Green Channel, Port A/Even  
Data Output, Green Channel, Port B/Odd  
Data Output, Blue Channel, Port A/Even  
Data Output, Blue Channel, Port B/Odd  
SCANOUT  
SCANCLK  
Data Output for SCAN Function  
The data in the 48-bit SCAN register can be  
read through this pin. Data is read on a FIFO  
basis and is clocked via the SCANCLK pin.  
BLUE B  
Data Clock for SCAN Function  
The main data outputs. Bit 7 is the MSB.  
These outputs are shared between the two  
interfaces and behave according to which  
interface is active. Refer to the sections on the  
two interfaces for more information on how  
these outputs behave.  
This pin clocks the data through the SCAN  
register. It controls both data input and data  
output.  
–10–  
REV. 0  
 
AD9887A  
Table II. Analog Interface Pin List  
Pin  
Pin  
Pin  
Type  
Mnemonic  
Function  
Value  
Number  
Analog Video Inputs  
RAIN  
GAIN  
BAIN  
HSYNC  
VSYNC  
SOGIN  
CLAMP  
COAST  
CKEXT  
Analog Input for Converter R  
Analog Input for Converter G  
Analog Input for Converter B  
Horizontal SYNC Input  
Vertical SYNC Input  
Sync-on-Green Input  
Clamp Input (External CLAMP Signal)  
PLL COAST Signal Input  
External Pixel Clock Input (to Bypass Internal PLL)  
or 10 kto VDD  
ADC Sampling Clock Invert  
HSYNC Output (Phase-Aligned with DATACK and DATACK)  
VSYNC Output  
Composite Sync  
0.0 V to 1.0 V  
0.0 V to 1.0 V  
0.0 V to 1.0 V  
3.3 V CMOS  
3.3 V CMOS  
0.0 V to 1.0 V  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
119  
110  
100  
82  
81  
108  
93  
External  
Sync/Clock  
Inputs  
84  
83  
CKINV  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
1.25 V  
1.25 V 10%  
0.5 V 50%  
0.0 V to 0.75 V  
0.5 V 50%  
0.0 V to 0.75 V  
0.5 V 50%  
0.0 V to 0.75 V  
94  
Sync Outputs  
HSOUT  
VSOUT  
SOGOUT  
REFOUT  
REFIN  
RMIDSC  
RCLAMP  
GMIDSC  
139  
138  
140  
126  
125  
120  
118  
111  
109  
101  
99  
Voltage Reference  
Clamp Voltages  
Internal Reference Output (bypass with 0.1 µF to ground)  
Reference Input (1.25 V 10%)  
V
V
V
V
V
V
Voltage output equal to the RED converter midscale voltage.  
During midscale clamping, the RED Input is clamped to this pin.  
Voltage output equal to the GREEN converter midscale voltage.  
During midscale clamping, the GREEN Input is clamped to this pin.  
Voltage output equal to the BLUE converter midscale voltage.  
During midscale clamping, the BLUE Input is clamped to this pin.  
Connection for External Filter Components for Internal PLL  
Main Power Supply  
GCLAMP  
BMIDSC  
BCLAMP  
FILT  
VD  
PVD  
VDD  
PLL Filter  
Power Supply  
78  
3.3 V 5%  
3.3 V 5%  
3.3 V or 2.5 V 5%  
0 V  
PLL Power Supply (Nominally 3.3 V)  
Output Power Supply  
Ground  
GND  
PIN FUNCTION DETAILS (ANALOG INTERFACE)  
Inputs  
Polarity = 0, the falling edge of HSYNC is  
used. When HSYNC Polarity = 1, the rising  
edge is active.  
RAIN  
GAIN  
BAIN  
Analog Input for RED Channel  
Analog Input for GREEN Channel  
Analog Input for BLUE Channel  
The input includes a Schmitt trigger for noise  
immunity, with a nominal input threshold  
of 1.5 V.  
High-impedance inputs that accept the RED,  
GREEN, and BLUE channel graphics signals,  
respectively. For RGB, the three channels are  
identical and can be used for any colors, but  
colors are assigned for convenient reference.  
For proper 4:2:2 formatting in a YUV appli-  
cation, the Y channel must be connected to  
the GAIN input, U must be connected to the  
BAIN input, and V must be connected to the  
RAIN input.  
Electrostatic Discharge (ESD) protection  
diodes will conduct heavily if this pin is driven  
more than 0.5 V above the maximum toler-  
ance voltage (3.3 V), or more than 0.5 V  
below ground.  
VSYNC  
SOGIN  
Vertical Sync Input  
This is the input for vertical sync.  
Sync-on-Green Input  
This input is provided to assist with processing  
signals with embedded sync, typically on the  
GREEN channel. The pin is connected to a  
high-speed comparator with an internally  
generated threshold, which is set to 0.15 V  
above the negative peak of the input signal.  
They accommodate input signals ranging  
from 0.5 V to 1.0 V full scale. Signals should  
be ac-coupled to these pins to support clamp  
operation.  
HSYNC  
Horizontal Sync Input  
This input receives a logic signal that estab-  
lishes the horizontal timing reference and  
provides the frequency reference for pixel  
clock generation.  
When connected to an ac-coupled graphics  
signal with embedded sync, it will produce a  
noninverting digital output on SOGOUT.  
When not used, this input should be left  
unconnected. For more details on this func-  
tion and how it should be congured, refer to  
the Sync-on-Green section.  
The logic sense of this pin is controlled by  
serial register 0Fh Bit 7 (HSYNC Polarity).  
Only the leading edge of HSYNC is active,  
the trailing edge is ignored. When HSYNC  
REV. 0  
–11–  
 
AD9887A  
This pin should be exercised only during blank-  
ing intervals (typically vertical blanking) as it  
may produce several samples of corrupted data  
during the phase shift.  
CLAMP  
External Clamp Input (Optional)  
This logic input may be used to dene the  
time during which the input signal is clamped  
to the reference dc level (ground for RGB or  
midscale for YUV). It should be exercised  
when the reference dc level is known to be  
present on the analog input channels, typically  
during the back porch of the graphics signal.  
The CLAMP pin is enabled by setting con-  
trol bit EXTCLMP to 1, (the default power-up  
is 0). When disabled, this pin is ignored and  
the clamp timing is determined internally by  
counting a delay and duration from the trailing  
edge of the HSYNC input. The logic sense of  
this pin is controlled by CLAMPOL. When  
not used, this pin must be grounded and  
EXTCLMP programmed to 0.  
CKINV should be grounded when not used.  
Either or both signals may be used, depending  
on the timing mode and interface design  
employed.  
HSOUT  
Horizontal Sync Output  
A reconstructed and phase-aligned version of  
the Hsync input. Both the polarity and duration  
of this output can be programmed via serial  
bus registers.  
By maintaining alignment with DATACK,  
DATACK, and Data, data timing with  
respect to horizontal sync can always be  
determined.  
COAST  
Clock Generator Coast Input (Optional)  
SOGOUT  
Sync-On-Green Slicer Output  
This input may be used to cause the pixel clock  
generator to stop synchronizing with HSYNC  
and continue producing a clock at its current  
frequency and phase. This is useful when  
processing signals from sources that fail to  
produce horizontal sync pulses when in the  
vertical interval. The COAST signal is generally  
not required for PC-generated signals. Appli-  
cations requiring COAST can do so through  
the internal COAST found in the SYNC  
processing engine.  
This pin can be programmed to output  
either the output from the Sync-On-Green  
slicer comparator or an unprocessed but  
delayed version of the HSYNC input. See  
the Sync Block Diagram to view how this  
pin is connected.  
The output from this pin is the Composite  
Sync without additional processing from the  
AD9887A.  
REFOUT  
Internal Reference Output  
The logic sense of this pin is controlled by  
COAST Polarity.  
Output from the internal 1.25 V band gap refer-  
ence. This output is intended to drive relatively  
light loads. It can drive the AD9887A reference  
input directly but should be externally buffered  
if it is used to drive other loads as well.  
When not used, this pin may be grounded and  
COAST Polarity programmed to 1, or tied  
HIGH and COAST Polarity programmed to 0.  
COAST Polarity defaults to 1 at power-up.  
The absolute accuracy of this output is 4%,  
and the temperature coefcient is 50 ppm,  
which is adequate for most AD9887A appli-  
cations. If higher accuracy is required, an  
external reference may be employed instead.  
CKEXT  
External Clock Input (Optional)  
This pin may be used to provide an external  
clock to the AD9887A, in place of the clock  
internally generated from HSYNC.  
It is enabled by programming EXTCLK to 1.  
When an external clock is used, all other inter-  
nal functions operate normally. When unused,  
this pin should be tied to VDD or to GROUND,  
and EXTCLK programmed to 0. The clock  
phase adjustment still operates when an external  
clock source is used.  
If an external reference is used, connect this  
pin to ground through a 0.1 µF capacitor.  
REFIN  
Reference Input  
The reference input accepts the master refer-  
ence voltage for all AD9887A internal circuitry  
(1.25 V 10%). It may be driven directly by the  
REFOUT pin. Its high impedance presents a  
very light load to the reference source.  
CKINV  
Sampling Clock Inversion (Optional)  
This pin may be used to invert the pixel  
sampling clock, which has the effect of  
shifting the sampling phase 180°. This is in  
support of Alternate Pixel Sampling mode,  
wherein higher frequency input signals (up  
to 340 Mpps) may be captured by rst sam-  
pling the odd pixels, then capturing the even  
pixels on the subsequent frame.  
This pin should always be bypassed to Ground  
with a 0.1 µF capacitor.  
FILT  
External Filter Connection  
For proper operation, the pixel clock generator  
PLL requires an external lter. Connect the  
lter shown in Figure 7 to this pin. For optimal  
performance, minimize noise and parasitics  
on this node.  
–12–  
REV. 0  
AD9887A  
Outputs  
Power Supply  
RED A  
Data Output, Red Channel, Port A/EVEN  
Data Output, Red Channel, Port B/ODD  
Data Output, Green Channel, Port A/EVEN  
Data Output, Green Channel, Port B/ODD  
Data Output, Blue Channel, Port A/EVEN  
Data Output, Blue Channel, Port B/ODD  
These are the main data outputs. Bit 7 is the MSB.  
VD  
Main Power Supply  
RED B  
These pins supply power to the main elements  
of the circuit. It should be ltered to be as  
quiet as possible.  
GREEN A  
GREEN B  
BLUE A  
BLUE B  
VDD  
Digital Output Power Supply  
These supply pins are identied separately  
from the VD pins so special care can be taken  
to minimize output noise transferred into the  
sensitive analog circuitry.  
Each channel has two ports. When the part is  
operated in single-channel mode (DEMUX = 0),  
all data are presented to Port A, and Port B is  
placed in a high impedance state.  
If the AD9887A is interfacing with lower-  
voltage logic, VDD may be connected to a lower  
supply voltage (as low as 2.2 V) for compatibility.  
PVD  
Clock Generator Power Supply  
Programming DEMUX to 1 established dual-  
channel mode, wherein alternate pixels are  
presented to Port A and Port B of each channel.  
These will appear simultaneously, two pixels  
presented at the time of every second input  
pixel, when PAR is set to 1 (parallel mode).  
When PAR = 0, pixel data appear alternately  
on the two ports, one new sample with each  
incoming pixel (interleaved mode).  
The most sensitive portion of the AD9887A  
is the clock generation circuitry. These pins  
provide power to the clock PLL and help the  
user design for optimal performance. The  
designer should provide noise-free power to  
these pins.  
GND  
Ground  
The ground return for all circuitry on-chip. It is  
recommended that the application circuit  
board have a single, solid ground plane.  
In dual-channel mode, the rst pixel after  
HSYNC is routed to Port A. The second pixel  
goes to Port B, the third to A, etc.  
The delay from pixel sampling time to output is  
xed. When the sampling time is changed by  
adjusting the PHASE register, the output timing is  
shifted as well. The DATACK, DATACK, and  
HSOUT outputs are also moved, so the timing  
relationship among the signals is maintained.  
THEORY OF OPERATION (INTERFACE DETECTION)  
Active Interface Detection and Selection  
The AD9887A includes circuitry to detect whether an interface  
is active (see Table III).  
For detecting the analog interface, the circuitry monitors the  
presence of HSYNC, VSYNC, and Sync-on-Green. The result of  
the detection circuitry can be read from the 2-wire serial interface  
bus at Address 11H Bits 7, 6, and 5, respectively. If one of these  
sync signals disappears, the maximum time it takes for the  
circuitry to detect it is 100 ms.  
DATACK  
Data Output Clock  
DATACK  
Data Output Clock Complement  
Differential data clock output signals to be  
used to strobe the output data and HSOUT  
into external logic.  
There are two stages for detecting the digital interface. The rst  
stage searches for the presence of the digital interface clock. The  
circuitry for detecting the digital interface clock is active even  
when the digital interface is powered down. The result of this  
detection stage can be read from the 2-wire serial interface bus at  
Address 11H Bit 4. If the clock disappears, the maximum time it  
takes for the circuitry to detect it is 100 ms. Once a digital inter-  
face clock is detected, the digital interface is powered up and the  
second stage of detection begins. During the second stage, the  
circuitry searches for 32 consecutive DEs. Once 32 DEs are  
found, the detection process is complete.  
They are produced by the internal clock gen-  
erator and are synchronous with the internal  
pixel sampling clock.  
When the AD9887A is operated in single-  
channel mode, the output frequency is equal  
to the pixel sampling frequency. When operating  
in dual-channel mode, the clock frequency is  
one-half the pixel frequency.  
When the sampling time is changed by adjusting  
the PHASE register, the output timing is shifted  
as well. The Data, DATACK, DATACK, and  
HSOUT outputs are all moved, so the timing  
relationship among the signals is maintained.  
There is an override for the automatic interface selection. It is  
the AIO bit (active interface override). When the AIO bit is set  
to Logic 0, the automatic circuitry will be used. When the AIO  
bit is set to Logic 1, the AIS bit will be used to determine the  
active interface rather than the automatic circuitry.  
REV. 0  
–13–  
 
AD9887A  
Power Management  
power-down bit to determine the correct power state. In a given  
power mode not all circuitry in the inactive interface is powered  
down completely. When the digital interface is active, the band  
gap reference and HSYNC detect circuitry is not powered down.  
When the analog interface is active, the digital interface clock  
detect circuit is not powered down. Table IV summarizes how  
the AD9887A determines which power mode to be in and what  
circuitry is powered on/off in each of these modes. The power-  
down command has priority, followed by the active interface  
override, and then the automatic circuitry.  
The AD9887A is a dual interface device with shared outputs.  
Only one interface can be used at a time. For this reason, the  
chip automatically powers down the unused interface. When  
the analog interface is being used, most of the digital interface  
circuitry is powered down and vice versa. This helps to minimize the  
AD9887A total power dissipation. In addition, if neither interface  
has activity on it, the chip powers down both interfaces.  
The AD9887A uses the activity detect circuits, the active interface  
bits in the serial registers, the active interface override bits, and the  
Table III. Interface Selection Controls  
Analog  
Digital  
Active  
AIO Interface Detect Interface Detect AIS Interface Description  
1
0
X
0
X
0
0
1
X
Analog  
Digital  
None  
Force the analog interface active.  
Force the digital interface active.  
Neither interface was detected. Both interfaces are  
powered down and the SyncDT pin gets set to Logic 0.  
The digital interface was detected. Power down the analog interface.  
The analog interface was detected. Power down the digital interface.  
Both interfaces were detected. The analog interface has priority.  
Both interfaces were detected. The digital interface has priority.  
0
1
1
1
0
0
X
X
X
1
Digital  
Analog  
Analog  
Digital  
Table IV. Power-Down Mode Descriptions  
Inputs  
Analog  
Digital  
Active  
Active  
Power- Interface Interface Interface Interface  
Mode  
Down1  
Detect2  
Detect3  
Override Select  
Powered On or Comments  
Soft Power-Down (Seek Mode)  
1
0
0
0
0
0
X
X
X
Serial Bus, Digital Interface Clock Detect,  
Analog Interface Activity Detect, SOG,  
Band Gap Reference  
Serial Bus, Digital Interface, Analog Interface  
Activity Detect, SOG, Outputs, Band Gap  
Reference  
Serial Bus, Analog Interface, Digital Interface  
Clock Detect, SOG, Outputs, Band Gap  
Reference  
Digital Interface On  
1
1
0
1
1
0
Analog Interface On  
Serial Bus Arbitrated Interface  
Serial Bus Arbitrated Interface  
Override to Analog Interface  
Override to Digital Interface  
Absolute Power-Down  
1
1
1
1
0
1
1
X
X
X
1
1
X
X
X
0
0
1
1
X
0
1
0
1
X
Same as Analog Interface On Mode  
Same as Digital Interface On Mode  
Same as Analog Interface On Mode  
Same as Digital Interface On Mode  
Serial Bus  
NOTES  
1Power-down is controlled via bit 0 in serial bus Register 12h.  
2Analog Interface Detect is determined by OR-ing Bits 7, 6, and 5 in serial bus Register 11h.  
3Digital Interface Detect is determined by Bit 4 in serial bus Register 11h.  
–14–  
REV. 0  
 
AD9887A  
HSYNC, VSYNC Inputs  
THEORY OF OPERATION AND DESIGN GUIDE  
(ANALOG INTERFACE)  
General Description  
The AD9887A is a fully integrated solution for capturing analog  
RGB signals and digitizing them for display on flat panel monitors  
or projectors. The device is ideal for implementing a computer  
interface in HDTV monitors or as the front end to high perfor-  
mance video scan converters.  
The AD9887A receives a horizontal sync signal and uses it to  
generate the pixel clock and clamp timing. It is possible to operate  
the AD9887A without applying HSYNC (using an external  
clock, external clamp) but a number of features of the chip  
will be unavailable, so it is recommended that HSYNC be  
provided. This can be either a sync signal directly from the  
graphics source, or a preprocessed TTL or CMOS level signal.  
The HSYNC input includes a Schmitt trigger buffer and is  
capable of handling signals with long rise times, with superior  
noise immunity. In typical PC-based graphic systems, the sync  
signals are simply TTL-level drivers feeding unshielded wires in  
the monitor cable. As such, no termination is required or desired.  
Implemented in a high performance CMOS process, the interface  
can capture signals with pixel rates of up to 170 MHz and, with  
an Alternate Pixel Sampling mode, up to 340 MHz.  
The AD9887A includes all necessary input buffering, signal dc  
restoration (clamping), offset and gain (brightness and contrast)  
adjustment, pixel clock generation, sampling phase control,  
and output data formatting. All controls are programmable via a  
2-wire serial interface. Full integration of these sensitive analog  
functions makes system design straightforward and less sensitive  
to the physical and electrical environment.  
When the VSYNC input is selected as the source for VSYNC, it  
is used for COAST generation and is passed through to the  
VSOUT pin.  
Serial Control Port  
The serial control port is designed for 3.3 V logic. If there are  
5 V drivers on the bus, these pins should be protected with  
150 series resistors placed between the pull-up resistors and  
the input pins.  
With an operating temperature range of 0°C to 70°C, the device  
requires no special environmental considerations.  
Input Signal Handling  
Output Signal Handling  
The AD9887A has three high impedance analog input pins for  
the Red, Green, and Blue channels. They will accommodate  
signals ranging from 0.5 V to 1.0 V p-p.  
The digital outputs are designed and specied to operate from  
a 3.3 V power supply (VDD). They can also work with a VDD as  
low as 2.5 V for compatibility with other 2.5 V logic.  
Signals are typically brought onto the interface board via a  
DVI-I connector, a 15-lead D connector, or BNC connectors.  
The AD9887A should be located as close as practical to the  
input connector. Signals should be routed via matched-impedance  
traces (normally 75 ) to the IC input pins.  
Clamping  
RGB Clamping  
To digitize the incoming signal properly, the dc offset of the input  
must be adjusted to t the range of the on-board A/D converters.  
Most graphics systems produce RGB signals with black at ground  
and white at approximately 0.75 V. However, if sync signals are  
embedded in the graphics, the sync tip is often at ground and  
black is at 300 mV. The white level will be approximately 1.0 V.  
Some common RGB line amplier boxes use emitter-follower  
buffers to split signals and increase drive capability. This intro-  
duces a 700 mV dc offset to the signal, which is removed by  
clamping for proper capture by the AD9887A.  
At that point the signal should be resistively terminated (75 to  
the signal ground return) and capacitively coupled to the AD9887A  
inputs through 47 nF capacitors. These capacitors form part of  
the dc restoration circuit (see Figure 1).  
In an ideal world of perfectly matched impedances, the best perfor-  
mance can be obtained with the widest possible signal bandwidth.  
The wide bandwidth inputs of the AD9887A (330 MHz) can  
track the input signal continuously as it moves from one pixel  
level to the next and digitize the pixel during a long, flat pixel  
time. In many systems, however, there are mismatches, reflections,  
and noise that can result in excessive ringing and distortion of  
the input waveform. This makes it more difcult to establish a  
sampling phase that provides good image quality. It has been  
shown that a small inductor in series with the input is effective  
in rolling off the input bandwidth slightly and providing a high  
quality signal over a wider range of conditions. Using a Fair-Rite  
#2508051217Z0 High-Speed Signal Chip Bead inductor in the  
circuit of Figure 1 gives good results in most applications.  
The key to clamping is to identify a portion (time) of the signal  
when the graphic system is known to be producing black. Originating  
from CRT displays, the electron beam is blankedby sending  
a black level during horizontal retrace to prevent disturbing the  
image. Most graphics systems maintain this format of sending a  
black level between active video lines.  
An offset is then introduced which results in the A/D converters  
producing a black output (Code 00h) when the known black  
input is present. The offset then remains in place when other  
signal levels are processed, and the entire signal is shifted to  
eliminate offset errors.  
47nF  
R
AIN  
AIN  
RGB  
INPUT  
In systems with embedded sync, a blacker-than-black signal  
(HSYNC) is produced briefly to signal the CRT that it is time  
to begin a retrace. For obvious reasons, it is important to avoid  
clamping on the tip of HSYNC. Fortunately, there is virtually  
always a period following HSYNC called the back porch where a  
good black reference is provided. This is the time when clamping  
should be done.  
G
B
AIN  
75  
Figure 1. Analog Input Interface Circuit  
The clamp timing can be established by exercising the CLAMP  
pin at the appropriate time (with EXTCLMP = 1). The polarity  
of this signal is set by the Clamp Polarity bit.  
REV. 0  
–15–  
 
AD9887A  
An easier method of clamp timing employs the AD9887A internal  
clamp timing generator. The clamp placement register is pro-  
grammed with the number of pixel clocks that should pass after  
the trailing edge of HSYNC before clamping starts. A second  
register (clamp duration) sets the duration of the clamp. These  
are both 8-bit values, providing considerable flexibility in clamp  
generation. The clamp timing is referenced to the trailing edge  
of HSYNC, the back porch (black reference) always follows  
HSYNC. A good starting point for establishing clamping is to  
set the clamp placement to 08h (providing eight pixel periods  
for the graphics signal to stabilize after sync) and set the clamp  
duration to 14h (giving the clamp 20 pixel periods to re-establish  
the black reference).  
Gain and Offset Control  
The AD9887A can accommodate input signals with inputs  
ranging from 0.5 V to 1.0 V full scale. The full-scale range is set  
in three 8-bit registers (Red Gain, Green Gain, and Blue Gain).  
A code of 0 establishes a minimum input range of 0.5 V; 255  
corresponds with the maximum range of 1.0 V. Note that  
increasing the gain setting results in an image with less contrast.  
The offset control shifts the entire input range, resulting in a  
change in image brightness. Three 7-bit registers (Red Offset,  
Green Offset, Blue Offset) provide independent settings for  
each channel.  
The offset controls provide a 63 LSB adjustment range. This  
range is connected with the full-scale range, so if the input range  
is doubled (from 0.5 V to 1.0 V) then the offset step size is also  
doubled (from 2 mV per step to 4 mV per step).  
The value of the external input coupling capacitor affects the  
performance of the clamp. If the value is too small, there can be  
an amplitude change during a horizontal line time (between  
clamping intervals). If the capacitor is too large, it will take exces-  
sively long for the clamp to recover from a large change in incoming  
signal offset. The recommended value (47 nF) results in recovery  
from a step error of 100 mV to within 1/2 LSB in 10 lines using  
a clamp duration of 20 pixel periods on a 60 Hz SXGA signal.  
Figure 3 illustrates the interaction of gain and offset controls.  
The magnitude of an LSB in offset adjustment is proportional  
to the full-scale range, so changing the full-scale range also  
changes the offset. The change is minimal if the offset setting is  
near midscale. When changing the offset, the full-scale range is  
not affected, but the full-scale level is shifted by the same amount  
as the zero-scale level.  
YUV Clamping  
YUV signals are slightly different from RGB signals in that the  
dc reference level (black level in RGB signals) will be at the  
midpoint of the U and V video signal. For these signals, it can be  
necessary to clamp to the midscale range of the A/D converter  
range (80h) rather than bottom of the A/D converter range (00h).  
OFFSET = 7Fh  
OFFSET = 3Fh  
1.0  
Clamping to midscale rather than ground can be accomplished  
by setting the clamp select bits in the serial bus register. Each of  
the three converters has its own selection bit so that they can be  
clamped to either midscale or ground independently. These bits  
are located in Register 0Fh and are Bits 02.  
OFFSET = 00h  
0.5  
OFFSET = 7Fh  
The midscale reference voltage that each A/D converter clamps  
to is provided independently on the RMIDSCV, GMIDSCV, and  
BMIDSCV pins. Each converter must have its own midscale refer-  
ence because both offset adjustment and gain adjustment for  
each converter will affect the dc level of midscale.  
OFFSET = 3Fh  
0.0  
OFFSET = 00h  
00h  
FFh  
GAIN  
During clamping, the Y and V converters are clamped to their  
respective midscale reference input. These inputs are pins  
Figure 3. Gain and Offset Control  
B
CLAMPV and RCLAMPV for the U and V converters, respectively.  
Sync-on-Green  
The typical connections for both RGB and YUV clamping are  
shown below in Figure 2. Note: if midscale clamping is not  
required, all of the midscale voltage outputs should still be  
connected to ground through a 0.1 µF capacitor.  
The Sync-on-Green input operates in two steps. First, it sets a  
baseline clamp level from the incoming video signal with a negative  
peak detector. Second, it sets the sync trigger level (nominally  
150 mV above the negative peak). The exact trigger level is variable  
and can be programmed via Register 11H. The Sync-on-Green  
input must be ac-coupled to the green analog input through its own  
capacitor as shown in Figure 4. The value of the capacitor must  
be 1 nF 20%. If Sync-on-Green is not used, this connection is  
not required and SOGIN should be left unconnected. (Note: The  
Sync-on-Green signal is always negative polarity.) Please refer to  
the Sync Processing section for more information.  
R
R
V
MIDSC  
V
CLAMP  
0.1F  
G
G
V
MIDSC  
V
CLAMP  
0.1F  
47nF  
B
B
V
MIDSC  
R
B
AIN  
47nF  
47nF  
V
CLAMP  
AIN  
0.1F  
G
AIN  
SOGIN  
Figure 2. Typical Clamp Configuration for RBG/YUV  
Applications  
1nF  
Figure 4. Typical Clamp Configuration for  
RGB/YUV Applications  
–16–  
REV. 0  
 
AD9887A  
Clock Generation  
Considerable care has been taken in the design of the AD9887As  
clock generation circuit to minimize jitter. As indicated in  
Figure 6, the clock jitter of the AD9887A is less than 6% of the  
total pixel time in all operating modes, making the reduction in  
the valid sampling time due to jitter negligible.  
A Phase Locked Loop (PLL) is employed to generate the pixel  
clock. The HSYNC input provides a reference frequency for the  
PLL. A Voltage Controlled Oscillator (VCO) generates a much  
higher pixel clock frequency. This pixel clock is divided by the  
PLL divide value (Registers 01H and 02H) and phase compared  
with the Hsync input. Any error is used to shift the VCO frequency  
and maintain lock between the two signals.  
The PLL characteristics are determined by the loop lter design,  
by the PLL charge pump current, and by the VCO range setting.  
The loop lter design is illustrated in Figure 7. Recommended  
settings of VCO range and charge pump current for VESA  
standard display modes are listed in Table VII.  
The stability of this clock is a very important element in provid-  
ing the clearest and most stable image. During each pixel time,  
there is a period when the signal is slewing from the old pixel  
amplitude and settling at its new value. Then there is a time  
when the input voltage is stable, before the signal must slew to a  
new value (see Figure 5). The ratio of the slewing time to the  
stable time is a function of the bandwidth of the graphics DAC  
and the bandwidth of the transmission system (cable and termi-  
nation). It is also a function of the overall pixel rate. Clearly, if the  
dynamic characteristics of the system remain xed, the slewing  
and settling times are likewise xed. This time must be sub-  
tracted from the total pixel period, leaving the stable period. At  
higher pixel frequencies, the total cycle time is shorter, and the  
stable pixel time becomes shorter as well.  
PV  
D
C
0.039F  
3.3k⍀  
C
0.0039F  
Z
P
R
Z
FILT  
Figure 7. PLL Loop Filter Detail  
Four programmable registers are provided to optimize the perfor-  
mance of the PLL. These registers are:  
1. The 12-Bit Divisor Register. The input Hsync frequencies  
range from 15 kHz to 110 kHz. The PLL multiplies the frequency  
of the Hsync signal, producing pixel clock frequencies in the  
range of 12 MHz to 170 MHz. The Divisor register controls  
the exact multiplication factor. This register may be set to  
any value between 221 and 4095. (The divide ratio that is  
actually used is the programmed divide ratio plus one.)  
PIXEL CLOCK  
INVALID SAMPLE TIMES  
2. The 2-Bit VCO Range Register. To lower the sensitivity of the  
output frequency to noise on the control signal, the VCO operat-  
ing frequency range is divided into four overlapping regions. The  
VCO range register sets this operating range. Because there  
are only three possible regions, only the two least-signicant  
bits of the VCO range register are used. The frequency ranges  
for the lowest and highest regions are shown in Table V.  
Table V. VCO Frequency Ranges  
Figure 5. Pixel Sampling Times  
Pixel Clock  
6
5
4
3
2
1
0
PV1  
PV0  
Range (MHz)  
0
0
1
1
0
1
0
1
1237  
3774  
74140  
140170  
3. The 3-Bit Charge Pump Current Register. This register allows  
the current that drives the low pass loop lter to be varied.  
The possible current values are listed in Table VI.  
Table VI. Charge Pump Current/Control Bits  
Ip2  
Ip1  
Ip0  
Current (A)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
50  
100  
150  
250  
350  
500  
750  
1500  
PIXEL CLOCK (MHz)  
Figure 6. Pixel Clock Jitter vs. Frequency  
Any jitter in the clock reduces the precision with which the  
sampling time can be determined, and must also be subtracted  
from the stable pixel time.  
REV. 0  
–17–  
 
AD9887A  
4. The 5-Bit Phase Adjust Register. The phase of the generated  
sampling clock may be shifted to locate an optimum sampling  
point within a clock cycle. The Phase Adjust register provides  
32 phase-shift steps of 11.25° each. The Hsync signal with  
an identical phase shift is available through the HSOUT pin.  
Phase adjustment is still available if the pixel clock is being  
provided externally.  
The COAST allows the PLL to continue to run at the same  
frequency, in the absence of the incoming Hsync signal. This  
may be used during the vertical sync period, or any other  
time that the Hsync signal is unavailable. The polarity of the  
COAST signal may be set through the Coast Polarity Bit.  
Also, the polarity of the Hsync signal may be set through the  
HSYNC Polarity Bit. If not using automatic polarity detection,  
the HSYNC and COAST polarity bits should be set to match  
the Polarity of their respective signals.  
Table VII. Recommended VCO Range and Charge Pump Current Settings for Standard Display Formats  
Horizontal  
Refresh  
Rate (Hz)  
Frequency  
(kHz)  
Pixel Rate  
(MHz)  
Standard  
Resolution  
VCORNGE  
CURRENT  
VGA  
640 × 480  
60  
72  
75  
85  
31.5  
37.7  
37.5  
43.3  
25.175  
31.500  
31.500  
36.000  
00  
00  
00  
00  
011  
100  
100  
101  
SVGA  
XGA  
800 × 600  
56  
60  
72  
75  
85  
35.1  
37.9  
48.1  
46.9  
53.7  
36.000  
40.000  
50.000  
49.500  
56.250  
00  
01  
01  
01  
01  
101  
011  
011  
011  
100  
1024 × 768  
60  
70  
75  
80  
85  
48.4  
56.5  
60.0  
64.0  
68.3  
65.000  
75.000  
78.750  
85.500  
94.500  
01  
10  
10  
10  
10  
101  
011  
011  
011  
100  
SXGA  
UXGA  
1280 × 1024  
1600 × 1200  
60  
75  
85  
64.0  
80.0  
91.1  
108.000  
135.000  
157.500  
10  
10  
11  
100  
101  
101  
60  
75.0  
162.000  
10  
101  
1V  
OFFSET  
GAIN  
7
8
REF  
DAC  
DAC  
V
OFF  
(128 CODES)  
0.5V  
IN  
8
V
OFF  
ADC  
x1.2  
(128 CODES)  
CLAMP  
V
OFF  
0V  
0V  
Figure 8. ADC Block Diagram (Single-Channel Output)  
Figure 9. Relationship of Offset Range to Input Range  
–18–  
REV. 0  
 
AD9887A  
SCAN  
CLK  
SCAN  
BIT 1  
BIT 2  
BIT 3  
BIT 2  
BIT 47  
BIT 46  
BIT 48  
BIT 47  
X
IN  
RED A<7>  
BIT 1  
BIT 3  
BIT 48  
BIT 1  
X
X
X
BIT 2  
X
X
X
BLUE B<0>  
SCAN  
OUT  
X
X
BIT 1  
BIT 2  
X
X
X
Figure 10. SCAN Timing  
SCAN Function  
O
O
O
O
O
O
O
O
O
O
O
E
E
E
E
E
E
E
E
E
E
E
O
O
O
O
O
O
O
O
O
O
O
E
E
E
E
E
E
E
E
E
E
E
O
O
O
O
O
O
O
O
O
O
O
E
O
O
O
O
O
O
O
O
O
O
O
E
E
E
E
E
E
E
E
E
E
E
O
O
O
O
O
O
O
O
O
O
O
E
E
E
E
E
E
E
E
E
E
E
O
O
O
O
O
O
O
O
O
O
O
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
The SCAN function is intended as a pseudo JTAG function for  
manufacturing test of the board. The ordinary operation of the  
AD9887A is disabled during SCAN.  
To enable the SCAN function, set Register 14h, Bit 2 to 1. To  
SCAN in data to all 48 digital outputs, apply 48 serial bits of  
data and 48 clocks (typically 5 MHz, max of 20 MHz) to the  
SCANIN and SCANCLK pins, respectively. The data is shifted in  
on the rising edge of SCANCLK. The first serial bit shifted in  
will appear at the RED A<7> output after one clock cycle. After  
48 clocks, the first bit is shifted all the way to the BLUE B<0>.  
The 48th bit will now be at the RED A<7> output. If SCANCLK  
continues after 48 cycles, the data will continue to be shifted  
from RED A<7> to BLUE B<0> and will come out of the  
Figure 12. Odd and Even Pixels in a Frame  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
O 1  
SCANOUT pin as serial data on the falling edge of SCANCLK  
.
This is illustrated in Figure 10. A setup time (tSU) of 3 ns should  
be plenty and no hold time (tHOLD) is required (0 ns). This is  
illustrated in Figure 11.  
SCAN  
CLK  
SCAN  
IN  
Figure 13. Odd Pixels from Frame 1  
tSU = 3ns  
tHOLD = 0ns  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
Figure 11. SCAN Setup and Hold  
Alternate Pixel Sampling Mode  
A Logic 1 input on Clock Invert (CKINV, Pin 94) inverts the  
nominal ADC clock. CKINV can be switched between frames  
to implement the alternate pixel sampling mode. This allows  
higher effective image resolution to be achieved at lower pixel  
rates but with lower frame rates.  
On one frame, only even pixels are digitized. On the subsequent  
frame, odd pixels are sampled. By reconstructing the entire  
frame in the graphics controller, a complete image can be recon-  
structed. This is very similar to the interlacing process that is  
employed in broadcast television systems, but the interlacing is  
vertical instead of horizontal. The frame data is still presented  
to the display at the full desired refresh rate (usually 60 Hz) so  
no flicker artifacts are added.  
Figure 14. Even Pixels from Frame 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2 O 1 E 2  
Figure 15. Combine Frame Output from Graphics Controller  
REV. 0  
–19–  
 
AD9887A  
The Hsync input is used as a reference to generate the pixel  
sampling clock. The sampling phase can be adjusted, with respect  
to Hsync, through a full 360° in 32 steps via the Phase Adjust regis-  
ter (to optimize the pixel sampling time). Display systems use  
Hsync to align memory and display write cycles, so it is impor-  
tant to have a stable timing relationship between Hsync output  
(HSOUT) and data clock (DATACK).  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2 O 3 E 2  
Three things happen to Horizontal Sync in the AD9887A. First,  
the polarity of Hsync input is determined and will thus have a  
known output polarity. The known output polarity can be pro-  
grammed either active high or active low (Register 04H, Bit 4).  
Second, HSOUT is aligned with DATACK and data outputs.  
Third, the duration of HSOUT (in pixel clocks) is set via Register  
07H. HSOUT is the sync signal that should be used to drive the  
rest of the display system.  
Figure 16. Subsequent Frame from Controller  
Timing (Analog Interface)  
The following timing diagrams show the operation of the  
AD9887A analog interface in all clock modes. The part establishes  
timing by having the sample that corresponds to the pixel digitized  
when the leading edge of HSYNC occurs sent to the Adata  
port. In Dual-Channel Mode, the next sample is sent to the B”  
port. Future samples are alternated between the Aand Bdata  
ports. In Single-Channel Mode, data is only sent to the Adata  
port, and the Bport is placed in a high impedance state.  
Coast Timing  
In most computer systems, the Hsync signal is provided con-  
tinuously on a dedicated wire. In these systems, the COAST  
input and function are unnecessary, and should not be used.  
In some systems, however, Hsync is disturbed during the Vertical  
Sync period (Vsync). In some cases, Hsync pulses disappear. In  
other systems, such as those that employ Composite Sync (Csync)  
signals or embed Sync-On-Green (SOG), Hsync includes equaliza-  
tion pulses or other distortions during Vsync. To avoid upsetting  
the clock generator during Vsync, it is important to ignore these  
distortions. If the pixel clock PLL sees extraneous pulses, it will  
attempt to lock to this new frequency, and will have changed  
frequency by the end of the Vsync period. It will then take a few  
lines of correct Hsync timing to recover at the beginning of a new  
frame, resulting in a tearingof the image at the top of the display.  
The Output Data Clock signal is created so that its rising edge  
always occurs between Adata transitions, and can be used to  
latch the output data externally.  
PXLCLK  
ANY OUTPUT  
DATA OUT  
SIGNAL  
DATACK  
(OUTPUT)  
tSKEW  
tDCYCLE  
The COAST input is provided to eliminate this problem. It is  
an asynchronous input that disables the PLL input and allows  
the clock to free-run at its then-current frequency. The PLL can  
free-run for several lines without signicant frequency drift.  
tPER  
Figure 17. Analog Output Timing  
Hsync Timing  
Horizontal sync is processed in the AD9887A to eliminate  
ambiguity in the timing of the leading edge with respect to the  
phase-delayed pixel clock and data.  
Coast can be provided by the graphics controller or it can be  
internally generated by the AD9887A sync processing engine.  
–20–  
REV. 0  
 
AD9887A  
RGB  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
IN  
HSYNC  
PxCK  
HS  
7-PIPE DELAY  
ADCCK  
DATACK  
D1  
D2  
D3  
D4  
D5  
D6  
D
OUTA  
HSOUT  
Figure 18. Single-Channel Mode (Analog Interface)  
RGB  
IN  
P0 P1 P2 P3 P4 P5 P6 P7  
HSYNC  
PxCK  
HS  
7-PIPE DELAY  
ADCCK  
DATACK  
D
OUTA  
D0  
D2  
D4  
HSOUT  
Figure 19. Single-Channel Mode, Alternate Pixel Sampling (Even Pixels) (Analog Interface)  
P0 P1 P2 P3 P4 P5 P6 P7  
RGB  
IN  
HSYNC  
PxCK  
HS  
7-PIPE DELAY  
ADCCK  
DATACK  
D
D1  
D3  
D5  
D7  
OUTA  
HSOUT  
Figure 20. Single-Channel Mode, Alternate Pixel Sampling (Odd Pixels) (Analog Interface)  
REV. 0  
–21–  
AD9887A  
RGB  
IN  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
HSYNC  
PxCK  
HS  
7-PIPE DELAY  
ADCCK  
DATACK  
D
OUTA  
OUTB  
D0  
D2  
D4  
D
D1  
D3  
D5  
HSOUT  
Figure 21. Dual-Channel Mode, Interleaved Outputs (Analog Interface), Outphase = 0  
RGB  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
IN  
HSYNC  
PxCK  
HS  
8-PIPE DELAY  
ADCCK  
DATACK  
D
D0  
D1  
D2  
D3  
D4  
D5  
OUTA  
D
OUTB  
HSOUT  
Figure 22. Dual-Channel Mode, Parallel Outputs (Analog Interface), Outphase = 0  
P0 P1 P2 P3 P4 P5 P6 P7  
RGB  
IN  
HSYNC  
PxCK  
HS  
7-PIPE DELAY  
ADCCK  
DATACK  
D
D0  
D4  
OUTA  
D
D2  
D6  
OUTB  
HSOUT  
Figure 23. Dual-Channel Mode, Interleaved Outputs, Alternate Pixel Sampling (Even Pixels)  
(Analog Interface), Outphase = 0  
–22–  
REV. 0  
AD9887A  
RGB  
P0 P1 P2 P3 P4 P5 P6 P7  
IN  
HSYNC  
PxCK  
HS  
8-PIPE DELAY  
ADCCK  
DATACK  
D
D1  
D5  
OUTA  
D3  
D7  
D
OUTB  
HSOUT  
Figure 24. Dual-Channel Mode, Interleaved Outputs, Alternate Pixel Sampling (Odd Pixels)  
(Analog Interface), Outphase = 0  
P0 P1 P2 P3 P4 P5 P6 P7  
RGB  
IN  
HSYNC  
PxCK  
HS  
7-PIPE DELAY  
ADCCK  
DATACK  
D
D0  
D2  
D4  
D6  
OUTA  
D
OUTB  
HSOUT  
Figure 25. Dual-Channel Mode, Parallel Outputs, Alternate Pixel Sampling (Even Pixels)  
(Analog Interface), Outphase = 0  
P0 P1 P2 P3 P4 P5 P6 P7  
RGB  
IN  
HSYNC  
PxCK  
HS  
8.5-PIPE DELAY  
ADCCK  
DATACK  
D
D1  
D3  
D5  
D7  
OUTA  
D
OUTB  
HSOUT  
Figure 26. Dual-Channel Mode, Parallel Outputs, Alternate Pixel Sampling (Odd Pixels)  
(Analog Interface), Outphase = 0  
REV. 0  
–23–  
AD9887A  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
RGB  
IN  
HSYNC  
PXCK  
HS  
7-PIPE DELAY  
ADCCK  
DATACK  
GOUTA  
Y0  
U0  
Y1  
V0  
Y2  
U2  
Y3  
V2  
Y4  
U4  
Y5  
V4  
ROUTA  
HSOUT  
Figure 27. 4:2:2 Output Mode  
Table VIII. Digital Interface Pin List  
Function  
Pin  
Type  
Pin  
Mnemonic  
Pin  
Number  
Value  
Digital Video Data Inputs  
Rx0+  
Rx0–  
Rx1+  
Rx1–  
Rx2+  
Rx2–  
RxC+  
RxC–  
RTERM  
Digital Input Channel 0 True  
Digital Input Channel 0 Complement  
Digital Input Channel 1 True  
Digital Input Channel 1 Complement  
Digital Input Channel 2 True  
Digital Input Channel Twos Complement  
Digital Data Clock True  
Digital Data Clock Complement  
Control Pin for Setting the Internal  
Termination Resistance  
Data Enable  
62  
63  
59  
60  
56  
57  
65  
66  
53  
Digital Video Clock Inputs  
Termination Control  
Outputs  
DE  
HSOUT  
VSOUT  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
137  
139  
138  
4648  
HSYNC Output  
VSYNC Output  
CTL0, CTL1, Decoded Control Bit Outputs  
CTL2  
HDCP  
DDCSCL  
DDCSDA  
MCL  
MDA  
VD  
PVD  
VDD  
HDCP Slave Serial Port Data Clock  
HDCP Slave Serial Port Data I/O  
HDCP Master Serial Port Data Clock  
HDCP Master Serial Port Data I/O  
Main Power Supply  
PLL Power Supply  
Output Power Supply  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V 5%  
3.3 V 5%  
3.3 V or 2.5 V 5%  
0 V  
73  
72  
49  
71  
Power Supply  
GND  
GND  
Ground Supply  
Ground Supply  
0 V  
–24–  
REV. 0  
 
AD9887A  
Power Supply  
DIGITAL INTERFACE PIN DESCRIPTIONS  
Digital Video Data Inputs  
VD  
Main Power Supply  
It should be as quiet and as ltered as possible.  
Rx0+  
Rx0–  
Rx1+  
Rx1–  
Rx2+  
Rx2–  
Positive Differential Input Data (Channel 0)  
Negative Differential Input Data (Channel 0)  
Positive Differential Input Data (Channel 1)  
Negative Differential Input Data (Channel 1)  
Positive Differential Input Data (Channel 2)  
Negative Differential Input Data (Channel 2)  
PVD  
PLL Power Supply  
It should be as quiet and as ltered as possible.  
Outputs Power Supply  
VDD  
The power for the data and clock outputs. It can  
run at 3.3 V or 2.5 V.  
These six pins receive three pairs of differential,  
low voltage swing input pixel data from a digital  
graphics transmitter.  
THEORY OF OPERATION (DIGITAL INTERFACE)  
Capturing of the Encoded Data  
The rst step in recovering the encoded data is to capture the  
raw data. To accomplish this, the AD9887A employs a high  
speed phase-locked loop (PLL) to generate clocks capable of  
oversampling the data at the correct frequencies. The data cap-  
ture circuitry continuously monitors the incoming data during  
horizontal and vertical blanking times (when DE is low) and  
independently selects the best sampling phase for each data  
channel. The phase information is stored and used until the  
next blanking period (one video line).  
Digital Clock Inputs  
RxC+  
Positive Differential Input Clock  
RxC–  
Negative Differential Input Clock  
These two pins receive the differential, low voltage  
swing input pixel clock from a digital graphics  
transmitter.  
Termination Control  
RTERM  
Internal Termination Set Pin  
Data Frames  
This pin is used to set the termination resistance  
for all of the digital interface high speed inputs. To  
set, place a resistor of value equal to 10× the desired  
input termination resistance between this pin (Pin 53)  
and ground supply. Typically, the value of this  
resistor should be 500 .  
The digital interface data is captured in groups of 10 bits each,  
called a data frame. During the active data period, each frame is  
made up of the nine encoded video data bits and one dc balanc-  
ing bit. The data capture block receives this data serially but  
outputs each frame in parallel 10-bit words.  
Special Characters  
Outputs  
During periods of horizontal or vertical blanking time (when  
DE is low), the digital transmitter will transmit special characters.  
The AD9887A will receive these characters and use them to set the  
video frame boundaries and the phase recovery loop for each  
channel. There are four special characters that can be received.  
They are used to identify the top, bottom, left side, and right side  
of each video frame. The data receiver can differentiate these  
special characters from active data because the special characters  
have a different number of transitions per data frame.  
DE  
Data Enable Output  
This pin outputs the state of data enable (DE).  
The AD9887A decodes DE from the incoming  
stream of data. The DE signal will be HIGH during  
active video and will be LOW while there is no  
active video.  
DDCSCL HDCP Slave Serial Port Data Clock  
For use in communicating with the HDCP enabled  
DVI transmitter.  
Channel Resynchronization  
DDCSDA HDCP Slave Serial Port Data I/O  
The purpose of the channel resynchronization block is to resyn-  
chronize the three data channels to a single internal data clock.  
Coming into this block, all three data channels can be on different  
phases of the three times oversampling PLL clock (0°, 120°, and  
240°). This block can resynchronize the channels from a worst-  
case skew of one full input period (8.93 ns at 170 MHz).  
For use in communicating with the HDCP enabled  
DVI transmitter.  
MCL  
MDA  
CTL  
HDCP Master Serial Port Data Clock  
Connects the EEPROM for reading the encrypted  
HDCP keys.  
Data Decoder  
HDCP Slave Serial Port Data I/O  
Connects the EEPROM for reading the encrypted  
HDCP keys.  
The data decoder receives frames of data and sync signals from  
the data capture block (in 10-bit parallel words) and decodes them  
into groups of eight RGB/YUV bits, two control bits, and a data  
enable bit (DE).  
Digital Control Outputs  
These pins output the control signals for the Red  
and Green channels. CTL0 and CTL1 correspond  
to the Red channels input, while CTL2 and  
CTL3 correspond to the Green channels input.  
REV. 0  
–25–  
 
AD9887A  
HDCP  
three-stated before attempting to program the EEPROM using an  
external master. The keys will be stored in an I2C® compatible  
3.3 V serial EEPROM of at least 512 bytes in size. The EEPROM  
should have a device address of A0H.  
The AD9887A contains all the circuitry necessary for decryption  
of a high bandwidth digital content protection encoded DVI  
video stream. A typical HDCP implementation is shown in  
Figure 28. Several features of the AD9887A make this possible  
and add functionality to ease the implementation of HDCP.  
Proprietary software licensed from Analog Devices encrypts the  
keys and creates properly formatted EEPROM images for use in  
a production environment. Encrypting the keys helps maintain  
the confidentiality of the HDCP keys as required by the HDCP  
v1.0 specification. The AD9887A includes hardware for decrypting  
the keys in the external EEPROM.  
The basic components of HDCP are included in the AD9887A.  
A slave serial bus connects to the DDC clock and DDC data pins  
on the DVI connector to allow the HDCP enabled DVI trans-  
mitter to coordinate the HDCP algorithm with the AD9887A.  
A second serial port (MDA/MCL) allows the AD9887A to read  
the HDCP keys and key selection vector (KSV) stored in an  
external serial EEPROM. When transmitting encrypted video,  
the DVI transmitter enables HDCP through the DDC port.  
The AD9887A then decodes the DVI stream using information  
provided by the transmitter, HDCP keys, and KSV.  
ADI will provide a royalty free license for the proprietary software  
needed by customers to encrypt the keys between the AD9887A  
and the EEPROM only after customers provide evidence of a  
completed HDCP Adopters license agreement and sign ADIs  
software license agreement. The Adopters license agreement is  
maintained by Digital Content Protection, LLC, and can be  
downloaded from www.digital-cp.com. To obtain ADIs software  
license agreement, contact the Display Electronics Product Line  
directly by sending an email to flatpanel_apps@analog.com.  
The AD9887A allows the MDA and MCL pins to be three-stated  
using the MDA/MCL three-state bit (Register 1B, Bit 7) in the  
configuration registers. The three-state feature allows the EEPROM  
to be programmed in-circuit. The MDA/MCL port must be  
3.3V  
3.3V  
DVI  
CONNECTOR  
5kPULL-UP  
RESISTORS  
5kPULL-UP  
RESISTORS  
DDC CLOCK  
DDCSCL  
MCL  
MDA  
SCL  
EEPROM  
SDA  
AD9887A  
DDCSDA  
DDC DATA  
D
S
150SERIES  
RESISTORS  
3.3V  
Figure 28. HDCP Implementation Using the AD9887A  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I 2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the to the I2C Standard Specification as defined by Philips.  
–26–  
REV. 0  
 
AD9887A  
GENERAL TIMING DIAGRAMS (DIGITAL INTERFACE)  
TIMING MODE DIAGRAMS (DIGITAL INTERFACE)  
80%  
80%  
INTERNAL  
ODCLK  
tST  
20%  
20%  
DATACK  
D
D
LHT  
LHT  
DE  
Figure 29. Digital Output Rise and Fall Time  
FIRST  
PIXEL  
SECOND  
PIXEL  
THIRD  
PIXEL  
FOURTH  
PIXEL  
QE[23:0]  
QO[23:0]  
T
, R  
CIP  
CIP  
T
, R  
CIH  
CIH  
Figure 33. 1 Pixel per Clock (DATACK Inverted)  
T
, R  
CIL  
CIL  
INTERNAL  
ODCLK  
DATACK  
DE  
tST  
Figure 30. Clock Cycle/High/Low Times  
Rx0  
Rx1  
Rx2  
V
= 0V  
FIRST  
PIXEL  
SECOND  
PIXEL  
THIRD  
PIXEL  
FOURTH  
PIXEL  
DIFF  
QE[23:0]  
QO[23:0]  
V
= 0V  
DIFF  
tCCS  
Figure 34. 1 Pixels per Clock (DATACK Not Inverted)  
Figure 31. Channel-to-Channel Skew Timing  
INTERNAL  
ODCLK  
tST  
DATACK  
(INTERNAL)  
DATACK  
DE  
DATA OUT  
DATACK  
(PIN)  
FIRST PIXEL  
THIRD PIXEL  
QE[23:0]  
QO[23:0]  
tSKEW  
SECOND PIXEL  
FOURTH PIXEL  
Figure 32. DVI Output Timing  
Figure 35. 2 Pixels per Clock  
INTERNAL  
ODCLK  
tST  
DATACK  
DE  
FIRST PIXEL  
THIRD PIXEL  
QE[23:0]  
SECOND PIXEL  
FOURTH PIXEL  
QO[23:0]  
Figure 36. 2 Pixels per Clock (DATACK Inverted)  
REV. 0  
–27–  
 
AD9887A  
2-Wire Serial Register Map  
The AD9887A is initialized and controlled by a set of registers, which determine the operating modes. An external controller is  
employed to write and read the Control Registers through the 2-line serial interface port.  
Table IX. Control Register Map  
Read and  
Write or  
Address Read Only Bits  
Hex  
Default  
Value  
Register  
Name  
Function  
00H  
RO  
7:0  
Chip Revision  
Bits 7 through 4 represent functional revisions to the analog interface.  
Bits 3 through 0 represent nonfunctional related revisions.  
Revision 0 = 0000 0000.  
01H  
R/W  
7:0  
01101001  
PLL Div MSB This register is for Bits [11:4] of the PLL divider. Larger values mean  
the PLL operates at a faster rate. This register should be loaded rst  
whenever a change is needed. (This will give the PLL more time to  
lock.) See Note 1.  
02H  
03H  
R/W  
R/W  
7:4  
7:2  
1101****  
PLL Div LSB  
Bits [7:4] LSBs of the PLL divider word. Links to the PLL Div MSB  
to make a 12-Bit register. See Note 1.  
1*******  
*01*****  
VCO/CPMP  
Bit 7Must be set to 1 for proper device operation.  
Bits [6:5] VCO Range. Selects VCO frequency range. (See PLL  
description.)  
***001**  
10000***  
10000000  
10000000  
00100000  
10000000  
Bits [4:2] Charge Pump Current. Varies the current that drives the  
low-pass lter. (See PLL description.)  
04H  
05H  
06H  
07H  
08H  
R/W  
R/W  
R/W  
R/W  
R/W  
7:3  
7:0  
7:0  
7:0  
7:0  
Phase Adjust  
ADC Clock phase adjustment. Larger values mean more delay.  
(1 LSB = T/32)  
Clamp  
Placement  
Places the Clamp signal an integer number of clock periods after  
the trailing edge of the Hsync signal.  
Clamp  
Duration  
Number of clock periods that the Clamp signal is actively clamping.  
Hsync Output Sets the number of pixel clocks that HSOUT will remain active.  
Pulsewidth  
Red Gain  
Controls ADC input range (Contrast) of each respective channel.  
Bigger values give less contrast.  
09H  
0AH  
0BH  
R/W  
R/W  
R/W  
7:0  
7:0  
7:1  
10000000  
10000000  
1000000*  
Green Gain  
Blue Gain  
Red Offset  
Controls dc offset (Brightness) of each respective channel. Bigger  
values decrease brightness.  
0CH  
0DH  
0EH  
R/W  
R/W  
R/W  
7:1  
7:1  
7:3  
1000000*  
1000000*  
1*******  
Green Offset  
Blue Offset  
Mode  
Control 1  
Bit 7Channel Mode. Determines Single Channel or Dual Channel  
Output Mode. (Logic 0 = Single Channel Mode, Logic 1 = Dual  
Channel Mode.)  
*1******  
**0*****  
***0****  
****0***  
Bit 6Output Mode. Determine Interleaved or Parallel Output Mode.  
(Logic 0 = Interleaved Mode, Logic 1 = Parallel Mode.)  
Bit 5OUTPHASE. Determines which port outputs the rst data  
byte after Hsync. (Logic 0 = B Port, Logic 1 = A Port.)  
Bit 4Hsync Output polarity. (Logic 0 = Logic High Sync,  
Logic 1 = Logic Low Sync.)  
Bit 3Vsync Output Invert. (Logic 0 = Invert, Logic 1 = No Invert.)  
–28–  
REV. 0  
 
 
AD9887A  
Table IX. Control Register Map (continued)  
Read and  
Write or  
Address Read Only Bits  
Hex  
Default  
Value  
Register  
Name  
Function  
Bit 7HSYNC Polarity. Indicates the polarity of incoming HSYNC  
0FH  
R/W  
7:0  
1*******  
PLL and  
Clamp Control signal to the PLL. (Logic 0 = Active Low, Logic 1 = Active High.)  
*1******  
**0*****  
Bit 6Coast Polarity. Changes polarity of external COAST signal.  
(Logic 0 = Active Low, Logic 1 = Active High.)  
Bit 5Clamp Function. Chooses between HSYNC for CLAMP  
signal or another external signal to be used for clamping.  
(Logic 0 = HSYNC, Logic 1 = Clamp.)  
***1****  
****0***  
Bit 4Clamp Polarity. Valid only with external CLAMP signal.  
(Logic 0 = Active Low, Logic 1 selects Active High.)  
Bit 3EXTCLK. Shuts down the PLL and allows the use of an  
external clock to drive the part. (Logic 0 = use internal PLL,  
Logic 1 = bypassing of the internal PLL.)  
*****0**  
******0*  
*******0  
Bit 2Red Clamp SelectLogic 0 selects clamp to ground. Logic 1  
selects clamp to midscale (voltage at Pin 120).  
Bit 1Green Clamp SelectLogic 0 selects clamp to ground.  
Logic 1 selects clamp to midscale (voltage at Pin 111).  
Bit 0Blue Clamp SelectLogic 0 selects clamp to ground. Logic 1  
selects clamp to midscale (voltage at Pin 101).  
10H  
R/W  
7:2  
0*******  
*0******  
Mode  
Control 2  
Bit 7Clk Inv: Data clock output invert. (Logic 0 = Not Inverted,  
Logic 1 = Inverted.) (Digital Interface Only.)  
Bit 6Pix Select: Selects either 1 or 2 pixels per clock mode.