欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • ADM1032ARMZ-REEL7
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • ADM1032ARMZ-REEL7图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • ADM1032ARMZ-REEL7 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • ADM1032ARMZ-REEL7图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • ADM1032ARMZ-REEL7 热卖库存
  • 数量98500 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177
  • ADM1032ARMZ-REEL7图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • ADM1032ARMZ-REEL7
  • 数量78275 
  • 厂家AD 
  • 封装MSOP-8 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • ADM1032ARMZ-REEL7图
  • 集好芯城

     该会员已使用本站13年以上
  • ADM1032ARMZ-REEL7
  • 数量13782 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • ADM1032ARMZ-REEL7图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • ADM1032ARMZ-REEL7
  • 数量5600 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • ADM1032ARMZ-REEL7图
  • 深圳市赛科世纪电子有限公司

     该会员已使用本站11年以上
  • ADM1032ARMZ-REEL7
  • 数量49055 
  • 厂家AD 
  • 封装MSOP-8 
  • 批号22+ 
  • 代理新到原装现货,特价,13006691066
  • QQ:124766973QQ:124766973 复制
  • 13006691066 QQ:124766973
  • ADM1032ARMZ-REEL7图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • ADM1032ARMZ-REEL7
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • ADM1032ARMZ-REEL7图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • ADM1032ARMZ-REEL7
  • 数量18560 
  • 厂家AD 
  • 封装MSOP-8 
  • 批号16PB 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • ADM1032ARMZ-REEL7图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • ADM1032ARMZ-REEL7
  • 数量5000 
  • 厂家 
  • 封装NA 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • ADM1032ARMZ-REEL7图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • ADM1032ARMZ-REEL7
  • 数量13050 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • ADM1032ARMZ-REEL7图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • ADM1032ARMZ-REEL7
  • 数量1000 
  • 厂家AD原装现货 
  • 封装MSOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • ADM1032ARMZ-REEL7图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • ADM1032ARMZ-REEL7
  • 数量3000 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号25+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • ADM1032ARMZ-REEL7图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • ADM1032ARMZ-REEL7
  • 数量3200 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号25+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • ADM1032ARMZ-REEL7图
  • 深科创(香港)科技有限公司

     该会员已使用本站16年以上
  • ADM1032ARMZ-REEL7
  • 数量5590 
  • 厂家ON Semiconductor 
  • 封装原厂原装 
  • 批号19+ 
  • 只做原装,只有原装
  • QQ:3350142453QQ:3350142453 复制
    QQ:545433074QQ:545433074 复制
  • 83247290 QQ:3350142453QQ:545433074
  • ADM1032ARMZ-REEL7/1032ARZ图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • ADM1032ARMZ-REEL7/1032ARZ
  • 数量8460 
  • 厂家AD 
  • 封装MSOP/SOP 
  • 批号NEW 
  • 【现货库存】全新原装假一罚百热卖现货
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • ADM1032ARMZ-REEL7图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • ADM1032ARMZ-REEL7
  • 数量5500 
  • 厂家AD 
  • 封装MSOP8 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • ADM1032ARMZ-REEL7图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • ADM1032ARMZ-REEL7
  • 数量3000 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号25+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • ADM1032ARMZ-REEL7图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • ADM1032ARMZ-REEL7
  • 数量20000 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • ADM1032ARMZ-REEL7图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • ADM1032ARMZ-REEL7
  • 数量56800 
  • 厂家AD 
  • 封装MSOP-8 
  • 批号24+ 
  • MSOP-8
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • ADM1032ARMZ-REEL7图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • ADM1032ARMZ-REEL7
  • 数量5369 
  • 厂家ANALOG 
  • 封装MSOP-8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • ADM1032ARMZ-REEL7图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • ADM1032ARMZ-REEL7
  • 数量68000 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • ADM1032ARMZ-REEL7图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • ADM1032ARMZ-REEL7
  • 数量3800 
  • 厂家AD 
  • 封装8-TSSOP,8-MSOP 
  • 批号24+ 
  • 授权分销 现货热卖
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • ADM1032ARMZ-REEL7图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • ADM1032ARMZ-REEL7
  • 数量13880 
  • 厂家ADI/亚德诺 
  • 封装原封装 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • ADM1032ARMZ-REEL7图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • ADM1032ARMZ-REEL7
  • 数量65000 
  • 厂家AD 
  • 封装MSOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • ADM1032ARMZ-REEL7图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • ADM1032ARMZ-REEL7
  • 数量8800 
  • 厂家ADI/亚德诺 
  • 封装MSOP-8 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • ADM1032ARMZ-REEL7图
  • 深圳市恒意创鑫电子有限公司

     该会员已使用本站10年以上
  • ADM1032ARMZ-REEL7
  • 数量9000 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号22+ 
  • 全新原装公司现货,支持实单
  • QQ:1493457560QQ:1493457560 复制
  • 0755-83235429 QQ:1493457560
  • ADM1032ARMZ-REEL7图
  • 华富芯(深圳)智能科技有限公司

     该会员已使用本站7年以上
  • ADM1032ARMZ-REEL7
  • 数量15000 
  • 厂家ADI/亚德诺 
  • 封装21+ 
  • 批号22+ 
  • 大量原装正品现货热卖,价格优势,支持实单
  • QQ:1912486771QQ:1912486771 复制
  • 0755-23482780 QQ:1912486771
  • ADM1032ARMZ-REEL7图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • ADM1032ARMZ-REEL7
  • 数量865000 
  • 厂家ADI/亚德诺 
  • 封装21+ 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • ADM1032ARMZ-REEL7图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • ADM1032ARMZ-REEL7
  • 数量13000 
  • 厂家AD 
  • 封装MSOP-8 
  • 批号24+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • ADM1032ARMZ-REEL7图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • ADM1032ARMZ-REEL7
  • 数量12300 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • ADM1032ARMZ-REEL7图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • ADM1032ARMZ-REEL7
  • 数量15862 
  • 厂家AD 
  • 封装MSOP8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • ADM1032ARMZ-REEL7图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • ADM1032ARMZ-REEL7
  • 数量18800 
  • 厂家ADI-亚德诺 
  • 封装MSOP-8 
  • 批号▉▉:2年内 
  • ▉▉¥10一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • ADM1032ARMZ-REEL7图
  • 深圳市三得电子有限公司

     该会员已使用本站15年以上
  • ADM1032ARMZ-REEL7
  • 数量82000 
  • 厂家ADI/亚德诺 
  • 封装MSOP8 
  • 批号2024 
  • 深圳原装现货库存,欢迎咨询合作
  • QQ:414322027QQ:414322027 复制
    QQ:565106636QQ:565106636 复制
  • 15026993318 QQ:414322027QQ:565106636
  • ADM1032ARMZ-REEL7图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • ADM1032ARMZ-REEL7
  • 数量15862 
  • 厂家AD 
  • 封装MSOP8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • ADM1032ARMZ-REEL7图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • ADM1032ARMZ-REEL7
  • 数量4000 
  • 厂家ANALOG 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • ADM1032ARMZ-REEL7图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • ADM1032ARMZ-REEL7
  • 数量99000 
  • 厂家ADI 
  • 封装MSOP8 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • ADM1032ARMZ-REEL7图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • ADM1032ARMZ-REEL7
  • 数量21688 
  • 厂家AD 
  • 封装主营进口AD特价 
  • 批号2020+ 
  • 优势库存全新原装现货热卖
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • ADM1032ARMZ-REEL7图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • ADM1032ARMZ-REEL7
  • 数量23480 
  • 厂家ADI/亚德诺 
  • 封装TSSOP 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858

产品型号ADM1032ARMZ-REEL7的概述

芯片 ADM1032ARMZ-REEL7 的概述 ADM1032 是 Analog Devices Inc. 生产的一款高精度数字温度传感器,广泛应用于各种电子设备中,尤其是在需要严重温度监控和管理的领域。这款芯片能够支持多路温度监测,并通过 I²C 接口进行数据的传输,确保了其在现代高端电子系统中的实用性。ADM1032 更多的是针对需要进行严密温度监测的应用场景,如计算机硬件、自动化仪器、 HVAC(供暖、通风与空气调节系统)等。 ADM1032 采用了专门的内部 ADC (模数转换器) 技术,其温度测量范围为 -55°C 到 +150°C,分辨率高达 0.5°C。这使得它相较于传统的温度传感器具有了更高的测量精度和响应速度。同时,ADM1032 还具备过热和过冷报警功能,可以对特定温度进行快速响应,以保护系统的安全和稳定运行。 芯片 ADM1032ARMZ-REEL7 的详细参数...

产品型号ADM1032ARMZ-REEL7的Datasheet PDF文件预览

± ±1°C RemoRCꢀanCꢁmꢂꢀꢃCꢄSyoReC  
TRepRrꢀourRCMmaiomr  
S
CCC  
ADM±032  
FEATURES  
GENERAL DESCRIPTION  
On-chip and remote temperature sensing  
Offset registers for system calibration  
0.125°C resolution/1°C accuracy on remote channel  
1°C resolution/3°C accuracy on local channel  
Fast (up to 64 measurements per second)  
2-wire SMBus serial interface  
Supports SMBus alert  
Programmable under/overtemperature limits  
Programmable fault queue  
The ADM10321 is a dual-channel digital thermometer and  
under/overtemperature alarm intended for use in PCs and  
thermal management systems. The device can measure the  
temperature of a remote thermal diode, which can be located  
on the processor die or can be a discrete device (2N3904/06),  
accurate to 1°C. A novel measurement technique cancels out  
the absolute value of the transistors base emitter voltage so that  
no calibration is required. The ADM1032 also measures its  
ambient temperature.  
Overtemperature fail-safe THERM output  
Programmable THERM limits  
The ADM1032 communicates over a 2-wire serial interface  
compatible with system management bus (SMBus) standards.  
Under/overtemperature limits can be programmed into the  
Programmable THERM hysteresis  
170 μA operating current  
5.5 μA standby current  
3 V to 5.5 V supply  
Small 8-lead SOIC and MSOP packages  
device over the SMBus, and an  
output signals when the  
ALERT  
on-chip or remote temperature measurement is out of range.  
This output can be used as an interrupt or as a SMBus alert. The  
output is a comparator output that allows CPU clock  
THERM  
throttling or on/off control of a cooling fan. An ADM1032-1 and  
ADM1032-2 are available. The difference between the  
ADM1032 and theADM1032-1 is the default value of the  
APPLICATIONS  
Desktop and notebook computers  
Smart batteries  
Industrial controllers  
Telecommunications equipment  
Instrumentation  
external  
limit. The ADM1032-2 has a different  
THERM  
SMBus address. The SMBus address of theADM1032-2 is 0x4D.  
1 Patents 5,982,221; 6,097,239; 6,133,753; 6,169,442; 5,867,012.  
Embedded systems  
FUNCTIONAL BLOCK DIAGRAM  
ADDRESS POINTER  
REGISTER  
CONVERSION RATE  
REGISTER  
ON-CHIP  
TEMPERATURE  
SENSOR  
LOCAL TEMPERATURE  
LOW LIMIT REGISTER  
LOCAL TEMPERATURE  
VALUE REGISTER  
LOCAL TEMPERATURE  
HIGH LIMIT REGISTER  
D+  
D–  
ANALOG  
MUX  
A/D  
LIMIT  
COMPARATOR  
CONVERTER  
REMOTE TEMPERATURE  
LOW LIMIT REGISTER  
BUSY  
RUN/STANDBY  
REMOTE TEMPERATURE  
HIGH LIMIT REGISTER  
REMOTE TEMPERATURE  
VALUE REGISTER  
LOCAL THERM LIMIT  
REGISTER  
REMOTE OFFSET  
REGISTER  
EXTERNAL THERM LIMIT  
REGISTER  
CONFIGURATION  
REGISTER  
EXTERNAL DIODE OPEN-CIRCUIT  
INTERRUPT  
MASKING  
ALERT  
THERM  
STATUS REGISTER  
ADM1032  
SMBUS INTERFACE  
V
GND  
SDATA  
SCLK  
DD  
Figure 1.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
ADM±032C  
C
TABꢁECOFC°ONTENTꢄC  
Features .............................................................................................. 1  
Serial Bus Interface..................................................................... 11  
Addressing the Device............................................................... 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Characterisitics ............................................................. 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Functional Description.................................................................... 8  
Measurement Method.................................................................. 8  
Temperature Data Format........................................................... 9  
ADM1032 Registers ..................................................................... 9  
ALERT  
Output............................................................................ 14  
Low Power Standby Mode......................................................... 14  
The ADM1032 Interrupt System ............................................. 14  
Sensor Fault Detection .............................................................. 15  
Applications Information—Factors Affecting Accuracy .......... 16  
Remote Sensing Diode .............................................................. 16  
Thermal Inertia and Self-Heating............................................ 16  
Layout Considerations............................................................... 17  
Application Circuit..................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
11/05—Rev. D to Rev. E  
3/03—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to General Description .................................................... 1  
Changes to Thermal Characteristics.............................................. 4  
Changes to Table 3............................................................................ 5  
Changes to Measurement Method Section ................................... 8  
Changes to Limit Registers Section.............................................. 10  
Changes to Serial Bus Interface Section ...................................... 11  
Changes to Ordering Guide .......................................................... 19  
Edits to Specifications.......................................................................2  
10/02—Rev. A to Rev. B  
Edits to the General Description.....................................................1  
Edits to the Ordering Guide.............................................................3  
Edits to Table VIII .............................................................................8  
Outline Dimensions Updated....................................................... 12  
10/04—Rev. C to Rev. D  
Changes to Product Description .................................................... 1  
Changes to Absolute Maximum Ratings....................................... 3  
Changes to Ordering Guide ............................................................ 3  
Changes to Addressing the Device Section................................... 8  
Updated Outline Dimensions....................................................... 14  
Rev. E | Page 2 of 20  
 
CCC  
ADM±032  
ꢄPE°IFI°ATIONꢄC  
Table 1.  
Parameter  
Min Typ  
Max  
Unit Test Conditions/Comments  
POWER SUPPLY  
Supply Voltage, VDD  
Average Operating Supply Current, ICC  
3.0  
3.30  
170  
5.5  
5.5  
215  
10  
2.8  
2.4  
V
μA  
μA  
V
0.0625 conversions/sec rate1  
Standby mode  
VDD input, disables ADC, rising edge  
Undervoltage Lockout Threshold  
Power-On Reset Threshold  
TEMPERATURE-TO-DIGITAL CONVERTER  
Local Sensor Accuracy  
Resolution  
Remote Diode Sensor Accuracy  
2.35 2.55  
1
V
1
1
3
°C  
°C  
°C  
°C  
°C  
μA  
μA  
0 ≤ TA ≤ 100°C, VCC = 3 V to 3.6 V  
1
3
60°C ≤ TD ≤ 100°C, VCC = 3 V to 3.6 V  
0°C ≤ TD ≤ 120°C  
Resolution  
Remote Sensor Source Current  
0.125  
230  
13  
High level2  
Low level2  
Conversion Time  
35.7  
142.8 ms  
From stop bit to conversion complete  
Both channels: one-shot mode with averaging switched on  
5.7  
22.8  
ms  
One-shot mode with averaging off (that is, conversion  
rate = 32 or 64 conversions per second)  
OPEN-DRAIN DIGITAL OUTPUTS (THERM, ALERT)  
Output Low Voltage, VOL  
High Level Output Leakage Current, IOH  
SERIAL BUS TIMING2  
0.4  
1
V
μA  
IOUT = −6.0 mA2  
VOUT = VDD  
2
0.1  
Logic Input High Voltage, VIH  
SCLK, SDATA  
Logic Input Low Voltage, VIL  
Hysteresis  
2.1  
V
VDD = 3 V to 5.5 V  
VDD = 3 V to 5.5 V  
0.8  
V
mV  
500  
SCLK, SDATA  
SDATA Output Low Sink Current  
ALERT Output Low Sink Current  
Logic Input Current, IIH, IIL  
Input Capacitance, SCLK, SDATA  
Clock Frequency  
6
1
mA  
mA  
μA  
pF  
kHz  
ms  
μs  
μs  
ns  
ns  
ns  
SDATA forced to 0.6 V  
ALERT forced to 0.4 V  
−1  
5
+1  
400  
64  
SMBus Timeout3  
25  
1.3  
0.6  
600  
600  
600  
100  
300  
SCLK Clock Low Time, tLOW  
SCLK Clock High Time, tHIGH  
Start Condition Setup Time, tSU:STA  
Start Condition Hold Time, tHD:STA  
Stop Condition Setup Time, tSU:STO  
Data Valid to SCLK Rising Edge Time, tSU:DAT  
Data Hold Time, tHD:DAT  
tLOW between 10% points  
tHIGH between 90% points  
Time from 10% of SDATA to 90% of SCLK  
Time from 90% of SCLK to 10% of SDATA  
Time for 10% or 90% of SDATA to 10% of SCLK  
ns  
ns  
Bus Free Time, tBUF  
1.3  
μs  
Between start/stop condition  
SCLK, SDATA Rise Time, tR  
SCLK, SDATA Fall Time, tF  
300  
300  
ns  
ns  
1 See Table 9 for information on other conversion rates.  
2 Guaranteed by design, not production tested.  
3 The SMBus timeout is a programmable feature. By default, it is not enabled. Details on how to enable it are available in the Serial Bus Interface section.  
Rev. E | Page 3 of 20  
 
 
ADM±032C  
C
ABꢄOꢁUTECMAXIMUMC ATINGꢄC  
Table 2.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Positive Supply Voltage (VDD) to GND  
D+  
D− to GND  
−0.3 V, +5.5 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to +0.6 V  
−0.3 V to +5.5 V  
−0.3 V to VDD + 0.3 V  
−1 mA, +50 mA  
1 mA  
SCLK, SDATA, ALERT  
THERM  
Input Current, SDATA, THERM  
Input Current, D−  
ESD Rating, All Pins (Human Body Model)  
Maximum Junction Temperature (TJ Max)  
Storage Temperature Range  
IR Reflow Peak Temperature  
IR Reflow Peak Temperature for Pb-Free  
Lead Temperature (Soldering 10 sec)  
>1000 V  
150°C  
−65°C to +150°C  
220°C  
260°C  
THERMAL CHARACTERISITICS  
8-Lead SOIC Package:  
θJA = 121°C  
300°C  
8-Lead MSOP Package:  
θJA = 142°C  
tR  
tF  
tLOW  
tHD:STA  
SCLK  
tHIGH  
tSU:STA  
tSU:STO  
tHD:STA  
tHD:DAT  
tSU:DAT  
SDATA  
tBUF  
S
P
S
P
Figure 2. Diagram for Serial Bus Timing  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. E | Page 4 of 20  
 
CCC  
ADM±032  
PINC°ONFIGU ATIONCANDCFUN°TIONCDEꢄ° IPTIONꢄC  
1
2
3
4
8
7
6
5
SCLK  
V
DD  
D+  
D–  
SDATA  
ADM1032  
TOP VIEW  
(Not to Scale)  
ALERT  
GND  
THERM  
Figure 3. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
VDD  
D+  
D−  
THERM  
Positive Supply, 3 V to 5.5 V.  
Positive Connection to Remote Temperature Sensor.  
Negative Connection to Remote Temperature Sensor.  
THERM is an open-drain output that can be used to turn a fan on/off or throttle a CPU clock in the event of an  
overtemperature condition. Requires pull-up to VDD, the same supply as the ADM1032  
Supply Ground Connection.  
5
6
7
8
GND  
ALERT  
SDATA  
SCLK  
Open-Drain Logic Output Used as Interrupt or SMBus Alert.  
Logic Input/Output, SMBus Serial Data. Open-drain output. Requires pull-up resistor.  
Logic Input, SMBus Serial Clock. Requires pull-up resistor.  
Rev. E | Page 5 of 20  
 
ADM±032C  
C
TYPI°AꢁCPE FO MAN°EC°HA A°TE IꢄTI°ꢄC  
12  
10  
8
20  
16  
12  
8
V
= 250mV p-p  
IN  
4
0
D+ TO GND  
6
4
–4  
V
= 100mV p-p  
IN  
D+TOV  
DD  
–8  
2
–12  
–16  
0
10  
1M  
0
10  
LEAKAGE RESISTANCE (M  
100  
FREQUENCY (Hz)  
Ω
)
Figure 7. Temperature Error vs. Power Supply Noise Frequency  
Figure 4. Temperature Error vs. Leakage Resistance  
18  
16  
14  
12  
10  
8
1.0  
0.5  
0
6
4
2
–0.5  
0
0
20  
40  
60  
80  
100  
120  
1
6
11  
16  
21  
26  
31  
36  
TEMPERATURE (°C)  
CAPACITANCE (nF)  
Figure 5. Temperature Error vs. Actual Temperature Using 2N3906  
Figure 8. Temperature Error vs. Capacitance Between D+ and D−  
13  
2.0  
11  
9
1.5  
1.0  
0.5  
0
7
5
V
= 40mV p-p  
IN  
3
V
= 5V  
DD  
1
V
= 10mV p-p  
V
= 3V  
IN  
DD  
–1  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
0.01  
0.1  
1
10  
100  
CONVERSION RATE (Hz)  
Figure 6. Temperature Error vs. Differential Mode Noise Frequency  
Figure 9. Operating Supply Current vs. Conversion Rate  
Rev. E | Page 6 of 20  
 
CCC  
ADM±032  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
V
= 100mV p-p  
IN  
6
4
V
= 50mV p-p  
IN  
2
V
= 25mV p-p  
1M  
IN  
0
100k  
0
10M  
100M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 10. Temperature Error vs. Common-Mode Noise Frequency  
Figure 12. Standby Supply Current vs. Supply Voltage  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
DD  
V
= 3.3V  
DD  
1
5
10  
25  
50  
75  
100 250 500 750 1000  
SCLK FREQUENCY (kHz)  
Figure 11. Standby Supply Current vs. Clock Frequency  
Rev. E | Page 7 of 20  
ADM±032C  
C
FUN°TIONAꢁCDEꢄ° IPTIONC  
The ADM1032 is a local and remote temperature sensor and  
overtemperature alarm. When the ADM1032 is operating  
normally, the on-board A/D converter operates in a free  
running mode. The analog input multiplexer alternately selects  
either the on-chip temperature sensor to measure its local  
temperature or the remote temperature sensor. These signals are  
digitized by the ADC, and the results are stored in the local and  
remote temperature value registers.  
This is given by  
KT  
q
ΔVBE = (nf )  
× In(N)  
where:  
K is Boltzmann’s constant (1.38 × 10–23).  
q is the charge on the electron (1.6 × 10–19 Coulombs).  
T is the absolute temperature in Kelvins.  
The measurement results are compared with local and remote,  
N is the ratio of the two currents.  
high, low, and  
temperature limits stored in nine on-  
THERM  
chip registers. Out-of-limit comparisons generate flags that are  
stored in the status register, and one or more out-of-limit results  
nf is the ideality factor of the thermal diode.  
The ADM1032 is trimmed for an ideality factor of 1.008.  
cause the  
output to pull low. Exceeding  
ALERT  
THERM  
Figure 13 shows the input signal conditioning used to measure  
the output of an external temperature sensor. Figure 13 shows  
the external sensor as a substrate transistor, provided for  
temperature monitoring on some microprocessors, but it could  
equally well be a discrete transistor. If a discrete transistor is  
used, the collector is not grounded and should be linked to the  
base. To prevent ground noise interfering with the measurement,  
the more negative terminal of the sensor is not referenced to  
ground but is biased above ground by an internal diode at the  
D− input. If the sensor is operating in a noisy environment, C1  
can optionally be added as a noise filter. Its value should be no  
more than 1000 pF. See the Layout Considerations section for  
more information on C1.  
temperature limits causes the  
output to assert low.  
THERM  
The limit registers can be programmed, and the device  
controlled and configured, via the serial SMBus. The contents  
of any register can also be read back via the SMBus.  
Control and configuration functions consist of:  
Switching the device between normal operation and  
standby mode.  
Masking or enabling the  
output.  
ALERT  
Selecting the conversion rate.  
MEASUREMENT METHOD  
To measure ΔVBE, the sensor is switched between the operating  
currents of I and N × I. The resulting waveform is passed  
through a 65 kHz low-pass filter to remove noise, and then to a  
chopper-stabilized amplifier that performs the functions of  
amplification and rectification of the waveform to produce a dc  
voltage proportional to ΔVBE. This voltage is measured by the  
ADC to give a temperature output in twos complement format.  
To further reduce the effects of noise, digital filtering is  
A simple method of measuring temperature is to exploit the  
negative temperature coefficient of a diode, or the base-emitter  
voltage of a transistor, operated at constant current. Unfortunately,  
this technique requires calibration to null out the effect of the  
absolute value of VBE, which varies from device to device.  
The technique used in the ADM1032 is to measure the change  
in VBE when the device is operated at two different currents.  
performed by averaging the results of 16 measurement cycles.  
Signal conditioning and measurement of the internal  
temperature sensor is performed in a similar manner.  
V
DD  
I
N × I  
I
BIAS  
D+  
1
V
OUT+  
TO ADC  
C1  
REMOTE  
SENSING  
TRANSISTOR  
V
BIAS  
DIODE  
OUT–  
D–  
LOW-PASS FILTER  
fC = 65kHz  
1
CAPACITOR C1 IS OPTIONAL AND IT SHOULD ONLY BE USED IN VERY NOISY ENVIRONMENTS.  
C1 = 1000pF MAX.  
Figure 13. Input Signal Conditioning  
Rev. E | Page 8 of 20  
 
 
CCC  
ADM±032  
Value Registers  
TEMPERATURE DATA FORMAT  
The ADM1032 has three registers to store the results of local  
and remote temperature measurements. These registers are  
written to by the ADC only and can be read over the SMBus.  
One LSB of the ADC corresponds to 0.125°C, so the ADC can  
measure from 0°C to 127.875°C. The temperature data format is  
shown in Table 4 and Table 5.  
Offset Register  
The results of the local and remote temperature measurements  
are stored in the local and remote temperature value registers  
and are compared with limits programmed into the local and  
remote high and low limit registers.  
Series resistance on the D+ and D− lines in processor packages  
and clock noise can introduce offset errors into the remote  
temperature measurement. To achieve the specified accuracy on  
this channel, these offsets must be removed.  
Table 4. Temperature Data Format (Local Temperature and  
Remote Temperature High Byte  
The offset value is stored as an 11-bit, twos complement value  
in Register 11h (high byte) and Register 12h (low byte, left  
justified). The value of the offset is negative if the MSB of  
Register 11h is 1 and positive if the MSB of Register 12h is 0.  
The value is added to the measured value of the remote  
temperature.  
Temperature  
Digital Output  
0 000 0000  
0 000 0001  
0 000 1010  
0 001 1001  
0 011 0010  
0 100 1011  
0 110 0100  
0 111 1101  
0 111 1111  
0°C  
1°C  
10°C  
25°C  
50°C  
75°C  
100°C  
125°C  
127°C  
The offset register powers up with a default value of 0°C and has  
no effect if nothing is written to them.  
Table 6. Sample Offset Register Codes  
Offset Value  
11h  
12h  
−4°C  
−1°C  
−0.125°C  
0°C  
+0.125°C  
+1°C  
1 111 1100  
1 111 1111  
1 111 1111  
0 000 0000  
0 000 0000  
0 000 0001  
0 000 0100  
0 000 0000  
0 000 0000  
1 110 0000  
0 000 0000  
0 010 0000  
0 000 0000  
0 000 0000  
Table 5. Extended Temperature Resolution (Remote  
Temperature Low Byte  
Extended Resolution  
Remote Temperature Low Byte  
0.000°C  
0 000 0000  
0.125°C  
0 010 0000  
+4°C  
0.250°C  
0 100 0000  
0.375°C  
0.500°C  
0 110 0000  
1 000 0000  
Status Register  
Bit 7 of the status register indicates that the ADC is busy  
converting when it is high. Bit 6 to Bit 3, Bit 1, and Bit 0 are  
flags that indicate the results of the limit comparisons. Bit 2 is  
set when the remote sensor is open circuit.  
0.625°C  
0.750°C  
0.875°C  
1 010 0000  
1 100 0000  
1 110 0000  
ADM1032 REGISTERS  
If the local and/or remote temperature measurement is above  
the corresponding high temperature limit, or below or equal to  
the corresponding low temperature limit, one or more of these  
flags is set. These five flags (Bit 6 to Bit 2) are NORed together,  
The ADM1032 contains registers that are used to store the  
results of remote and local temperature measurements and high  
and low temperature limits and to configure and control the  
device. A description of these registers follows, and further  
details are given in Table 6 to Table 10.  
so that if any of them are high, the  
interrupt latch is set  
ALERT  
and the  
output goes low. Reading the status register  
ALERT  
Address Pointer Register  
clears the five flag bits, provided that the error conditions that  
caused the flags to be set have gone away. While a limit  
comparator is tripped due to a value register containing an out-  
of-limit measurement, or the sensor is open circuit, the  
corresponding flag bit cannot be reset. A flag bit can only be  
reset if the corresponding value register contains an in-limit  
measurement or the sensor is good.  
The address pointer register itself does not have, or require, an  
address because it is the register the first data byte of every write  
operation is written to automatically. This data byte is an  
address pointer that sets up one of the other registers for the  
second byte of the write operation or for a subsequent read  
operation.  
The  
interrupt latch is not reset by reading the status  
ALERT  
The power-on default value of the address pointer register is  
00h. Therefore, if a read operation is performed immediately  
after power-on without first writing to the address pointer, the  
value of the local temperature is returned because its register  
address is 00h.  
register but is reset when the  
master reading the device address, provided the error condition  
has gone away and the status register flag bits are reset.  
output is serviced by the  
ALERT  
Rev. E | Page 9 of 20  
 
 
 
 
ADM±032C  
C
When Flag 1 and Flag 0 are set, the  
output goes low to  
Table 9. Conversion Rate Register Codes  
Average Supply Current  
THERM  
indicate that the temperature measurements are outside the  
programmed limits. output does not need to be reset,  
Data  
Conversion/Sec  
mA Typ at VDD = 5.5 V  
THERM  
output. Once the measurements are within  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
0.0625  
0.125  
0.25  
0.5  
1
2
4
8
0.17  
0.20  
0.21  
0.24  
0.29  
0.40  
0.61  
1.1  
unlike the  
ALERT  
the limits, the corresponding status register bits are reset and  
the output goes high.  
THERM  
Table 7. Status Register Bit Assignments  
Bit  
Name  
Function  
7
6
5
4
3
2
1
BUSY  
1 When ADC Converting  
LHIGH1  
LLOW1  
RHIGH1  
RLOW1  
OPEN1  
RTHRM  
LTHRM1  
1 When Local High Temp Limit Tripped  
1 When Local Low Temp Limit Tripped  
1 When Remote High Temp Limit Tripped  
1 When Remote Low Temp Limit Tripped  
1 When Remote Sensor Open-Circuit  
1 When Remote THERM Limit Tripped  
1 When Local THERM Limit Tripped  
08h  
16  
1.9  
09h  
0Ah  
0B to FFh  
32  
64  
Reserved  
0.73  
1.23  
Limit Registers  
The ADM1032 has nine limit registers to store local and  
remote, high, low, and temperature limits. These  
0
1 These flags stay high until the status register is read, or they are reset by POR.  
THERM  
Configuration Register  
registers can be written to and read back over the SMBus.  
Two bits of the configuration register are used. If Bit 6 is 0,  
which is the power-on default, the device is in operating mode  
with the ADC converting. If Bit 6 is set to 1, the device is in  
standby mode and the ADC does not convert. The SMBus does,  
however, remain active in standby mode so values can be read  
The high limit registers perform a > comparison, while the low  
limit registers perform a < or = to comparison. For example, if  
the high limit register is programmed with 80°C, measuring  
81°C results in an alarm condition. If the low limit register is  
programmed with 0°C, measuring 0°C or lower results in an  
from or written to the SMBus. The  
and  
O/Ps  
ALERT  
THERM  
alarm condition. Exceeding either the local or remote  
THERM  
are also active in standby mode.  
limit asserts  
low. A default hysteresis value of 10°C is  
THERM  
Bit 7 of the configuration register is used to mask the alert  
output. If Bit 7 is 0, which is the power-on default, the output is  
enabled. If Bit 7 is set to 1, the output is disabled.  
provided, which applies to both channels. This hysteresis can be  
reprogrammed to any value after power up (Reg 0x21h).  
One-Shot Register  
Table 8. Configuration Register Bit Assignments  
The one-shot register is used to initiate a single conversion and  
comparison cycle when the ADM1032 is in standby mode, after  
which the device returns to standby. This is not a data register  
as such, and it is the write operation that causes the one-shot  
conversion. The data written to this address is irrelevant and is  
not stored. The conversion time on a single shot is 96 ms when  
the conversion rate is 16 conversions per second or less. At 32  
conversions per second, the conversion time is 15.3 ms. This is  
because averaging is disabled at the faster conversion rates (32  
and 64 conversions per second).  
Bit  
Name  
Function  
Power-On Default  
7
MASK1  
0 = ALERT Enabled  
1 = ALERT Masked  
0
6
RUN/STOP 0 = Run  
1 = Standby  
Reserved  
0
0
5 to 0  
Conversion Rate Register  
The lowest four bits of this register are used to program the  
conversion rate by dividing the internal oscillator clock by 1, 2,  
4, 8, 16, 32, 64, 128, 256, 512, or 1024 to give conversion times  
from 15.5 ms (Code 0Ah) to 16 seconds (Code 00h). This  
register can be written to and read back over the SMBus. The  
higher four bits of this register are unused and must be set to 0.  
Use of slower conversion times greatly reduces the device power  
consumption, as shown in Table 9.  
Consecutive  
Register  
ALERT  
This value written to this register determines how many out-of  
limit measurements must occur before an is generated.  
ALERT  
The default value is that one out-of-limit measurement generates  
an . The maximum value that can be chosen is four.  
ALERT  
The purpose of this register is to allow the user to perform  
some filtering of the output. This is particularly useful at the  
faster two conversion rates where no averaging takes place.  
Rev. E | Page 10 of 20  
 
CCC  
ADM±032  
Table 10. Consecutive  
Register Codes  
Number of Out-of-Limit  
Measurements Required  
ALERT  
SERIAL BUS INTERFACE  
Control of the ADM1032 is carried out via the serial bus. The  
ADM1032 is connected to this bus as a slave device, under the  
control of a master device.  
Register Value  
yxxx 000x  
yxxx 001x  
yxxx 011x  
yxxx 111x  
1
2
3
4
There is a programmable SMBus timeout. When this is enabled,  
the SMBus times out after typically 25 ms of no activity. However,  
this feature is not enabled by default. To enable it, set Bit 7 of  
the consecutive alert register (Address = 22h).  
Note that x = don’t care bits, and y = SMBus timeout bit.  
Default = 0. See SMBus section for more information.  
Table 11. List of ADM1032 Registers  
Read Address (Hex)  
Write Address (Hex)  
Name  
Power-On Default  
Undefined  
0000 0000 (00h)  
Not Applicable  
00  
Not Applicable  
Not Applicable  
Address Pointer  
Local Temperature Value  
01  
02  
Not Applicable  
Not Applicable  
External Temperature Value High Byte  
Status  
0000 0000 (00h)  
Undefined  
03  
09  
Configuration  
0000 0000 (00h)  
04  
0A  
Conversion Rate  
0000 1000 (08h)  
05  
06  
07  
08  
0B  
0C  
0D  
0E  
Local Temperature High Limit  
Local Temperature Low Limit  
External Temperature High Limit High Byte  
External Temperature Low Limit High Byte  
One-Shot  
0101 0101 (55h) (85°C)  
0000 0000 (00h) (0°C)  
0101 0101 (55h) (85°C)  
0000 0000 (00h) (0°C)  
Not Applicable  
0F  
10  
11  
12  
13  
14  
19  
Not Applicable  
External Temperature Value Low Byte  
External Temperature Offset High Byte  
External Temperature Offset Low Byte  
External Temperature High Limit Low Byte  
External Temperature Low Limit Low Byte  
External THERM Limit  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
11  
12  
13  
14  
19  
0101 0101 (55h) (85°C) (ADM1032)  
0110 1100 (6Ch) (108°C) (ADM1032-1)  
20  
21  
22  
FE  
FF  
20  
Local THERM Limit  
THERM Hysteresis  
Consecutive ALERT  
Manufacturer ID  
Die Revision Code  
0101 0101 (55h) (85°C)  
0000 1010 (0Ah) (10°C)  
0000 0001 (01h)  
0100 0001 (41h)  
Undefined  
21  
22  
Not Applicable  
Not Applicable  
Writing to Address 0F causes the ADM1032 to perform a single measurement. It is not a data register as such and it does not matter what data is written to it.  
Rev. E | Page 11 of 20  
 
 
ADM±032C  
C
In the case of the ADM1032, write operations contain either  
one or two bytes, while read operations contain one byte and  
perform the following functions.  
ADDRESSING THE DEVICE  
In general, every SMBus device has a 7-bit device address  
(except for some devices that have extended, 10-bit addresses).  
When the master device sends a device address over the bus,  
the slave device with that address responds. The ADM1032 and  
the ADM1032-1 are available with one SMBUS address, which  
is Hex 4C (1001 100). The ADM1032-2 is also available with one  
SMBUS address; however, that address is Hex 4D (1001 101).  
To write data to one of the device data registers or read data  
from it, the address pointer register must first be set so that the  
correct data register is addressed. The first byte of a write  
operation always contains a valid address that is stored in the  
address pointer register. If data is written to the device, the write  
operation contains a second data byte that is written to the  
register selected by the address pointer register.  
The serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a START  
condition, defined as a high-to-low transition on the serial  
data line SDATA, while the serial clock line SCLK remains  
high. This indicates that an address/data stream follows. All  
slave peripherals connected to the serial bus respond to the  
START condition and shift in the next eight bits, consisting  
of a 7-bit address (MSB first) plus an R/W bit, which  
determines the direction of the data transfer, that is, whether  
data is written to or read from the slave device.  
This is illustrated in Figure 14. The device address is sent over  
the bus followed by R/W set to 0. This is followed by two data  
bytes. The first data byte is the address of the internal data  
register to be written to, which is stored in the address pointer  
register. The second data byte is the data to be written to the  
internal data register.  
When reading data from a register, there are two possibilities:  
If the address pointer register value is unknown or not the  
desired value, it is first necessary to set it to the correct value  
before data can be read from the desired data register. This is  
done by performing a write to the ADM1032 as before, but  
only the data byte containing the register read address is sent  
because data is not to be written to the register. This is shown  
in Figure 15.  
The peripheral whose address corresponds to the transmitted  
address responds by pulling the data line low during the low  
period before the ninth clock pulse, known as the acknowledge  
bit. All other devices on the bus now remain idle while the  
selected device waits for data to be read from or written to it.  
If the R/W bit is a 0, the master writes to the slave device. If  
the R/W bit is a 1, the master reads from the slave device.  
A read operation is then performed consisting of the serial  
bus address, R/W bit set to 1, followed by the data byte read  
from the data register. This is shown in Figure 16.  
2. Data is sent over the serial bus in sequences of nine clock  
pulses, eight bits of data followed by an acknowledge bit from  
the slave device. Transitions on the data line must occur  
during the low period of the clock signal and remain stable  
during the high period, since a low-to-high transition when  
the clock is high can be interpreted as a STOP signal. The  
number of data bytes that can be transmitted over the serial  
bus in a single read or write operation is limited only by what  
the master and slave devices can handle.  
If the address pointer register is known to be at the desired  
address already, data can be read from the corresponding  
data register without first writing to the address pointer  
register and Figure 15 can be omitted.  
Notes  
Although it is possible to read a data byte from a data register  
without first writing to the address pointer register, if the  
address pointer register is already at the correct value, it is not  
possible to write data to a register without writing to the  
address pointer register. The first data byte of a write is always  
written to the address pointer register.  
3. When all data bytes are read or written, stop conditions are  
established. In write mode, the master pulls the data line high  
during the 10th clock pulse to assert a STOP condition. In  
read mode, the master device overrides the acknowledge bit  
by pulling the data line high during the low period before the  
ninth clock pulse. This is known as no acknowledge. The  
master then takes the data line low during the low period  
before the 10th clock pulse, and high during the 10th clock  
pulse to assert a STOP condition.  
Don’t forget that some of the ADM1032 registers have different  
addresses for read and write operations. The write address of a  
register must be written to the address pointer if data is to be  
written to that register, but it is not possible to read data from  
that address. The read address of a register must be written to  
the address pointer before data can be read from that register.  
Any number of bytes of data can be transferred over the serial  
bus in one operation, but it is not possible to mix read and write  
in one operation because the type of operation is determined at  
the beginning and cannot subsequently be changed without  
starting a new operation.  
Rev. E | Page 12 of 20  
 
CCC  
ADM±032  
1
9
1
9
SCLK  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D7  
SDATA  
START BY  
MASTER  
ACK. BY  
ADM1032  
ACK. BY  
ADM1032  
FRAME 2  
FRAME 1  
ADDRESS POINTER REGISTER BYTE  
SERIAL BUS ADDRESS BYTE  
1
9
SCLK (CONTINUED)  
SDATA (CONTINUED)  
D2  
D7  
D6  
D5  
D4  
D3  
D1  
D0  
ACK. BY STOP BY  
ADM1032 MASTER  
FRAME 3  
DATA BYTE  
Figure 14. Writing a Register Address to the Address Pointer Register, then Writing Data to the Selected Register  
1
9
1
9
SCLK  
A6  
A5  
A4  
A3  
A2  
A1  
A0 R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
ACK. BY  
ADM1032  
ACK. BY STOP BY  
ADM1032 MASTER  
START BY  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
ADDRESS POINTER REGISTER BYTE  
Figure 15. Writing to the Address Pointer Register Only  
19  
1
9
SCLK  
SDATA  
START BY  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
ACK. BY  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY  
STOP BY  
ADM1032  
ADM1032 MASTER  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
DATA BYTE FROM ADM1032  
Figure 16. Reading Data from a Previously Selected Register  
Rev. E | Page 13 of 20  
 
 
 
ADM±032C  
C
ALERT OUTPUT  
LOW POWER STANDBY MODE  
The ADM1032 can be put into a low power standby mode by  
setting Bit 6 of the configuration register. When Bit 6 is low, the  
ADM1032 operates normally. When Bit 6 is high, the ADC is  
inhibited and any conversion in progress is terminated without  
writing the result to the corresponding value register.  
The  
output goes low whenever an out-of-limit  
ALERT  
measurement is detected, or if the remote temperature sensor is  
open-circuit. It is an open drain and requires a pull-up to VDD  
Several outputs can be wire-ORed together so that the  
.
ALERT  
common line goes low if one or more of the  
goes low.  
outputs  
ALERT  
The SMBus is still enabled. Power consumption in the standby  
mode is reduced to less than 10 μA if there is no SMBus activity,  
or 100 μA if there are clock and data signals on the bus.  
The  
output can be used as an interrupt signal to a  
ALERT  
processor, or it can be used as an  
. Slave devices on  
SMBALERT  
the SMBus can not normally signal to the master that they want  
to talk, but the function allows them to do so.  
When the device is in standby mode, it is still possible to initiate  
a one-shot conversion of both channels by writing XXh to the  
one-shot register (Address 0Fh), after which the device returns  
to standby. It is also possible to write new values to the limit  
register while it is in standby. If the values stored in the  
SMBALERT  
outputs can be connected to a common  
One or more  
SMBALERT  
SMBALERT  
ALERT  
line connected to the master. When the  
line is pulled low by one of the devices, the  
temperature value registers are now outside the new limits, an  
is generated even though the ADM1032 is still in  
ALERT  
following procedure occurs (see Figure 17).  
standby.  
MASTER  
RECEIVES  
SMBALERT  
THE ADM1032 INTERRUPT SYSTEM  
NO  
ACK  
START  
ACK DEVICE ADDRESS  
STOP  
RD  
ALERT RESPONSE ADDRESS  
The ADM1032 has two interrupt outputs,  
and  
.
THERM  
ALERT  
MASTER SENDS  
ARA AND READ  
COMMAND  
These have different functions.  
responds to violations of  
ALERT  
software-programmed temperature limits and is maskable.  
is intended as a fail-safe interrupt output that cannot  
DEVICE SENDS  
ITS ADDRESS  
SMBALERT  
Figure 17. Use of  
THERM  
be masked.  
1.  
is pulled low.  
SMBALERT  
If the temperature goes equal to or below the lower temperature  
2. Master initiates a read operation and sends the alert response  
address (ARA = 0001 100). This is a general call address that  
must not be used as a specific device address.  
limit, the  
pin is asserted low to indicate an out-of-limit  
ALERT  
condition. If the temperature is within the programmed low  
and high temperature limits, no interrupt is generated.  
3. The device whose  
output is low responds to the alert  
ALERT  
response address and the master reads its device address.  
Since the device address is seven bits, an LSB of 1 is added.  
The address of the device is now known, and it can be  
interrogated in the usual way.  
If the temperature exceeds the high temperature limit, the  
pin is asserted low to indicate an overtemperature  
ALERT  
condition. A local and remote  
limit can be  
THERM  
programmed into the device to set the temperature limit above  
which the overtemperature pin is asserted low. This  
4. If more than one devices  
output is low, the one with  
ALERT  
THERM  
the lowest device address has priority in accordance with  
normal SMBus arbitration.  
temperature limit should be equal to or greater than the high  
temperature limit programmed.  
5. Once the ADM1032 has responded to the alert response  
The behavior of the high limit and  
limit is as follows:  
THERM  
1. If either temperature measured exceeds the high temperature  
limit, the output is asserted low.  
address, it resets its  
output, provided that the error  
ALERT  
condition that caused the  
no longer exists. If the  
ALERT  
ALERT  
2. If the local or remote temperature continues to increase and  
either one exceeds the limit, the output  
line remains low, the master sends ARA again,  
SMBALERT  
and so on until all devices whose  
have responded.  
outputs were low  
ALERT  
THERM  
THERM  
asserts low. This can be used to throttle the CPU clock or  
switch on a fan.  
A
hysteresis value is provided to prevent a cooling  
THERM  
fan cycling on and off. The power-on default value is 10°C, but  
this can be reprogrammed to any value after power-up. This  
hysteresis value applies to both the local and remote channels.  
Rev. E | Page 14 of 20  
 
 
CCC  
ADM±032  
Using these two limits in this way, allows the user to gain  
maximum performance from the system by only slowing it  
down should it be at a critical temperature.  
SENSOR FAULT DETECTION  
At the D+ input, the ADM1032 has a fault detector that detects  
if the external sensor diode is open circuit. This is a simple  
voltage comparator that trips if the voltage at D+ exceeds  
The  
The  
signal is open drain and requires a pull-up to VDD.  
signal must always be pulled up to the same power  
THERM  
THERM  
VDD − 1 V (typical). The output of this comparator is checked  
when a conversion is initiated and sets Bit 2 of the status  
register if a fault is detected.  
supply as the ADM1032, unlike the SMBus signals (SDATA,  
SCLK, and ) that can be pulled to a different power rail,  
ALERT  
usually that of the SMBus controller.  
If the remote sensor voltage falls below the normal measuring  
range, for example, due to the diode being short-circuited, the  
ADC outputs −128 (1000 0000). Since the normal operating  
temperature range of the device only extends down to 0°C, this  
output code should never be seen in normal operation, so it can  
be interpreted as a fault condition. Since it is outside the power-  
on default low temperature limit (0°C) and any low limit that  
would normally be programmed, a short-circuit sensor causes  
an SMBus alert.  
100°C  
90°C  
80°C  
70°C  
LOCAL THERM  
LIMIT  
LOCAL THERM LIMIT  
–HYSTERESIS  
TEMPERATURE  
60°C  
50°C  
40°C  
In this respect, the ADM1032 differs from and improves upon  
competitive devices that output zero if the external sensor goes  
short-circuit. These devices can misinterpret a genuine 0°C  
measurement as a fault condition.  
THERM  
Figure 18. Operation of the THERM Output  
Table 12.  
Hysteresis Sample Values  
THERM  
THERM Hysteresis  
Binary Representation  
When the D+ and D− lines are shorted together, an  
always generated. This is because the remote value register  
reports a temperature value of −128°C. Since the ADM1032  
is  
ALERT  
0°C  
1°C  
10°C  
0 000 0000  
0 000 0001  
0 000 1010  
performs a less-than or equal-to comparison with the low limit,  
an is generated even when the low limit is set to its  
ALERT  
minimum of −128°C.  
Rev. E | Page 15 of 20  
 
ADM±032C  
C
APPꢁI°ATIONꢄCINFO MATION—FA°TO ꢄCAFFE°TINGCA°°U A°YC  
Transistors such as 2N3904, 2N3906, or equivalents in SOT-23  
packages are suitable devices to use.  
REMOTE SENSING DIODE  
The ADM1032 is designed to work with substrate transistors  
built into processors’ CPUs or with discrete transistors.  
Substrate transistors are generally PNP types with the collector  
connected to the substrate. Discrete types can be either a PNP  
or an NPN transistor connected as a diode (base shorted to  
collector). If an NPN transistor is used, the collector and base  
are connected to D+ and the emitter to D−. If a PNP transistor  
is used, the collector and base are connected to D− and the  
emitter to D+. Substrate transistors are found in a number of  
CPUs. To reduce the error due to variations in these substrate  
and discrete transistors, a number of factors should be taken  
into consideration:  
THERMAL INERTIA AND SELF-HEATING  
Accuracy depends on the temperature of the remote-sensing  
diode and/or the internal temperature sensor being at the same  
temperature as that being measured, and a number of factors  
can affect this. Ideally, the sensor should be in good thermal  
contact with the part of the system being measured, for  
example, the processor. If it is not, the thermal inertia caused by  
the mass of the sensor causes a lag in the response of the sensor  
to a temperature change. In the case of the remote sensor, this  
should not be a problem, since it is either a substrate transistor  
in the processor or a small package device, such as the SOT-23,  
placed in close proximity to it.  
1. The ideality factor, nf, of the transistor. The ideality factor is a  
measure of the deviation of the thermal diode from the ideal  
behavior. The ADM1032 is trimmed for an nf value of 1.008.  
The following equation can be used to calculate the error  
introduced at a temperature T°C when using a transistor  
whose nf does not equal 1.008. Consult the processor data  
sheet for nf values.  
The on-chip sensor, however, is often remote from the  
processor and is only monitoring the general ambient  
temperature around the package. The thermal time constant  
of the SOIC-8 package in still air is about 140 seconds, and if  
the ambient air temperature quickly changed by 100°, it would  
take about 12 minutes (five time constants) for the junction  
temperature of the ADM1032 to settle within 1° of this. In  
practice, the ADM1032 package is in electrical and therefore  
thermal contact with a printed circuit board and can also be in  
a forced airflow. How accurately the temperature of the board  
and/or the forced airflow reflect the temperature to be  
measured also affects the accuracy.  
(
n
natural 1.008  
)
×
ΔT =  
(273.15 Kelvin + T  
)
1.008  
This value can be written to the offset register and is  
automatically added to or subtracted from the temperature  
measurement.  
2. Some CPU manufacturers specify the high and low current  
levels of the substrate transistors. The high current level of  
the ADM1032, IHIGH, is 230 μA and the low level current,  
Self-heating due to the power dissipated in the ADM1032 or  
the remote sensor causes the chip temperature of the device or  
remote sensor to rise above ambient. However, the current  
forced through the remote sensor is so small that self-heating  
is negligible. In the case of the ADM1032, the worst-case  
condition occurs when the device is converting at 16 conversions  
per second while sinking the maximum current of 1 mA at the  
I
LOW, is 13 μA. If the ADM1032 current levels do not match  
the levels of the CPU manufacturers, then it can become  
necessary to remove an offset. The CPUs data sheet advises  
whether this offset needs to be removed and how to calculate  
it. This offset can be programmed to the offset register. It is  
important to note that if accounting for two or more offsets is  
needed, then the algebraic sum of these offsets must be  
programmed to the offset register.  
and  
output. In this case, the total power  
ALERT  
THERM  
dissipation in the device is about 11 mW. The thermal  
resistance, θJA, of the SOIC-8 package is about 121°C/W.  
In practice, the package has electrical and therefore thermal  
connection to the printed circuit board, so the temperature rise  
due to self-heating is negligible.  
If a discrete transistor is being used with the ADM1032, the  
best accuracy is obtained by choosing devices according to the  
following criteria:  
Base-emitter voltage greater than 0.25 V at 6 mA, at the  
highest operating temperature.  
Base-emitter voltage less than 0.95 V at 100 mA, at the lowest  
operating temperature.  
Base resistance less than 100 Ω.  
Small variation in hFE (say 50 to 150) that indicates tight  
control of VBE characteristics.  
Rev. E | Page 16 of 20  
 
CCC  
ADM±032  
6. If the distance to the remote sensor is more than eight inches,  
the use of twisted pair cable is recommended. This works up  
to about six feet to 12 feet.  
LAYOUT CONSIDERATIONS  
Digital boards can be electrically noisy environments, and the  
ADM1032 is measuring very small voltages from the remote  
sensor, so care must be taken to minimize noise induced at the  
sensor inputs. The following precautions should be taken.  
7. For really long distances (up to 100 feet), use shielded twisted  
pair, such as Belden #8451 microphone cable. Connect the  
twisted pair to D+ and D− and the shield to GND close to the  
ADM1032. Leave the remote end of the shield unconnected  
to avoid ground loops.  
1. Place the ADM1032 as close as possible to the remote sensing  
diode. Provided that the worst noise sources, that is, clock  
generators, data/address buses, and CRTs, are avoided, this  
distance can be four to eight inches.  
Because the measurement technique uses switched current  
sources, excessive cable and/or filter capacitance can affect the  
measurement. When using long cables, the filter capacitor can  
be reduced or removed.  
2. Route the D+ and D− tracks close together, in parallel, with  
grounded guard tracks on each side. Provide a ground plane  
under the tracks if possible.  
Cable resistance can also introduce errors. 1 Ω series resistance  
introduces about 1°C error.  
3. Use wide tracks to minimize inductance and reduce noise  
pickup. 10 mil track minimum width and spacing is  
recommended.  
APPLICATION CIRCUIT  
Figure 20 shows a typical application circuit for the ADM1032,  
using a discrete sensor transistor connected via a shielded,  
10MIL  
10MIL  
10MIL  
10MIL  
10MIL  
10MIL  
10MIL  
GND  
D+  
twisted pair cable. The pull-ups on SCLK, SDATA, and  
ALERT  
are required only if they are not already provided elsewhere in  
the system.  
The SCLK and SDATA pins of the ADM1032 can be interfaced  
directly to the SMBus of an I/O controller, such as the Intel 820  
chipset.  
D–  
GND  
0.1μF  
V
3V TO 3.6V  
DD  
ADM1032  
Figure 19. Arrangement of Signal Tracks  
TYP 10k  
Ω
D+  
SCLK  
SDATA  
ALERT  
4. Try to minimize the number of copper/solder joints, which  
can cause thermocouple effects. Where copper/solder joints  
are used, make sure that they are in both the D+ and D− path  
and at the same temperature.  
D–  
SMBUS  
CONTROLLER  
2N3906 SHIELD  
OR  
CPU THERMAL  
DIODE  
V
DD  
5V OR 12V  
THERM  
TYP 10k  
Ω
Thermocouple effects should not be a major problem since  
1°C corresponds to about 200 μV and thermocouple voltages  
are about 3 μV/°C of temperature difference. Unless there  
are two thermocouples with a big temperature differential  
between them, thermocouple voltages should be much less  
than 200 μV.  
GND  
FAN  
CONTROL  
CIRCUIT  
FAN  
ENABLE  
Figure 20. Typical Application Circuit  
5. Place a 0.1 μF bypass capacitor close to the VDD pin. In very  
noisy environments, place a 1000 pF input filter capacitor  
across D+ and D− close to the ADM1032.  
Rev. E | Page 17 of 20  
 
 
 
ADM±032C  
C
OUTꢁINECDIMENꢄIONꢄC  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 22. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. E | Page 18 of 20  
 
CCC  
ADM±032  
ORDERING GUIDE  
External THERM  
Default  
85°C  
85°C  
85°C  
85°C  
85°C  
85°C  
108°C  
108°C  
108°C  
108°C  
108°C  
108°C  
85°C  
85°C  
85°C  
85°C  
85°C  
Temperature  
Range  
Package  
Option  
SMBus  
Addr  
Model  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Branding  
ADM1032AR  
0°C to 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
0°Cto 120°C  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4C  
4D  
4D  
4D  
ADM1032AR-REEL  
ADM1032AR-REEL7  
ADM1032ARZ1  
ADM1032ARZ-REEL1  
ADM1032ARZ-REEL71  
ADM1032AR-1  
ADM1032AR-1REEL  
ADM1032AR-1REEL7  
ADM1032ARZ-11  
ADM1032ARZ-1REEL1  
ADM1032ARZ-1REEL71  
ADM1032ARM  
ADM1032ARM-REEL  
ADM1032ARM-REEL7  
ADM1032ARMZ1  
ADM1032ARMZ-REEL1  
ADM1032ARMZ-REEL71  
ADM1032ARM-1  
ADM1032ARM-1REEL  
ADM1032ARM-1REEL7  
ADM1032ARMZ-11  
ADM1032ARMZ-1REEL1  
ADM1032ARMZ-1REEL71  
ADM1032ARMZ-21  
ADM1032ARMZ-2REEL1  
ADM1032ARMZ-2REEL71  
T2A  
T2A  
T2A  
T1J  
T1J  
T1J  
T1A  
T1A  
T1A  
T13  
T13  
T13  
T1C  
T1C  
T1C  
85°C  
108°C  
108°C  
108°C  
108°C  
108°C  
108°C  
85°C  
85°C  
85°C  
1 Z = Pb-free part.  
Rev. E | Page 19 of 20  
 
 
ADM±032C  
NOTEꢄC  
C
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01906-0-11/05(E)  
Rev. E | Page 20 of 20  
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!