SIGNAL CONDITIONING
LAYOUT
The FET switches used for the sample hold on many CMOS
A/D converters release a significant amount of charge injec-
tion which can cause the driving op amp to oscillate. The
FET switch on the ADS7804, compared to the FET switches
on other CMOS A/D converters, releases 5%-10% of the
charge. There is also a resistive front end which attenuates
any charge which is released. The end result is a minimal
requirement for the anti-alias filter on the front end. Any op
amp sufficient for the signal in an application will be
sufficient to drive the ADS7804.
POWER
For optimum performance, tie the analog and digital power
pins to the same +5V power supply and tie the analog and
digital grounds together. As noted in the electrical specifica-
tions, the ADS7804 uses 90% of its power for the analog
circuitry. The ADS7804 should be considered as an analog
component.
The +5V power for the A/D should be separate from the +5V
used for the system’s digital logic. Connecting VDIG (pin 28)
directly to a digital supply can reduce converter performance
due to switching noise from the digital logic. For best
performance, the +5V supply can be produced from what-
ever analog supply is used for the rest of the analog signal
conditioning. If +12V or +15V supplies are present, a simple
+5V regulator can be used. Although it is not suggested, if
the digital supply must be used to power the converter, be
sure to properly filter the supply. Either using a filtered
digital supply or a regulated analog supply, both VDIG and
VANA should be tied to the same +5V source.
The resistive front end of the ADS7804 also provides a
guaranteed ±25V overvoltage protection. In most cases, this
eliminates the need for external input protection circuitry.
INTERMEDIATE LATCHES
The ADS7804 does have tri-state outputs for the parallel
port, but intermediate latches should be used if the bus will
be active during conversions. If the bus is not active during
conversion, the tri-state outputs can be used to isolate the
A/D from other peripherals on the same bus. Tri-state
outputs can also be used when the A/D is the only peripheral
on the data bus.
GROUNDING
Three ground pins are present on the ADS7804. DGND is
the digital supply ground. AGND2 is the analog supply
ground. AGND1 is the ground which all analog signals
internal to the A/D are referenced. AGND1 is more suscep-
tible to current induced voltage drops and must have the path
of least resistance back to the power supply.
Intermediate latches are beneficial on any monolithic A/D
converter. The ADS7804 has an internal LSB size of 610µV.
Transients from fast switching signals on the parallel port,
even when the A/D is tri-stated, can be coupled through the
substrate to the analog circuitry causing degradation of
converter performance. The effects of this phenomenon will
be more obvious when using the pin-compatible ADS7805
or any of the other 16-bit converters in the ADS Family. This
is due to the smaller internal LSB size of 38µV.
All the ground pins of the A/D should be tied to the analog
ground plane, separated from the system’s digital logic
ground, to achieve optimum performance. Both analog and
digital ground planes should be tied to the “system” ground
as near to the power supplies as possible. This helps to
prevent dynamic digital ground currents from modulating
the analog ground through a common impedance to power
ground.
APPLICATIONS
Call factory for updated data sheet which includes standard
DSP, microprocessor, and microcontroller interfaces.
®
ADS7804
10