欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • ADSPTS201SYBP050
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • ADSPTS201SYBP050图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • ADSPTS201SYBP050 现货库存
  • 数量3000 
  • 厂家ADI/亚德诺 
  • 封装BGA576 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • ADSPTS201SYBP050图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • ADSPTS201SYBP050
  • 数量23480 
  • 厂家ADI/亚德诺 
  • 封装BGA576 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • ADSPTS201SYBP050图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • ADSPTS201SYBP050
  • 数量13880 
  • 厂家ADI 
  • 封装576BGAED 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • ADSPTS201SYBP050图
  • 深圳市捷立辉科技有限公司

     该会员已使用本站10年以上
  • ADSPTS201SYBP050
  • 数量98686 
  • 厂家ADI/亚德诺 
  • 封装BGA576 
  • 批号21+ 
  • 原装正品,公司真实库存
  • QQ:1803576909QQ:1803576909 复制
  • -0755-82792948 QQ:1803576909
  • ADSPTS201SYBP050图
  • 深圳市晨豪科技有限公司

     该会员已使用本站12年以上
  • ADSPTS201SYBP050
  • 数量89630 
  • 厂家ADI/亚德诺 
  • 封装BGA576 
  • 批号23+ 
  • 当天发货全新原装现货
  • QQ:1743149803QQ:1743149803 复制
    QQ:1852346906QQ:1852346906 复制
  • 0755-82732291 QQ:1743149803QQ:1852346906
  • ADSPTS201SYBP050图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • ADSPTS201SYBP050
  • 数量8800 
  • 厂家ADI/亚德诺 
  • 封装BGA576 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • ADSPTS201SYBP050图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • ADSPTS201SYBP050
  • 数量8800 
  • 厂家ADI/亚德诺 
  • 封装BGA576 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132

产品型号ADSQ-1410S的Datasheet PDF文件预览

®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
PRELIMINARY  
PRODUCT OVERVIEW  
The ADSQ-1410 is a quad 10MSPS sampling  
A/D optimized for applications where low noise  
performance and the ability to convert full-scale  
step input signals at a 10 MHz conversion rate are  
required± With excellent dynamic performance up  
to Nyquist frequencies, the ADSQ-1410 is also an  
ideal choice for multi-channel, frequency domain  
applications±  
dent Enable Control pins offer individual output  
data and overflow/underflow selection±  
A ꢁ±2ꢀ precision internal reference, along with indi-  
vidual analog input range selection pins, provides  
ideal tracking over temperature while allowing  
each channel to be independently configured for an  
analog input range of ± 1ꢀ to ± ꢁ±2±  
Available in both surface-mount and through-hole  
packages, the ADSQ-1410 requires only ± 2ꢀ for  
internal analog supplies and ꢁꢀ to 2ꢀ supply for logic  
outputs± Typical power dissipation is ꢁ±7 Watts±  
This functionally complete quad A/D uses a single  
rising edge triggered Start Convert signal to control  
the conversion cycles of all four A/D’s± The digital  
CMOS outputs are multiplexed into pairs providing  
two parallel, 3-state output buses± Four indepen-  
Common applications include medical imaging,  
radar, sonar, communications and instrumentation±  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
  
Quad 14-bit resolution; 10 MSPS sampling rate  
ꢁ0 Overflow_AB  
66 B1 (MSB) AB  
  
Individual channel selectable ± 1ꢀ to ± ꢁ±2ꢀ input  
range  
62 Bꢁ AB  
ꢂ2ꢀ 4, 10, ꢁ2, 30  
-2ꢀ 2, 11  
ꢂꢀDD 19, ꢁꢁ  
64 B3 AB  
63 B4 AB  
  
Individual channel offset and gain adjustment  
capabilities  
3
1
Offset Adj A  
Input A  
6ꢁ B2 AB  
2ꢁ EN A  
61 B6 AB  
Sub-Ranging A/D  
A
3-State Register  
3-State Register  
SGND  
A
60 B7 AB  
  
Functionally complete; low cost  
29 B8 AB  
Range A  
13  
  
Low noise: 0±2 LSB RMS; no missing codes  
28 B9 AB  
27 B10 AB  
26 B11 AB  
22 B1ꢁ AB  
24 B13 AB  
23 B14 (LSB) AB  
31  
33  
3ꢁ  
17  
  
Excellent dynamic performance: SNR 80db  
Offset Adj B  
Sub-Ranging A/D  
B
Input  
B
B
  
ꢁꢀ to 2ꢀ CMOS logic outputs with overflow/un-  
derflow; 3-latency delays  
SGND  
48 EN B  
21 EN C  
Range B  
  
Rising edge-triggered; Individual channel enable  
/ Hi-z outputs  
Offset Adj C  
9
7
ꢁ1 Overflow_CD  
47 B1 (MSB) CD  
46 Bꢁ CD  
Sub-Ranging A/D  
C
3-State Register  
3-State Register  
Input  
C
C
  
± 2ꢀ and ꢂꢁꢀDD to ꢂ2ꢀDD logic output supplies  
SGND  
8
42 B3 CD  
  
66-pin SMT or TDIP package  
Range C  
12  
44 B4 CD  
43 B2 CD  
  
Developed for image processing applications  
Sub-Ranging A/D  
D
Offset Adj D  
ꢁ6  
4ꢁ B6 CD  
  
Ideal for both time and frequency domain  
applications  
Input D ꢁ8  
SGND D ꢁ7  
41 B7 CD  
49 EN D  
40 B8 CD  
39 B9 CD  
16  
Range D  
38 B10 CD  
37 B11 CD  
36 B1ꢁ CD  
32 B13 CD  
34 B14 (LSB) CD  
Timing and Control  
20 START CONꢀ  
14  
ꢂꢁ±2ꢀ REF  
ꢁ±2ꢀ REF  
AGND 6, 1ꢁ, ꢁ4, ꢁ9  
OGND 18, ꢁ3  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 1 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
ABSOLUTE MAXIMUM RATINGS  
Parameters  
Internal Reference  
ꢀoltage ꢂꢁ2°C  
0 to 70°C  
External Current  
ꢁ±492  
ꢁ±492  
ꢂꢁ±2  
ꢂꢁ±2  
ꢁ±202  
ꢁ±202  
2
ꢀolts  
ꢀolts  
mA  
Min.  
0
Typ.  
Max.  
ꢂ2±2  
Units  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
°C  
+5VA Supply (Pin 4,10,ꢁ2,30)  
–5VA Supply (Pin 2,11)  
0
–2±2  
Dynamic Performance  
Min.  
Typ.  
Max.  
Units  
+VDD (Pins 19,ꢁꢁ)  
0
ꢂ7ꢀ  
Total Harmonic Distortion  
(–0±2dB)  
RANGE pin voltage = 1ꢀ  
200kHz  
1MHz to  
ꢂꢀDD ꢂ0±2  
Digital Input (Pin 48,49,20,21,2ꢁ)  
Analog Input (Pin 1,7,13,12,16,17,ꢁ8)  
Lead Temperature soldering 10sec  
–0±3  
–2  
ꢂ2  
-89±2  
-88±2  
-87±6  
db  
db  
db  
300  
2MHz  
RANGE pin voltage = ꢁ±2ꢀ  
200kHz  
1MHz to  
FUNCTIONAL SPECIFICATIONS  
-81±3  
-81  
-78  
db  
db  
db  
(TA = ꢂꢁ2°C, ꢀCC = ꢂ2, DD = ꢂ3±3, ꢀEE = –2, 10MSPS sampling rate,  
IN = ± ꢁ±2ꢀ and a minimum 1 minute warmup unless otherwise specified±)  
2MHz  
Analog Input  
Min.  
± 1  
Typ.  
Max.  
± ꢁ±2  
Units  
ꢀolts  
Ω
Signal-to-Noise Ratio  
(w/o distortion, –0±2dB)  
RANGE pin voltage = 1ꢀ  
200kHz  
1MHz to  
2MHz  
Input Voltage Range  
Input Impedence  
Input Capacitance  
Digital Inputs  
470  
74±8  
74±8  
74±6  
db  
db  
db  
7
pF  
RANGE pin voltage = ꢁ±2ꢀ  
200kHz  
1MHz to  
Logic Levels  
80±4  
80±ꢁ  
79±6  
db  
db  
db  
Logic 1 START CONꢀ  
Logic 1 ENABLE DD ꢁꢀ  
Logic 1 ENABLE DD 3±3ꢀ  
Logic 1 ENABLE DD 2±0ꢀ  
Logic 0  
Logic Loading  
Logic 1  
Logic 0  
ꢂꢁ±4  
0±2  
ꢁ±1  
1±6  
ꢂꢀDD  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
2MHz  
Signal-to-Noise Ratio  
(distortion, –0±2dB)  
RANGE pin voltage = 1ꢀ  
200kHz  
1MHz to  
2MHz  
RANGE pin voltage = ꢁ±2ꢀ  
200kHz  
1MHz to  
ꢂ0±8  
ꢂ10  
–10  
uA  
uA  
74±6  
74±6  
74±4  
db  
db  
db  
Performance  
Differential Nonlinearity  
(fin = 972kHz)  
ꢂꢁ2°C  
0 to 70°C  
Extended temperature range  
78±ꢁ  
78  
77  
db  
db  
db  
–0±99  
–0±99  
TBD  
± 0±2  
± 0±2  
TBD  
LSB  
LSB  
LSB  
2MHz  
Spurious Free Dynamic Range  
RANGE pin voltage = 1ꢀ  
200kHz  
1MHz to  
Integral Nonlinearity  
ꢂꢁ2°C  
0 to 70°C  
-94±9  
-9ꢁ±1  
-91±ꢁ  
db  
db  
db  
± ꢁ±2  
± 3±0  
TBD  
LSB  
LSB  
LSB  
2MHz  
Extended temperature range  
RANGE pin voltage = ꢁ±2ꢀ  
200kHz  
1MHz to  
2MHz  
-82±2  
-82  
-80  
db  
db  
db  
Guaranteed No Missing Codes  
Resolution  
0 to 70°C  
14 Bits  
Zero Error  
ꢂꢁ2°C  
0 to 70°C  
Extended temperature range  
Input Bandwidth  
Small Signal (–ꢁ0dB input)  
Large Signal (–3dB input)  
0±3  
0±3  
TBD  
%FSR  
%FSR  
%FSR  
33±2  
8±2  
MHz  
MHz  
Aperture Delay Time  
Aperture Uncertainty  
1
4
ns  
Gain Error  
ꢂꢁ2°C  
0 to 70°C  
Extended temperature range  
ps rms  
0±6  
TBD  
TBD  
%FSR  
%FSR  
%FSR  
S/H Acquisition Time,  
(to ± 0±003% FSR)  
TBD  
ns  
Output  
Feedthrough Rejection  
Channel under test Fin = 4±82MHz  
Other 3 channels Fin = ꢁ±42MHz  
-130  
dB  
Output Coding  
Offset Binary  
Logic Level  
Noise  
Logic 1 (–4mA) ꢂꢀDD = ꢂ3±3ꢀ  
Logic 0 (4mA) ꢂꢀDD = ꢂ3±3ꢀ  
Logic Loading 1 ꢂꢀDD = ꢂ3±3ꢀ  
Logic Loading 0 ꢂꢀDD = ꢂ3±3ꢀ  
ꢂꢁ±9  
ꢂ0±2  
-4  
ꢀolts  
ꢀolts  
mA  
RANGE pin voltage = 1ꢀ  
RANGE pin voltage = ꢁ±2ꢀ  
(grounded input)  
RANGE pin voltage = 1ꢀ  
RANGE pin voltage = ꢁ±2ꢀ  
1ꢁ1  
120  
μꢀrms  
μꢀrms  
ꢂ4  
mA  
0±99  
0±2  
LSB  
LSB  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page ꢁ of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
The fine gain adjustment range is equivalent to the amount of change  
induced at the RANGE pin± With the desired Fine Gain Adjustment (as a  
percent of full scale) and the maximum voltage expected from the Fine  
Gain Adjust circuitry known, and we select a value for R1 that minimizes  
the amount of current draw from ꢀref (typically 1kΩ range), we can then  
calculate the value for R3 to be:  
FUNCTIONAL SPECIFICATIONS, CONT.  
Power Requirements  
Power Supply Ranges  
ꢂ2ꢀEE Supply  
–2ꢀCC Supply  
ꢂꢀDD Supply  
ꢂ4±72  
–2±ꢁ2  
ꢂꢁꢀ  
ꢂ2±0  
–2±0  
ꢂ3±3  
ꢂ2±ꢁ2  
–4±72  
ꢂ2ꢀ  
ꢀolts  
ꢀolts  
ꢀolts  
Power Supply Currents  
ꢂ2ꢀ Supply  
–2ꢀ Supply  
R1 ꢀtrim  
R3 =  
Eq± 1:  
%
ꢀref  
390  
140  
1ꢁ  
430  
122  
ꢁ0  
mA  
mA  
mA  
100  
ꢂꢀDD Supply  
Where: Vtrim = the maximum Fine Gain Adjust voltage  
% = the percentage of desired trim range as a % of full scale  
Power Dissipation  
ꢁ±7  
3±1  
Watt  
Power Supply Rejection  
(5%) @25°C  
Defining RANGE as the unadjusted RANGE pin voltage (R3 tied to GND or  
Fine Gain Adjust = 0ꢀ), we can determine the value of Rꢁ using the follow-  
ing equation:  
± 0±01  
%FSR/%ꢀ  
Environmental  
Operating Temperature Range  
ADSQ-1410  
ADSQ-1410EX  
0
TBD  
ꢂ70  
TBD  
°C  
°C  
R1 R3 Range  
Eq± ꢁ:  
Rꢁ =  
R3 ꢀref – Range (R1 ꢂ R3)  
Storage Temperature  
Package Type  
Weight  
–62  
ꢂ1ꢁ2  
°C  
Where: RANGE is the unadjusted RANGE pin voltage  
66-Pin, SMT, TDIP  
ꢁ3 grams  
For example: Using the circuit shown, a ± 1ꢀ output DAC is used to adjust  
the gain of a channel with an analog input range of ± ꢁ±0ꢀ by ± 2%±  
Resistor R1 is selected to be 1k Ohm± From Eq± 1: R3 = (1k x 1±0) / (ꢁ±0  
x 0±02) = 8k Ohm± For an analog input range of ± ꢁ±0ꢀ the unadjusted  
RANGE voltage must be ꢂꢁ±0± From Eq± ꢁ: Rꢁ = (1k x 8k x ꢁ±0) / (8k x  
ꢁ±2 - ꢁ±0(1k ꢂ8k)) = 8k±  
PCB  
FR-4 RoHS TG 170°C UL94-ꢀO  
Nylon 46, 30% GFR, Stanyl, UL94-ꢀO  
0±0ꢁ0 Sq± Au Plate Phosphor Bronze  
Plastic Shell  
Pins  
Typical for all channels  
TECHNICAL NOTES  
Rꢁ  
The ADSQ-1410 is a designed to function as four-independent sampling  
A/D converters each with a selectable analog input range of ± 1 to ± ꢁ±2  
ꢀolts and with independent offset and gain capabilities± Each channel of  
the ADSQ-1410 operates from its independent ꢂ2ꢀ supplies and analog  
grounds (AGND & SGND)± Channels A&B share a common -2, DD and  
OGND_AB (output ground), similarly channels C&D share -2, DD and  
OGND_CD± This separation of channels along with strategically placed  
ground connections within the ADSQ-1410 provide the excellent channel-  
to-channel isolation performance± For optimal performance PCB layout  
and high-speed / high resolution design practices should be observed±  
See Layout Considerations±  
Channel A  
R3  
A/D Range Select  
(FS = ꢁ x ꢀRANGE)  
RANGE_A  
+2.5V REF  
Fine Gain  
Adjust  
R1  
ꢂꢁ±2ꢀ REF  
RANGE & FINE GAIN ADJUSTMENT:  
ADSQ-1410 Range / Gain Adjust  
The ADSQ-1410 allows the full-scale range of each individual channel  
to be adjusted from ꢁꢀpp to 2ꢀpp± The ADSQ-1410 provides a precision  
ꢂꢁ±2ꢀ reference voltage that can be used with a resistor divider network  
to set each channel's desired full-scale range± The voltage applied to each  
individual RANGE pin will set the full-scale input of that channel to be:  
OFFSET ADJUSTMENT  
Offset adjustment is accomplished by applying a ± voltage to the OFFSET  
ADJ circuitry as seen in the Input Stage figure± Offset adjustment calcula-  
tions can be determined using the following equations± It should be noted  
that the factory trims that are required in several of the converter’s input  
stages will slightly alter the tolerance of the offset adjustment calcula-  
tions± For Eq± 3 the number of desired codes of adjustment are inserted  
to determine the necessary voltage at the OFFSET ADJ pin± For example  
with RANGE voltage = ꢁ±2 volts and ± 78 codes of adjustment desired cor-  
responds to ± 1ꢀ at the OFFSET ADJ pin±  
FS = ꢁ x RANGE pin voltage±  
Fine Gain adjustment can be attained with precision changes to the high  
impedance RANGE pins using a resistor divider network in conjunction  
with a DAC or adjustable voltage source as shown in the Gain Adjust  
figure±  
Setting the RANGE voltage and providing the proper amount of gain  
adjustment can be calculated using the following equations as referred to  
the circuitry shown in the Gain Adjust figure±  
ꢁ Range (Codes)  
0±0ꢁ38  
Eq± 3:  
ꢀoffset =  
Where: RANGE = the RANGE pin voltage  
Codes = Desired offset adjustment range  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 3 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
For applications that require small full scale input ranges less sensitiv-  
ity may be required for offset adjustment± In this case an external series  
resistor can be added with the internal ꢁ0±2kΩ resistor on the OFFSET ADJ  
pin± In this case the Offset ꢀoltage can be calculated by:  
Typical for AB & CD Output Bus  
EN_A  
ꢁ Range (Codes)  
487±9  
Eq± 4: ꢀoffset =  
A/D_ A  
A/D_ B  
Buffer_A  
Buffer_B  
(Rexternal ꢂ ꢁ0200)  
AB Output Bus &  
Overflow  
Where: RANGE = the RANGE pin voltage  
Codes = Desired offset adjustment range  
Rexternal = External Offset series resistor  
(pins 54-66 & 20)  
EN_B  
20.5k  
470  
470  
OFFSET ADJ  
Output Block Diagram  
To A/D  
Input  
Section  
V
IN 2.5V  
SGND  
Parameter  
Symbol  
Min  
100  
42  
Typ  
Max  
1x106  
Unit  
ns  
Start Conv Period  
Start Conv Pulse High  
Start Conv Pulse Low  
Output Delay  
tc  
tch  
tcl  
ns  
42  
ns  
ADSQ-1410 Quad Input Stage  
tod  
13  
18  
ꢁ7  
ns  
Table 1. Digital Output And Timing  
DIGITAL OUTPUT AND TIMING  
N
N + 1  
The ADSQ-1410 is configured such that the output bits and overflow for  
channels A&B are multiplexed on the AB Output Bus (pins 24 - 66 & ꢁ0)  
and channels C&D are similarly multiplexed on the CD Output Bus (pins  
34-47 & ꢁ1)± See the Output Block Diagram figure± The output drivers are  
designed to conveniently operate from ꢀDD = ꢂꢁꢀ to ꢂ2ꢀ and are capable  
of sinking and sourcing up to 4mA of current± However, switching large  
drive currents can cause glitches on the supplies that could couple into  
and create disturbances on an ongoing A/D conversion affecting the SINAD  
and SNR performance± Applications where high drive current is required  
may require additional supply voltage bypassing or external digital buffers±  
ANALOG  
INPUT  
tC  
N + 2  
tCH  
tCL  
START  
CONV  
tOD  
DATA  
OUTPUT  
Data N-2  
Data N-1  
Data N  
Data N-3  
The EN_ pins are used to select the appropriate output data± EN_ control  
pins are active LO (HI= high-z)± Caution must be exercised to assure that  
both channels on the same bus are not enabled at the same time± Each  
data bus of the ADSQ-1410 is capable of providing data throughput at a  
ꢁ0MHz rate± See Enable and Disable timing diagrams and table±  
(Enable Pin = LO)  
ADSQ-1410 Timing Diagram  
Parameter  
Symbol  
t-pZH  
Typ  
Max  
Input logic levels for EN_ pins are dictated by ꢂꢀDD supply voltage; logic  
level for START_CONꢀ is a function of ꢂ2ꢀ supply± See Functional Specifi-  
cations: Digital Inputs±  
Hi-Z to Active HI  
Hi-Z to Active LO  
Active HI to Hi-Z  
Active LO to Hi-Z  
6±6ns  
6±6ns  
7±8ns  
7±8ns  
10±6ns  
10±6ns  
11±2ns  
11±2ns  
t-pZL  
t-pHZ  
t-pLZ  
Table 2. Enable and Disable Times  
NOTE: Outputs are enabled when ENABLE pins = LO (Hi-Z = HI)± Caution must  
be taken to assure that shared outputs are not enabled at the same time±  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 4 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
START CONVERT CONSIDERATIONS  
VCC  
0V  
The START CONꢀ command of the ADSQ-1410 is buffered internally prior  
to being distributed to each A/D convert± The multi-stage architecture of  
the internal A/D’s uses both the rising and falling edges of each START  
CONꢀ pulse in the conversion process and therefore requires START CONꢀ  
commands that maintain a minimum of 42ns for both the high and the low  
times± At 10MHz clock rate this would require a 20% (± 2% )duty cycle±  
Due to the analog pipeline architecture of the A/D section a Start Convert  
period that exceeds 1ms will allow internal sample and holds to discharge  
the held voltages thereby affecting output integrity± Consequently a mini-  
mum Start convert rate of 1 kHz is specified±  
50% VCC  
50% VCC  
tPZL  
ENABLE  
Output  
tPZL  
waveform 1  
S1 at VCC  
VCC  
VOL  
50% VCC  
V
OL +0.3V  
tPZH  
V
OH +0.3V  
VOH  
–0V  
Output  
50% VCC  
waveform 1  
S1 at GND  
Clock jitter (aperture jitter) will result in a variation of time interval  
between successive A/D conversions which can adversely affect the signal  
to noise ratio performance± Low jitter crystal oscillators provide clock  
signals at a 20% duty cycle making ideal START CONꢀ sources± Input logic  
levels for EN_ pins are dictated by ꢂꢀDD supply voltage; logic level for  
START_CONꢀ is a function of ꢂ2ꢀ supply± See Functional Specifications:  
Digital Inputs±  
Voltage Waveforms  
Enable and Disable Times  
Low- and High-Level Enabling  
Enable and Disable Times  
Waveform 1 is for an output with internal conditions such that the output is active LO  
and Hi-Z is pulled 3±3ꢀD through 1k resistor  
LAYOUT CONSIDERATIONS  
Waveform ꢁ is for an output with internal conditions such that the output is active LO  
and Hi-Z is pulled GND through 1k resistor  
Although the ADSQ-1410 functions in both the analog and digital realms,  
in regards to layout it should be treated as an analog component±  
Grounding is critical in any high-speed, high resolution data acquisition  
system± As such a multilayer PCB is recommended to allow ground planes  
as well as isolation of digital and analog signals± Ground planes will sig-  
nificantly reduce impedance and minimize signal return loops± In addition,  
the power and ground planes can be arranged so as to provide inherent  
distributed capacitance within the PCB±  
50ns typ.  
18ns typ  
(tod)  
N
START  
CONVERT  
N-3  
N-2  
N-1  
The AGND, SGND and OGND grounds should all be connected to a  
common ground plane directly beneath the ADSQ-1410± Although using a  
common plane beneath the A/D, it may be beneficial to design notches or  
“keep-outs” in the ground plane so as to steer ground currents away from  
critical signal sensitive areas in the ground plane±  
DATA  
EN A  
30ns  
30ns  
EN B  
Each channel of the quad A/D operates from its own supply voltages±  
Bypassing from each of these supplies should be done as close to the  
respective power and associated ground pins as possible± Bypass ceramic  
capacitor values of 1uF and 0±1uF are recommended in most application±  
DATA  
A or B OUT  
or  
DATA-A  
N-3  
DATA-B  
N-3  
DATA-A  
N-2  
DATA-B  
N-2  
DATA-A  
N-1  
(C or D OUT)  
In order to prevent digital switching noise from being coupled into sensi-  
tive analog signal paths, the layout designer should assure that digital  
signals do not run parallel with signal traces± For ease of layout the ADSQ-  
1410 is designed with all Digital Outputs and START CONꢀERT one side of  
the package and signal pins on the other±  
6.6ns  
Assuming single channel OUTPUT ENABLED  
7.8ns  
Enable Timing Diagram  
The ꢂꢁ±2ꢀ REF pin is used in conjunction with external components to set  
the RANGE of each channel± Care should be exercised to assure that the  
Reference voltage and its associated divided down voltage applied to the  
RANGE pins are bypassed properly and not subject to noise pickup from  
digital paths±  
Overflow  
Output Coding  
MSB LSB  
Input Range  
2.5V  
Bipolar Scale  
1
0
0
0
0
0
0
0
0
1
11 1111 1111 1111  
11 1111 1111 1111  
11 1100 0000 0000  
11 0000 0000 0000  
10 0000 0000 0000  
01 0000 0000 0000  
00 1000 0000 0000  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
ꢂꢁ±499847  
ꢂꢁ±499692  
ꢂ1±872000  
ꢂ1±ꢁ20000  
± 0±000000  
–1±ꢁ20000  
–1±872000  
–ꢁ±499848  
–ꢁ±200000  
–ꢁ±200123  
ꢂFS – 1/ꢁLSB  
ꢂFS – 1LSB  
3/4 FS  
ꢂ1/ꢁ FS  
0
–1/ꢁ FS  
–3/4 FS  
–FS ꢂ1LSB  
–FS  
TYPICAL APPLICATION CONNECTION DIAGRAM  
TheADSQ-1410 is a functionally complete quad A/D and as such requires  
little externally circuitry for operation±The figure (connection diagram)  
shows the typical circuit connections with channels A, B, C operating with  
a ± ꢁ±2ꢀ input range and channel D operating with a gain adjustable input  
range less than ± ꢁ±2±  
–FS –1/ꢁLSB  
Table 3. Output Coding  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 2 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
ꢁ0 Overflow_AB  
ꢂ2ꢀ  
-2ꢀ_AB  
-2ꢀ_CD  
ꢂꢀDD  
66 B1 (MSB) AB  
62 Bꢁ AB  
4,10,ꢁ2,30  
2
11  
19,ꢁꢁ  
64 B3 AB  
1
Input A  
Input A  
63 B4 AB  
SGND A  
6ꢁ B2 AB  
3
Offset Adj A  
61 B6 AB  
± ꢀ  
60 B7 AB  
33  
3ꢁ  
Input B  
29 B8 AB  
Input B  
SGND B  
28 B9 AB  
27 B10 AB  
26 B11 AB  
22 B1ꢁ AB  
24 B13 AB  
23 B14 (LSB) AB  
31  
Offset Adj B  
± ꢀ  
7
8
Input C  
Input C  
ADSQ-1410  
SGND C  
9
Offset Adj C  
± ꢀ  
ꢁ1 Overflow _CD  
47 B1 (MSB) CD  
46 Bꢁ CD  
ꢁ8  
Input D  
Input D  
ꢁ7  
SGND D  
ꢁ6  
Offset Adj D  
± ꢀ  
42 B3 CD  
44 B4 CD  
14  
13  
17  
12  
ꢂꢁ±2 ꢀREF  
RANGE A  
43 B2 CD  
4ꢁ B6 CD  
41 B7 CD  
RANGE B  
RANGE C  
40 B8 CD  
39 B9 CD  
START  
ENA  
2ꢁ  
ENB  
48  
AGND  
6,1ꢁ,  
ꢁ4,ꢁ9  
OGND  
18, ꢁ3  
ENC  
21  
END  
49  
RANGE D  
16  
CONꢀ  
38 B10 CD  
37 B11 CD  
36 B1ꢁ CD  
32 B13 CD  
34 B14 (LSB) CD  
Channel D  
20  
Fine Gain Adjust  
± ꢀ  
R1  
R3  
Rꢁ  
* Diagram shown with channels A thru C input full scale range equal to ± ꢁ±2ꢀ  
with no gain adjustment± Channel D input range set to < ± ꢁ±2ꢀ with fine gain  
adjustment±  
Connection Diagram  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 6 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
PIN FUNCTIONS  
PIN FUNCTIONS, CONT.  
+VDD (AB, CD) - Pins 19, 22: Supply voltage for digital circuitry± Chan-  
nels AB share common supply pin, channels CD share common supply pin±  
Bypass to respective OGND pins with 1uF and 0±1uF ceramic capacitors±  
Pin Number Name  
Description  
Signal Input for Respective Channel  
1, 7, ꢁ8, 33  
ꢁ, 8, ꢁ7, 3ꢁ  
3, 9, ꢁ6, 31  
INPUT (A, C, D, B)  
SGND (A, C, D, B)  
Signal Ground for Respective Channel  
OGND (AB, CD) - Pins 18, 23: Output ground (OGND_AB and OGND_CD  
returns) for associated channels± OGND is connected to AGND and other  
OGND at strategic locations within the ADSQ-1410±  
OFFSET ADJ (A, C, D, B) Offset Adjust for Respective Channel  
4, 10, ꢁ2, 30 ꢂ2ꢀ (A, C, D, B)  
2, 11 -2ꢀ (A, C, D, B)  
6, 1ꢁ, ꢁ4, ꢁ9 AGND (AB, CD)  
ꢂ2ꢀ Analog Supply for Respective Channel  
-2ꢀ Analog Supply for Respective Channel  
Analog Ground for Respective Channel  
Channel A Range Adjustment  
DATA_OUT_CD – Pins 34 – 47: Digital data from channels C&D are buffered  
internally, with the capability of selecting between active and High-Z states,  
and brought out on the DATA_OUT_CD pins± Selection between C or D is con-  
trolled by EN_C and EN_D control pins± DATA OUT employs the offset binary  
coding format and is powered from ꢂꢀDD_CD supply±  
13  
RANGE_A  
ꢂꢁ±2ꢀ REF  
Range_C  
Range D  
14  
ꢂꢁ±2ꢀ Reference Output ꢀoltage  
Channel C Range Adjustment  
12  
16  
Channel D Range Adjustment  
OVERFLOW_CD - Pin 21: Overflow is a digital output that is multiplexed onto  
the output data bus in the same manner as the data bits and is enabled or  
inactive (High-Z) along with the corresponding) data outputs (same latency  
delay via the respective EN control pin± The signal is LO when the data is  
within the valid input range of the corresponding A/D converter and HI when  
the input signal is: ꢂFS-1/ꢁLSB <input> -FS-1/ꢁLSB±  
17  
Range B  
Channel B Range Adjustment  
18, ꢁ3  
19, ꢁꢁ  
34-47  
ꢁ1  
OGND_AB  
ꢂꢀDD (AB, CD)  
DATA OUT_CD  
Overflow_CD  
EN_B  
Digital Ground for Respective Channel  
Output Supply for Respective Channel  
Data Output Bits for Channels C&D  
Overflow/Underflow for Channels C&D  
Output Enable Channel B  
48  
EN_C - Pin 51: Control pin for channel C output data± The data output for  
channel C is buffered internally with the capability to select between active  
and High-Z states± The channel C data output shares pins with channel D  
(DATA_OUT_CD)± Caution must be exercised to assure that channel C and  
channel D are not enabled at the same time± A LO enables the corresponding  
channel's output data; a HI places the channel into a High-Z state±  
49  
EN_D  
Output Enable Channel D  
20  
START CONꢀ  
EN_C  
Start Convert for all Channels  
21  
Output Enable Channel C  
2ꢁ  
EN_A  
Output Enable Channel A  
23-66  
ꢁ0  
DATA OUT_AB  
Overflow_AB  
Data Output Bits for Channels A&B  
Overflow/Underflow for Channels A&B  
EN_D - Pin 49: Control pin for channel D output data± The data output for  
channel D is buffered internally with the capability to select between active  
and High-Z states± The channel D data output shares pins with channel C  
(DATA_OUT_CD)± Caution must be exercised to assure that channel D and  
channel C are not enabled at the same time±  
Table 3. Pin Function Description  
INPUT (A, C, D, B) - Pins 1, 7, 28, 33: Analog Input Signal for respective  
channels±  
DATA_OUT_AB – Pins 53 – 66: Digital data from channels A&B are buffered  
internally, with the capability of selecting between active and High-Z states,  
and brought out on the DATA_OUT_AB pins± Selection between A or B is  
controlled by EN_A and EN_B control pins± DATA OUT employs the offset  
binary coding format and is powered from ꢂꢀDD_AB supply± A LO enables  
the corresponding channel's output data; a HI places the channel into a  
High-Z state±  
SGND (A, C, D, B) - Pins 2, 8, 27, 32: Signal ground for respective chan-  
nels± SGND connected to AGND and DGND at strategic locations within the  
ADSQ-1410±  
OFFSET ADJ (A, C, D, B) - Pins 3, 9, 26, 31: Provides independent offset  
adjustment for each channel± Designed for ± voltages applied to OFFSET  
ADJ pin; leave floating or tied to GND for non-adjustment applications± Apply-  
ing -1ꢀ reduces output by approx± 76 codes; applying ꢂ1±0ꢀ increases output  
by approx± 76 codes with RANGE = ꢁ±2±  
OVERFLOW_AB - Pin 20: Overflow is a digital output that is multiplexed onto  
the output data bus in the same manner as the data bits and is enabled or  
inactive (High-Z) along with the corresponding) data outputs (same latency  
delay via the respective EN control pin± The signal is LO when the data is  
within the valid input range of the corresponding A/D converter and HI when  
the input signal is: ꢂFS-1/ꢁLSB <input> -FS-1/ꢁLSB±  
+5V (A, C, D, B) - Pins 4, 10, 25, 30: Individual ꢂ2ꢀ analog supply pins for  
each channel± Bypass to respective AGND pins with 1uF and 0±1uF ceramic  
capacitors±  
-5V (AB, CD) - Pins 5, 11: Individual -2ꢀ analog supply pins for each chan-  
EN_A - Pin 52: Control pin for channel A output data± The data output for  
channel A is buffered internally with the capability to select between active  
and High-Z states± The channel A data output shares pins with channel B  
(DATA_OUT_AB)± Caution must be exercised to assure that channel A and  
channel B are not enabled at the same time± A LO enables the corresponding  
channel's output data; a HI places the channel into a High-Z state±  
nel± Bypass to respective AGND pins with 1uF and 0±1uF ceramic capacitors±  
AGND (A, C, D, B) - Pins 6, 12, 24, 29: Analog ground (ꢂ2ꢀ and -2ꢀ returns)  
for respective channels± AGND connected to SGND and DGND at strategic  
locations within the ADSQ-1410±  
RANGE (A, B, C, D) - Pin 13, 15, 16, 17: Used with ꢂꢁ±2ꢀ REF to select the  
respective channel's full scale input range and fine gain adjustment± See  
Range and Calibration section±  
EN_B - Pin 48: Control pin for channel B output data± The data output for  
channel B is buffered internally with the capability to select between active  
and High-Z states± The channel B data output shares pins with channel A  
(DATA_OUT_AB)± Caution must be exercised to assure that channel B and  
channel A are not enabled at the same time± A LO enables the corresponding  
channel's output data; a HI places the channel into a High-Z state±  
+2.5V REF - Pin 14: Precision ꢂꢁ±2ꢀ output voltage used with RANGE to  
select full scale input range for all channels± See Range and Calibration sec-  
tion± Bypass to AGND Plane±  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 7 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
SPECIFICATION DEFINITIONS  
Typical Performance Curves and Plots  
Total Harmonic Distortion (THD): Ratio of total RMS harmonic power to  
RMS fundamental power  
Dynamic DNL  
Fs: 4.85 MHz Fs: 10MHz Range Voltage: 2.5V  
THD = 10 X log (RMS of all harmonics/RMS of fundamental)  
SNR With Distortion (SINAD): Ratio of RMS power present in output,  
excluding fundamental: to the RMS fundamental power  
0±6  
0±4  
0±ꢁ  
0
SINAD = 10 X log (fundamental RMS / RMS of remaining output);  
expressed in db  
SNR without Distortion (SNR): Ratio of RMS power present in output,  
excluding fundamental and harmonics: to the RMS power of the funda-  
mental  
-0±ꢁ  
-0±4  
-0±6  
SNR = 10 X log (fundamental RMS / RMS of power present in output,  
excluding fundamental and harmonics, to the fundamental; expressed  
in db  
Spurious Free Dynamic Range (SFDR): Difference between fundamental  
peak value and the value of highest spike present in the output (harmonic  
or spur)±  
SFRD = Fundamental (dB) – Highest Spur (dB) ; expressed in db  
Grounded Input Histogram 16384 points  
RANGE pin = 2.5V  
PSSR: Survo-loop is employed applying an input voltage that forces  
output codes to FS-1LSB± One supply voltage is changed to the specified  
limits and any change in input voltage recorded± The change in input volt-  
age is divided by the full scale voltage and then divided by percent change  
in power supplies± The resulting units are % / %±  
80%  
70%  
60%  
20%  
40%  
30%  
ꢁ0%  
10%  
0%  
Zero Error: Survo-loop is employed applying an input voltage that forces  
output codes to:  
Unipolar devices - LSB on half of the time and all other bits off±  
Bipolar devices - MSB on, the LSB on half the time and all other bits off±  
The input voltage is compared to 0±  
The result is = Input voltage - 0±2 LSB±  
Offset Error: Survo-loop is employed applying an input voltage that forces  
output codes to LSB on half of the time, and all other bits off±  
8193  
8194  
More  
The input voltage is compared to 0ꢀ for unipolar devices, and -0±2 X full  
scale for bipolar devices± The result is this difference - 0±2 LSBs±  
Grounded Input Histogram 16384 points  
RANGE pin = 1V  
Full Scale Absolute Accuracy: Survo-loop is employed applying an input  
voltage that forces output codes to LSB on half of the time and all other bits  
on± The input voltage is compared to full scale for unipolar devices, and 0±2  
X full scale for bipolar devices± The result is this difference ꢂ 1±2 LSBs±  
20±00%  
40±00%  
30±00%  
ꢁ0±00%  
10±00%  
0±00%  
Gain Error: The result is the difference between the Offset Error result and  
the Full Scale Absolute Accuracy result±  
Dynamic DNL Min: An AC signal is input to the device± n x 1ꢁ8 (ꢁ±1e6 for  
14 bit converter) samples are taken, and the number of times each code  
appears is recorded± The data is normalized using ideal sine wave values±  
The result is the most negative and most positive numbers in the array±  
Grounded Input RMS Noise: Input to the device is tied to Signal Ground±  
n x 1ꢁ8 (ꢁ±1e6 for 14 bit converter) samples are taken and stored in an  
array± The result is the RMS value of this array±  
8196  
8197  
8198 8199  
8ꢁ00 8ꢁ01  
8ꢁ0ꢁ 8ꢁ03 More  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 8 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
Typical Performance Curves and Plots  
FFT 16384 points  
FFT 16384 points  
Fs: 480 kHz Fs: 10MHz Range pin voltage: 2.5V  
Fs: 480 kHz Fs: 10MHz Range pin voltage: 1V  
0
-10  
0
-10  
-ꢁ0  
-ꢁ0  
-30  
-30  
-40  
-20  
-40  
-20  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-1ꢁ0  
-130  
-140  
-100  
-110  
-1ꢁ0  
-130  
FFT 16384 points  
FFT 16384 points  
Fs: 975 kHz Fs: 10MHz Range pin voltage: 2.5V  
Fs: 975 kHz Fs: 10MHz Range pin voltage: 1V  
0
-10  
0
-10  
-ꢁ0  
-ꢁ0  
-30  
-30  
-40  
-20  
-40  
-20  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-1ꢁ0  
-130  
-140  
-100  
-110  
-1ꢁ0  
-130  
FFT 16384 points  
FFT 16384 points  
Fs: 2.45 MHz Fs: 10MHz Range pin voltage: 2.5V  
Fs: 2.45 MHz Fs: 10MHz Range pin voltage: 1V  
0
-10  
0
-10  
-ꢁ0  
-0  
-30  
-30  
-40  
-20  
-40  
-20  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-1ꢁ0  
-130  
-140  
-100  
-110  
-1ꢁ0  
-130  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 9 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
Typical Performance Curves and Plots  
FFT 16384 points  
FFT 16384 points  
Fs: 4.85 MHz Fs: 10MHz Range pin voltage: 2.5V  
Fs: 4.85 MHz Fs: 10MHz Range pin voltage: 1V  
0
-10  
0
-10  
-ꢁ0  
-ꢁ0  
-30  
-30  
-40  
-20  
-40  
-20  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-1ꢁ0  
-130  
-140  
-100  
-110  
-1ꢁ0  
-130  
Cross-talk SNR  
Cross-talk SINAD  
4.85MHz Input Frequency on Channel under Test  
2.42MHz Input Frequency on other 3 Channels  
4.85MHz Input Frequency on Channel under Test  
2.42MHz Input Frequency on other 3 Channels  
78±00  
77±00  
76±00  
72±00  
74±00  
73±00  
7ꢁ±00  
71±00  
70±00  
81±00  
80±20  
80±00  
79±20  
79±00  
78±20  
78±00  
77±20  
77±00  
76±20  
76±00  
Cross-talk Grounded Input Histogram  
Cross-talk Grounded Input Histogram  
Test channel tied to GND – Other 3 Channels Grounded  
Test Channel tied to GND – Other 3 Channels with 2.45 MHz FS Input Signal  
80%  
70%  
60%  
20%  
40%  
30%  
ꢁ0%  
10%  
0%  
80%  
70%  
60%  
20%  
40%  
30%  
ꢁ0%  
10%  
0%  
8193  
8194  
More  
8193  
8194  
More  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 10 of 11  
®
®
ADSQ-1410  
Quad 14-Bit, 10 MSPS Sampling A/D Converter  
INPUT/OUTPUT CONNECTIONS  
MECHANICAL SPECIFICATIONS  
QUAD INDEPENDENT ADSQ-1410  
Unless Otherwise Specified  
Tolerances:  
±xx ± ±0ꢁ  
±xxx ± ±010  
Dimensions in Inches [mm]  
1±10  
[ꢁ7±94]  
PIN  
1
FUNCTION  
INPUT A  
PIN  
66  
62  
64  
63  
6ꢁ  
61  
60  
29  
28  
27  
26  
22  
24  
23  
2ꢁ  
21  
20  
49  
48  
47  
46  
42  
44  
43  
4ꢁ  
41  
40  
39  
38  
37  
36  
32  
34  
FUNCTION  
B1 AB (MSB)  
Bꢁ AB  
SGND A  
Pin 1 Indicator  
3
OFFSET ADJ A  
ꢂ2ꢀ A  
B3 AB  
3±40  
0±39 [9±91] Max  
[86±36]  
4
B4 AB  
2
–2ꢀ A  
B2 AB  
0±ꢁ0 [2±08] Ref  
0±100  
[ꢁ±24]  
Typ  
6
AGND A  
B6 AB  
0±900  
[ꢁꢁ±86]  
3±ꢁ00  
7
INPUT C  
B7 AB  
[81±ꢁ8]  
8
SGND C  
B8 AB  
0±10  
[ꢁ±24]  
Pin 1  
66X ±0ꢁ0± ±00ꢁ  
Gold Plated  
Copper Alloy Pin  
9
OFFSET ADJ C  
ꢂ2ꢀ C  
B9 AB  
33  
34  
10  
11  
1ꢁ  
13  
14  
12  
16  
17  
18  
19  
ꢁ0  
ꢁ1  
ꢁꢁ  
ꢁ3  
ꢁ4  
ꢁ2  
ꢁ6  
ꢁ7  
ꢁ8  
ꢁ9  
30  
31  
3ꢁ  
33  
B10 AB  
B11 AB  
B1ꢁ AB  
B13 AB  
B14 AB (LSB)  
EN A  
0±10  
[ꢁ±24]  
–2ꢀ CD  
AGND C  
66  
RANGE A  
ꢂꢁ±2ꢀ REF  
RANGE C  
RANGE D  
RANGE B  
OGND_AB  
ꢂꢀDD_AB  
OꢀERFLOW_AB  
OꢀERFLOW_CD  
ꢂꢀDD_CD  
OGND_CD  
AGND D  
EN C  
ORDERING INFORMATION  
START CONꢀ  
EN D  
MODEL NUMBER  
ADSQ-1410  
OPERATING TEMP. RANGE  
PACKAGE  
TDIP  
ROHS  
No  
0 to ꢂ70°C  
0 to ꢂ70°C  
TBD  
EN B  
ADSQ-1410-C  
TDIP  
Yes  
No  
B1 CD (MSB)  
Bꢁ CD  
ADSQ-1410-EX  
ADSQ-1410-EX-C  
TDIP  
B3 CD  
TBD  
TDIP  
Yes  
B4 CD  
B2 CD  
ꢂ2ꢀ D  
B6 CD  
OFFSET ADJ D  
SGND D  
B7 CD  
B8 CD  
INPUT D  
B9 CD  
AGND B  
B10 CD  
B11 CD  
B1ꢁ CD  
B13 CD  
B14 CD (LSB)  
ꢂ2ꢀ B  
OFFSET ADJ B  
SGND B  
INPUT B  
DATEL  
± makes no representation that the use of its products in the circuits described herein, or the use of other  
technical information contained herein, will not infringe upon existing or future patent rights± The descriptions contained herein do not  
imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith± Specifications are subject to change  
without notice±  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
ITAR and ISO 9001/14001 REGISTERED  
© 2013  
www.datel.com • e-mail: help@datel.com  
14 Jan 2013 MDA_ADSQ.B03 Page 11 of 11  
配单直通车
ADSQ-1410产品参数
型号:ADSQ-1410
生命周期:Active
包装说明:,
Reach Compliance Code:unknown
HTS代码:8542.39.00.01
风险等级:5.74
转换器类型:ADC, PROPRIETARY METHOD
输出位码:OFFSET BINARY
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!