欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • BQ24721CRHBR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • BQ24721CRHBR图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • BQ24721CRHBR 现货库存
  • 数量3868 
  • 厂家TI 
  • 封装QFN32 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • BQ24721CRHBR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • BQ24721CRHBR 现货库存
  • 数量9000 
  • 厂家TI 
  • 封装32-QFN 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • BQ24721CRHBR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • BQ24721CRHBR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装VQFN-32 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • BQ24721CRHBRG4图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • BQ24721CRHBRG4 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装QFN32 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • BQ24721CRHBR图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • BQ24721CRHBR 现货库存
  • 数量60030 
  • 厂家TI/德州仪器 
  • 封装VQFN32 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • BQ24721CRHBR图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • BQ24721CRHBR 热卖库存
  • 数量2742 
  • 厂家TI 
  • 封装QFN32 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • BQ24721CRHBRG4图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • BQ24721CRHBRG4
  • 数量
  • 厂家新年份 
  • 封装12000 
  • 批号 
  • 原装正品现货,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • BQ24721CRHBR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • BQ24721CRHBR
  • 数量1529 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • BQ24721CRHBRG4图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • BQ24721CRHBRG4
  • 数量6890000 
  • 厂家TI 
  • 封装QFN32 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • BQ24721CRHBR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • BQ24721CRHBR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装VQFN-32 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • BQ24721CRHBR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • BQ24721CRHBR
  • 数量12500 
  • 厂家TEXAS 
  • 封装QFN 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • BQ24721CRHBR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BQ24721CRHBR
  • 数量5000 
  • 厂家欧美编号 528 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • BQ24721CRHBR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • BQ24721CRHBR
  • 数量5600 
  • 厂家TI 
  • 封装QFN32 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • BQ24721CRHBR图
  • 集好芯城

     该会员已使用本站13年以上
  • BQ24721CRHBR
  • 数量19193 
  • 厂家TI/德州仪器 
  • 封装QFN 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • BQ24721CRHBR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BQ24721CRHBR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • BQ24721CRHBR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BQ24721CRHBR
  • 数量5000 
  • 厂家欧美编号 528 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • BQ24721CRHBR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • BQ24721CRHBR
  • 数量3000 
  • 厂家TI 
  • 封装VQFN (RHB) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • BQ24721CRHBR图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • BQ24721CRHBR
  • 数量3868 
  • 厂家TI 
  • 封装QFN32 
  • 批号23+ 
  • 只做进口原装/到货/可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • BQ24721CRHBR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BQ24721CRHBR
  • 数量5000 
  • 厂家TI 
  • 封装QFN 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • BQ24721CRHBR图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • BQ24721CRHBR
  • 数量72282 
  • 厂家TI/德州仪器 
  • 封装32-VQFN 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • BQ24721CRHBRG4图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • BQ24721CRHBRG4
  • 数量8020 
  • 厂家TI 
  • 封装QFN32 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • BQ24721CRHBRG4图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • BQ24721CRHBRG4
  • 数量44300 
  • 厂家TI 
  • 封装QFN32 
  • 批号2019+ 
  • TI一级代理专营品牌绝对进口原装假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • BQ24721CRHBR图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • BQ24721CRHBR
  • 数量3302 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • BQ24721CRHBR图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • BQ24721CRHBR
  • 数量15000 
  • 厂家TI 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • BQ24721CRHBR图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • BQ24721CRHBR
  • 数量7536 
  • 厂家Texas Instruments 
  • 封装32-VQFN(5x5) 
  • 批号23+ 
  • 电池充电器IC原装现货
  • QQ:3004306594QQ:3004306594 复制
  • 0755-82777852 QQ:3004306594
  • BQ24721CRHBR图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • BQ24721CRHBR
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装QFN-32 
  • 批号▉▉:2年内 
  • ▉▉¥54.3元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • BQ24721CRHBR图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • BQ24721CRHBR
  • 数量13000 
  • 厂家TI 
  • 封装QFN32 
  • 批号24+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • BQ24721CRHBR图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • BQ24721CRHBR
  • 数量5800 
  • 厂家TI 
  • 封装QFN 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • BQ24721CRHBR图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • BQ24721CRHBR
  • 数量9749 
  • 厂家TI原装现货 
  • 封装QFN 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • BQ24721CRHBR图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • BQ24721CRHBR
  • 数量5000 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • BQ24721CRHBR图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • BQ24721CRHBR
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装32-VFQFN 裸露焊盘 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • BQ24721CRHBRG4图
  • 深圳市芳益电子科技有限公司

     该会员已使用本站10年以上
  • BQ24721CRHBRG4
  • 数量1832 
  • 厂家TI&BB 
  • 封装 
  • 批号2023+ 
  • 原装现货库存 低价出售 欢迎加Q详谈 诚信经营 可长期合作
  • QQ:498361569QQ:498361569 复制
    QQ:389337416QQ:389337416 复制
  • 0755-13631573466 QQ:498361569QQ:389337416
  • BQ24721CRHBR图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • BQ24721CRHBR
  • 数量12000 
  • 厂家TI 
  • 封装QFN-32 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • BQ24721CRHBR图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • BQ24721CRHBR
  • 数量
  • 厂家21+ 
  • 封装12000 
  • 批号 
  • ███全新原装正品,可配单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • BQ24721CRHBR图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • BQ24721CRHBR
  • 数量23480 
  • 厂家TI 
  • 封装QFN32 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • BQ24721CRHBR图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • BQ24721CRHBR
  • 数量890 
  • 厂家TI 
  • 封装 32-QFN  
  • 批号12+ 
  • 正品,刚到货
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • BQ24721CRHBRG4图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • BQ24721CRHBRG4
  • 数量6500000 
  • 厂家TI 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • BQ24721CRHBR图
  • 深圳市和谐世家电子有限公司

     该会员已使用本站13年以上
  • BQ24721CRHBR
  • 数量4171 
  • 厂家Texas Instruments 
  • 封装32-VQFN(5x5) 
  • 批号最新批号 
  • 绝对进口原装
  • QQ:1158840606QQ:1158840606 复制
  • 0755+84501032 QQ:1158840606
  • BQ24721CRHBR图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • BQ24721CRHBR
  • 数量35600 
  • 厂家TI/BB 
  • 封装QFN32 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579

产品型号BQ24721CRHBR的概述

芯片BQ24721CRHBR的概述 BQ24721CRHBR是一款高效、高集成度的电池充电管理芯片,广泛应用于笔记本电脑、平板电脑与便携式电子设备等领域。此芯片的设计旨在支持锂离子和锂聚合物电池的充电,其内置的高效率DC-DC转换器能够实现快速充电,并提供多种保护功能,以保证电池的安全和延长其使用寿命。BQ24721CRHBR具有灵活的充电配置,能适应不同容量和类型的电池,成为开发者和设计工程师青睐的组件之一。 BQ24721CRHBR采用的是高性能的PWM控制架构,使得其在充电效率上有所提升,尤其是在电池充电过程中,能够有效减少功耗。此外,这款芯片还实现了多种充电模式,包括恒流(CC)、恒压(CV)等,满足不同使用需求。 芯片BQ24721CRHBR的详细参数 1. 电气参数 - 输入电压范围:4.5V至28V - 充电电流:最大可调至5A - 充电电池电压:可设定至4.2V - ...

产品型号BQ24721CRHBR的Datasheet PDF文件预览

bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ADVANCED MULTI-CHEMISTRY AND MULTI-CELL SYNCHRONOUS SWITCH-MODE  
CHARGER AND SYSTEM POWER SELECTOR  
FEATURES  
APPLICATIONS  
Portable Notebook Computers  
Portable DVD Players  
Webpads, PC Tablets  
High Efficiency NMOS-NMOS Synchronous  
Buck Converter With User-Selectable 300 kHz  
or 500 kHz frequency  
bq24721C Offers Softer Turn-On, Stronger  
Turn-Off  
SBS-Like (1) SMBus Interface for Control and  
Status Communications With Host  
DESCRIPTION  
The bq24721 is a high efficiency synchronous  
battery pack charger with high level of integration for  
portable applications. This device implements a high  
performance analog front-end that interfaces to the  
system power management micro-controller through  
a simplified SBS-like SMBus interface.  
Programmable Battery Voltage, Charge  
Current, and AC Adapter Current via SBS-Like  
SMBus Interface  
0.4% Charge Voltage Regulation Accuracy  
3% Charge Current Regulation Accuracy  
The dynamic power management (DPM) function  
modifies the charge current depending on system  
load conditions, avoiding ac adapter overload.  
3% Adapter Current Regulation Accuracy  
Dynamic Power Management (DPM)  
High accuracy current sense amplifiers enable  
accurate measurement of either the charge current  
or the ac adapter current, allowing termination of  
nonsmart packs and monitoring of overall system  
power.  
2% Accuracy Integrated Charge and AC  
Adapter 20× Current Amplifier Output  
3-Cell and 4-Cell Li-Ion Voltage Regulation  
9 V, 12 V–14.4 V, 16 V–19.2 V  
Battery Pack Voltage Operating Range  
0 V–19.2 V  
The adapter isolation diode can be bypassed or  
entirely replaced with an external MOSFET using a  
control signal provided by the bq24721, thus  
reducing overall power dissipation.  
AC Adapter Operating Range 8 V–28 V  
99.5% Max Duty Cycle  
Integrated features such as charger soft start, charge  
overcurrent protection, and IC temperature  
monitoring provide a second level of protection, in  
addition to pack and system protection functions.  
Internal Soft Start  
Integrated 5% 5-V LDO When AC Adapter  
Applied  
6-V Drive Supply Voltage for Increased  
Efficiency  
5x5 QFN PACKAGE (TOP VIEW)  
Reverse Battery to Adapter Discharge  
Protection  
1
2
24  
23  
22  
21  
20  
19  
CHGEN  
BATDRV  
SYS  
Battery/Adapter to System Power Selector  
Function  
ACDRV  
ACN  
3
4
5
6
7
8
SYNP  
SYNN  
SRP  
Charge and Adapter Overcurrent Protection  
Battery Thermistor Sense, TS, Comparators  
Available in 32-Pin 5x5-mm QFN Package  
ACP  
bq24721,  
bq24721C  
ACDET  
SRN  
BYPASS  
EAO  
18 BAT  
17  
EAI  
IOUT  
(1) SBS-Like interface is not 100% SBS compliant. SBS-Like  
interface is SMBus1.1 complaint but does not support Packet  
Error Correction (PEC). The control and status registers were  
changed to simplify and enhance notebook charger control.  
An 8-bit address (0x12) is used. See Table 1 for a  
comparison between SBS-like vs SBS Specification.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2005–2006, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
BATTERY SHORTED  
(VERY LOW BATTERY  
VOLTAGE) OPERATION  
THERMISTOR  
SENSE  
ORDERING NUMBER  
(TAPE AND REEL)  
PART NO.  
PACKAGE  
QUANTITY  
bq24721RHBR  
bq24721RHBT  
bq24721CRHBR  
bq24721CRHBT  
3000  
250  
32 PIN  
5x5mm QFN  
Charge Current Changes to  
C/8  
bq24721  
TS  
TS  
3000  
250  
32 PIN  
5x5mm QFN  
Charge Current Changes to  
C/8  
bq24721C  
PACKAGE THERMAL DATA  
TA 40°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C  
PACKAGE(1)  
RHB(2)  
θJA  
36°C/W  
2.36 W  
0.028 W/°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
(2) This data is based on using the JEDEC High-K board and the exposed die pad is connected to a copper pad on the board. This is  
connected to the ground plane by a 2×3 via matrix.  
DEVICE INFORMATION  
TERMINAL FUNCTIONS  
TERMINAL  
DESCRIPTION  
NO.  
NAME  
Charge enable logic level low input. Logic HI on the CHGEN pin disables the charger. Logic LO on the  
CHGEN pin enables the charger. When the SMBus control register = bit0, CHGEN is also LO.  
1
CHGEN  
AC adapter to system switch driver output. Connect directly to the gate of the ACFET PMOS power  
FET. Connect the FET source to the PVCC node and negative side of the input current-sense resistor.  
Connect the FET drain to the system load side. Recommend placing a 10-kresistor from the gate to  
the source of the Bypass FET. If needed, an optional capacitor from gate to source of the ACFET is  
used to help slow down the ON and OFF times. The internal gate drive is asymmetrical allowing a  
quick turn-off and slower turn-off in addition to the internal break-before-make logic with respect to the  
BATDRV.  
2
ACDRV  
Adapter current sense resistor, negative input. An optional 0.1-µF ceramic capacitor is placed from this  
pin to AGND for common-mode filtering. An optional 0.1-µF ceramic capacitor is placed from ACN to  
ACP to provide differential-mode filtering.  
3
4
ACN  
ACP  
Adapter current sense resistor, positive input. Place this on the adapter side of the input current sense  
resistor. Recommend placing a 0.1-µF ceramic capacitor from ACP to AGND to provide  
common-mode filtering.  
AC adapter detected sense voltage input. Connect a voltage divider resistor from adapter input (before  
Bypass FET) to ACDET, and another resistor from ACDET to AGND, in order to program adapter  
detect threshold of 1.2 V. ACDET threshold should be greater than maximum battery regulation  
voltage, and lower than the minimum adapter voltage.  
5
ACDET  
Gate drive for the adapter input BYPASS switch to prevent reverse discharge from the battery to the  
input. Connect this pin directly to the gate of the input bypass PMOS power FET. The source of the  
FET is connected to the adapter input voltage node. Recommend placing a 10-kresistor from the  
gate to the source of the BYPASS FET. The drain of the FET is connected to the positive node of the  
input current-sense resistor. An optional capacitor can be placed from the gate to the source to  
slow-down the switching times. Adjusting the turn-on and turn-off times is typically not needed for this  
FET.  
6
7
BYPASS  
EAO  
Error amplifier output for compensation. Connect the feedback compensation components from EAO  
to EAI. Typically a capacitor in parallel with a series resistor and capacitor. See the compensation  
calculation procedures. This node is internally compared to the PWM saw-tooth oscillator.  
2
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
DEVICE INFORMATION (continued)  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
DESCRIPTION  
NO.  
NAME  
Error amplifier input for compensation, also connect the feedback compensation components from EAI  
to EAO. Connect the input compensation components from FBO to EAI. See the compensation  
calculation procedures.  
8
EAI  
Feedback output for compensation. Connect the input compensation components from FBO to EAI.  
Typically, a resistor in parallel with a series resistor and capacitor. See the compensation calculation  
procedures.  
9
FBO  
Analog ground. Ground connection for low current sensitive analog and digital signals. Only connect to  
the PGND node by connecting to the PowerPAD™ underneath the IC.  
10  
11  
AGND  
VREF5  
5-V regulated voltage output, used for internal bias and the reference for programming the TS  
thermistor sense network. Used to indicate adapter present status. It is enabled by ac detected.  
Connect a 1-µF ceramic capacitor from VREF5 pin to AGND as close to IC as possible.  
IC analog positive supply. Connect to adapter input, or diode, or by putting a diode from adapter input  
and a diode from battery pack to VCC. Put a 1-µF ceramic capacitor from VCC to AGND, as close to  
the IC as possible.  
12  
VCC  
SMBus Data input. Connect to SMBus data line from the host controller. A 10-kpullup resistor to the  
host controller supply rail is needed.  
13  
14  
SDA  
SCL  
SMBus Clock input. Connect to SMBus clock line from the host controller. A 10-kpullup resistor to  
the host controller supply rail is needed.  
Thermistor sense input. Use a voltage divider from VREF5 to TS and AGND. Place a resistor from  
VREF to TS, and a resistor from TS to AGND to program the hot and cold battery pack thermistor  
temperatures. Charge is disabled when outside the hot/cold window. The TS pin is also used to detect  
if a battery is connected.  
15  
16  
TS  
Program current threshold for synchronous to nonsynchronous regulation transition. Place a resistor  
from ISYNSET to AGND to program the charge undercurrent threshold to force nonsynchronous  
converter operation at low output current and prevent negative inductor current. Threshold should be  
set from ½ inductor current ripple to full value of inductor current ripple.  
ISYNSET  
Battery charger or adapter current amplifier output. Current sense amplifier that outputs a voltage 20x  
the current sense resistor differential voltage. The output can be selected by SMBus charge control  
register (0x12) bit3 to be the input adapter current (ACP-ACN), or the battery charge current  
(SRP-SRN). Place a 0.1-µF capacitor from IOUT to AGND for filtering the output ripple. Optionally, add  
an RC filter after the output filter for further filtering.  
17  
IOUT  
Battery voltage remote sense. Directly connect a kelvin sense trace from the battery pack positive  
terminal to the BAT pin to accurately sense the battery pack voltage. Place a 0.1-µF capacitor from  
BAT to AGND close to the IC to filter high frequency noise.  
18  
19  
BAT  
SRN  
Charge current sense resistor, negative input. Connect to the charge current sense resistor negative  
terminal. Optionally, add a 0.1-µF ceramic capacitor from SRN to AGND near the IC for  
common-mode filter.  
Charge current sense resistor, positive input. Connect to the charge current sense resistor positive  
terminal. Recommend placing a 0.1-µF ceramic capacitor from SRP to AGND near the IC for  
common-mode filter. Optionally, place a 0.1-µF ceramic capacitor from SRP to SRN near the IC for  
differential-mode filter.  
20  
21  
SRP  
Charge overcurrent and charge undercurrent negative sense input. Connect to the charge current  
sense resistor negative terminal. If sensing the same sense resistor as SRN, the user can connect  
directly to the SRN pin and no further filter capacitors are needed. To sense a different sense resistor,  
add a 0.1-µF ceramic capacitor from SYNN to AGND near the IC for common-mode filter.  
SYNN  
Charge overcurrent and charge undercurrent negative sense input. Connect to the charge current  
sense resistor positive terminal. If sensing the same sense resistor as SRP, the user can connect  
directly to the SRP pin, and no further filter capacitors are needed. To sense a different sense resistor,  
add a 0.1-µF ceramic capacitor from SYNP to AGND near the IC for common-mode filter, and place a  
0.1-µF ceramic capacitor from SYNP to SYNN near the IC for differential-mode filter.  
22  
23  
SYNP  
SYS  
System load, voltage sense. Connect directly to the system load node and the drain of the BAT PMOS  
power FET.  
3
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
DEVICE INFORMATION (continued)  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
NAME  
DESCRIPTION  
NO.  
Battery to system switch driver output. Gate drive for the battery to system load BAT PMOS power  
FET to isolate the system from the battery to prevent current flow from the system to the battery, while  
allowing a low impedance path from battery to system while discharging the battery pack to the system  
load. Connect this pin directly to the gate of the input BAT PMOS power FET. Connect the source of  
the FET to the system load voltage node. Connect the drain of the FET to the battery pack positive  
node. Recommend placing a 10-kresistor from the gate to the source of the BAT FET. An optional  
capacitor is placed from the gate to the source to slow-down the switching times. The internal gate  
drive is asymmetrical allowing a quick turn-off and slower turn-off in addition to the internal  
break-before-make logic with respect to the ACDRV.  
24  
BATDRV  
ALARM  
Alarm indicating charger status change, open-drain output. The ALARM is pulled low (LO) whenever  
the SMBus status register (0x13) has a change. The ALARM output is cleared (HI) when the SMBus  
status (0x13) register is read, or there is a reset. This is used to alert the host and initiate an interrupt  
with the host instead of having to continuously poll the charger. A 10-kpull-up resistor to the host  
controller supply rail is needed.  
25  
Power ground. Ground connection for the high-current power converter nodes. Only connect to the  
AGND node by connecting to the PowerPAD™ underneath the IC.  
26  
27  
PGND  
PWM low side driver output. Connect directly to the gate of the low-side NMOS power FET with a  
short trace.  
LODRV  
Low-side driver gate voltage regulator and source for high-side driver bootstrap voltage. Add a 1-µF  
ceramic capacitor from REGN pin to PGND pin, close to the IC. Place a small signal Schottky diode  
from REGN to BTST for bootstrap voltage.  
28  
REGN  
High-side driver negative supply. Connect directly to the source of the high-side NMOS FET with a  
short trace. This node is the common connection between the high-side FET, low-side FET, and  
output inductor. Connect a 0.1-µF boot-strap ceramic capacitor from BTST to PH.  
29  
30  
PH  
PWM high side driver output. Connect directly to the gate of the high-side NMOS power FET with a  
short trace.  
HIDRV  
High-side driver positive supply, connect pos-side of boot-strap capacitor. Connect a 0.1-µF bootstrap  
capacitor from the BTST pin to the PH node. Also, connect a bootstrap diode with the anode  
connected to the REGN pin and the cathode connected to the BTST pin. An optional 4.7-- 15-Ω  
series resistor is placed between the BTST pin and the bootstrap-diode/capacitor junction to  
slow-down the turn-on time of the high-side FET for reducing ringing due to high dv/dt of the phase  
node.  
31  
32  
BTST  
PVCC  
IC power positive supply. Connect directly to the drain of the high-side NMOS power FET.  
Recommend placing at least a 10-µF ceramic capacitor directly from the drain of the high-side NMOS  
power FET to PGND. Up to 40 µF may be needed to prevent resonance filtering inductance. Also, a  
0.1-µF decoupling ceramic capacitor is recommended.  
4
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
PARAMETER  
PIN  
VALUE / UNIT  
ACN, ACP, PVCC, ACDRV, SYNN, SYNP, SRP, SRN,  
BATDRV, BAT, BYPASS, SYS, VCC  
–0.3 V to 30 V  
–1 V to 30 V  
–0.3 V to 7 V  
PH  
Supply voltage range  
LODRV, REGN, FBO, EAI, EAO, ISYNSET, CHGEN, TS ,  
VREF5, ACDET, IOUT, ALARM, SCL, SDA  
BTST, HIDRV (with respect to AGND and PGND)  
AGND-PGND  
–1 V to 36 V  
–0.3 V to 0.3 V  
0.6 V  
Maximum differential voltage  
Maximum difference voltage  
ACP–ACN , SRP–SRN, and SYNP–SYNN  
Operating ambient temperature range (TA)  
–40°C to 85°C  
150°C  
Maximum junction temperature (TJ_MAX  
Storage temperature range (Tstg  
)
)
–65°C to 150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to AGND, unless otherwise noted. Currents are positive into, negative out of the specified terminal. Consult  
Packaging Section of the Databook for thermal limitations and considerations of packages.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
PIN  
MIN  
NOM  
MAX  
UNIT  
ACN, ACP, PVCC, ACDRV, SRP, SRN,  
BATDRV, BAT, BYPASS, SYS, VCC, SYNN,  
SYNP  
0
24  
V
PH  
–0.5  
0
30  
V
V
LODRV, REGN, VREF5  
6.5  
Supply voltage range  
FBO, EAI, EAO, ISYNSET, CHGEN, TS ,  
ACDET, SCL, SDA, ALARM  
0
5.5  
V
IOUT, ACDET  
0
0
5.5  
30  
V
V
BTST, HIDRV  
Maximum differential voltage  
Maximum difference voltage  
Junction temperature Range (TJ)  
Storage temperature Range (Tstg  
AGND-PGND  
0
V
ACP–ACN, SYNN–SYNP, SRP–SRN  
0.5  
125  
150  
V
0
°C  
°C  
)
-55  
5
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ELECTRICAL CHARACTERISTICS  
8 Vdc V(VCC) 24 Vdc, 0°C TJ 125°C, all voltages with respect to AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BATTERY VOLTAGE REGULATION  
V(BAT_ICR)  
VBAT Input voltage range  
V(BAT)  
0
–0.4  
–0.5  
9
PVCC  
0.4  
V
%
V
TJ = 0°C – 85°C  
TJ = 0°C – 125°C  
Full valid voltage DAC range,  
SMBus DAC register 0×15  
Battery Regulation Voltage Accuracy  
BAT voltage regulation range  
0.5  
V(VBATREG)  
19.2  
PWM AC ADAPTER INPUT CURRENT REGULATION, DPM (Dynamic Power Management), I(REG_DPM)= V(IREG_DPM)/R(SENSE_DPM)  
ACP-ACN differential voltage range  
for input current regulation  
V(IREG_DPM) = V(ACP)- V(ACN)  
SMBus DAC register 0×3F, bits b0–b13  
V(IREG_DPM)  
1.28  
162.56  
mV  
mA  
Current regulation LSB programming V(ACP-ACN) / 10mΩ  
current step  
I(REG_step_DPM)  
128  
Using a 10msense resistor, R(SNS)  
V(ACP) – V(ACN) > 40.96 mV  
(4096 mA with 10 m)  
–3%  
–5%  
3%  
5%  
V
CC VCC (min),  
(1)  
VCC VI(BAT) + V(DO-MAX)  
,
V(ACP) – V(ACN) > 20.48 mV  
(2048 mA with 10 m)  
Current regulation accuracy  
Over differential threshold range, V(IREG)  
Does not include error induced by the  
tolerance of the sense resistor, R(SNS)  
,
V(ACP) – V(ACN) > 5.12 mV  
(512 mA with 10 m)  
–25%  
25%  
PWM BATTERY CHARGE CURRENT REGULATION, I(REG_CHG)= V(IREG_CHG)/ R(SENSE_CHG)  
SRP-SRN differential voltage range  
for input current regulation  
V(IREG_CHG) = V(SRP)- V(SRN)  
SMBus DAC register 0×14, bits b0–b13  
V(IREG_CHG)  
1.28  
162.56  
mV  
mA  
Current regulation LSB programming V(SRP-SRN) / 10 mΩ  
current step  
I(REG_step_CHG)  
128  
Using a 10msense resistor, R(SNS)  
V(SRP-SRN) > 40.96 mV  
(4096 mA with 10 m)  
–3  
–5  
3
5
V
CC VCC (min),  
(1)  
VCC VI(BAT) + V(DO-MAX)  
,
V(SRP-SRN) >20.48 mV  
(2048 mA with 10 m)  
Current regulation accuracy  
Over differential threshold range, V(IREG)  
Does not include error induced by the  
tolerance of the sense resistor, R(SNS)  
,
%
V(SRP-SRN) > 5.12 mV  
(512 mA with 10 m)  
–25  
25  
CURRENT SENSE AMPLIFIERS – IBAT AMPLIFIER and IADAPT AMPLIFIER MUX TO IOUT  
SRP, SRN common-mode input  
voltage range  
2.5  
0
20  
V
V(IOUT_IBAT)  
IOUT output voltage range with IBAT V(IOUT) = V(SRP, SRN)× A(IBAT)  
selected  
3.5  
V
(1)  
V(BAT) > 2.5 V or V(BAT) > V(IOUT) + V(DO-MAX)  
G(IBAT)  
Voltage gain  
A(IOUT) = V(IOUT)/ V(SRP,  
20  
V/V  
SRN)  
V(SRP, SRN) = 40 mV and higher  
V(SRP, SRN) = 20 mV and higher  
V(SRP, SRN) = 5 mV and higher  
–2  
–3  
2
3
V(BAT) > 2.5 V or V(BAT)  
V(IOUT) + V(DO-MAX)  
>
(1)  
Charge current amplifier accuracy  
%
V
–25  
25  
ACP, ACN Common-mode input  
voltage range  
0
0
24  
V(IOUT_IADAPT)  
IOUT output voltage range with  
IADAPT selected  
V(IOUT) = V(ACP, ACN)× A(IADP)  
V(SRP) > 2.5 V or V(SRP) > V(IOUT) + 1 V  
3.5  
V
G(IADP)  
Voltage gain  
A(IADP) = V(IOUT)/ V(ACP,  
20  
V/V  
ACN)  
V(ACP, ACN) = 40 mV and higher  
V(ACP, ACN) = 30 mV and higher  
V(ACP, ACN) = 5 mV and higher  
V(ACP, ACN) = 40 mV and higher  
V(ACP, ACN) = 30 mV and higher  
V(ACP, ACN) = 5 mV and higher  
–2  
–3  
2
3
Adapter current amplifier accuracy,  
bq24721  
V(BAT) > 2.5 V or V(BAT)  
V(IOUT) + V(DO-MAX)  
>
>
%
(1)  
–25  
–2  
25  
2
Adapter current amplifier accuracy,  
bq24721C  
V(BAT) > 2.5 V or V(BAT)  
–5  
5
%
(1)  
V(IOUT) + V(DO-MAX)  
–25  
4.5  
25  
I(OUT_LIM)  
IOUT output current limit  
IOUT shorted to AGND  
mA  
OPERATING CONDITIONS  
V(VCC), V(PVCC), input voltage  
V(INOP)  
Selector and charger operational.  
8
24  
V
operating range  
(1) V(DO-max) is defined as the maximum drop-out voltage. V(DO-MAX) = 1 V unless other wise specified. In an actual application, V(DO - MAX)  
= (R(SNS)× IO) + V(DSON_HIGH_SIDE_FET) + V(DSON_BYPASS_FET)  
.
6
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ELECTRICAL CHARACTERISTICS (continued)  
8 Vdc V(VCC) 24 Vdc, 0°C TJ 125°C, all voltages with respect to AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENT – NO ADAPTER CONNECTED  
I(VCC,PVCC)  
I(ACP,ACN)  
I(BAT)  
VCC and PVCC quiescent current  
ACP and ACN quiescent current  
BAT quiescent current  
I(VCC,PVCC) = ( I(VCC) + I(PVCC) ) at V(VCC) = V(PVCC) = 16.8 V  
I(ACP,ACN) = ( I(ACP) + I(ACN) ) at V(ACP) = V(ACN) = V(VCC) = V(PVCC) = 16.8 V  
I(BAT) at V(BAT) = V(VCC) = V(PVCC) = 16.8 V  
254  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
17  
1
I(SRP,SRN)  
I(SYNN,SYNP)  
I(SYS)  
SRP and SRN quiescent current  
SYNN and SYNP quiescent current  
SYS quiescent current  
I(SRP,SRN) = ( I(SRP) + I(SRN) ) at V(SRP) = V(SRN) = V(VCC) = V(PVCC) = 16.8 V  
I(SYNN,SYNP) = ( I(SYNN) + I(SYNP) ) at V(SYNP) = V(SYNN) = V(VCC) = V(PVCC) = 16.8 V  
I(SYS) at V(SYS) = V(VCC) = V(PVCC) = 16.8 V  
1
25  
1
I(PH)  
PH quiescent current  
I(PH) at V(PH) = V(VCC) = V(PVCC) = 16.8 V  
I(BTST)  
BTST quiescent current  
I(BTST) at V(BTST) = V(VCC) = V(PVCC) = 16.8 V  
1
QUIESCENT CURRENT – ADAPTER CONNECTED AND READY TO CHARGE  
I(VCC,PVCC)  
I(ACP,ACN)  
I(BAT)  
VCC and PVCC quiescent current  
ACP and ACN quiescent current  
BAT quiescent current  
I(VCC,PVCC) = (I(VCC) + I(PVCC) at V(VCC) = V(PVCC) = 16.8 V  
I(ACP,ACN) = (I(ACP) + I(ACN) ) at V(ACP) = V(ACN) = V(VCC) = V(PVCC) = 16.8 V  
I(BAT) at V(BAT) = V(VCC) = V(PVCC) = 16.8 V  
4.45  
815  
500  
305  
mA  
µA  
µA  
µA  
I(SRP,SRN)  
SRP and SRN quiescent current  
I(SRP,SRN) = ( I(SRP) + I(SRN) ) at V(SRP) = V(SRN) = V(VCC) = V(PVCC) = 16.8 V  
SYNN, SYNP, and SYS quiescent  
current  
I(SYNN,SYNP,SYS) = ( I(SYNN) + I(SYNP) + I(SYS) ) at V(SYNP) = V(SYNN) = V(SYS) = V(VCC)  
V(PVCC) = 16.8 V  
=
I(SYNN,SYNP,SYS)  
321  
µA  
I(PH)  
PH quiescent current  
I(PH) at V(PH) = V(VCC) = V(PVCC) = 16.8 V  
I(BTST) at V(BTST) = V(VCC) = V(PVCC) = 16.8 V  
1
1
µA  
µA  
I(BTST)  
BTST quiescent current  
I(VCC_SW) = I(VCC)  
FPWM = 300 kHz, charger on (CHGEN = LO) = ENABLED  
Q(G) at HIDRV = Q(G) at LODRV = 30 nC, [No Load on VREF5]  
Gate drive switching current = Q(G)× FPWM = (30nC + 30nC) × 300kHz =  
18mA  
VCC Current while converter is  
switching including gate drive current  
I(VCC_SW)  
25  
mA  
V
5-V REFERENCE LDO VOLTAGE AND AC DETECTION STATUS (VREF5, TURNS ON WHEN AC DETECTED)  
Adapter detected (VACDET >V(ACD)), VCC> 7 V  
0 10 mA, source current  
V(VREF5)  
5V Regulator output voltage  
4.75  
5
5.25  
0.3  
Saturation voltage when VREF5 is  
off  
Adapter not detected, (VACDET< V(ACD))  
0 – 10 mA, ac adapter inserted, CO = 1 µF, discharge Load  
V(VREF5_SAT)  
I(VREF5_LIM)  
V
Short-circuit current  
V(VREF5) = AGND  
20  
mA  
UNDERVOLTAGE LOCKOUT CIRCUIT  
Undervoltage lockout threshold  
VREF5 rising, POR mode set at VREF5 < V(UVLO)  
VREF5 falling  
3.7  
V
UVLO  
V(UVLO) hysteresis  
100  
mV  
SBS-Like SMBus LOGIC LEVELS  
VIL  
Input low threshold level  
Input high threshold level  
Input bias current  
2.7 V < V(pull-up) < 5.5 V, SDA and SCL  
2.7 V < V(pull-up) < 5.5 V, SDA and SCL  
2.7 V < V(pull-up) < 5.5 V, SDA and SCL  
0.8  
1
V
V
VIH  
2.1  
I(bias)  
µA  
ALARM OPEN DRAIN OUTPUT  
V(ALARM_sat) ALARM output low saturation level  
Ilkg(ALARM) ALARM leakage current  
I(ALARM) = 5mA  
V(ALARM) = 5V  
0.5  
1
V
µA  
THERMAL SHUTDOWN, IC OVERTEMPERATURE PROTECTION  
T(SHUT)  
Thermal shutdown Threshold  
Hysteresis  
TJ rising, Charge disabled at TJ > T(SHUT)  
TJ falling, Charge enabled at TJ < T(SHUT)– T(SHUTH)  
TJ rising/falling  
145  
15  
8
°C  
°C  
ms  
T(SHUTH)  
Deglitch time, thermal shutdown  
7
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ELECTRICAL CHARACTERISTICS (continued)  
8 Vdc V(VCC) 24 Vdc, 0°C TJ 125°C, all voltages with respect to AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THERMISTOR COMPARATORS, TS  
Cold temperature threshold, TS pin  
voltage  
V(LTF)  
V(TS) rising  
V(TS) falling  
V(TS) rising  
72.8  
0.5  
73.5  
1
74.2 %VREF5  
1.5 %VREF5  
29.9 %VREF5  
V(LTFH)  
V(TCO)  
Hysteresis for LTF threshold  
Cutoff temperature threshold, TS pin  
voltage  
28.7  
29.3  
Hot temperature threshold, TS pin  
voltage  
V(HTF)  
V(TS) rising/falling  
VT(S) rising/falling  
33.7  
34.4  
85  
35.1 %VREF5  
87.55 %VREF5  
µs  
V(TSDET)  
Pack thermistor insertion detected  
82.45  
Deglitch time for temperature out of  
range detection  
V(TS) rising above V(LTF), or V(TS) falling below V(TCO) , or V(TS) falling below V(HTF)  
16  
Deglitch time for temperature in valid V(TS) falling below (V(LTF) - V(LTFH)), or V(TS) rising above V(TCO) , or V(TS) rising  
8
16  
1
ms  
µs  
s
range detection  
above V(HTF)  
Deglitch time for thermistor removal  
detection  
V(TS) rising above V(TSDET)  
V(TS) > V(TSDET) (pack removed)  
Deglitch time for thermistor insertion  
detection  
V(TS) falling below V(TSDET)  
V(TS) < V(TSDET) (pack inserted)  
CHARGE OVERCURRENT COMPARATOR  
V(OLP)  
Overcurrent protection threshold  
Hysteresis  
V(SYNP-SYNN) rising  
200  
20  
1
%I(REG_CHG)  
%I(REG_CHG)  
µs  
V(OLPH)  
V(SYNP-SYNN) falling  
Deglitch time  
V(SYNP-SYNN) rising and falling  
SYNCHRONOUS to NONSYNCHRONOUS CURRENT COMPARATOR (ISYNSET)  
V(SYNSET)  
K(SYNSET)  
V(SYN_HYS)  
ISYNSET pin set voltage  
ISYNSET current set factor  
1
V
V(SYNP-SYNN) falling,  
ISYN_NSYN= (V(SYNSET) × K(SYNSET))/(R(SYNSET) × R(SENSE_CHG)  
500  
V/A  
)
V(SYNP-SYNN) hysteresis voltage, rising V(SYNP-SYNN) rising  
Deglitch time, Synch to Non-Synch V(SYNP-SYNN) rising and falling  
1.5  
1
mV  
µs  
ADAPTER OVERCURRENT COMPARATOR (ACOC)  
V
(ACP-ACN) V(ACOC) , where SMBus charge mode register (0×12),  
% of  
155  
110  
130  
150  
170  
130  
150  
170  
b6 = 1 = ACOC_protection_enabled, b8 = 0, b7 = 0  
I(REG_DPM)  
V(ACP-ACN) V(ACOC) , where SMBus charge mode register (0×12),  
% of  
175  
b6 = 1 = ACOC_protection_enabled, b8 = 0, b7 = 1  
I(REG_DPM)  
ACOC Input over-current protection  
V(ACOC)  
sense resistor voltage threshold  
V(ACP-ACN) V(ACOC) , where SMBus charge mode register (0×12),  
% of  
195  
b6 = 1 = ACOC_protection_enabled, b8 = 1, b7 = 0  
I(REG_DPM)  
V(ACP-ACN) V(ACOC) , where SMBus charge mode register (0×12),  
% of  
215  
190  
7
b6 1 = ACOC_protection_enabled, b8 = 1, b7 = 1  
I(REG_DPM)  
V(ACOCH)  
ACOC Hysteresis  
V(SRP-SRN) falling  
%I(REG_CHG)  
ACOC deglitch time before ACDRV  
turns-off  
V(ACP-ACN) rising  
16  
µs  
ACOC delay time after  
V(ACP-ACN)V(ACOC) before ACDRV  
V(ACP-ACN) falling, V(ACP-ACN)V(ACOC)  
8
ms  
turn-on  
SYSTEM STATUS COMPARATORS INPUT SPECIFICATIONS  
Common mode input range at pin:  
ACDET  
0
0.5  
0
5
VREF5  
VCC  
V
V
V
VICR  
Common mode input range at TS pin  
Common mode input voltage range  
at pins: BAT, SYS  
Input bias currents at pins: ACDET,  
TS, BATDEP, SYS  
I(bias)  
0.2  
µA  
BATTERY DEPLETED COMPARATOR (BATDEP)  
V(BATDEP) = 2.2 V + V(step)× batdep_dac_code, where batdep_dac_code = 0 - 7,  
and Vstep = 0.1V, SMBus Charge Mode register 0×12, bits b9, b10, b11  
For programmed V(BATREG) = 9 V, then cell = 2  
For programmed V(BATREG) = 12 V - 14.4 V, then cell = 3  
For programmed V(BATREG) = 16 V - 19.2 V, then cell = 4  
V(BATDEP)  
BAT depleted voltage range  
2.2  
2.9  
2%  
V/cell  
BAT depleted accuracy  
-2%  
Battery depleted detection deglitch  
time  
V(BAT) falling  
V(BAT) rising  
1
1
s
s
Battery not depleted detection  
deglitch time  
8
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ELECTRICAL CHARACTERISTICS (continued)  
8 Vdc V(VCC) 24 Vdc, 0°C TJ 125°C, all voltages with respect to AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC ADAPTER DETECT COMPARATOR (ACDET)  
V(ACDET) rising, When adapter detected, VREF5 is enabled, and REGN  
regulates to 6 V  
V(ACD)  
AC adapter detect threshold  
1.176  
1.2  
1.224  
V
V(ACDH)  
AC adapter detect hysteresis  
V(ACDET) falling  
V(ACDET) rising  
15  
8
mV  
ms  
AC adapter detected deglitch time  
AC adapter not detected deglitch  
time  
V(ACDET) falling  
1
µs  
AC ADAPTER (ACP) - BATTERY (BAT) COMPARATOR  
ACP voltage above BAT voltage  
V(ACP-BAT)  
threshold  
V(ACP) falling with respect to V(BAT)  
V(ACP-BAT) rising with respect to V(BAT)  
V(ACP) falling with respect to V(BAT)  
250  
50  
300  
mV  
mV  
µs  
V(ACP-BAT)  
Hysteresis  
V(ACP-BAT) falling below threshold  
deglitch time  
16  
V(ACP-BAT) rising above threshold  
deglitch time  
V(ACP-BAT) rising with respect to V(BAT)  
8
ms  
SYSTEM (SYS) - BATTERY (BAT) COMPARATOR  
System voltage above pack voltage  
at V(VS,BAT) > V(SYS)  
V(SYS-BAT)  
V(SYS) falling with respect to V(BAT)  
V(SYS-BAT) rising with respect to V(BAT)  
V(SYS) falling with respect to V(BAT)  
250  
50  
1
300  
mV  
mV  
µs  
V(SYS-BAT)  
Hysteresis  
V(SYS-BAT) falling below threshold  
deglitch time  
V(SYS-BAT) rising above threshold  
deglitch time  
V(SYS-BAT) rising with respect to V(BAT)  
8
ms  
BATTERY SHORTED COMPARATOR  
V(BAT) falling,  
Programmed V(BAT) = 9V  
3.230  
4.845  
6.460  
3.4  
5.1  
6.8  
3.570  
5.355  
7.140  
V
V
V
V(BAT) falling,  
Programmed V(BAT) = 12-14.4V  
V(BATSHORT)  
Battery shorted threshold(2)  
V(BAT) falling,  
Programmed V(BAT) = 16-19.2V  
V(SHRT_HYS)  
Hysteresis  
V(BAT) rising  
200  
1
mV/cell  
s
Battery shorted deglitch time  
V(BAT) rising/falling  
BYPASS P-Channel MOSFET DRIVER (BYPASS)  
R(DS_BYP)  
BYPASS off-state resistance  
BYPASS on-state resistance  
Driver output = HI, BYPASS = V(PVCC), V(PVCC) = 18 V  
1
1
2
2
kΩ  
kΩ  
Hi  
Driver output = LO,  
BYPASS = V(PVCC) - V(REGBYPASS), V(PVCC) = 18 V  
R(DS_BYP)  
Lo  
Drive regulator turn-on voltage for  
BYPASS with respect to V(PVCC)  
V(REGBYPASS)  
V(VCC, BYPASS), V(VCC) > 13 V, I(BYPASS) = 5 mA  
-5  
-5  
-6  
-7.5  
V
AC ADAPTER P-Channel MOSFET DRIVER (ACDRV)  
R(DS_AC)  
ACDRV off-state resistance  
ACDRV on-state resistance  
Driver output = HI, ACDRV = PVCC, V(PVCC) = 18 V  
100  
10  
150  
20  
Hi  
R(DS_AC)  
Driver output = LO, ACDRV =V(PVCC)-V(REGAC), V(PVCC) = 18 V  
kΩ  
Lo  
Drive regulator turn-on voltage for  
ACDRV with respect to V(PVCC)  
V(REGAC)  
V(VCC, ACDRV), V(VCC) > 13 V, I(ACDRV) = 5 mA  
-6.5  
-7.5  
V
BATTERY P-Channel MOSFET DRIVER (BATDRV )  
R(DS_BAT)  
BATDRV off-state resistance  
BATDRV on-state resistance  
Driver output = HI, V(PVCC) = 18 V  
100  
10  
150  
20  
Hi  
R(DS_BAT)  
Driver output = LO, BATDRV=V(PVCC)-V(REGBAT), V(PVCC) = 18 V  
kΩ  
Lo  
Drive regulator negative turn-on  
voltage for BATDRV with respect to  
V(SYS)  
V(REGBAT)  
V(VCC, BATDRV), V(VCC) > 13 V, I(BATDRV) = 5 mA  
-5  
-6.5  
-7.5  
V
SYSTEM POWER SELECTOR TIMING  
Dead time when switching between  
No load at ACDRV and BATDRV  
1
1
µs  
µs  
ACDRV and BATDRV  
BYPASS SWITCH TIMING  
Delay to turn-off BYPASS  
(2) For the bq24721: When BAT falls below the V(BATSHORT) threshold, the charger continues regulating at the programmed current down to  
zero volts on BAT; then after 1 second deglitch time, the charge current automatically changes to 1/8 the programmed charge current.  
The charge current automatically changes from 1/8 the programmed charge current to the full programmed charge current when BAT  
voltage rises above (V(BATSHORT) + 200 mV hysteresis), after 1 second deglitch time.  
9
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ELECTRICAL CHARACTERISTICS (continued)  
8 Vdc V(VCC) 24 Vdc, 0°C TJ 125°C, all voltages with respect to AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PWM HIGH-SIDE N-Channel MOSFET DRIVER (HIDRV), bq24721  
R(DS_HIDRV)  
High-side on-state resistance  
High-side off-state resistance  
HSD switch on, HIDRV = HI, V(BOOST,PH) = 5.5 V  
HSD switch off, HIDRV = LO, V(BOOST,PH) = 5.5 V  
2.2  
1.5  
3
Hi  
R(DS_HIDRV)  
2.5  
Lo  
PWM HIGH-SIDE N-Channel MOSFET DRIVER (HIDRV), bq24721C  
R(DS_HIDRV)  
High-side on-state resistance  
High-side off-state resistance  
HSD switch on, HIDRV = HI, V(BOOST,PH) = 5.5 V  
HSD switch off, HIDRV = LO, V(BOOST,PH) = 5.5 V  
4.5  
1.5  
8.6  
2.6  
Hi  
R(DS_HIDRV)  
Lo  
PWM LOW-SIDE N-Channel MOSFET DRIVER (LODRV), bq24721  
R(DS_LODRV)  
Low-side on-state resistance  
Low-side off-state resistance  
LSD switch on, LODRV = HI, V(PVCC) = 7 V  
LSD switch off, LODRV = LO, V(PVCC) = 7 V  
2.2  
1.5  
3
Hi  
R(DS_LODRV)  
2.5  
Lo  
PWM LOW-SIDE N-Channel MOSFET DRIVER (LODRV), bq24721C  
R(DS_LODRV)  
Low-side on-state resistance  
Low-side off-state resistance  
LSD switch on, LODRV = HI, V(PVCC) = 7 V  
LSD switch off, LODRV = LO, V(PVCC) = 7 V  
4.5  
1.5  
8.6  
2.6  
Hi  
R(DS_LODRV)  
Lo  
PWM LOW-SIDE DRIVER REGULATOR (REGN)  
V(REGN) at I(REGN) = 10 mA, sourcing,  
Adapter detected (V(ACDET) > V(ACD)), V(PVCC) > 7 V  
5.5  
6
6.5  
V
V
VO(HREGN)  
IO(REGN_SW)  
I(REGN_LIM)  
REGN output voltage  
V(REGN) at I(REGN) = 10 mA, sourcing,  
Adapter not detected, (V(ACDET) < V(ACD)), V(PVCC) > 7 V  
4.2  
2 times 25 nC load, fs = 300 kHz  
2 times 25 nC load, fs = 500 kHz  
15  
25  
mA  
mA  
REGN output current while charger  
switching  
VREGN = 5 V  
Adapter detected (V(ACDET) > V(ACD)), V(PVCC)> 7 V  
100  
13.3  
15  
mA  
mA  
mA  
REGN Current limit  
Adapter detected  
VREGN = 0 V, shorted  
Adapter detected (V(ACDET) > V(ACD)), V(PVCC)> 7 V  
REGN Current limit  
Adapter not detected  
VREGN = 4.2 V  
Adapter not detected, (V(ACDET) < V(ACD)), V(PVCC)> 7 V  
PWM DRIVERS TIMING  
Dead time when switching between  
LSD and HSD, no load at LSD and  
HSD  
30  
ns  
PWM OSCILLATOR  
PWM oscillator ramp voltage , low  
value  
V(RAMPLO)  
V(RAMPHI)  
0% duty cycle occurs below this threshold  
0.35  
V
V
PWM oscillator ramp voltage , high  
value  
near 100% duty cycle occurs above this threshold  
3
VPP(RAMP)  
V(RAMPCL)  
FS  
PWM ramp peak-to-peak amplitude  
PWM oscillator ramp clamp voltage  
PWM oscillator frequency (300 kHz)  
PWM oscillator frequency (500 kHz)  
0.1×VCC  
3.5  
V
V
265  
425  
300  
345  
575  
kHz  
kHz  
500  
INTERNAL SOFT START (8 steps to Ireg)  
SRSET pin voltage number of steps  
Eight steps of charge current regulation to get to programmed value  
(SRSET = 1 V).  
8
1
step  
during soft start.  
Step Duration.  
Eight steps of charge current regulation to get to programmed value  
(SRSET = 1 V).  
0.8  
1.2  
ms/step  
CHARGER SECTION POWER-UP SEQUENCING  
Time delay between power up of  
charger block references (first) and  
start charge (second)  
1
ms  
ms  
Time delay from adapter detected  
until ACDRV enable and charger  
block enable  
500  
10  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS  
VREF5 LOAD REGULATION  
VREF5 LINE REGULATION  
VREF5 CURRENT LIMIT  
vs  
JUNCTION TEMPERATURE  
vs  
vs  
LOAD CURRENT  
INPUT VOLTAGE  
5
4.988  
4.986  
114  
113  
112  
111  
110  
V = 20 V  
I
V = 20 V  
V = 20 V  
I
I
4.99  
T
= 0oC  
= 0oC  
T
= 25oC  
J
J
T
4.98  
4.97  
4.96  
4.95  
4.94  
J
4.984  
4.982  
4.98  
T
= 25oC  
J
T
= 85oC  
J
T
= 85oC  
J
4.978  
= 125oC  
T
= 125oC  
T
J
J
109  
108  
4.976  
4.974  
4.93  
4.92  
0
5
10 15 20 25 30 35 40 45 50  
7
9
11 13 15 17 19 21 23 24  
0
20  
40  
60  
80 100 110 120 125  
V − Input Voltage − V  
I
T
− Junction Temperature − o  
C
I
− Load Current − mA  
L
J
Figure 1.  
Figure 2.  
Figure 3.  
REGN LOAD REGULATION  
REGN LINE REGULATION  
vs  
REGN CURRENT LIMIT  
vs  
JUNCTION TEMPERATURE  
vs  
LOAD CURRENT  
INPUT VOLTAGE  
5.95  
5.9  
5.92  
5.91  
5.9  
116  
115.5  
115  
V = 20 V  
I
V = 20 V  
V = 20 V  
I
I
T
= 0oC  
J
T
= 0oC  
J
T
= 25oC  
J
T
= 25oC  
J
5.85  
5.8  
T
= 85oC  
114.5  
114  
J
5.89  
T
= 85oC  
J
= 125oC  
5.88  
5.87  
5.75  
5.7  
T
= 125oC  
J
113.5  
113  
T
J
0
5
10 15 20 25 30 35 40 45 50  
7
9
11 13 15 17 19 21 23 24  
0
20  
40  
60  
80 100 110 120 125  
V − Input Voltage − V  
I
T
− Junction Temperature − o  
C
I
− Load Current − mA  
L
J
Figure 4.  
Figure 5.  
Figure 6.  
QUIESCENT CURRENT, NO  
QUIESCENT CURRENT, WITH  
REGN CURRENT LIMIT  
vs  
FORCED REGN VOLTAGE  
ADAPTER  
vs  
ADAPTER  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
160  
140  
280  
270  
260  
5.8  
5.6  
5.4  
V
= 24 V  
CC  
120  
100  
80  
V = 16.8 V  
I
5.2  
5
250  
240  
230  
220  
210  
200  
V = 16.8 V  
I
V = 12.6 V  
I
4.8  
4.6  
4.4  
4.2  
4
V = 12.6 V  
I
60  
40  
20  
0
0
1
2
3
4
5
6
0
20  
40  
60  
80 100 110 120 125  
-15  
5
T
25  
45  
65  
85  
105 125  
C
T
− Junction Temperature − o  
C
− Junction Temperature − o  
V − Forced REGN Voltage − V  
I
J
J
Figure 7.  
Figure 8.  
Figure 9.  
11  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
ACDET THRESHOLD  
vs  
JUNCTION TEMPERATURE  
ACDET HYSTERESIS  
vs  
JUNCTION TEMPERATURE  
HIDRV, rDS(on), PULL UP  
vs  
JUNCTION TEMPERATURE  
1.2012  
1.201  
19.25  
19.2  
6
5.5  
5
V = 20 V  
I
V = 20 V  
I
V = 20 V  
I
19.15  
19.1  
1.2008  
4.5  
4
1.2006  
1.2004  
1.2002  
1.2  
bq24721C  
19.05  
19  
3.5  
3
18.95  
18.9  
2.5  
2
18.85  
18.8  
bq24721  
1.1998  
1.1996  
1.5  
18.75  
0
20  
40  
60  
80 100 110 120 125  
0
20  
40  
60  
80 100 110 120 125  
0
20  
T
40  
60  
80  
100 120 125  
− Junction Temperature − o  
C
T
− Junction Temperature − o  
C
− Junction Temperature − o  
C
T
J
J
J
Figure 10.  
Figure 11.  
Figure 12.  
HIDRV, rDS(on), PULL DOWN  
vs  
JUNCTION TEMPERATURE  
LODRV, rDS(on), PULL UP  
vs  
JUNCTION TEMPERATURE  
LODRV, rDS(on), PULL DOWN  
vs  
JUNCTION TEMPERATURE  
1.9  
1.8  
1.9  
1.8  
6
5.5  
5
V = 20 V  
V = 20 V  
I
V = 20 V  
I
I
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
bq24721C  
4.5  
4
3.5  
3
2.5  
2
bq24721  
1.1  
1
1.1  
1
1.5  
0
20  
40  
60  
80 100 110 120 125  
0
20  
40  
60  
80 100 110 120 125  
0
20  
T
40  
60  
80  
100 120 125  
− Junction Temperature − o  
C
T
− Junction Temperature − o  
C
− Junction Temperature − o  
C
T
J
J
J
Figure 13.  
Figure 14.  
Figure 15.  
BATTERY VOLTAGE REGULATION  
CHARGE CURRENT REGULATION  
ACCURACY  
vs  
BATTERY VOLTAGE REGULATION  
vs  
ACCURACY  
vs  
BATTERY VOLTAGE  
JUNCTION TEMPERATURE  
SRP-SRN VOLTAGE  
0.1  
0.1  
15  
13  
V = 20 V  
I
V = 24 V  
I
0.08  
0.06  
0.04  
0.08  
0.06  
0.04  
T
= 85oC  
11  
9
J
T
= 125oC  
= 85oC  
J
V = 12.6 V  
I
0.02  
0
0.02  
0
7
5
T
J
V = 16.8 V  
I
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
T
= 25oC  
J
T
J
= 25oC  
= 0oC  
T
= 125oC  
3
1
J
T
J
T
= 0oC  
J
-1  
0
20  
40  
60  
80 100 110 120 125  
9
11  
V
13  
15  
17  
19  
5
15  
25  
35  
45  
55  
65  
− Junction Temperature − o  
C
V − SPR-SRN Voltage − mV  
I
T
− Battery Voltage − V  
J
(BAT)  
Figure 16.  
Figure 17.  
Figure 18.  
12  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
INPUT CURRENT REGULATION  
INPUT CURRENT REGULATION  
(DPM) ACCURACY  
vs  
IO = DPM CURRENT SENSE  
AMPLIFIER ACCURACY  
vs  
(DPM) ACCURACY  
vs  
ACP-ACN VOLTAGE  
INPUT VOLTAGE  
ACP-ACN VOLTAGE  
13  
11  
9
5
4
0.28  
0.26  
V = 20 V  
I
V = 20 V  
I
V = 20 V  
I
T
= 0oC  
J
0.24  
0.22  
0.2  
5.12 mV  
T
= 125oC  
= 85oC  
J
3
T
= 85oC  
J
7
5
2
1
T
J
0.18  
0.16  
10.24 mV  
T
J
= 25oC  
T
= 25oC  
3
T
= 125oC  
J
J
40.96 mV  
20.48 mV  
0.14  
T
= 0oC  
J
0
1
0.12  
0.1  
-1  
-1  
5
9
13 17 21 25 29 33 37 41  
14  
16  
18  
20  
22  
24  
0
10 20 30 40 50 60 70 80 90 100  
V − ACP-ACN Voltage − mV  
I
V − Voltage − mV  
I
V − ACP-ACN Voltage − mV  
I
Figure 19.  
Figure 20.  
Figure 21.  
IO = DPM CURRENT SENSE  
AMPLIFIER OFFSET  
vs  
IO = ADAPTER OUTPUT CURRENT  
IO = CHARGE SENSE AMPLIFIER  
LIMIT  
ACCURACY  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
SRP-SRN VOLTAGE  
1
0.9  
0.8  
0.7  
6
0.2  
0
5.95  
5.9  
V = 20 V  
I
-0.2  
-0.4  
-0.6  
-0.8  
-1  
T
= 125oC  
J
5.85  
5.8  
0.6  
0.5  
0.4  
0.3  
0.2  
T
= 85oC  
J
5.75  
5.7  
T
T
= 25oC  
= 0oC  
J
V = 20 V  
I
J
5.65  
5.6  
-1.2  
-1.4  
0.1  
0
20  
40  
60  
80 100 110 120 125  
0
20  
40  
60  
80 100 110 120 125  
0
10 20 30 40 50 60 70 80 90 100  
− Junction Temperature − o  
C
T
− Junction Temperature − o  
C
V − SRP-SRN Voltage − mV  
I
T
J
J
Figure 22.  
Figure 23.  
Figure 24.  
IO = CHARGE CURRENT LIMIT  
vs  
JUNCTION TEMPERATURE  
300-kHz SWITCHING FREQUENCY  
300-kHz SWITCHING FREQUENCY  
vs  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
5.75  
5.7  
311  
311  
T
= 85oC  
V = 20 V  
I
J
V = 20 V  
I
310.5  
310  
310.5  
310  
T
= 125oC  
J
5.65  
5.6  
309.5  
309  
T
= 25oC  
5.55  
5.5  
J
309.5  
309  
308.5  
308  
5.45  
5.4  
T
= 0oC  
J
308.5  
0
20  
40  
60  
80 100 110 120 125  
0
20  
40  
60  
80 100 110 120 125  
14  
16  
18  
20  
22  
24  
− Junction Temperature − o  
C
T
− Junction Temperature − o  
C
V − Input Voltage − V  
I
T
J
J
Figure 25.  
Figure 26.  
Figure 27.  
13  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
500-kHz SWITCHING FREQUENCY  
500-kHz SWITCHING FREQUENCY  
vs  
THERMISTOR LTF THRESHOLD  
vs  
JUNCTION TEMPERATURE  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
498.5  
498  
498.5  
73.65  
T
= 85oC  
J
V = 20 V  
I
V = 20 V  
I
498  
497.5  
497  
T
= 125oC  
73.6  
J
497.5  
73.55  
497  
496.5  
496  
496.5  
496  
73.5  
73.45  
73.4  
T
J
= 25oC  
T
= 0oC  
J
495.5  
495.5  
495  
495  
494.5  
494.5  
73.35  
14  
16  
18  
20  
22  
24  
0
20  
40  
60  
80 100 110 120 125  
0
20  
40  
60  
80 100 110 120 125  
− Junction Temperature − o  
C
T
− Junction Temperature − o  
C
V − Input Voltage − V  
I
T
J
J
Figure 28.  
Figure 29.  
Figure 30.  
THERMISTOR LTF THRESHOLD  
vs  
JUNCTION TEMPERATURE  
THERMISTOR TCO THRESHOLD  
vs  
THERMISTOR TSDET THRESHOLD  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
34.4  
29.3  
84.8  
V = 20 V  
I
34.395  
V = 20 V  
I
84.79  
84.78  
84.77  
84.76  
84.75  
V = 20 V  
I
29.28  
34.39  
34.385  
34.38  
34.375  
34.37  
29.26  
29.24  
84.74  
84.73  
34.365  
34.36  
29.22  
29.2  
84.72  
84.71  
34.355  
34.35  
84.7  
0
20  
40  
60  
80 100 110 120 125  
0
20  
40  
60  
80 100 110 120 125  
0
20  
40  
60  
80 100 110 120 125  
T
− Junction Temperature − o  
C
T
− Junction Temperature − o  
C
T
J
− Junction Temperature − o  
C
J
J
Figure 31.  
Figure 32.  
Figure 33.  
14  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
EFFICIENCY  
vs  
BATTERY CHARGE CURRENT  
REGULATION CURRENT  
vs  
SYSTEM CURRENT  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
100  
95  
IDPM  
V
= 16.8 V  
(BAT)  
V
V
= 12 V  
(BAT)  
= 20 V  
CC  
90  
R
= 10 mW  
V
= 12.6 V  
(sns)  
(BAT)  
ICHG  
85  
DPM Active  
V = 19.5 V  
= 20oC  
I
80  
T
A
ILOOP Active  
75  
0
0
1
2
3
4
5
6
7
8
0
500 1 k 1.5 k 2 k 2.5 k 3 k 3.5 k 4 k 4.5 k  
System Current − mA  
Battery Charge Current − A  
Figure 34.  
Figure 35.  
TRANSIENT SYSTEM LOAD  
SYSTEM SELECTOR GATE DRIVES AFTER ACDET  
Adapter plugged in (ACDET goes above 1.2 V)  
ACDRV has a 500-ms delay before turning on  
Power Loop Verification (DPM) Transient Response  
Constant Current Regulation, Then (DPM) Regulation  
Ch1  
20 V  
BYPASS  
ACDRV  
Ch4 = System Current  
Ch2  
20 V  
Ch4  
0 A  
Ch4  
20 V  
Ch1 = Input Current  
BATDRV  
Ch1  
Ch3  
0 A  
Ch3 = Battery Current  
ACDET  
Ch1  
0 V  
t − Time = 100 ms/div  
t − Time = 1 ms/div  
Figure 36.  
Figure 37.  
15  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
SYSTEM SELECTOR ADAPTER INSERTION  
SYSTEM SELECTOR ADAPTER REMOVAL  
System Power Selection  
System Power Selection  
Adapter is unplugged in, System switches over to battery once the adapter  
voltage drops below VAIRLINE.  
Adapter is plugged in, then 500 ms later the system switches over.  
System Voltage  
Adapter Voltage  
1-A System Load  
Battery Voltage  
System Voltage  
Battery Voltage  
Ch1  
Ch2  
Ch4  
0 V  
1-A System Load  
Adapter Voltage  
Ch1  
Ch2  
Ch4  
0 V  
t − Time = 200 ms/div  
t − Time = 1 s/div  
Figure 38.  
Figure 39.  
REGN VREF5 POWER UP  
SOFTSTART CHARGE CURRENT  
VREF5 and REGN Power-Up  
Softstart Operation  
Inductor Current  
Ch4  
0 V  
REGN  
0 A  
VREF5  
Ch2  
0 V  
AVCC/PVCC  
Ch1  
0 V  
t − Time = 1 ms/div  
t − Time = 2 ms/div  
Figure 40.  
Figure 41.  
16  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
NONSYNCHRONOUS TO SYNCHRONOUS TRANSITION  
SYNCHRONOUS TO NONSYNCHRONOUS TRANSITION  
Transition from Non-Synchronous to Synchronous  
Inductor Current  
Transition from Non-Synchronous to Synchronous  
Inductor Current  
Ch3  
0 A  
Ch3  
0 A  
Ch4  
0 V  
Ch4  
0 V  
Low side NMOS gate voltage  
Low side NMOS gate voltage  
Ch1  
0 V  
Ch1  
0 V  
PH  
PH  
t − Time = 10 ms/div  
t − Time = 10 ms/div  
Figure 42.  
Figure 43.  
NEAR 100% DUTY CYCLE BTST RECHARGE PULSE  
BATTERY SHORT RESPONSE  
Bootstrap Refresh Comparator Operation  
BATSHORT Functionality  
Inductor Current  
Trefresh = 250 ms  
BAT  
Ch3  
0 A  
Ch2  
0 V  
BAT goes from 13 V to 3 V, 1 sec deglitch, charge turns off  
BAT goes back to 13 V, 1 sec deglitch, charge turns back on  
Ch2  
0 V  
Low side NMOS gate  
Inductor Current  
PH  
Ch3  
0 A  
Ch1  
0 V  
t − Time = 400 ms/div  
t − Time = 40 ms/div  
Figure 44.  
Figure 45.  
17  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
CHARGE OVERCURRENT  
ACOC ACDRV TURN OFF (32-µs DEGLITCH)  
Charge Overcurrent Comparator Functionality  
ACOC Rising Edge (32 ms deglitch)  
ACN decreases below ACOC threshold  
Regulating 4 A, then add 1 W in parallel  
to reduce VBAT  
VBAT  
Ch1  
20 V  
ADCRV  
Ch2  
0 V  
ACN (ACP fixed)  
Ch2  
20 V  
Ch3  
4 A  
Inductor Current  
t − Time = 20 ms/div  
t − Time = 20 ms/div  
Figure 46.  
Figure 47.  
ACOC ACDRV TURN ON (500-µs DEGLITCH)  
SWITCHING CONTINUOUS CURRENT MODE (CCM)  
Steady State Operation  
ACOC Falling Edge (500 ms deglitch)  
ACN increases above ACOC threshold  
Ch2 = VPH  
Ch1  
20 V  
ADCRV  
Ch1  
12 V  
Ch1 = VOUTCAPS  
Ch2  
0 V  
Ch3 = Inductor Current  
Ch3  
4 A  
Ch4  
12 V  
Ch2  
20 V  
ACN (ACP fixed)  
Ch4 = VOUTCAPS_AC Ripple  
Max (C1) 10.4 V  
Min (C1) 8.0 V  
Min (C2) -1.2 V  
Min (C3) 3.12 A  
Min (C4) 32.0 mV  
Max (C2) 20.4 V  
Max (C3) 5.04 A  
Max (C4) 42.0 mV  
t − Time = 1 ms/div  
t − Time = 200 ms/div  
Figure 48.  
Figure 49.  
18  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
SWITCHING DISCONTINUOUS CURRENT MODE  
vs  
(DCM)  
Steady State Operation  
Ch2 = VPH  
Ch1  
12.6 V  
Ch1 = VOUTCAPS  
Ch2  
0 V  
Ch4 = VOUTCAPS_AC Ripple  
Ch4  
12.6 V  
Ch3  
4 A  
Min (C1) 11.6 V  
Min (C2) -1.2 V  
Min (C3) 320.0 mA  
Min (C4) 22.0 mV  
Max (C1) 14.0 V  
Ch3 = Inductor  
Current  
Max (C2) 20.8 V  
Max (C3) 1.12 A  
Max (C4) 30.0 mV  
t − Time = 1 ms/div  
Figure 50.  
19  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
SIMPLIFIED BLOCK DIAGRAM  
IOUT  
BYPASS  
ACDRV  
BATDRV  
AGND  
VCC  
VREF5  
20X  
REFERENCE SYSTEM  
Select Adaptor current  
or Charge current  
Always on  
AC SW AND BAT SW DRIVERS  
− break−before−make LOGIC  
Always on  
BYPASS SW  
DRIVER  
5v ldo when ACPRES  
Power−on reset  
UVLO  
Always on  
Voltage references  
Internal timebase  
SRP  
SRN  
Always on  
SYNCHRONOUS SWITCHING  
PWM CONVERTER  
BYPON  
ACON  
ACOC  
CHGOC  
LOGIC  
ACP  
ACN  
current loop  
dpm loop  
− Power up/down sequencing  
− Charge enable logic  
CLK, POR  
voltage loop  
sync/nonsync comparator  
charge overcurrent  
comparator  
− Charge enable sequencing  
− System power selector logic  
− System selector bbm logic  
− Deglitch times  
EAO  
EAI  
POWERON  
BDEP, ACCHG, THDET,  
TCOLD, THOT ,VSHI, TERMDET,  
ADPSRC, VCCGTBAT, TCMP  
FBO  
SYSTEM STATUS  
COMPARATORS  
charge current reference  
dpm current reference  
break−before−make logic  
CHARGERON  
SYNP  
ACGOOD  
Always on  
Battery depleted (1)  
AC detection (1)  
SYNN  
− duty−cycle limited, 0% to near  
100% (99.5%)  
ISYNSET  
*Thermistor inserted (1)  
*Thermistor cold (2)  
NMOS/NMOS drivers  
ACDET  
BAT  
Internal soft start  
*Thermistor hot (2)  
PWM oscillator 300 kHz/500 kHz  
BTST  
System voltage / pack voltage (2)  
VCC above pack voltage (2)  
SYS  
TS  
HIDRV  
PH  
(1) always on  
Enabled only when AC is  
(2) enabled when AC is detected  
REGN  
LODRV  
PVCC  
detected and CHGEN is low  
TTL INPUT  
BUFFER  
ALARM  
VREG DAC  
VREG DAC  
DECODER  
1BIT Select Cells  
7BIT (6.25mV/bit)  
SBS [b1−b14] to  
bq24721 [7bit +1bit]  
SMBUS INTERFACE  
Always on  
MEMORY  
SCL  
SDA  
SR IREG DAC  
7BIT (1.28mV/bit)  
Always on  
AC IREG DAC  
7BIT (1.28mV/bit)  
CHGEN  
PGND  
Figure 51. bq24721 SBS-Like SMBus Controlled Simplified Block Diagram  
20  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
TYPICAL APPLICATION bq24721  
Q2  
SI4435  
Q1  
SI4435  
R1  
0.010  
SYSTEM  
ADAPTER+  
bq24721  
PACK+  
C1  
10 uF  
C2  
10 uF  
C6  
1 uF  
ADAPTER-  
ACDRV  
VCC  
SYC  
D1  
BAT54C  
C7  
0.1 uF  
ACN  
ACP  
BATDRV  
PVCC  
R3  
464 k  
C8  
C9  
0.1uF  
1%  
0.1uF  
C3  
4x10uF  
BYPASS  
ACDET  
Q5  
SI4435  
Q3  
FDS6670A  
HIDRV  
PH  
L1  
10 uH  
R2  
0.010  
PACK+  
PACK-  
R4  
33.2 k  
1%  
C12  
VREF5  
, 0.1uF  
VREF5  
AGND  
BTST  
R5  
5.6 k  
1%  
PACK  
THERMISTOR  
SENSE  
D2  
BAT54  
C10  
1 uF  
C13, 1uF  
REGN  
C4  
2x10 uF  
TS  
Q4  
FDS6670A  
C14  
0.1uF  
C5  
2x10 uF  
C17  
0.1 uF  
OPTIONAL  
LODRV  
PGND  
SYNP  
SYNN  
SRP  
R13  
118 k  
1%  
C18  
0.1 uF  
OPTIONAL  
C15  
0.1uF  
C16  
0.1 uF  
SRN  
ACGOOD  
BAT  
C19  
0.1 uF  
CHGEN  
EAO  
VREF5  
C20  
51pF  
R10  
20k  
R9  
7.5k  
EMBEDDED  
CONTROLLER  
HOST  
C22  
130pF  
EAI  
FBO  
R6  
10 k  
R7  
10 k  
R8  
10 k  
R11  
200k  
C21  
2000pF  
SCL  
SDA  
SMBus  
IRQ  
ISYNSET  
R12  
33k  
ALARM  
PowerPAD  
A/D  
IOUT  
C11  
0.1uF  
Short PowerPAD to  
PGND and AGND  
Figure 52. bq24721 SBS-Like SMBus Host Control With System Power Selector  
(bq24721 With TS Thermistor Sense Input Pin)  
BOM Key Components (For Figure 52, bq24721 Typical Application Circuit)  
Reference Designator  
Qty  
1
Description(1)  
Q3  
Q4  
N-channel MOSFET, 30V, 12.5A, SO-8, FDS6680A  
N-channel MOSFET, 30V, 13A, SO-8, FDS6670A  
1
Q1, Q2, Q5  
3
P-channel MOSFET, -30V,-6A, SO-8, Vishay-Siliconix, Si4435  
Diode, Dual Schottky, 30V, 200mA, SOT23, Fairchild, BAT54C  
Diode, Single Schottky, 30V, 200mA, SOT23, Fairchild, BAT54  
Inductor, 10µH, 7A, 31m, Vishay-Dale, IHLP5050FD-01  
D1  
1
D2  
1
L1  
1
R1, R2  
2
Sense Resistor, 10 m, 1%, 1W, 2010, Vishay-Dale, WSL2010R0100F  
C1, C2, C3, C4, C5  
10  
Capacitor, Ceramic, 10µF, 35V, 20%, X5R, 1206, Panasonic,  
ECJ-3YB1E106M  
C6, C10, C13  
3
Capacitor, Ceramic, 1µF, 25V, 10%, X7R, 2012, TDK, C2012X7R1E105K  
C7, C8, C9, C12, C14, C15, C16,  
C19, (C17 and C18 optional)  
10  
Capacitor, Ceramic, 0.1µF, 50V, 10%, X7R, 0805, Kemet,  
C0805C104K5RACTU  
C20  
1
Capacitor, Ceramic, 51pF, 50V, 5%, NPO, 0603  
(1) The manufacturer's part number are used for test purposes only.  
Submit Documentation Feedback  
21  
 
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
BOM Key Components (For Figure 52, bq24721 Typical Application Circuit) (continued)  
Reference Designator  
Qty  
1
Description(1)  
Capacitor, Ceramic, 2000pF, 50V, 5%, X7R, 0805  
Capacitor, Ceramic, 130pF, 50V, 5%, NPO, 0603  
Resistor, Chip, 464k, 1/16W, 1%, 0402  
Resistor, Chip, 33.2k, 1/16W, 1%, 0402  
Resistor, Chip, 33k, 1/16W, 5%, 0402  
Resistor, Chip, 7.54k, 1/16W, 1%, 0402  
Resistor, Chip, 20k, 1/16W, 1%, 0402  
Resistor, Chip, 200k, 1/16W, 1%, 0402  
Resistor, Chip, 10k, 1/16W, 5%, 0402  
Resistor, Chip, 5.6k, 1/16W, 1%, 0402  
Resistor, Chip, 118k, 1/16W, 1%, 0402  
C21  
C22  
R3  
1
1
R4  
1
R12  
R9  
1
1
R10  
R11  
1
1
R6, R7, R8  
R5  
3
1
R13  
1
Typical bq24721 Narrow VDC (NVDC) Application (2 sense resistors)  
Q1  
SI4435  
SYSTEM  
ADAPTER +  
bq24721  
C1  
10uF  
PACK+  
C2  
10 uF  
C6  
1u  
ACDRV  
SYC  
ADAPTER -  
F
VCC  
D1  
BAT54C  
C7  
0.1uF  
ACN  
ACP  
BATDRV  
PVCC  
R3  
464k  
1%  
C8  
0.1uF  
C9  
0.1uF  
C3  
4x10uF  
BYPASS  
Q3  
FDS6670A  
HIDRV  
PH  
ACDET  
VREF5  
AGND  
R2  
0.010  
R13  
0.010  
L1  
10uH  
PACK+  
PACK-  
R4  
33.2k  
1%  
VREF5  
C12, 0.1uF  
PACK  
THERMISTOR  
SENSE  
C10  
1uF  
BTST  
R5  
5.6 k  
1%  
D2  
BAT54  
C13, 1uF  
Q4  
FDS6670A  
C4  
REGN  
2x10uF  
TS  
C14  
0.1uF  
C5  
2x10uF  
R1  
118k  
1%  
LODRV  
C17  
0.1uF  
PGND  
SYNP  
SYNN  
C18  
0.1uF  
C15  
0.1uF  
C16  
SRP  
SRN  
BAT  
0.1uF  
ACGOOD  
C19  
0.1uF  
CHGEN  
EAO  
VREF5  
C20  
51pF  
R10  
20k  
R9  
7.5k  
C22  
130 pF  
EMBEDDED  
CONTROLLER  
HOST  
EAI  
FBO  
R6  
10k  
R7  
10k  
R8  
10k  
R11  
200 k  
C21  
2000 pF  
SCL  
SDA  
SMBus  
IRQ  
ISYNSET  
R12  
33k  
ALARM  
A/D  
PowerPAD  
IOUT  
C11  
0.1uF  
Short PowerPAD to  
PGND and AGND  
Figure 53. bq24721 SBS-Like SMBus Host Control, NVDC (no system power selector) With 2 Sense  
Resistors. ACP and ACN Regulating Converter Current Instead of Input Current  
22  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
Typical bq24721 Narrow VDC (NVDC) Application (3 sense resistors)  
Q1  
R1  
SYSTEM  
SI4435  
0.010  
ADAPTER+  
bq24721  
C1  
10 uF  
PACK+  
C2  
10 uF  
C6  
1 uF  
C7  
0.1 uF  
ACDRV  
SYC  
ADAPTER-  
VCC  
D1  
BAT54C  
ACN  
ACP  
BATDRV  
PVCC  
R3  
464 k  
1%  
C8  
0.1 uF  
C9  
0.1 uF  
C3  
4x10uF  
BYPASS  
Q3  
FDS6670A  
HIDRV  
PH  
ACDET  
VREF5  
AGND  
L1  
10 uH  
R2  
0.010  
R13  
0.010  
PACK+  
PACK-  
R4  
33.2 k  
1%  
C12  
VREF5  
0.1 uF  
BTST  
R5  
5.6 k  
1%  
PACK  
THERMISTOR  
SENSE  
D2  
BAT54  
C10  
1 uF  
C13, 1 uF  
Q4  
FDS6670A  
C4  
REGN  
2x10 uF  
TS  
C14  
0.1 uF  
C5  
2x10 uF  
LODRV  
R13  
118 k  
1%  
C17  
0.1 uF  
PGND  
SYNP  
SYNN  
C18  
0.1 uF  
C15  
0.1 uF  
C16  
0.1 uF  
SRP  
SRN  
BAT  
ACGOOD  
C19  
0.1 uF  
CHGEN  
EAO  
VREF5  
R7  
R10  
20 k  
C20  
51 pF  
R9  
7.5 k  
EMBEDDED  
CONTROLLER  
HOST  
C22  
130 pF  
EAI  
FBO  
R6  
R8  
R11  
200 k  
C21  
2000 pF  
10 k  
10 k 10 k  
SCL  
SDA  
SMBus  
IRQ  
ISYNSET  
R12  
33 k  
ALARM  
A/D  
PowerPAD  
IOUT  
C11  
0.1uF  
Short PowerPAD to  
PGND and AGND  
Figure 54. bq24721 SBS-Like SMBus Host Control, NVDC (no system power selector)  
With 3 Sense Resistors  
23  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
5-V LDO  
ENA  
VREF5  
VCC  
ADAPTER  
DETECTED  
ACDET  
CHGEN  
EAO  
+
-
1.2 V  
SYS-BAT  
SYS  
250 mV  
BAT  
-
BATDEP  
-
PVCC  
PVCC-6V  
SRP-BAT  
ACOC  
PVCC-6V  
LDO  
PVCC  
SMBUS  
+
+
BATDEPSET  
BAT + 250 mV  
BYPASS  
ACDRV  
SYS  
PVCC-6V  
SYSTEM  
POWER  
SELECTOR  
LOGIC  
EAI  
PVCC-6V  
SYS-6V  
SYS  
SYS 6-V  
LDO  
FBO  
ACOC_SET  
V(ACP-ACN)  
+
-
ACOC  
BATDRV  
BTST  
ACP  
ACN  
+
-
ICH_ER  
SYS-6V  
-
SMBUS  
CHGEN  
COMP  
ERROR  
AMPLIFIER  
IIN  
DAC  
+
CHGEN  
ACP-BAT  
-
-
250 mV  
+
+
1 V  
BAT + 250 mV  
4 mA  
LEVEL  
SHIFTER  
BAT_ER  
HIDRV  
BAT  
SRP  
-
VBAT  
DAC  
+
20 mA  
OVP  
+
-
OVP  
OCP  
110% x BAT_DAC  
PH  
SYNCH  
DC-DC  
CONVERTER  
PWM LOGIC  
+
-
V(SRP-SRN)  
ICH_ER  
-
ACP-BAT  
IBAT  
DAC  
+
VCC  
REGN  
LODRV  
PGND  
IOUT  
SRN  
6-V LDO  
20 mA  
SUSPEND  
TSDET  
500 kHz 300 kHz  
2 x IBAT_DAC  
V(SYNP-N)  
REFRESH  
CBTST  
SYNP  
BTST  
4.5 V  
-
-
OCP  
+
-
+
SW FREQ  
SELECT  
+
+
_
PH  
+
-
SYNCH  
SYNN  
ISYNSET  
ACP  
ACN  
+
-
ISYNSET x 500  
V(IADAPT)  
V(IBAT)  
20x  
20x  
IC TJ  
145oC  
TSHUT  
+
-
SELECT  
VREF5  
1 V  
SRP  
SRN  
+
-
+
_
+
TSDET  
LTF  
ALARM  
SDA  
-
CHARGE STATUS  
REGISTER  
-
CHARGE MODE  
REGISTER  
+
TS  
VBAT  
DAC  
+
-
HTF  
SUSPEND  
SMBus LOGIC  
IBAT  
DAC  
SCL  
AGND  
+
-
TCO  
IIN (DPM)  
DAC  
Figure 55. bq24721 Functional Block Diagram  
24  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ADAPTER  
POWER  
external  
SYSTEM&CHARGEPOWER  
SELECTOR  
SYSTEM  
Chrg  
Dischrg  
Dischrg  
Chrg  
Vin  
Bat  
bq24721  
BATTERY  
CHARGER  
CONTROLLER  
IC  
BATTERY  
Primary  
BATTERY  
Secondary  
&
CONVERTER  
PSID  
I/O  
SMBus  
SMBus  
I/O  
SMBus  
HOST - Embedded Controller (EC)  
Figure 56. Host Controller  
BLOCK DESCRIPTION  
Detail Block Diagram  
The bq24721 charge controller can be used to charge Li-Ion, NiMH, or NiCd batteries. The high efficiency  
synchronous buck controller uses n-channel power MOSFETs for both the high-side control device and the  
low-side synchronous device. The controller offers high regulation accuracy of the charge current, battery  
voltage, and input current limits. The low offset of the current loops allow using sense resistors with low-value,  
such as 10 m.  
An embedded controller host programs the battery voltage, charge current, and input current regulation limit  
thresholds through an SMBus interface using SBS-like DAC registers. The embedded host can control the  
operation of the charger through a Charge Control (0x12) register, and monitor the status of the charger through  
a Charger Status (0x13) register.  
The voltage loop regulates the battery voltage to the programmed value, and prevents the voltage from  
exceeding that value when the battery is connected. The charge current loop regulates the battery charge  
current to the programmed value, and prevents the charge current from exceeding that value. Through the use  
of dynamic power management (DPM), the input current loop regulates the battery charge current to the  
programmed value, and prevents the input current from exceeding that value. The three regulation loops operate  
independently, yet only require a single loop compensation network.  
The system power selector function selects the appropriate power source for the system load. If the adapter is  
detected, then the adapter is connected to the system load. When the adapter is removed, the battery is  
selected to power the system load. A battery learn cycle is performed when the adapter is present by setting the  
CONTROL(0x12) register into Learn Mode via SMBus by the embedded host. This disconnects the adapter from  
the system; and instead, connect the battery to the system. This is typically done for Ni-based batteries.  
SMBus Interface  
The bq24721 uses all the SMBus communications protocol, except for packet error correction (PEC). The  
charger IC address is (0x12), although it is not 100% SBS compliant. In most applications, the extra functionality  
provided by the differing SBS-Like interface enhances the control of the charger application, while simplifying the  
interface block, using only the pertinent functions. Five 16-bit registers are used to interface between the  
embedded host and the charge control IC. The Charging Voltage (0x15) register is used to set the battery  
regulation voltage. The Charging Current (0x14) register is used to set the battery charge regulation current. The  
Input Current (0x3F) register is used to set the input regulation current. The Charger Mode (0x12) control  
register is used to set the charger operating modes. Finally, the Charger Status (0x13) register is used to  
monitor the operating status of the charger.  
25  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
BLOCK DESCRIPTION (continued)  
ADDRESS  
0x15  
REGISTER  
DESCRIPTION  
Charging voltage  
Charging current  
Input current  
Used to set the battery regulation voltage.  
Used to set the battery charge regulation current.  
Used to set the input regulation current.  
Used to set the charger operating modes.  
Used to monitor the operating status of the charger.  
0x14  
0x3F  
0x12  
Charger mode  
Charger status  
0x13  
The SMBus communications requires only two pins besides the analog ground pin—through the SDA (data) and  
SCL (clock) pins. The open-drain SCL and SDA pins require pull-up resistors on the board pulling up to the host  
digital output voltage rail. The pins can be pulled up to any rail between 3 V to 5 V.  
An alarm is sent to the host through the ALARM open drain pin. This is used to trigger an interrupt request  
(IRQ). A low on the ALARM pin indicates there was a change on the Charger Status (0x13) register. The  
ALARM pin stays low until the host reads the Charger Status (0x13) register, then the ALARM pin clears and  
returns to the HI state. The open-drain ALARM pin requires a pull-up resistor that pulls up to the host digital  
input voltage rail. The pin can be pulled up to any rail between 3 V to 5 V. The charge controller continues to  
operate whether the host chooses to read or not to read the Charger Status (0x13) register. There is no  
communications watchdog timer, so there is no need to continuously poll the Charger Status (0x13) register or  
have to continuously reprogram any of the other registers.  
Setting Charge Voltage (VBAT DAC register)  
The charge voltage can be programmed by setting Charging Voltage(0x15) register. The SBS specification asks  
for 16 bits to set the regulation voltage with a 1-mV LSB—giving a maximum possible voltage of 65.535 V. The  
bq24721 uses bits 1 through 14 only, and maps them into the closest value of an internal 7-bit DAC on a per cell  
basis using a 6.25-mV per cell LSB for three ranges: 9-V precharge voltage; 3 cells Li+ battery pack range; or 4  
cells Li+ battery pack range. The 3 cell portion has an LSB of 18.75 mV and a range from 12 V-14.4 V; while the  
4 cell portion has an LSB of 25 mV and a range from 16 V-19.2 V. Intermediate programmed voltages between  
the internal 7-bit DAC values are truncated to the lower value to avoid an overvoltage on the battery.  
Programmed voltages above 19.2 V are automatically set to the maximum 19.2-V limit. The charger is disabled  
for programmed voltages below 12 V (except for 9 V), and for programmed voltages between 14.4 V – 16 V.  
This triggers a voltage-out-of-range condition and the VOR bit of the Charger Status (0x13) register is set, and  
an alarm (ALARM pin pulled low) is sent to the host. The default power-up-reset voltage value is 0 V, charger  
disabled.  
Setting Charge Current (IBAT DAC register)  
The charge current can be programmed using the Charging Current (0x14) register. The SBS specification asks  
for 16 bits to set the charge current with a 1-mA LSB—giving a maximum possible current of 65.535 A using a  
10-msense resistor. The bq24721 uses bits 7 – 14 only to limit the range within a practical operating range.  
The current range is 0 mA to 16.384 A with an LSB of 128 mA using a 10-msense resistor. The charger is  
disabled when the programmed input current is 0 A. The default power-up-reset current value is 0 A, charger  
disabled. Other sense resistors can be used to set the charge current—the user needs to transform the DAC  
current table values to the new current values by dividing the current by 10 m, then multiplying by the new  
sense resistor value used.  
26  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
Setting Input (DPM) Current (IDPM DAC register)  
The input current can be similarly programmed using the Input Current (0x3F) register. The SBS specification  
asks for 16 bits to set the input current with a 1-mA LSB—giving a maximum possible current of 65.535 A using  
a 10-msense resistor. The bq24721 uses bits 7 – 14 only to limit the range within a practical operating range.  
The current range is 0 mA to 16.384 A with an LSB of 128 mA using a 10-msense resistor. The charger is  
disabled when the programmed input current is 0 A. The default power-up-reset current value is 0 A, charger  
disabled. Other sense resistors can be used to set the input current—the user needs to transform the DAC  
current table values to the new current values by dividing the current by 10 m, then multiplying by the new  
sense resistor value used.  
Power Up  
When the adapter is not detected, the REGN output voltage is 4.6 V and the VREF5 LDO regulator is off, to  
lower the power consumption from the battery. The VREF5 LDO is pulled-down to AGND when the adapter is  
not detected. The REGN LDO regulator begins to regulate at 4.6 V when the input VCC voltage is greater than  
6 V. The REGN output voltage is then 6 V when the adapter is detected, and the VCC is greater than 7 V. If  
adapter is detected, but VCC is less than 7 V, then the REGN is in dropout, and REGN output voltage depends  
on the VCC voltage and REGN load current. The VREF5 LDO is allowed to turn-on and regulate to 5 V, 5 ms  
after REGN is 6 V and the adapter is detected. There is a 500-ms delay from the time the adapter is detected,  
until the ACFET from the system power selector is allowed to turn-on, and until the charger is allowed to turn-on.  
The battery continues to be connected to the system during this 500-ms delay.  
Adapter Detect  
The adapter detect threshold is programmed by an external voltage divider resistor from the adapter to the  
ACDET pin. The internal ACDET comparator has a 1.2-V rising-edge threshold and a 15-mV falling-edge  
hysteresis. The adapter detect value is typically programmed to a value greater than the maximum battery  
voltage, and lower than the minimum allowed adapter voltage. The ACDETECT divider is placed before the  
BYPASS FET in order to sense the true adapter input voltage whether the BYPASS is on or off.  
The VREF5 LDO output is also used to indicate when the adapter is detected, for both the bq24721 and the  
bq24721, since the VREF5 LDO only comes up when the adapter is detected.  
27  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
System Power Selector  
The bq24721 can automatically switch between adapter power or battery power to the system load. The battery  
is connected to the system when there is no adapter detected. The adapter is connected to the system when the  
adapter is detected. An automatic break-before-make logic prevents shoot-through currents when the selector  
switches.  
When no adapter is detected the ACDRV pin is pulled to the PVCC pin to keep the external ACFET p-channel  
power MOSFET off, disconnecting the adapter from system. The break-before-make logic waits until the ACFET  
is off and the System to battery voltage comparator indicates the system voltage is within 250 mV of the Battery  
(SYS voltage falling-edge, with a 50-mV hysteresis SYS voltage rising-edge). This prevents shoot-through  
currents or large discharge currents from going into the battery. The BATDRV pin is then set to the SYS pin  
voltage minus 6 V by an internal regulator in order to turn on the external BATFET p-channel power MOSFET,  
connecting the battery pack to the system.  
When adapter is detected there is a 500-ms delay; then, the BATDRV is set to the SYS pin voltage to turn off  
the external BATFET p-channel power MOSFET, in order to disconnect the battery. The break-before-make  
logic waits until the BATFET is off to prevent shoot-through currents. The ACDRV pin is then set to the PVCC  
pin voltage minus 6 V by an internal regulator in order to turn on the external ACFET p-channel power MOSFET,  
connecting the adapter to the system.  
The host can override the adapter to system connection when adapter is present, by setting the charger into  
Learn Mode. The host can then induce a learn cycle in which the battery is allowed to discharge. A learn cycle is  
used to recalibrate the fuel gauge for Ni-based batteries, or for clearing the memory effect of a Ni-cd battery.  
After discharging the battery, Learn Mode can be disabled allowing the adapter to be reconnected to the system,  
then resuming a normal charge cycle.  
Whenever the battery is connected to the system (whether in learn cycle with adapter present, or no adapter  
present), there is a Low Battery comparator that monitors the battery voltage, and alerts the host and charge  
controller that the battery has been depleted. The BAT_DEP threshold can be programmed through the Charger  
Mode control (0x12) register through bits b9-b11. The three bits can program the threshold between 2.2-V per  
cell to 2.9-V per cell, in 100-mV increments. The number of cells is determined by the programmed battery  
regulation voltage (0x15) register. If the battery voltage falls below the BAT_DEP threshold, then the battery is  
disconnected from the system and the adapter is connected to the system. The Battery Voltage Low bit (b11) is  
set in the Charger Status (0x13) register, and the ALARM pin is pulled low to alert the host. There is a 1 second  
deglitch time to prevent false triggering.  
The Charger Status (0x13) register bits b6 and b7 also always indicate whether the battery is connected to the  
system (b6), or the adapter is connected to the system (b7). An alarm is triggered whenever these states  
change.  
Asymmetrical gate drives (100 turn-off; 10 kturn-on) for the ACDRV and BATDRV drivers provide fast  
turn-off and slow turn-on of the ACFET and BATFET to help the break-before-make logic and to allow a  
soft-start at turn-on of either FET. The soft-start time is further increased by putting a capacitor from gate to  
source of the p-channel power MOSFETs.  
Input Overcurrent Protection (ACOC)  
For solutions using the selector functions, an input overcurrent protection function (ACOC) is provided which  
disconnects the ACFET by turning off the ACDRV pin, whenever the sensed input current exceeds the  
programmed ACOC threshold. The ACOC threshold is programmed through the SMBus Charge Mode (0x12)  
control register, bits b6, b7, b8. The ACOC function is automatically disabled upon power-on-reset. The host  
needs to enable it by setting the ACOC bit (b6) HI. The ACOC threshold is set by the SET_ACOC bits (b7, b8),  
to thresholds of 130%, 150%, 170%, or 190% of the input current (DPM) regulation limit threshold from the Input  
Current (0x3F) register.  
The ACFET turns off when the sensed current exceeds the threshold after a 200-µs deglitch time. The ACFET  
automatically turns on after 2 ms, to limit the on-time duty cycle, and limit the power dissipation on the ACFET.  
Care must be taken to ensure the system load power does not exceed the power-up allowable power when the  
ACOC function is used.  
The function is not intended for system short-circuits, as usually the adapter self protects. Instead, the function is  
intended for long-term overcurrent protection of the selector power devices, and to limit start-up peak current.  
28  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
Bypass FET  
The BYPASS pin is used to control an input FET that is off to prevent reverse discharge from the battery to the  
adapter, and is on during input current draw to the system or battery, to minimize the power dissipation, as  
compared to using a Schottky diode. If no adapter is detected, the BYPASS FET is off, by setting the BYPASS  
pin to the PVCC pin. When the adapter is detected there is a 500-ms delay, then an ACP-to-BAT voltage  
comparator is used to control the BYPASS pin. The BYPASS driver is set to the PVCC pin voltage when the  
adapter voltage (ACP pin) is not more than 250 mV (ACP voltage falling-edge) above the battery voltage (BAT  
pin), in order to turn off the external BYPASS p-channel power MOSFET. There is a 50 mV (ACP voltage  
rising-edge) hysteresis, to protect from noise and prevent chatter. When adapter is detected and the ACP pin  
voltage is greater than 300 mV above the BAT pin voltage, the BYPASS pin voltage is set to PVCC pin voltage  
minus 6 V, in order to turn on the external BYPASS p-channel power MOSFET.  
The ACP-to-BAT comparator also prevents the battery voltage from holding-up the ACDET sensed value and  
falsely detecting ACDET when the adapter is removed, this prevents the system power selector from getting  
stuck in an adapter always detected state. When ACP gets near to BAT, the external BYPASS p-channel power  
MOSFET is turned off. This isolates the ACDET network from the battery, and allows the adapter input node to  
discharge to PGND.  
The BYPASS driver has a symmetrical gate drive of 1 kturn-on and turn-off and does not need to be slowed  
down.  
Enabling Charge  
Charge is only enabled 500 ms after adapter is detected. To initiate charge the CHGEN pin must be low, and  
the Charger Mode (0x12) register END CHARGE bit (b0) must be set LO. The power-on-reset default for the  
END CHARGE bit is HI, disabling charge.  
The Charger Status (0x13) register NOT READY TO CHARGE bit (b0) indicates whether the charger is ready to  
charge. A HI indicates the charger is not ready to charge, while a LO indicates the charger is ready to charge.  
The NOT READY TO CHARGE bit (b0) must be LO in order for the charger to be enabled. The conditions that  
make the charger not ready to charge are: adapter not detected, 500-ms delay after adapter detected not over,  
REGN voltage not up, or VREF5 voltage not up.  
The Charger Status (0x13) register CHARGER NOT ON bit (b1) indicates whether the charger is not on (HI), or  
the charger is on (LO). For charger to be on, the CHGEN pin must be low, the Charger Mode (0x13) register  
END CHARGE bit (b0) must be LO, the, IC junction temperature must be below the TSHUT threshold,  
overcurrent detected, or Thermistor Sense (TS) indicates battery pack is out of programmed permissible charge  
temperature range (bq24721 only).  
29  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
ACP  
+
-
VCC  
I
REG  
1 kW  
(adapter)  
+
-
ACN  
1 V  
+
-
ACSET  
Adapter Current  
DAC 6BIT  
3.2 mV - 200 mV  
CHARGE_ENZ  
I_ACSET  
VCC  
SRP  
SRN  
I ( VCC/10)  
RAMP  
+
-
VCC  
I
REG  
1 kW  
(BAT)  
(V  
PP  
= VCC/10)  
+
-
1 V  
+
-
PWM  
OSC  
SRSET  
Q
Q
S
R
To Gate  
DriveLogic  
Charge Current  
DAC 6BIT  
3.2 mV - 200 mV  
RAMP  
CHARGE_ENZ  
I_SRSET  
BAT  
Compensation  
EAI  
FBO  
EAO  
-
+
CLAMP  
BAT  
VCC  
V
REG  
VCC  
(BAT)  
+
-
SMBus  
Cells  
Select  
Divider  
1 V  
Voltage  
DAC 7BIT  
2 V - 2.4 V  
20 mA  
20 mA  
CHARGE_EN_DG  
Figure 57. PWM Control Logic  
Converter Operation  
The synchronous buck PWM converter uses a fixed frequency voltage mode with feed-forward control scheme.  
A type III compensation network allows using ceramic output capacitors. The compensation input stage is  
connected between the feedback output (FBO) pin and the error amplifier input (EAI) pin. The feedback  
compensation stage is connected between the error amplifier input (EAI) pin and error amplifier output (EAO)  
pin.  
An internal saw-tooth ramp is compared to the EAO pin error control signal to vary the duty-cycle of the  
converter. The ramp height is one-tenth of the input adapter voltage making it always directly proportional to the  
input adapter voltage. This cancels out any loop gain variation due to a change in input voltage, and simplifies  
the loop compensation. The ramp is offset by 300 mV in order to allow zero percent duty-cycle, when the EAO  
signal is below the ramp. The EAO signal is also allowed to exceed the saw-tooth ramp signal in order to get a  
100% duty-cycle PWM request. Internal gate drive logic allows achieving 99.98% duty-cycle while ensuring the  
N-channel upper device always has enough voltage to stay fully on. If the BTST pin to PH pin voltage falls below  
4.5 V for more than 3 cycles, then the high-set n-channel power MOSFET is turned off and the low-side  
n-channel power MOSFET is turned on to pull the PH node down and recharge the BTST capacitor. Then the  
high-side driver returns to 100% duty-cycle operation until the voltage is detected to fall low again due to  
leakage current discharging the BTST capacitor below the 4.5 V, and the reset pulse is reissued.  
The fixed frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage,  
battery voltage, charge current, and temperature, simplifying output filter design and keeping it out of the audible  
noise region. The switching frequency can be changed from 300 kHz to 500 kHz by the Charger Mode (0x12)  
register PWM FS bit (b5) – a HI is 500 kHz, a LO is 300 kHz. The switching frequency is 300 kHs by default  
after power-on-reset. Typical chargers use 300 kHz, but 500 kHz allows a smaller inductance value  
30  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
The charge current sense resistor should be placed with at least half or more of the total output capacitance  
placed before the sense resistor contacting both sense resistor and the output inductor; and the other half or  
remaining capacitance placed after the sense resistor. The output capacitance should be divided and placed  
onto both sides of the charge current sense resistor. A ratio of 50:50 percent gives the best performance; but the  
node in which the output inductor and sense resistor connect should have a minimum of 50% of the total  
capacitance. This capacitance provides sufficient filtering to remove the switching noise and give better sense  
accuracy. The type III compensation is already providing phase boost near the cross-over frequency, giving  
sufficient phase margin.  
ISYNSET  
The ISYNSET pin is used to program the charge current threshold at which the charger changes from  
nonsynchronous operation into synchronous operation. This prevents negative inductor current. Negative  
inductor current may cause a boost effect in which the input voltage increases as power is transferred from the  
battery to the input capacitors—this can lead to an overvoltage on the PVCC node and potentially cause some  
damage to the system.  
This programmable value allows setting the current threshold for any inductor current ripple, and avoiding  
negative inductor current. The SYNP and SYNN pins are used to sense across the charge current sense  
resistor.  
To program the threshold, a resistor is connected from the ISYNSET pin to AGND. The minimum synchronous  
threshold should be set from the inductor current ripple to the full ripple current, where the inductor current ripple  
is given by.  
I
(RIPPLE_MAX)  
£ I  
£ I  
(RIPPLE_MAX)  
(SYN)  
2
(1)  
where  
V
(
(
(BAT_MIN)  
1
(
x
x
V
- V  
(
(IN_MAX)  
(BAT_MIN)  
(
(
V
¦
(IN_MAX)  
S
R
=
(RIPPLE_MAX)  
L
(MIN)  
(2)  
V(IN_MAX) is the maximum adapter voltage, V(BAT_MIN) is the minimum battery voltage, fS is the switching  
frequency, and LMIN is the minimum output inductor value.  
The ISYNSET pin is internally regulated to 1 V. When the R(SYNSET) resistor is connected to AGND, it sets an  
ISYNSET current equal to 1 V/R(SYNSET). The ISYNSET current internally flows through a 500 creating a  
voltage at which the voltage across R(SENSE) is compared. The ISYN charge current threshold is the voltage  
divided by the R(SENSE) sense resistor value. The R(SYNSET) resistor value is calculated by:  
1 V x 500 W  
R
=
(SYNSET)  
I
x R  
(SENSE)  
(SYN)  
(3)  
where ISYN is the charge current threshold at which the converter changes to synchronous operation.  
31  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
SYNP  
SYNN  
ISYNC FET -  
Charger Undercurrent  
Comparator  
+
500W  
ISYNC_LOWD  
+
t_bo  
40ns  
1V  
+
ISYNSET  
R_ISYNSET  
CHARGE_ENZ  
NOTE: Patent Pending  
Figure 58. Synchronous to Nonsynchronous threshold, ISYNSET, Block – Charger Undercurrent  
(prevents negative inductor current)  
Synchronous versus Nonsynchronous Operation  
The charger operates in nonsynchronous mode when the sensed charge current is below the ISYNSET  
programmed value. When above the ISYNSET programmed value, the charger operates in synchronous mode.  
During synchronous mode, the low-side n-channel power MOSFET is on, when the high-side n-channel power  
MOSFET is off. The internal gate drive logic ensures there is break-before-make switching to prevent  
shoot-through currents. During the dead-time where both FETs are off, the back-diode of the low-side power  
MOSFET conducts the inductor current. Having the low-side FET turn-on keeps the power dissipation low, and  
allows safely charging at high currents. During Synchronous mode the inductor current is always flowing and  
operates in Continuous Conduction Mode (CCM) creating a fixed two-pole system. During nonsynchronous  
operation: after the high-side n-channel power MOSFET turns off, and after the break-before-make dead-time,  
the low-side n-channel power MOSFET turns on for around 80 ns, then the low-side power MOSFET turns off  
and stays off until the beginning of the next cycle, where the high-side power MOSFET is turned on again. The  
80 ns low-side MOSFET on-time is done to ensure the bootstrap capacitor is always recharged and able to keep  
the high-side power MOSFET on during the next cycle. This is important for battery chargers, where unlike  
regular dc-dc converters, there is a battery load that maintains a voltage and can both source and sink current.  
The 80 ns low-side pulse pulls the PH node (connection between high and low-side MOSFET) down, allowing  
the bootstrap capacitor to recharge up to the REGN LDO value. After the 80 ns, the low-side MOSFET is kept  
off to prevent negative inductor current from occurring. The inductor current is blocked by the off low-side  
MOSFET, and the inductor current becomes discontinuous. This mode is called Discontinuous Conduction Mode  
(DCM).  
During the DCM mode the loop response automatically changes and has a single pole system at which the pole  
is proportional to the load current, because the converter does not sink current, and only the load provides a  
current sink. This means at very low currents the loop response is slower, as there is less sinking current  
available to discharge the output voltage.  
At very low currents during nonsynchronous operation, there may be a small amount of negative inductor current  
during the 80 ns recharge pulse. The charge should be low enough to be absorbed by the input capacitance.  
Whenever the converter goes into zero percent duty-cycle, the high-side MOSFET does not turn-on, and the  
low-side MOSFET does not turn-on (no 80 ns recharge pulse), so there is no discharge from the battery.  
Battery Voltage Regulation Loop  
The BAT pin is used to sense the battery voltage and should be connected as close to the battery as possible,  
or directly to the output capacitor. A 0.1-µF ceramic capacitor from BAT to AGND is recommended—added as  
close to the BAT pin as possible to decouple high frequency noise.  
32  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
The voltage regulation feedback is through the BAT pin. This input is tied directly to the positive side of the  
battery pack. The bq24721 monitors the battery-pack voltage between the BAT and VSS pins. The regulation  
voltage is programmed through the SBS-like SMBus interface.  
The voltage regulation DAC register input is decoded into an internal 7-bit DAC that programs the voltage on a  
per-cell basis, then is multiplied by the number of cells. There are a total of 128 voltage steps with a 6.25 mV  
step, giving a per cell range of [4 V – (4.8 V–6.25 mV)]. There are 128 steps in the 3-cell voltage range of  
[12 V – (14.4 V–18.75 mV)]. There are 128 steps in the 4-cell voltage range of [16 V – (19.2 V–25 mV)].  
Valid voltage values are 9 V, 12 V–14.381 V, and 16 V–19.175 V. The internal voltage DAC allows programming  
to 9 V which is used for waking-up or closing the battery pack. A 9 V programmed voltage is interpreted as a  
2-cell voltage by the BATDEP and BATSHORT thresholds. Step size for 3-cell battery programming voltage is  
18.75 mV. The Charger interprets a 3-cell battery for any voltage between 12 V–14.4 V. Step size for 4-cell  
battery programming voltage is 25 mV. The charger interprets a 4-cell battery for any voltage programmed  
between 16 V–19.2 V.  
Invalid DAC voltages are indicated by the VOR (voltage out of range) bit of the status register. Voltages below  
12 V (except for 9 V) are out of range and keep the converter disabled. Voltages between 14.4 V–16 V  
(including 14.4 V, but not including 16 V) are out of range and keep the converter disabled. Voltages above 19.2  
V (including 19.2 V) are out of range and allow the converter to charge, but the voltage is always set to the  
maximum allowable voltage of 19.175 V = (19.2 V–25 mV).  
Battery Charge Current Regulation Loop  
The battery charge current DAC is set for a 10-msense resistor; however, resistors of other values can also  
be used. The larger the sense resistance, the larger the sensed voltage, and the higher the regulation accuracy,  
but at the expense of higher conduction losses. The SRP and SRN pins are used to sense across the sense  
resistor.  
The battery charge current, IO(CHARGE), is established by setting the external sense resistor, R(SNS_CHG), and the  
SMBus charge current DAC (0 × 14). In order to set the current, first R(SNS_CHG) should be chosen based on the  
regulation threshold V(IREG_CHG), across this resistor. The listed SBS current corresponds to a 10-msense  
resistor.  
R(SNS_CHG) = V(IREG_CHG) / IO(CHARGE)  
Input Current Regulation Loop (DPM)  
The ACP and ACN pins are used to sense across the sense resistor. The input current DAC is set for a 10-mΩ  
sense resistor; however, resistors of other values can also be used. The larger the sense resistance, the larger  
the sensed voltage, and the higher the regulation accuracy, but at the expense of higher conduction losses.  
The input current, II(DPM), is established by setting the external sense resistor, R(SNS_DPM), and the SMBus input  
current DAC (0 × 3F). In order to set the current, first R(SNS_DPM) is chosen based on the regulation threshold  
V(IREG_DPM), across this resistor. The listed SBS current corresponds to a 10-msense resistor.  
R(SNS_DPM) = V(IREG_DPM) / IO(CHARGE)  
Automatic Internal Soft-Start Charger Current  
The charger automatically soft-starts the charger regulation current every time the charger is enabled, in order to  
ensure there is no overshoot or stress on the output capacitors or the power converter. The soft-start consists of  
stepping-up the charge regulation current into eight evenly divided steps up to the programmed charge current  
of register (0x14). Duration of each step is around 1 ms, for a typical rise time of 8 ms. No external components  
are needed for this function.  
The bq24721 current regulation loop reference steps-up whenever charge is enabled, and when returning from  
fault/suspend mode into charge where the current regulator is turned on. The loop should take control within a  
few hundred micro-seconds with very little overshoot due to the LC output filter and the high compensation loop  
bandwidth with 300 kHz or 500 kHz operating frequency; therefore, the reference could ramp up from precharge  
to fast-charge within 50 µs to 500 ms. Going into fault/suspend mode, short circuit (V(BAT) < V(UVT)), Sleepmode  
(V(ACP) < V(BAT)), or UVLO (VCC < 3.7 V) initiates an immediate shut-off of the high-side PWM FET by setting its  
gate to V(PH). The output inductor and battery load determines the ramp-down rate as it freewheels through the  
Schottky diode.  
33  
Submit Documentation Feedback  
bq24721, bq24721C  
www.ti.com  
SLUS683CNOVEMBER 2005REVISED DECEMBER 2006  
High Accuracy Current Sense Amplifiers (CSA), IOUT pin, for Input Current and Charge Current  
Industry standard, high accuracy current sense amplifiers (CSA) can be used to monitor the input current or the  
charge current by the host or some discrete logic through the analog voltage output of the IOUT pin. The current  
sense amplifier from the input current and the current sense amplifier of the charge current (voltage across  
SRP-SRN pins) amplifies the input sensed voltage by 20x, through the Iout pin. The IOUT output is selectable  
between the input current or the charge current, through a multiplexor that is controlled by the Charge Mode  
(0x12) control register, IOUT Select bit (b3). The default setting is LO selecting the input current CSA.  
Programming a HI selects the charger current CSA.  
The IOUT output is a voltage source 20 times the input differential voltage. If the user wants to lower the  
voltage, use a sense resistor from IOUT to AGND, and still achieve accuracy overtemperature as the resistors  
match their thermal coefficients.  
A 0.1-µF capacitor connected on the output is recommended for decoupling high-frequency noise. An additional  
RC filter is optional, if additional filtering is desired. Note that adding filtering also adds additional response  
delay.  
Charger Overcurrent Protection  
The charger has a secondary overcurrent protection function that monitors the charge current, and prevents it  
from exceeding 200% of the programmed charge current. The high-side gate drive turns off and automatically  
resume when the current falls below the overcurrent threshold  
Current Regulation Down to Zero Battery Voltage  
The bq24721 charger regulates charge current and input current down to zero volts on the battery BAT voltage.  
If there is a drop below 2 V, then the converter immediately turns off both high-side and low-side FETs to stop  
current flow, then resumes regulating the current. This ensures there is no overcurrent surge that could cause  
damage to the battery, charger, or system.  
Thermal Shutdown Protection  
The QFN package has low thermal impedance which provides good thermal conduction from the silicon to the  
ambient, to keep junctions temperatures low. As added level of protection, the charger converter turns off and  
self-protects whenever the junction temperature exceeds the T(SHUT) threshold of 145°C. The charger stays off  
until the junction temperature falls below 130°C.  
Battery Short-Circuit or Low Condition  
The number of cells determines the value for the BATDEP threshold and for the BATSHORT threshold, as these  
values are programmed on a per-cell basis. The programmed regulation voltage determines the number of cells.  
The battery depleted (BATDEP) threshold is programmed by the control register bits b9-b11. The three bit dac  
sets the voltage between 2.2 V to 2.9 V per cell at 100 mV increments. The BATSHORT threshold is 1.7 V/Cell  
falling entering a shorted condition, and 1.9 V/Cell rising leaving shorted condition, and entering normal  
condition. BATSHORT has a 1 second deglitch on both edge directions to protect from transient conditions, and  
to allow closing deeply discharge battery packs.  
The PWM duty-cycle immediately resets to zero percent when the battery voltage is sensed to drop below 2 V,  
then the regulation loop allows the duty-cycle to settle in the current regulation value, C. After a 1 second  
deglitch, the converter regulates battery current to C/8 when the battery voltage falls below 1.7 V/cell. The  
converter regulates back at C after a 1 second deglitch from the time the battery voltage rises above 1.9 V/cell.  
Charge Termination for Li-Ion or Li-Polymer  
The primary termination method for Li-Ion and Li-Polymer is minimum current. Secondary temperature  
termination methods is also provided for additional safety. The host controls the charge initiation and the