欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • BQ76925RGER
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • BQ76925RGER图
  • 集好芯城

     该会员已使用本站13年以上
  • BQ76925RGER 现货库存
  • 数量19556 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • BQ76925RGER图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • BQ76925RGER 现货库存
  • 数量5120 
  • 厂家TI 
  • 封装VQFN-24 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • BQ76925RGER图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • BQ76925RGER 现货库存
  • 数量6000 
  • 厂家TI 
  • 封装VQFN-24 
  • 批号2145+ 
  • 一定原装房间现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • BQ76925RGER图
  • 深圳市嘉胜威科技有限公司

     该会员已使用本站7年以上
  • BQ76925RGER 现货库存
  • 数量33190 
  • 厂家专注品牌推广 
  • 封装 
  • 批号22+ 
  • 专注品牌推广原装进口现货
  • QQ:611095588QQ:611095588 复制
  • 0755-82736771 QQ:611095588
  • BQ76925RGER图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • BQ76925RGER 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装VQFN-24 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • BQ76925RGER图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • BQ76925RGER 现货热卖
  • 数量6536 
  • 厂家TI/德州仪器 
  • 封装VQFN-24 
  • 批号23+ 
  • 原装现货,特价销售
  • QQ:3004306594QQ:3004306594 复制
  • 0755-82777852 QQ:3004306594
  • BQ76925RGER图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • BQ76925RGER 热卖库存
  • 数量3623 
  • 厂家TI(德州仪器) 
  • 封装22+ 
  • 批号VQFN-24 
  • 全新原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • BQ76925RGER图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • BQ76925RGER
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装VQFN-24 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • BQ76925RGER图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • BQ76925RGER
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装VQFN-24 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • BQ76925RGER图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • BQ76925RGER
  • 数量18068 
  • 厂家TI/德州仪器 
  • 封装VQFN 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • BQ76925RGER图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • BQ76925RGER
  • 数量5600 
  • 厂家TI 
  • 封装VQFN 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • BQ76925RGER图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • BQ76925RGER
  • 数量7277 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • BQ76925RGER图
  • 集好芯城

     该会员已使用本站13年以上
  • BQ76925RGER
  • 数量18068 
  • 厂家TI/德州仪器 
  • 封装VQFN 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • BQ76925RGER图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • BQ76925RGER
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装VQFN 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • BQ76925RGER图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • BQ76925RGER
  • 数量12000 
  • 厂家TI/德州仪器 
  • 封装VQFN24 
  • 批号24+ 
  • 原装正品原盒原标签
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • BQ76925RGER图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • BQ76925RGER
  • 数量17048 
  • 厂家TI(德州仪器) 
  • 封装VQFN24 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • BQ76925RGER图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • BQ76925RGER
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装VQFN-24 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • BQ76925RGER图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • BQ76925RGER
  • 数量7500 
  • 厂家TI/德州仪器 
  • 封装VQFN-24 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • BQ76925RGER图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • BQ76925RGER
  • 数量250 
  • 厂家TI 
  • 封装 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • BQ76925RGER图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • BQ76925RGER
  • 数量9160 
  • 厂家TI/德州仪器 
  • 封装QFN 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • BQ76925RGER图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BQ76925RGER
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • BQ76925RGER图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BQ76925RGER
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • BQ76925RGER图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BQ76925RGER
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • BQ76925RGER图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • BQ76925RGER
  • 数量865000 
  • 厂家TI/德州仪器 
  • 封装VQFN-24 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • BQ76925RGER图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • BQ76925RGER
  • 数量18583 
  • 厂家TI/德州仪器 
  • 封装QFN 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • BQ76925RGER图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • BQ76925RGER
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装QFN-24 
  • 批号▉▉:2年内 
  • ▉▉¥19.9元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • BQ76925RGER图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • BQ76925RGER
  • 数量5280 
  • 厂家TI(德州仪器) 
  • 封装VQFN-24 
  • 批号23+ 
  • ▉原装正品▉力挺实单可含税可拆样
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • BQ76925RGER图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • BQ76925RGER
  • 数量44502 
  • 厂家TI 
  • 封装VQFN 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • BQ76925RGER图
  • 深圳市三得电子有限公司

     该会员已使用本站15年以上
  • BQ76925RGER
  • 数量38210 
  • 厂家TI/德州仪器 
  • 封装WQFN24 
  • 批号2024 
  • 深圳原装现货库存,欢迎咨询合作
  • QQ:414322027QQ:414322027 复制
    QQ:565106636QQ:565106636 复制
  • 15026993318 QQ:414322027QQ:565106636
  • BQ76925RGER图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • BQ76925RGER
  • 数量13434 
  • 厂家TI 
  • 封装VQFN-24 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • BQ76925RGER图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • BQ76925RGER
  • 数量38210 
  • 厂家TI/德州仪器 
  • 封装WQFN24 
  • 批号2024 
  • 上海原装现货库存,欢迎咨询
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • BQ76925RGER图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • BQ76925RGER
  • 数量38200 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-30 
  • 批号2年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • BQ76925RGER图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • BQ76925RGER
  • 数量3587 
  • 厂家TI 
  • 封装24-VFQFN 裸露焊盘 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • BQ76925RGER图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • BQ76925RGER
  • 数量6000 
  • 厂家TI 
  • 封装VQFN-24 
  • 批号2145+ 
  • 一定原装房间现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191

产品型号BQ76925RGER的概述

BQ76925RGER芯片概述 BQ76925RGER芯片是由德州仪器(Texas Instruments)公司推出的一款集成电池监控与保护功能的IC。该芯片专为多节锂离子或锂聚合物电池组开发,广泛应用于电动车、电池储能系统、便携式设备及其他需要高能量密度的应用领域。BQ76925RGER支持高电压和智能电池管理系统,具备较高的集成度,能够有效地管理电池的安全性和使用寿命。 该芯片主要功能包括电池电压测量、温度监测、过压和欠压保护、短路保护等。BQ76925RGER以其高精度的电压测量和灵敏的保护机制,为锂电池组提供了强大的安全保障。 BQ76925RGER详细参数 ### 基本参数 - 电源电压范围:5V到32V - 工作温度范围:-40°C到85°C - 最大直流电流:6A - 电池节数支持:最多可支持25节锂离子电池 - 电压测量精度:±10mV - 电流测量精度:±1% ...

产品型号BQ76925RGER的Datasheet PDF文件预览

bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
Host Controlled Analog Front End for 3-Series to 6-Series Cell Li-Ion/Li-Polymer Battery  
Protection and Gas Gauging Applications  
Check for Samples: bq76925  
1
FEATURES  
DESCRIPTION  
The bq76925 Host controlled analog front end (AFE)  
is part of a complete pack monitoring, balancing and  
protection system for 3-, 4-, 5-, or 6-series cell Li-Ion  
and Li-Polymer batteries. The bq76925 allows a Host  
controller to easily monitor individual cell voltages,  
pack current and temperature. This information may  
be used by the Host to determine unsafe or faulty  
Analog Interface for Host cell Measurement  
Cell Input MUX, Level Shifter, and Scaler  
1.5-/ 3.0-V Low-Drift, Calibrated Reference  
Allows Accurate Analog to Digital  
Conversions  
Analog Interface for Host Current  
Measurement  
operating  
conditions  
such  
as  
overvoltage,  
undervoltage, over-temperature and overcurrent, as  
well as cell imbalance, state of charge and state of  
health conditions.  
Variable Gain Current Sense Amplifier  
Capable of Operation with 1-mSense  
Resistor  
Cell input voltages are level-shifted, multiplexed,  
scaled, and output for measurement by a Host ADC.  
A low-drift calibrated reference voltage is provided on  
a dedicated pin to enable accurate measurements.  
Switchable Thermistor Bias output for Host  
Temperature Measurements  
Overcurrent Comparator with Dynamically  
Adjustable Threshold  
The voltage across an external sense resistor is  
amplified and output to a Host ADC for both charge  
and discharge current measurements. Two gain  
settings enable operation with a variety of sense  
resistor values over a wide range of pack currents.  
Alerts Host to Potential Overcurrent Faults  
May be used to Wake up Host on Load  
Connect  
Integrated Cell Balancing FETs  
To enable temperature measurements by the Host,  
the AFE provides a separate output pin for biasing an  
external thermistor network. This output can be  
switched on and off under Host control to minimize  
power consumption.  
Individual Host Control  
50 mA per-cell Balancing Current  
Supports Cell Sense-line Open Wire Detection  
Integrated 3.3-V Regulator for Powering  
Micro-controller and/or LEDs  
I2C Interface for Host Communications  
The bq76925 includes  
a
comparator with  
a
dynamically selectable threshold for monitoring  
current. The comparator result is driven through an  
open-drain output to alert the host when the threshold  
is exceeded. This feature can be used to wake up the  
Host on connection of the load, or to alert the Host to  
a potential fault condition.  
Optional Packet CRC for Robust Operation  
Supply Voltage Range From 4.2 to 26.4 V  
Low Power Consumption  
40 µA Typical in Normal Mode  
1.5 µA Maximum in Sleep Mode  
The bq76925 integrates cell balancing FETs that are  
fully controlled by the Host. The balancing current is  
set by external resistors up to a maximum value of 50  
mA. These same FETs may be utilized in conjunction  
with cell voltage measurements to detect an open  
wire on a cell sense-line.  
20-pin TSSOP or 24-pin QFN Package  
APPLICATIONS  
Primary Protection in Li-Ion Battery Packs  
The Host communicates with the AFE via an I2C  
interface. A packet CRC may optionally be used to  
ensure robust operation. The device may be put into  
a low-current sleep mode via the I2C interface and  
awakened by pulling up the ALERT pin.  
Cordless Power Tools  
Light Electric Vehicles (E-Bike, Scooter,  
etc.)  
UPS Systems  
Medical Equipment  
Portable Test Equipment  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
PIN DIAGRAMS  
PW PACKAGE  
(TOP VIEW)  
RGE PACKAGE  
(TOP VIEW)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCTL  
BAT  
VC6  
VC5  
VC4  
VC3  
VC2  
VC1  
VC0  
VSS  
V3P3  
24 23 22 21 20 19  
SCL  
3
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VC6  
VC5  
VC4  
VC3  
VC2  
VC1  
SDA  
SDA  
4
VREF  
VTB  
VREF  
VTB  
5
bq76925  
bq76925  
6
VCOUT  
VIOUT  
ALERT  
VCOUT  
VIOUT  
ALERT  
SENSEP  
SENSEN  
7
8
9
7
8
9
10 11 12  
10  
PIN FUNCTIONS  
PIN NO.  
NAME  
TYPE  
DESCRIPTION  
TSSOP  
QFN  
23  
24  
1
1
2
VCTL  
BAT  
Output  
Power  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Power  
NA  
3.3-V Regulator control voltage(1)  
Supply voltage, tied to most positive cell  
Sense voltage for most positive cell  
Sense voltage for second most positive cell  
Sense voltage for third most positive cell  
Sense voltage for fourth most positive cell  
Sense voltage for fifth most positive cell  
Sense voltage for least positive cell  
Sense voltage for negative end of cell stack  
Ground  
3
VC6  
4
2
VC5  
5
3
VC4  
6
4
VC3  
7
5
VC2  
8
6
VC1  
9
7
VC0  
10  
8
VSS  
9
NC  
No Connection (leave open)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC  
NA  
No Connection (leave open)  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SENSEN  
SENSEP  
ALERT  
VIOUT  
VCOUT  
VTB  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Negative current sense  
Positive current sense  
Overcurrent alert (open drain)  
Current measurement voltage  
Cell measurement voltage  
Bias voltage for thermistor network  
Reference voltage for ADC  
VREF  
SDA  
Input / Output I2C Data (open drain)  
SCL  
Input  
Output  
NA  
I2C Clock (open drain)  
V3P3  
NC  
3.3-V Regulator  
No Connection (leave open)  
No Connection (leave open)  
NC  
NA  
(1) When a bypass FET is used to supply the regulated 3.3-V load current, VCTL automatically adjusts to keep V3P3 = 3.3 V. If VCTL is  
tied to BAT, the load current is supplied through V3P3.  
2
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
 
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
FUNCTIONAL BLOCK DIAGRAM  
PACK+  
Bypass FET (optional)  
Hold-up  
circuit  
(optiona)l  
3.3 V  
µC / LED  
Supply  
RVCTL  
DBAT  
RBAT  
BAT  
VCTL  
VREG  
ZBAT  
CBAT  
POR  
V3P3  
VC6  
CV3P3  
RIN  
+
-
CIN  
CIN  
CIN  
CIN  
CIN  
Cell Select  
Bal Select  
VC5  
VC4  
VC3  
VC2  
VC1  
SCL  
I2C  
EE  
RIN  
RIN  
RIN  
RIN  
RIN  
RIN  
+
-
I2C  
Interface  
SDA  
REGS  
+
-
Cell MUX  
Ref Select  
Level Shift  
VREF  
ADC  
Reference  
1.5 / 3.0 V  
REF  
Balance  
Control  
+
-
CREF  
REF×0.5  
VTB  
REF×0.85  
ADC Ch 1  
Temp  
RTH  
RNTC  
+
-
CTH  
VCOUT  
+
Amp  
ADC Ch 2  
Cell Voltage  
CIN  
+
-
COUT  
Gain = 0.3, 0.6  
CIN  
VC0  
VIOUT  
ADC Ch 3  
Pack Current  
Shunt Select  
VSS  
COUT  
Gain Select  
+
Amp  
SENSEN  
Wakeup  
Detect  
Overcurrent  
Alert  
RSENSE  
RSENSEN  
ALERT  
Gain = 4, 8  
Output Range = 1 V, 2 V  
CSENSE  
SENSEP  
+
Amp  
+
RSENSEP  
Comp  
ITHRESH  
Gain = 1  
25,50,75,100,…,400 mV  
Polarity Select  
bq76925  
PACK–  
ORDERING INFORMATION(1)  
PACKAGE  
TA  
PART NUMBER(2)  
bq76925PW  
20-Pin PW  
25°C to 85°C  
24-Pin RGE  
bq76925RGE  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) The PW and RGE package options are also available taped and reeled. Add an R suffix to the device type (e.g., bq76925PWR for 2000  
units per reel). See applications section of data sheet for layout information.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): bq76925  
 
 
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
RANGE(2)  
MAX  
MIN  
UNITS  
Supply  
VBAT  
voltage  
range  
BAT  
0.3  
36  
V
Cell input differential, VCn to VCn+1, n = 0 to 5  
Cell input, VCn, n = 1 to 6  
0.3  
0.3  
10  
3  
9
(6 × n)  
10  
3
Input  
BAT to VC6 differential  
VI  
voltage  
range  
V
(3)  
VC0  
SENSEP, SENSEN  
SCL, SDA  
3  
3
0.3  
0.3  
0.3  
0.3  
0.3  
6
VCOUT, VIOUT, VREF  
VTB, V3P3  
3.6  
7
Output  
voltage  
range  
VO  
V
ALERT  
30  
36  
70  
70  
150  
VCTL  
ICB  
Cell balancing current  
Cell input current  
mA  
mA  
°C  
IIN  
25  
65  
TSTG  
Storage temperature range  
(1) Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings  
only. Functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditionsis not implied. Exposure to absolutemaximumrated conditions for extended periods may affect device reliability.  
(2) All voltages are relative to VSS, except Cell input differential.”  
(3) Negative voltage swings on VC0 in the absolute maximum range can cause unwanted circuit behavior and should be avoided.  
THERMAL INFORMATION  
bq76925  
TSSOP  
(PW PACKAGE)  
QFN  
(RGE PACKAGE)  
THERMAL METRIC(1)  
UNITS  
(20) PINS  
97.5  
31.7  
48.4  
1.5  
(24) PINS  
36.0  
38.6  
14.0  
0.6  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJC (top)  
θJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
47.9  
n/a  
14.0  
4.6  
θJC (bottom) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
RECOMMENDED OPERATING CONDITIONS(1)  
MIN  
4.2  
TYP  
MAX  
26.4  
4.4  
UNIT  
V
Supply voltage range  
BAT  
Cell input differential, VCn to VCn+1, n = 0 to 5  
Cell input, VCn, n = 1 to 6  
BAT to VC6 differential  
VC0, SENSEN  
1.4  
V
4.4 × n  
8
V
8  
V
0
V
VIN  
Input voltage range  
SENSEP  
125  
375  
5.5  
mV  
V
SCL, SDA  
0
V3P3  
Backfeeding(2)  
5.5  
V
ALERT  
Wakeup function  
0
0
26.4  
V
V3P3 +  
0.2  
VCOUT, VIOUT  
V
REFSEL = 0  
1.5  
3.0  
V
V
VREF  
REFSEL = 1  
VOUT  
Output voltage range  
VTB  
5.5  
V
V3P3  
VCTL  
ALERT  
Regulating  
3.3  
V
0.8  
0
26.4  
5.5  
50  
V
Alert function  
V
ICB  
Cell balancing current  
0
mA  
Ω
RBAT  
CBAT  
RIN  
BAT filter resistance  
100  
10  
(3)100  
BAT filter capacitance  
µF  
External cell input resistance  
External cell input capacitance  
CIN  
0.1  
1
10  
µF  
RSENSEN  
RSENSEP  
Current sense input filter resistance  
Current sense input filter capacitance  
1K  
CSENSE  
0.1  
0
µF  
Without external bypass transistor  
With external bypass transistor  
Without external bypass transistor  
With external bypass transistor  
RVCTL  
VCTL pullup resistance  
200K  
4.7  
1.0  
CV3P3  
CREF  
COUT  
V3P3 output capacitance  
µF  
VREF output capacitance  
ADC channel output capacitance  
1.0  
0.1  
µF  
µF  
pF  
°C  
°C  
VCOUT  
VIOUT  
470  
25  
40  
2000  
85  
TOPR  
Operating free-air temperature  
Functional free-air temperature  
TFUNC  
100  
(1) All voltages are relative to VSS, except Cell input differential.”  
(2) Internal 3.3-V regulator may be overridden (i.e. backfed) by applying an external voltage larger than the regulator voltage.  
(3) RIN,MIN = 0.5 × (VCnMAX / 50 mA) if cell balancing used so that maximum recommended cell balancing current is not exceeded.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
BAT = 4.2 to 26.4 V, VCn = 1.4 to 4.4, TA = 25°C to 85°C  
Typical values stated where TA = 25°C and BAT= 21.6 V (unless otherwise noted)  
Supply Current  
PARAMETER  
TEST CONDITION  
All device functions enabled  
MIN  
TYP  
MAX  
UNIT  
IDD1  
Normal mode supply current  
All pins unloaded  
40  
48  
µA  
SDA and SCL high  
V3P3 and overcurrent monitor enabled  
All pins unloaded  
All other device functions disabled  
SDA and SCL high  
IDD2  
Standby mode 1 supply current  
Standby mode 2 supply current  
Sleep mode supply current  
14  
12  
17  
14  
µA  
V
V3P3 enabled  
All pins unloaded  
All device functions disabled  
SDA and SCL high  
IDD3  
IDD4  
IVCn  
V3P3 disabled  
All pins unloaded  
All device functions disabled  
SDA and SCL low  
1.0  
2.4  
1.5  
µA  
All cell voltages equal  
Cell balancing disabled  
Open cell detection disabled  
during cell voltage monitoring  
n = 6  
2.7  
Input current for selected cell  
µA  
µA  
n = 1 5  
< 0.5  
All cell voltages equal  
IVCn Cell to cell input current difference Cell balancing disabled  
< 0.2  
Open cell detection disabled  
Internal Power Control (Startup and Shutdown)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Initial BAT < 1.4  
4.3  
4.5  
4.7  
V
VBAT rising(1)  
VPOR  
Power on reset voltage  
Shutdown voltage(2)  
Measured at BAT pin  
Initial BAT > 1.4  
6.5  
7.0  
7.5  
3.6  
1
V
V
VBAT rising(1)  
VSHUT  
tPOR  
Measured at BAT pin, BAT falling  
Time delay after POR before I2C  
comms allowed  
CV3P3 = 4.7 µF  
ms  
VWAKE  
Wakeup voltage  
Measured at ALERT pin  
0.8  
1
2
5
V
tWAKE_PLS Wakeup signal pulse width  
μs  
Time delay after wakeup before  
tWAKE_DLY  
CV3P3 = 4.7 µF  
1
ms  
I2C comms allowed  
(1) Initial power up will start with BAT < 1.4 V, however if BAT falls below VSHUT after rising above VPOR, the power on threshold depends  
on the minimum level reached by BAT after falling below VSHUT  
(2) Following POR, the device will operate down to this voltage.  
6
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
3.3 V Voltage Regulator  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
3.3 V VOLTAGE REGULATOR  
(1)(2)  
VCTL  
Regulator control voltage  
Regulator output  
Measured at VCTL, V3P3 regulating  
3.3  
3.2  
26.4  
3.4  
V
V
VV3P3  
Measured at V3P3, IREG = 0 to 4 mA,  
BAT = 4.2 to 26.4 V  
3.3  
IREG  
ISC  
V3P3 output current  
4.0  
mA  
mA  
V
V3P3 short circuit current limit  
Thermistor bias voltage  
Thermistor bias current  
V3P3 = 0.0 V  
10.0  
17.0  
VTB  
ITB  
Measured at VTB, ITB = 0  
VV3P3  
1.0  
mA  
RTB  
Thermistor bias internal resistance RDS,ON for internal FET switch, ITB = 1.0 mA  
90  
130  
(1) When a bypass FET is used to supply the regulated 3.3V load current, VCTL automatically adjusts to keep V3P3 = 3.3 V. Note that  
VCTL,MIN and the FET VGS will determine the minimum BAT voltage at which the bypass FET will operate.  
(2) If VCTL is tied to BAT, the load current is supplied through V3P3.  
Voltage Reference  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VOLTAGE REFERENCE  
Before gain correction, TA = 25°C  
REF_SEL = 0  
REF_SEL = 1  
REF_SEL = 0  
REF_SEL = 1  
VCOUT_SEL = 2  
1.44  
2.88  
1.56  
3.12  
V
VREF  
Voltage reference output  
After gain correction, (1)TA = 25°C  
0.1%  
0.1%  
1.5  
3.0  
+0.1%  
+0.1%  
0.9% 0.5 × +0.9%  
V
V
VREF  
Reference calibration  
voltage  
VCOUT_SEL = 3  
0.5% 0.85 × +0.5%  
VREF_CAL  
Measured at VCOUT  
VREF  
(0.85 × VREF) (0.5 0.3% 0.35 × +0.3%  
× VREF VREF  
)
VREF  
Voltage reference tolerance TA = 0 50°C  
40  
40  
ppm/  
°C  
IREF  
VREF output current  
10  
µA  
(1) Gain correction factor determined at final test and stored in non-volatile storage. Gain correction is applied by Host controller.  
Cell Voltage Amplifier  
PARAMETER  
TEST CONDITION  
REF_SEL = 0  
MIN  
1.6%  
1.6%  
16  
TYP  
0.3  
MAX  
1.5%  
1.5%  
15  
UNIT  
GVCOUT Cell voltage amplifier gain  
OVCOUT Cell voltage amplifier offset  
Measured from VCn to VCOUT  
Measured from VCn to VCOUT  
Measured at VCOUT, VCn = 5.0 V  
REF_SEL = 1  
0.6  
mV  
V
REF_SEL = 0  
REF_SEL = 1  
1.47  
1.5  
3.0  
0.0  
1.53  
3.06  
(1)  
VCOUT  
Cell voltage amp output range  
2.94  
V
Measured at VCOUT, VCn = 0.0 V  
VCn = 1.4 V to 4.4 V, After  
V
TA = 25°C  
3  
5  
8  
3
5
(2)  
correction,  
TA = 0°C to 50°C  
VCOUT Cell voltage amplifier accuracy  
mV  
(3)  
Measured at VCOUT  
REF_SEL = 1(4)  
TA = 25°C to 85°C  
8
IVCOUT  
tVCOUT  
(1) For VCn values greater than 5.0 V, VCOUT clamps at approximately V3P3.  
VCOUT output current(5)  
Delay from VCn select to VCOUT Output step of 200 mV. COUT = 0.1 µF  
10  
100  
µA  
µs  
(2) Correction factor determined at final test and stored in non-volatile storage. Correction is applied by Host controller.  
(3) Output referred. Input referred accuracy is calculated as VCOUT / GVCOUT (e.g. 3 / 0.6 = 5).  
(4) Correction factors are calibrated for gain of 0.6. Tolerance at gain of 0.3 is approximately doubled. Contact TI for information on devices  
calibrated to a gain of 0.3.  
(5) Max DC load for specified accuracy.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
UNIT  
Current Sense Amplifier  
PARAMETER  
TEST CONDITION  
I_GAIN = 0  
MIN  
TYP  
4
MAX  
Measured from SENSEN,  
SENSEP to VIOUT  
GVIOUT Current sense amplifier gain  
I_GAIN = 1  
8
Measured from SENSEN,  
SENSEP to VSS  
VIIN  
Current sense amp input range  
Current sense amp output range  
125  
375  
mV  
REF_SEL = 0  
REF_SEL = 1  
REF_SEL = 0  
REF_SEL = 1  
0.25  
0.5  
1.25  
2.5  
V
V
V
V
Measured at VIOUT  
VIOUT  
1.0  
2.0  
Measured at VIOUT  
SENSEP = SENSEN  
Zero current output  
VIOUT Current amplifier accuracy  
1%  
1%  
10  
(1)  
IVIOUT  
VIOUT output current  
µA  
(1) Max DC load for specified accuracy  
Over Current Comparator  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VBAT_COMP  
GVCOMP  
VITRIP  
Minimum VBAT for comparator operation(1)  
5
V
Measured from SENSEP to comparator  
input  
Comparator amplifier gain  
1
Current comparator trip threshold(2)  
25  
6  
400  
6
mV  
mV  
V
VITRIP = 25 mV  
VITRIP  
Current comparator accuracy  
ALERT Output Low Logic  
VITRIP > 25 mV  
10%  
10%  
0.4  
NA  
VOL_ALERT  
VOH_ALERT  
IALERT  
IALERT = 1 mA  
V
(3)  
ALERT Output High Logic  
NA  
1
NA  
ALERT Pulldown current  
ALERT Leakage current  
Comparator response time  
ALERT = 0.4 V, Output driving low  
ALERT = 5.0 V, Output high-Z  
mA  
μA  
µs  
IALERT_LKG  
tOC  
< 1  
100  
(1) The Over Current Comparator is not guaranteed to work when VBAT is below this voltage.  
(2) Trip threshold selectable from 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375 or 400 mV  
(3) This parameter NA because output is open drain.  
Internal Temperature Measurement  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
1.2  
MAX UNIT  
VTEMP_INT  
Internal temperature voltage  
Internal temperature voltage sensitivity  
Measured at VCOUT, TINT = 25°C  
1.15  
1.25  
V
VTEMP_INT  
4.4  
mV /  
ºC  
Cell Balancing and Open Cell Detection  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
RDS,ON for VC1 internal FET switch,  
VCn = 3.6 V  
1
3
5
RBAL  
Cell balancing internal resistance(1)  
RDS,ON for internal VC2 to VC6 FET switch,  
VCn = 3.6 V  
3
5.5  
8
(1) Balancing current is not internally limited. The cell balancing operation is completely controlled by the Host processor, no automatic  
function or time-out is included in the part. Care must be used to ensure that balancing current through the part is below the maximum  
power dissipation limit. The Host algorithm is responsible for limiting thermal dissipation to package ratings.  
8
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
I2C Compatible Interface  
DC PARAMETERS  
MIN  
TYP  
MAX UNIT  
VIL  
Input Low Logic Threshold  
Input High Logic Threshold  
Output Low Logic Drive  
0.6  
V
V
V
VIH  
VOL  
2.8  
IOL = 1 mA  
0.20  
0.40  
V
IOL = 2.5 mA  
VOH  
ILKG  
Output High Logic Drive (Not applicable due to open-drain outputs)  
I2C Pin Leakage  
Pin = 5.0 V, Output in high-Z  
N/A  
< 1  
µA  
AC PARAMETERS  
tr  
SCL, SDARise Time  
1000  
300  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
ns  
ns  
kHz  
ms  
tf  
SCL, SDAFall Time  
tw(H)  
SCL Pulse Width High  
4.0  
4.7  
4.7  
4.0  
250  
0(1)  
4.0  
4.7  
tw(L)  
SCL Pulse Width Low  
tsu(STA)  
th(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
tsu(BUF)  
t V  
Setup time for START condition  
START condition hold time after which first clock pulse is generated  
Data setup time  
Data hold time  
Setup time for STOP condition  
Time the bus must be free before new transmission can start  
Clock Low to Data Out Valid  
900  
th(CH)  
fSCL  
Data Out Hold Time After Clock Low  
Clock Frequency  
0
0
100  
2.5  
tWAKE  
I2C ready after transition to Wake Mode  
(1) Devices must provide internal hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL.  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
Figure 1. I2C Timing  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
OPERATIONAL OVERVIEW  
INTRODUCTION  
The bq76925 Host controlled analog front end (AFE) is part of a complete pack monitoring, balancing and  
protection system for 3 to 6 series cell Lithium batteries. The bq76925 allows a Host controller to easily monitor  
individual cell voltages, pack current and temperature. This information can be used by the Host to detect and  
act on a fault condition caused when one or more of these parameters exceed the limits of the application. In  
addition, this information may be used by the Host to determine end-of-charge, end-of-discharge and other  
gas-gauging and state of health conditions.  
PACK+  
VCTL  
V3P3  
AVCC  
DVCC  
BAT  
VC6  
VC5  
VC4  
VC3  
VC2  
VC1  
+
-
SCL  
SDA  
SCL  
SDA  
P1.5  
COMM  
+
-
+
-
µController  
VREF  
VTB  
VeREF+  
Example:  
+
-
bq76925  
MSP430x20x2  
or  
equivalent  
A0  
RTH  
RNTC  
+
-
VCOUT  
VIOUT  
ALERT  
A1  
+
-
A2  
VeREF-  
VC0  
AVSS  
DVSS  
VSS  
RSENSE  
NMI  
SENSEN  
SENSEP  
Note: Some components  
omitted for clarity.  
FET Driver Circuits  
PACK-  
Example only. Not required.  
Figure 2. Example of bq76925 With Host Controller  
10  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
POWER MODES  
Power On Reset (POR)  
When initially powering up the bq76925, the voltage on the BAT pin must exceed VPOR (4.7 V max) before the  
device will turn on. Following this, the device will remain operational as long as the voltage on BAT remains  
above VSHUT (3.6 V max). If the BAT voltage falls below VSHUT the device will shut down. Recovery from  
shutdown occurs when BAT rises back above the VPOR threshold and is equivalent to a POR. The VPOR threshold  
following a shutdown depends on the minimum level reached by BAT after crossing below VSHUT. If BAT does  
not fall below ~1.4 V, a higher VPOR (7.5 V max) applies. This is illustrated in Figure 3.  
VBAT  
VPOR  
Initial BAT > 1.4 V  
VPOR  
Initial BAT < 1.4 V  
VSHUT  
1.4 V  
OFF  
ON  
OFF  
ON  
Figure 3. Power On State vs VBAT  
Following a power on reset, all volatile registers assume their default state. Therefore, care must be taken that  
transients on the BAT pin during normal operation do not fall below VSHUT. To avoid this condition in systems  
subject to extreme transients or brown-outs, a hold-up circuit such as the one shown in the functional diagram is  
recommended. When a hold-up circuit is used, care must be taken to observe the BAT to VC6 maximum ratings.  
Standby  
Individual device functions such as cell translator, current amplifier, reference and current comparator can be  
enabled and disabled under Host control by writing to the POWER_CTL register. This feature can be used to  
save power by disabling functions that are unused. In the minimum power standby mode, all device functions can  
be turned off leaving only the 3.3 V regulator active.  
Sleep  
In addition to standby, a sleep mode is provided by which the Host can order the bq76925 to shutdown all  
internal circuitry including the LDO regulator. In this mode the device will consume a minimal amount of current  
(< 1.5 μA) due only to leakage and powering of the wake-up detection circuitry.  
Sleep mode is entered by writing a 1to the SLEEP bit in the POWER_CTL register. In sleep mode, all functions  
including the LDO are disabled. Wake-up is achieved by pulling up the ALERT pin; however the wake-up circuitry  
is not armed until the voltage at V3P3 drops to ~0 V. To facilitate the discharge of V3P3, an internal 3-kΩ  
pull-down is connected from V3P3 to VSS during the time that sleep mode is active. Once V3P3 is discharged,  
the bq76925 may be awakened by pulling the ALERT pin above VWAKE (2 V max).  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): bq76925  
 
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
The SLEEP_DIS bit in the POWER_CTL register acts as an override to the sleep function. When SLEEP_DIS is  
set to 1, writing the SLEEP bit has no effect (i.e. sleep mode cannot be entered). If SLEEP_DIS is set after  
sleep mode has been entered, the device will immediately exit sleep mode. This scenario can arise if  
SLEEP_DIS is set after SLEEP is set, but before V3P3 has discharged below a valid operating voltage. This  
scenario can also occur if the V3P3 pin is held up by external circuitry and not allowed to fully discharge.  
If the over-current alert function is not used, the ALERT pin can function as a dedicated wake-up pin. Otherwise,  
the ALERT pin will normally be pulled up to the LDO voltage, so care must be taken in the system design so that  
the wake-up signal does not interfere with proper operation of the regulator.  
Internal LDO Voltage Regulator  
The bq76925 provides a regulated 3.3 V supply voltage on the V3P3 pin for operating the devices internal logic  
and interface circuitry. This regulator may also be used to directly power an external microcontroller or other  
external circuitry up to a limit of 4 mA load current. In this configuration, the VCTL pin is tied directly to the BAT  
pin. For applications requiring more than 4 mA, an external bypass transistor may be used to supply the load  
current. In this configuration the VCTL pin is tied to the gate of the bypass FET. These two configurations are  
show in Figure 4.  
PACK+  
PACK+  
3.3 V  
RVCTL  
BAT  
RBAT  
CBAT  
RBAT  
BAT  
VCTL  
V3P3  
VCTL  
V3P3  
VREG  
VREG  
CBAT  
CV3P3  
CV3P3  
bq76925  
bq76925  
a) Regulator load supplied through bq76925  
b) Regulator load supplied through external  
pass device  
Figure 4. LDO Regulator Configurations  
For the configuration of Figure 4B), a high gain bypass device should be used to ensure stability. A bipolar PNP  
or p-channel FET bypass device may be used. Contact TI for recommendations.  
The LDO regulator may be overridden (i.e., back-fed) by an external supply voltage greater than the regulated  
voltage on V3P3. In this configuration the bq76925 internal logic and interface circuitry will operate from the  
external supply and the internal 3.3 V regulator will supply no load current.  
ADC Interface  
The bq76925 is designed to interface to a multi-channel analog-to-digital converter (ADC) located in an external  
Host controller, such as an MSP430 Microcontroller or equivalent. Three outputs provide voltage, current and  
temperature information for measurement by the Host. In addition, the bq76925 includes a low-drift calibrated 1.5  
/ 3 V reference that is output on a dedicated pin for use as the reference input to the ADC.  
The gain and offset characteristics of the bq76925 are measured during factory test and stored in non-volatile  
memory as correction factors. The Host reads these correction factors and applies them to the ADC conversion  
results in order to achieve high measurement accuracy. In addition, the precise voltage reference of the bq76925  
can be used to calibrate out the gain and offset of the Host ADC.  
Reference Voltage  
The bq76925 outputs a stable reference voltage for use by the Host ADC. A nominal voltage of 1.5 V or 3 V is  
selected via the REF_SEL bit in the CONFIG_2 register. The reference voltage is very stable across  
temperature, but the initial voltage may vary by ±4%. The variation from nominal is manifested as a gain error in  
the ADC conversion result. To correct for this error, offset and gain correction factors are determined at final test  
and stored in the non-volatile registers VREF_CAL and VREF_CAL_EXT. The Host reads the correction factors  
and applies them to the nominal reference voltage to arrive at the actual reference voltage as described under  
Cell Voltage Monitoring. After gain correction, the tolerance of the reference will be within ±0.1%.  
12  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
 
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
Host ADC Calibration  
All analog to digital converters have inherent gain and offset errors which adversely affect measurement  
accuracy. Some microcontrollers may be characterized by the manufacturer and shipped with ADC gain and  
offset information stored on-chip. It is also possible for such characterization to be done by the end-user on loose  
devices prior to PCB assembly, or as a part of the assembled PCB test.  
For applications where such ADC characterization is not provided or is not practical, the bq76925 provides a  
means for in-situ calibration of the Host ADC. Through setting of the VCOUT_SEL bits in the CELL_CTL register  
two scaled versions of the reference voltage, 0.5 × VREF and 0.85 × VREF, can be selected for output on the  
VCOUT pin for measurement by the Host ADC. Measuring both scaled voltages enables the Host to do a  
two-point calibration of the ADC and compensate for the ADC offset and gain in all subsequent ADC  
measurement results as shown in Figure 5.  
Note that the calibration accuracy will be limited by the tolerance of the scaled reference voltage output so that  
use of this method may not be effective. For these cases, it is recommended to use a higher accuracy source for  
the two-point calibration shown in Figure 5.  
VOUT  
Actual transfer curve:  
VADC,ACT = G’ × VIN + VOFFSET  
Slope =  
Actual gain = G’  
Ideal transfer curve:  
VADC,IDEAL = VIN  
Corrected result:  
VADC,COR = (VADC,ACT – VOFFSET) ÷ G’  
Slope =  
Ideal gain = 1  
VOFFSET  
VIN  
VREF × 0.5  
VREF × 0.85  
Figure 5. Host ADC Calibration Using VREF  
Cell Voltage Monitoring  
The cell voltage monitoring circuits include an input level-shifter, multiplexer (MUX) and scaling amplifier. The  
Host selects one VCn cell input for measurement by setting the VCOUT_SEL and CELL_SEL bits in the  
CELL_CTL register. The scaling factor is set by the REF_SEL bit in the CONFIG_2 register. The selected cell  
input is level shifted to VSS reference, scaled by a nominal gain GVCOUT = 0.3 (REF_SEL = 0) or 0.6 (REF_SEL  
= 1) and output on the VCOUT pin for measurement by the Host ADC.  
Similar to the reference voltage, gain and offset correction factors are determined at final test for each individual  
cell input and stored in non-volatile registers VCn_CAL (n = 1-6) and VC_CAL_EXT_m (m = 1-2). These factors  
are read by the Host and applied to the ADC voltage measurement results in order to obtain the specified  
accuracy.  
The cell voltage offset and gain correction factors are stored as 5-bit signed integers in 2s complement format.  
The most significant bits (VCn_OC_4, VCn_GC_4) are stored separately and must be concatenated with the  
least significant bits (VCn_OFFSET_CORR, VCn_GAIN_CORR).  
The reference voltage offset and gain correction factors are stored respectively as a 6-bit and 5-bit signed integer  
in 2s complement format. As with the cell voltage correction factors, the most significant bits (VREF_OC_5,  
VREF_OC_4, VREF_GC_4) are stored separately and must be concatenated with the least significant bits  
(VREF_OFFSET_CORR, VREF_GAIN_CORR).  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): bq76925  
 
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
The actual cell voltage (VCn) is calculated from the measured voltage (VCOUT) as shown in the following  
equations:  
ADC Count  
VCOUT =  
× VREFNOMINAL  
Full Scale Count  
VCOUT ´ GCVREF + OCVCOUT  
VCn =  
× (1 + GCVCOUT )  
GVCOUT  
(1)  
spacer  
spacer  
GCVCOUT  
é
ù
=
=
VCn_GC_4 << 4 + VCn_GAIN_CORR ´ 0.001,  
)
(
ë
û
é
ë
ù
OCVCOUT  
VCn_OC_4 << 4 + VCn_OFFSET_CORR ´ 0.001,  
)
û
(
é
ù
GCVREF = (1 + VREF_GC_4 << 4 + VREF_GAIN_CORR ´ 0.001)  
( )  
ë
û
é
ë
ù
(VREF_OC_5 << 5)+ (VREF_OC_4 << 4)+ VREF_OFFSET_CORR  
´ 0.001  
û
+
VREFNOMINAL  
(2)  
Cell Amplifier Headroom Under Extreme Cell Imbalance  
For cell voltages across (VC1 VC0) that are less than ~2.64 V, extreme cell voltage imbalances between  
(VC1 VC0) and (VC2 VC1) can lead to a loss of gain in the (VC2 VC1) amplifier. The cell imbalance at  
which the loss of gain occurs is determined by the following equation:  
(VC2 - VC1) ´ 0.6 > (VC1 - VSS)  
(3)  
Assuming VC0 = VSS, it can be seen that when (VC1 VC0) > 2.64 volts, the voltage across (VC2 VC1) can  
range up to the limit of 4.4 V without any loss of gain. At the minimum value of (VC1 VC0) = 1.4 V, an  
imbalance of more than 900 mV is tolerated before any loss of gain in the (VC2 VC1) amplifier. For higher  
values of (VC1 VC0), increasingly large imbalances are tolerated. For example, when (VC1 VC0) = 2.0 V, an  
imbalance up to 1.33 V (i.e. (VC2 VC1) = 3.33 V) results in no degradation of amplifier performance.  
Normally, cell imbalances greater than 900 mV will signal a faulty condition of the battery pack and its use should  
be discontinued. The loss of gain on the second cell input does not affect the ability of the system to detect this  
condition. The gain fall-off is gradual so that the measured imbalance will never be less than the critical  
imbalance set by Equation 3.  
Therefore if the measured (VC2 VC1) is greater than (VC1 VSS) / 0.6, a severe imbalance is detected and  
the pack should enter a fault state which prevents further use. In this severe cell imbalance condition  
comparisons of the measured (VC2 VC1) to any over-voltage limits will be optimistic due to the reduced gain in  
the amplifier, further emphasizing the need to enter a fault state.  
Cell Amplifier Headroom Under BAT Voltage Drop  
Voltage differences between BAT and the top cell potential come from two sources as shown in Figure 6: V3P3  
regulator current that flows through the RBAT filter resistor, and the voltage drop in the series diode DBAT of the  
hold-up circuit. These effects cause BAT to be less than the top cell voltage measured by the cell amplifier.  
14  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
 
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
PACK+  
www.ti.com  
DBAT  
BAT  
RBAT  
VCTL  
VREG  
ZBAT  
CBAT  
V3P3  
CV3P3  
VC6  
+
-
bq76925  
Figure 6. Sources of Voltage Drop Affecting the BAT Pin  
The top cell amplifier (VC6 VC5) is designed to measure an input voltage down to 1.4 V with a difference  
between the BAT and VC6 pin up to 1.2 V (i.e. BAT can be 1.2 V lower than VC6). However, in applications with  
fewer than 6 cells, the upper cell inputs are typically shorted to the top cell input. For example, in a 5-cell  
application VC6 and VC5 would be shorted together and the (VC5 VC4) amplifier would measure the top cell  
voltage. The case is similar for 4- and 3-cell applications.  
For these cases when using the (VC5 VC4), (VC4 VC3) or (VC3 VC2) amplifier to measure the top cell, the  
difference between BAT and the top cell amplifier must be less than 240 mV in order to measure cell voltages  
down to 1.4 V. Note that at higher cell input voltages the top amplifier tolerates a greater difference. For example,  
in a 5-cell configuration (VC6 and VC5 tied together) the (VC5 VC4) amplifier is able to measure down to a 1.7  
V input with a 600 mV difference between VC5 and BAT.  
Accordingly, in systems with fewer than 6 cells it is important in system design to minimize RBAT and to use a  
Schottky type diode for DBAT with a low forward voltage. If it is not possible to reduce the drop at BAT to an  
acceptable level, then for 4 and 5 cell configurations the (VC6 VC5) amplifier may be used as the top cell  
amplifier as show in Table 1, which allows up to a 1.2 V difference between BAT and top cell.  
Table 1. Alternate Connections for 4 and 5 Cells  
Configuration  
5-cell  
Cell 5  
Cell 4  
Cell 3  
Cell 2  
Cell 1  
Unused Cell Inputs  
Short VC5 to VC4  
VC6 VC5  
VC4 VC3  
VC6 VC5  
VC3 VC2  
VC3 VC2  
VC2 VC1  
VC2 VC1  
VC1 VC0  
VC1 VC0  
4-cell  
Short VC5 to VC4 to VC3  
Current Monitoring  
Current is measured by converting current to voltage via a sense resistor connected between SENSEN and  
SENSEP. A positive voltage at SENSEP with respect to SENSEN indicates a discharge current is flowing, and a  
negative voltage indicates a charge current. The small voltage developed across the sense resistor is amplified  
by gain GVIOUT and output on the VIOUT pin for conversion by the Host ADC. The voltage on VIOUT is always  
positive and for zero current is set to 3/4 of the output range. The current sense amplifier is inverting; discharge  
current causes VIOUT to decrease and charge current causes VIOUT to increase. Therefore, the measurement  
range for discharge currents is 3 times the measurement range for charge currents.  
The current sense amplifier is preceded by a multiplexer that allows measurement of either the SENSEN or  
SENSEP input with respect to VSS. The Host selects the pin for measurement by writing the I_AMP_CAL bit in  
the CONFIG_1 register. The Host then calculates the voltage across the sense resistor by subtracting the  
measured voltage at SENSEN from the measured voltage at SENSEP. If the SENSEN and VSS connections are  
such that charge and discharge currents do not flow through the connection between them, i.e. there is no  
voltage drop between SENSEN and VSS due to the current being measured, then the measurement of the  
SENSEN voltage can be regarded as a calibration step and stored by the Host for use as a pseudo-constant in  
the VSENSE calculation. The SENSEN voltage measurement would then only need updating when changing  
environmental conditions warrant.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): bq76925  
 
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
The Host sets GVIOUT by writing the I_GAIN bit in the CONFIG_1 register. The available gains of 4 and 8 enable  
operation with a variety of sense resistor values over a broad range of pack currents. The gain may be changed  
at any time allowing for dynamic range and resolution adjustment. The input and output ranges of the amplifier  
are determined by the value of the REF_SEL bit in the CONFIG_2 register. These values are shown in Table 2.  
Because the current amplifier is inverting, the Min column under Output Range corresponds to the Max column  
under Input Range. Likewise, the Max column under Output Range corresponds to the Min column under Input  
Range.  
The actual current is calculated from the measured voltage (VIOUT) as follows. Note that VSENSE is positive when  
discharge current is flowing. In keeping with battery pack conventions, the sign of ISENSE is inverted so that  
discharge current is negative.  
-(VIOUT(SENSEP) - VIOUT(SENSEN))  
VSENSE  
=
GVIOUT  
VSENSE  
ISENSE = -  
RSENSE  
(4)  
Table 2. Current Amplifier Configurations  
Input Range(1) (mV)  
Output Range (V)(2)  
ISENSE  
Resolution  
(mA)w/10-bit  
ADC(3)  
VIOUT (V) at  
ISENSE = 0  
(typical)  
ISENSE Range (A)  
at RSENSE = 1  
mΩ  
REF_SEL  
I_GAIN  
Gain  
Min  
Max  
Min  
Max  
0
0
1
1
0
1
0
1
4
8
4
8
1.0  
1.0  
2.0  
2.0  
62.5  
14  
187.5  
91  
0.25  
0.27  
0.5  
1.25  
1.11  
2.5  
62.5 187.5  
14 91  
366  
183  
732  
366  
125  
62.5  
375  
125 375  
62.5 187.5  
187.5  
0.5  
2.5  
(1) SENSEN or SENSEP measured with respect to VSS.  
(2) Output range assumes typical value of VIOUT at ISENSE = 0. For non-typical values, the output range will shift accordingly.  
(3) Assumes 1 mΩ RSENSE and ADC reference voltage of 1.5 V and 3.0 V when REF_SEL = 0 and 1, respectively.  
Over Current Monitoring  
The bq76925 also includes a comparator for monitoring the current sense resistor and alerting the Host when the  
voltage across the sense resistor exceeds a selected threshold. The available thresholds range from 25 mV to  
400 mV and are set by writing the I_THRESH bits in the CONFIG_1 register. Positive (discharge) or negative  
(charge) current may be monitored by setting the I_COMP_POL bit in the CONFIG_1 register. By the choice of  
sense resistor and threshold a variety of trip points are possible to support a wide range of applications.  
The comparator result is driven through the open-drain ALERT output to signal the host when the threshold is  
exceeded. This feature can be used to wake up the Host on connection of a load, or to alert the Host to a  
potential fault condition. The ALERT pin state is also available by reading the ALERT bit in the STATUS register.  
Temperature Monitoring  
To enable temperature measurements by the Host, the bq76925 provides the LDO regulator voltage on a  
separate output pin (VTB) for biasing an external thermistor network. In order to minimize power consumption,  
the Host may switch the VTB output on and off by writing to the VTB_EN bit in the POWER_CTL register. Note  
that if the LDO is back-fed by an external source, the VTB bias will be switched to the external source.  
In a typical application, the thermistor network will consist of a resistor in series with an NTC thermistor, forming  
a resistor divider where the output is proportional to temperature. This output may be measured by the Host ADC  
to determine temperature.  
Internal Temperature Monitoring  
The internal temperature (TINT) of the bq76925 can be measured by setting VCOUT_SEL = 01and CELL_SEL  
= 110in the CELL_CTL register. In this configuration, a voltage proportional to temperature (VTEMP_INT) is output  
on the VCOUT pin. This voltage is related to the internal temperature as follows:  
VTEMP_INT(mV) = VTEMP_INT(TINT = 25°C) TINT(°C) × ΔVTEMP_INT  
16  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
 
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
Cell Balancing and Open Cell Detection  
The bq76925 integrates cell balancing FETs that are individually controlled by the Host. The balancing method is  
resistive bleed balancing, where the balancing current is set by the external cell input resistors. The maximum  
allowed balancing current is 50 mA per cell.  
The Host may activate one or more cell balancing FETs by writing the BAL_n bits in the BAL_CTL register. To  
allow the greatest flexibility, the Host has complete control over the balancing FETs. However, in order to avoid  
exceeding the maximum cell input voltage, the bq76925 will prevent two adjacent balancing FETs from being  
turned on simultaneously. If two adjacent bits in the balance control register are set to 1, neither balancing  
transistor will be turned on. The Host based balancing algorithm must also limit the power dissipation to the  
maximum ratings of the device.  
In a normal system, closing a cell balancing FET will cause 2 cell voltages to appear across one cell input. This  
fact can be utilized to detect a cell sense-line open condition, i.e. a broken wire from the cell sense point to the  
bq76925 VCn input. Table 3 shows how this can be accomplished. Note that the normal cell voltage  
measurements may represent a saturated or full scale reading. However, these will normally be distinguishable  
from the open cell measurement.  
Table 3. Open Cell Detection Method  
Method 1  
Method 2  
Kelvin  
input to  
test  
Result  
Result  
Turn On  
Measure  
Turn On  
Measure  
Normal  
Open  
CELL2  
CELL3  
CELL4  
CELL5  
CELL6  
Normal  
Open  
VC0  
VC1  
VC2  
VC3  
VC4  
VC5  
VC6  
BAL_1  
BAL_2  
BAL_3  
BAL_4  
BAL_5  
CELL2  
CELL3  
CELL4  
CELL5  
CELL6  
CELL2 + 0.5 × CELL1  
CELL3 + 0.5 × CELL2  
CELL4 + 0.5 × CELL3  
CELL5 + 0.5 × CELL4  
CELL6 + 0.5 × CELL5  
BAL_2  
BAL_3  
BAL_4  
BAL_5  
BAL_6  
CELL1  
CELL2  
CELL3  
CELL4  
CELL5  
CELL1 + 0.5 × CELL2  
CELL2 + 0.5 × CELL3  
CELL3 + 0.5 × CELL4  
CELL4 + 0.5 × CELL5  
CELL5 + 0.5 × CELL6  
CELL1  
CELL2  
CELL3  
CELL4  
CELL5  
It should be noted that the cell amplifier headroom limits discussed above apply to the open cell detection  
method because by virtue of closing a switch between 2 cell inputs, internally to the device this appears as an  
extreme cell imbalance. Therefore, when testing for an open on CELL2 by closing the CELL1 balancing FET, the  
CELL2 measurement will be less than the expected normal result due to gain loss caused by the imbalance.  
However, the CELL2 measurement will still increase under this condition so that a difference between open (no  
change) and normal (measured voltage increases) can be detected.  
Host Interface  
The Host communicates with the AFE via an I2C interface. A CRC byte may optionally be used to ensure robust  
operation. The CRC is calculated over all bytes in the message according to the polynomial x8 + x2 + x + 1.  
I2C Addressing  
In order to reduce communications overhead, the addressing scheme for the I2C interface combines the slave  
device address and device register addresses into a single 7-bit address as shown below.  
ADDRESS[6:0] = (I2C_GROUP_ADDR[3:0] << 3) + REG_ADDR[4:0]  
The I2C_GROUP_ADDR is a 4-bit value stored in the EEPROM. REG_ADDR is the 5-bit register address being  
accessed, and can range from 0x00 0x1F. The factory programmed value of the group address is 0100.  
Contact TI if an alternative group address is required.  
For the default I2C_GROUP_ADDR, the combined address can be formed as shown in Table 4.  
Table 4. Combined I2C Address for Default Group  
Address  
ADDRESS[6:0]  
6
5
4:0  
0
1
Register address  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): bq76925  
 
 
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
Bus Write Command to bq76925  
The Host writes to the registers of the bq76925 as shown in Figure 7. The bq76925 acknowledges each received  
byte by pulling the SDA line low during the acknowledge period.  
The Host may optionally send a CRC after the Data byte as shown. The CRC for write commands is enabled by  
writing the CRC_EN bit in the CONFIG_2 register. If the CRC is not used, then the Host generates the Stop  
condition immediately after the bq76925 acknowledges receipt of the Data byte.  
When the CRC is disabled, the bq76925 will act on the command on the first rising edge of SCL following the  
ACK of the Data byte. This occurs as part of the normal bus setup prior to a Stop. If a CRC byte is sent while the  
CRC is disabled, the first rising edge of the SCL following the ACK will be the clocking of the first bit of the CRC.  
The bq76925 does not distinguish these two cases. In both cases, the command will complete normally, and in  
the latter case the CRC will be ignored.  
SCL  
...  
...  
...  
R/W ACK  
ACK  
ACK  
C0  
A6 A5  
A0  
D7 D6  
D0  
C7 C6  
SDA  
CRC  
(optional)  
Start  
Address  
Stop  
Data  
Figure 7. I2C Write Command  
Bus Read Command from bq76925  
The Host reads from the registers of the bq76925 as shown in Figure 8. This protocol is similar to the write  
protocol, except that the slave now drives data back to the Host. The bq76925 acknowledges each received byte  
by pulling the SDA line low during the acknowledge period. When the bq76925 sends data back to the Host, the  
Host drives the acknowledge.  
The Host may optionally request a CRC byte following the Data byte as shown. The CRC for read commands is  
always enabled, but not required. If the CRC is not used, then the Host simply NACKs the Data byte and then  
generates the Stop condition.  
SCL  
...  
...  
...  
C0  
NACK  
R/W ACK  
ACK  
A6 A5  
A0  
D7 D6  
D0  
C7 C6  
SDA  
Slave  
Drives Data  
Slave  
Drives CRC  
(optional)  
Start  
Address  
Stop  
Master  
Drives NACK  
Figure 8. I2C Read Command  
18  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
 
 
bq76925  
www.ti.com  
Register Map  
Address  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
Name  
Access  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x00  
0x01  
STATUS  
CELL_CTL  
BAL_CTL  
ALERT  
CRC_ERR  
CELL_SEL  
BAL_2  
POR  
R/W  
VCOUT_SEL  
0x02  
R/W  
BAL_6  
I_THRESH  
BAL_5  
BAL_4  
BAL_3  
BAL_1  
I_GAIN  
0x03  
CONFIG_1  
CONFIG_2  
POWER_CTL  
Reserved  
R/W  
I_COMP_POL  
I_AMP_CAL  
0x04  
R/W  
CRC_EN  
SLEEP  
REF_SEL  
REF_EN  
0x05  
R/W  
SLEEP_DIS  
I_COMP_EN  
I_AMP_EN  
VC_AMP_EN  
VTB_EN  
0x06  
R/W  
0x07  
CHIP_ID  
RO  
CHIP_ID  
0x08 0x0F  
0x10  
Reserved  
R/W  
VREF_CAL  
VC1_CAL  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
VREF_OFFSET_CORR  
VC1_OFFSET_CORR  
VC2_OFFSET_CORR  
VC3_OFFSET_CORR  
VC4_OFFSET_CORR  
VC5_OFFSET_CORR  
VC6_OFFSET_CORR  
VREF_GAIN_CORR  
0x11  
VC1_GAIN_CORR  
VC2_GAIN_CORR  
VC3_GAIN_CORR  
VC4_GAIN_CORR  
VC5_GAIN_CORR  
VC6_GAIN_CORR  
0x12  
VC2_CAL  
0x13  
VC3_CAL  
0x14  
VC4_CAL  
0x15  
VC5_CAL  
0x16  
VC6_CAL  
0x17  
VC_CAL_EXT_1  
VC_CAL_EXT_2  
Reserved  
VC1_OC_4  
VC3_OC_4  
VC1_GC_4  
VC3_GC_4  
VC2_OC_4  
VC4_OC_4  
VC2_GC_4  
VC4_GC_4  
0x18  
VC5_OC_4  
1
VC5_GC_4  
VC6_OC_4  
VC6_GC_4  
0x10 0x1A  
0x1B  
VREF_CAL_EXT  
Reserved  
VREF_OC_5  
VREF_OC_4  
VREF_GC_4  
0x1C 0x1F  
Register Descriptions  
STATUS  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
ALERT  
0
D1  
CRC_ERR  
0
D0  
POR  
1
0x00  
STATUS  
R/W  
Defaults:  
0
0
0
0
0
ALERT: Over-current alert. Reflects state of the over-current comparator. 1= over-current.  
CRC_ERR: CRC error status. Updated on every I2C write packet when CRC_EN = 1. 1= CRC error.  
POR: Power on reset flag. Set on each power-up and wake-up from sleep. May be cleared by writing with 0.  
CELL_CTL  
Address  
Name  
Type  
D7(1)  
D6  
D5  
D4  
D3  
D2  
D1  
CELL_SEL  
0
D0  
0x01  
CELL_CTL  
R/W  
VCOUT_SEL  
Defaults:  
0
0
0
0
(1) This bit must be kept = 0  
VCOUT_SEL: VCOUT MUX select. Selects the VCOUT pin function as follows.  
VCOUT_SEL  
VCOUT  
VSS  
0 0  
0 1  
1 0  
1 1  
VCn (n determined by CELL_SEL)  
VREF × 0.5  
VREF × 0.85  
CELL_SEL: Cell select. Selects the VCn input for output on VCOUT when VCOUT_SEL = 01.  
VCOUT_SEL  
CELL_SEL  
0 0 0  
VCOUT  
VC1  
0 1  
0 1  
0 0 1  
VC2  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
VCOUT_SEL  
CELL_SEL  
0 1 0  
VCOUT  
VC3  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1 1  
VC4  
1 0 0  
VC5  
1 0 1  
VC6  
1 1 0  
VTEMP,INT  
Hi-Z  
1 1 1  
BAL_CTL  
Address  
Name  
Type  
D7  
D6  
D5  
BAL_6  
0
D4  
BAL_5  
0
D3  
BAL_4  
0
D2  
BAL_3  
0
D1  
BAL_2  
0
D0  
BAL_1  
0
0x02  
BAL_CTL  
R/W  
Defaults:  
0
0
BAL_n: Balance control for cell n. When set, turns on balancing transistor for cell n. Setting of two adjacent  
balance controls is not permitted. If two adjacent balance controls are set, neither cell balancing transistor will be  
turned on. However, the BAL_n bits will retain their values.  
CONFIG_1  
Address  
Name  
Type  
D7  
D6  
D5  
I_THRESH  
D4  
D3  
D2  
I_AMP_CAL  
0
D1  
D0  
I_GAIN  
0
0x03  
CONFIG_1  
R/W  
I_COMP_POL  
0
Defaults:  
0
0
I_THRESH: Current comparator threshold. Sets the threshold of the current comparator as follows:  
I_THRESH  
0x0  
Comparator threshold  
25 mV  
0x1  
50 mV  
0x2  
75 mV  
0x3  
100 mV  
125 mV  
150 mV  
175 mV  
200 mV  
225 mV  
250 mV  
275 mV  
300 mV  
325 mV  
350 mV  
375 mV  
400 mV  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
I_COMP_POL: Current comparator polarity select. When 0, trips on discharge current (SENSEP > SENSEN).  
When 1, trips on charge current (SENSEP < SENSEN).  
I_AMP_CAL: Current amplifier calibration. When 0, current amplifier reports SENSEN with respect to VSS.  
When 1, current amplifier reports SENSEP with respect to VSS. This bit can be used for offset cancellation as  
described under OPERATIONAL OVERVIEW.  
20  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
I_GAIN: Current amplifier gain. Sets the nominal gain of the current amplifier as follows.  
I_GAIN  
Current amp gain  
0
1
4
8
CONFIG_2  
Address  
Name  
Type  
D7  
CRC_EN  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REF_SEL  
0
0x04  
CONFIG_2  
R/W  
Defaults:  
0
0
0
0
0
0
CRC_EN: CRC enable. Enables CRC comparison on write. When 1, CRC is enabled. CRC on read is always  
enabled but is optional for Host.  
REF_SEL: Reference voltage selection. Sets reference voltage output on VREF pin, cell voltage amplifier gain  
and VIOUT output range.  
REF_SEL  
VREF (V)  
1.5  
VCOUT Gain  
VIOUT Output Range (V)  
0.25 1.25  
0
1
0.3  
0.6  
3.0  
0.5 2.5  
POWER_CTL  
Address  
Name  
Type  
D7  
D6  
SLEEP_DIS  
0
D5  
D4  
D3  
I_AMP_EN  
0
D2  
D1  
VTB_EN  
0
D0  
REF_EN  
0
0x05  
POWER_CTL  
R/W  
SLEEP  
I_COMP_EN  
0
VC_AMP_EN  
0
Defaults:  
0
0
SLEEP: Sleep control. Set to 1to put device to sleep  
SLEEP_DIS: Sleep mode disable. When 1, disables the sleep mode.  
I_COMP_EN: Current comparator enable. When 1, comparator is enabled. Disable to save power.  
I_AMP_EN: Current amplifier enable. When 1, current amplifier is enabled. Disable to save power.  
VC_AMP_EN: Cell amplifier enable. When 1, cell amplifier is enabled. Disable to save power.  
VTB_EN: Thermistor bias enable. When 1, the VTB pin is internally switched to the V3P3 voltage.  
REF_EN: Voltage reference enable. When 1, the 1.5 / 3.0 V reference is enabled. Disable to save power  
CHIP_ID  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x07  
CHIP_ID  
RO  
CHIP_ID  
0x10  
Defaults:  
CHIP_ID: Silicon version identifier.  
VREF_CAL  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x10  
VREF_CAL  
EEPROM  
VREF_OFFSET_CORR  
VREF_GAIN_CORR  
VREF_OFFSET_CORR: Lower 4 bits of offset correction factor for reference output. The complete offset  
correction factor is obtained by concatenating this value with the the two most significant bits VREF_OC_5 and  
VREF_OC_4, which are stored in the VREF_CAL_EXT register. The final value is a 6-bit signed 2s complement  
number in the range -32 to +31 with a value of 1 mV per lsb. See description of usage in OPERATIONAL  
OVERVIEW.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
VREF_GAIN_CORR: Lower 4 bits of gain correction factor for reference output. The complete gain correction  
factor is obtained by concatenating this value with the most significant bit VREF_GC_4, which is stored in the  
VREF_CAL_EXT register. The final value is a 5-bit signed 2s complement number in the range -16 to +15 with a  
value of 0.1% per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC1_CAL  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x11  
VC1_CAL  
EEPROM  
VC1_OFFSET_CORR  
VC1_GAIN_CORR  
VC1_OFFSET_CORR: Lower 4 bits of offset correction factor for cell 1 translation. The complete offset  
correction factor is obtained by concatenating this value with the most significant bit VC1_OC_4, which is stored  
in the VC_CAL_EXT_1 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15  
with a value of 1 mV per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC1_GAIN_CORR: Lower 4 bits of gain correction factor for cell 1 translation. The complete gain correction  
factor is obtained by concatenating this value with the most significant bit VC1_GC_4, which is stored in the  
VC_CAL_EXT_1 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15 with a  
value of 0.1% per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC2_CAL  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x12  
VC2_CAL  
EEPROM  
VC2_OFFSET_CORR  
VC2_GAIN_CORR  
VC2_OFFSET_CORR: Lower 4 bits of offset correction factor for cell 2 translation. The complete offset  
correction factor is obtained by concatenating this value with the most significant bit VC2_OC_4, which is stored  
in the VC_CAL_EXT_1 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15  
with a value of 1 mV per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC2_GAIN_CORR: Lower 4 bits of gain correction factor for cell 2 translation. The complete gain correction  
factor is obtained by concatenating this value with the most significant bit VC2_GC_4, which is stored in the  
VC_CAL_EXT_1 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15 with a  
value of 0.1% per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC3_CAL  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x13  
VC3_CAL  
EEPROM  
VC3_OFFSET_CORR  
VC3_GAIN_CORR  
VC3_OFFSET_CORR: Lower 4 bits of offset correction factor for cell 3 translation. The complete offset  
correction factor is obtained by concatenating this value with the most significant bit VC3_OC_4, which is stored  
in the VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15  
with a value of 1 mV per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC3_GAIN_CORR: Lower 4 bits of gain correction factor for cell 3 translation. The complete gain correction  
factor is obtained by concatenating this value with the most significant bit VC3_GC_4, which is stored in the  
VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15 with a  
value of 0.1% per lsb. See description of usage in OPERATIONAL OVERVIEW.  
22  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
bq76925  
www.ti.com  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
VC4_CAL  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x14  
VC4_CAL  
EEPROM  
VC4_OFFSET_CORR  
VC4_GAIN_CORR  
VC4_OFFSET_CORR: Lower 4 bits of offset correction factor for cell 4 translation. The complete offset  
correction factor is obtained by concatenating this value with the most significant bit VC4_OC_4, which is stored  
in the VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15  
with a value of 1 mV per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC4_GAIN_CORR: Lower 4 bits of gain correction factor for cell 4 translation. The complete gain correction  
factor is obtained by concatenating this value with the most significant bit VC4_GC_4, which is stored in the  
VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15 with a  
value of 0.1% per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC5_CAL  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x15  
VC5_CAL  
EEPROM  
VC5_OFFSET_CORR  
VC5_GAIN_CORR  
VC5_OFFSET_CORR: Lower 4 bits of offset correction factor for cell 5 translation. The complete offset  
correction factor is obtained by concatenating this value with the most significant bit VC5_OC_4, which is stored  
in the VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15  
with a value of 1 mV per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC5_GAIN_CORR: Lower 4 bits of gain correction factor for cell 5 translation. The complete gain correction  
factor is obtained by concatenating this value with the most significant bit VC5_GC_4, which is stored in the  
VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15 with a  
value of 0.1% per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC6_CAL  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x16  
VC6_CAL  
EEPROM  
VC6_OFFSET_CORR  
VC6_GAIN_CORR  
VC6_OFFSET_CORR: Lower 4 bits of offset correction factor for cell 6 translation. The complete offset  
correction factor is obtained by concatenating this value with the most significant bit VC6_OC_4, which is stored  
in the VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15  
with a value of 1 mV per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC6_GAIN_CORR: Lower 4 bits of gain correction factor for cell 6 translation. The complete gain correction  
factor is obtained by concatenating this value with the most significant bit VC6_GC_4, which is stored in the  
VC_CAL_EXT_2 register. The final value is a 5-bit signed 2s complement number in the range -16 to +15 with a  
value of 0.1% per lsb. See description of usage in OPERATIONAL OVERVIEW.  
VC_CAL_EXT_1  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x17  
VC_CAL_EXT_1  
EEPROM  
VC1_OC_4  
VC1_GC_4  
VC2_OC_4  
VC2_GC_4  
VC1_OC_4: Most significant bit of offset correction factor for cell 1 translation. See VC1_CAL register description  
for details.  
VC1_GC_4: Most significant bit of gain correction factor for cell 1 translation. See VC1_CAL register description  
for details.  
VC2_OC_4: Most significant bit of offset correction factor for cell 2 translation. See VC2_CAL register description  
for details.  
VC2_GC_4: Most significant bit of gain correction factor for cell 2 translation. See VC2_CAL register description  
for details.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
VC_CAL_EXT_2  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x18  
VC_CAL_EXT_2  
EEPROM  
VC3_OC_4  
VC3_GC_4  
VC4_OC_4  
VC4_GC_4  
VC5_OC_4  
VC5_GC_4  
VC6_OC_4  
VC6_GC4  
VC3_OC_4: Most significant bit of offset correction factor for cell 3 translation. See VC3_CAL register description  
for details.  
VC3_GC_4: Most significant bit of gain correction factor for cell 3 translation. See VC3_CAL register description  
for details.  
VC4_OC_4: Most significant bit of offset correction factor for cell 4 translation. See VC4_CAL register description  
for details.  
VC4_GC_4: Most significant bit of gain correction factor for cell 4 translation. See VC4_CAL register description  
for details.  
VC5_OC_4: Most significant bit of offset correction factor for cell 5 translation. See VC5_CAL register description  
for details.  
VC5_GC_4: Most significant bit of gain correction factor for cell 5 translation. See VC5_CAL register description  
for details.  
VC6_OC_4: Most significant bit of offset correction factor for cell 6 translation. See VC6_CAL register description  
for details.  
VC6_GC_4: Most significant bit of gain correction factor for cell 6 translation. See VC6_CAL register description  
for details.  
VREF_CAL_EXT  
Address  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x1B  
VREF_CAL_EXT  
EEPROM  
1
VREF_OC_5  
VCREF_OC_4  
VREF_GC4  
VREF_OC_5: Most significant bit of offset correction factor for reference output. See VREF_CAL register  
description for details.  
VREF_OC_4: Next most significant bit of offset correction factor for reference output. See VREF_CAL register  
description for details.  
VREF_GC_4: Most significant bit of gain correction factor for reference output. See VREF_CAL register  
description for details.  
24  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
Page  
www.ti.com  
Changes from Original (July 2011) to Revision A  
Changed literature number to Rev A for ProductMix release ............................................................................................... 3  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): bq76925  
bq76925  
SLUSAM9B JULY 2011REVISED DECEMBER 2011  
www.ti.com  
Changes from Revision A (July 2011) to Revision B  
Page  
Added 24-pin QFN (RGE) Package to Production Data ....................................................................................................... 2  
Added 24-pin QFN (RGE) Package to Production Data ....................................................................................................... 3  
26  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): bq76925  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jan-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
BQ76925PW  
BQ76925PWR  
BQ76925RGER  
BQ76925RGET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
20  
20  
24  
24  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAUAGLevel-2-260C-1 YEAR  
CU NIPDAUAGLevel-2-260C-1 YEAR  
RGE  
RGE  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ76925PWR  
BQ76925RGER  
BQ76925RGET  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
20  
24  
24  
2000  
3000  
250  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
6.95  
4.25  
4.25  
7.1  
1.6  
8.0  
8.0  
8.0  
16.0  
12.0  
12.0  
Q1  
Q2  
Q2  
4.25  
4.25  
1.15  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ76925PWR  
BQ76925RGER  
BQ76925RGET  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
20  
24  
24  
2000  
3000  
250  
367.0  
367.0  
210.0  
367.0  
367.0  
185.0  
38.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  
配单直通车
BQ76925RGER产品参数
型号:BQ76925RGER
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:QFN
包装说明:HVQCCN, LCC24,.16SQ,20
针数:24
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:1.62
可调阈值:YES
模拟集成电路 - 其他类型:POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码:S-PQCC-N24
JESD-609代码:e4
长度:4 mm
湿度敏感等级:2
信道数量:1
功能数量:1
端子数量:24
最高工作温度:85 °C
最低工作温度:-25 °C
封装主体材料:PLASTIC/EPOXY
封装代码:HVQCCN
封装等效代码:LCC24,.16SQ,20
封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):260
电源:4.2/26.4 V
认证状态:Not Qualified
座面最大高度:1 mm
子类别:Power Management Circuits
最大供电电流 (Isup):0.048 mA
最大供电电压 (Vsup):26.4 V
最小供电电压 (Vsup):4.2 V
标称供电电压 (Vsup):21.6 V
表面贴装:YES
温度等级:OTHER
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!