欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • BU7266SFV-E2图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • BU7266SFV-E2
  • 数量5750 
  • 厂家ROHM/罗姆 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • BU7266SFV-E2图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • BU7266SFV-E2
  • 数量9328 
  • 厂家ROHM-罗姆 
  • 封装TSSOP-8 
  • 批号▉▉:2年内 
  • ▉▉¥7.1元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • BU7266SFV图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • BU7266SFV
  • 数量8650000 
  • 厂家ROHM 
  • 封装原厂封装 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • BU7266SFVE2图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • BU7266SFVE2
  • 数量13880 
  • 厂家Rohm Semiconductor 
  • 封装8SSOPB 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • BU7266SFV-E2图
  • 深圳市婷轩实业有限公司

     该会员已使用本站6年以上
  • BU7266SFV-E2
  • 数量5000 
  • 厂家Rohm Semiconductor 
  • 封装8-SSOPB 
  • 批号23+ 
  • 进口原装现货热卖
  • QQ:2881943288QQ:2881943288 复制
    QQ:3026548067QQ:3026548067 复制
  • 0755-89608519 QQ:2881943288QQ:3026548067
  • BU7266SFV-E2图
  • 深圳市和谐世家电子有限公司

     该会员已使用本站13年以上
  • BU7266SFV-E2
  • 数量2452 
  • 厂家Rohm Semiconductor 
  • 封装8-LSSOP(0.173",4.40mm 宽) 
  • 批号IC OPAMP I/O FULL SWING 8SSOP 
  • 只做进口原装
  • QQ:1158840606QQ:1158840606 复制
  • 0755+84501032 QQ:1158840606
  • BU7266SFV-E2图
  • 深圳市鹏和科技有限公司

     该会员已使用本站16年以上
  • BU7266SFV-E2
  • 数量4000 
  • 厂家ROHM 
  • 封装ROHM 
  • 批号22+ 
  • 只做原装现货 支持实单
  • QQ:3004290789QQ:3004290789 复制
    QQ:3004290786QQ:3004290786 复制
  • 755-83990319 QQ:3004290789QQ:3004290786
  • BU7266SFV-E2图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • BU7266SFV-E2
  • 数量660000 
  • 厂家ROHM(罗姆) 
  • 封装原厂原装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • BU7266SFV-E2图
  • 深圳市力拓辉电子有限公司

     该会员已使用本站13年以上
  • BU7266SFV-E2
  • 数量
  • 厂家ROHM 
  • 封装SSOP-B8 
  • 批号21+ 
  • 全新原装正品鄙视假货
  • QQ:2881140004QQ:2881140004 复制
    QQ:2881140005QQ:2881140005 复制
  • 755-82787180 QQ:2881140004QQ:2881140005
  • BU7266SFV图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • BU7266SFV
  • 数量65000 
  • 厂家ROHM 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • BU7266SFV-E2图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • BU7266SFV-E2
  • 数量7394 
  • 厂家Rohm Semiconductor 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • BU7266SFVM-TR图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • BU7266SFVM-TR
  • 数量9760 
  • 厂家Rohm Semiconductor 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • BU7266SFV-E2图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • BU7266SFV-E2
  • 数量9854 
  • 厂家ROHM 
  • 封装SSOP-8 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:9元
  • QQ:97671956QQ:97671956 复制
  • 171-4729-1886(微信同号) QQ:97671956

产品型号BU7266SFV的Datasheet PDF文件预览

Datasheet  
Operational Amplifiers  
Ultra Low Power  
CMOS Operational Amplifiers  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
General Description  
Key Specifications  
The BU7265G/BU7266xxx are ultra low supply current  
input output full swing CMOS operational amplifiers.  
The BU7265SG/BU7266Sxxx have an extended  
operating temperature range. They have low operating  
supply voltage and low input bias current. There are  
suitable for portable equipment and sensor amplifiers.  
Supply Voltage Range(single supply):  
+1.8V to +5.5V  
Supply Current:  
BU7265/BU7265SG  
BU7266xxx/BU7266Sxxx  
Temperature Range:  
BU7265G/BU7466xxx  
BU7265SG/BU7266Sxxx  
Input Offset Current:  
Input Bias Current:  
0.35μA(Typ)  
t0.7μA(Typ)  
ttt-40°C to +85°C  
-40°C to +105°C  
1pA (Typ)  
Features  
Ultra Low Supply Current  
Low Operating Supply Voltage  
Wide operating temperature Range  
(BU7265SG/BU7266Sxxx)  
Low Input Bias Current  
1pA (Typ)  
Packages  
jW(Typ) x D(Typ) x H(Max)  
SSOP5  
M-B2.90mm x 2.80mm x 1.25mm  
jMS-jj5.00mm x 6.20mm x 1.71mm  
5M3.00mm x 6.40mm x 1.35mm  
-5SB2.90mm x 4.00mm x 0.90mm  
Applications  
SOP8  
SSOP-B8  
MSOP8  
Battery-powered Equipment  
Portable Equipment  
Consumer Equipment  
Sensor Amplifiers  
Simplified Schematic  
VDD  
Vbias  
IN+  
IN-  
Class  
OUT  
AB control  
Vbias  
VSS  
Figure 1. Simplified Schematic  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
1/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Pin Configuration  
BU7265G, BU7265SG: SSOP5  
Pin No.  
Pin Name  
IN+  
VDD  
OUT  
1
2
5
4
1
2
3
4
5
IN+  
VSS  
IN-  
+
-
VSS  
OUT  
VDD  
IN-  
3
BU7266F, BU7266SF: SOP8  
BU7266FV, BU7266SFV: SSOP-B8  
BU7266FVM, BU7266SFVM: MSOP8  
Pin No.  
Pin Name  
1
2
8
7
OUT1  
VDD  
1
2
3
4
5
6
7
8
OUT1  
IN1-  
CH1  
IN1-  
OUT2  
-
+
IN1+  
VSS  
IN2+  
IN2-  
IN2-  
3
4
IN
1
+
6
5
CH2  
+
-
IN2+  
VSS  
OUT2  
VDD  
Package  
SSOP5  
SOP8  
SSOP-B8  
MSOP8  
BU7266FVM  
BU7265G  
BU7266F  
BU7266FV  
BU7265SG  
BU7266SF  
BU7266SFV BU7266SFVM  
Ordering Information  
B U 7  
2
6
x
x
x
x
x
-
x x  
Part Number  
BU7265G  
BU7265SG  
BU7266xxx  
BU7266Sxxx  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SSOP-B8)  
TR: Embossed tape and reel  
(SSOP5/MSOP8)  
G
F
: SSOP5  
: SOP8  
FV : SSOP-B8  
FVM : MSOP8  
Line-up  
Topr  
Channels  
Package  
Orderable Part Number  
1ch  
SSOP5  
SOP8  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 3000  
BU7265G-TR  
BU7266F-E2  
-40°C to +85°C  
2ch  
1ch  
2ch  
SSOP-B8  
MSOP8  
SSOP5  
SOP8  
BU7266FV-E2  
BU7266FVM-TR  
BU7265SG-TR  
BU7266SF-E2  
BU7266SFV-E2  
BU7266SFVM-TR  
-40°C to +105°C  
www.rohm.com  
SSOP-B8  
MSOP8  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
2/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Absolute Maximum Ratings (TA=25)  
Rating  
BU7265SG BU7266Sxxx  
BU7266xxx  
Symbol  
Unit  
Parameter  
Supply Voltage  
BU7265G  
VDD-VSS  
+7  
V
SSOP5  
0.54 (Note 1,5)  
-
0.54 (Note 1,5)  
-
SOP8  
SSOP-B8  
MSOP8  
-
-
-
0.55 (Note 2,5)  
0.50 (Note 3,5)  
0.47 (Note 4,5)  
-
-
-
0.55 (Note 2,5)  
0.50 (Note 3,5)  
0.47 (Note 4,5)  
Power Dissipation  
PD  
W
Differential Input  
Voltage(Note 6)  
Input Common-mode  
Voltage Range  
Input Current (Note 7)  
VID  
VDD - VSS  
V
V
VICM  
(VSS - 0.3) to VDD + 0.3  
II  
±10  
mA  
V
Operating Supply Voltage  
Operating Temperature  
Storage Temperature  
Maximum  
Junction Temperature  
Vopr  
Topr  
Tstg  
+1.8 to +5.5  
-40 to +85  
-40 to +105  
°C  
°C  
-55 to +125  
+125  
TJmax  
°C  
(Note 1) To use at temperature above TA=25C reduce 5.4mW/°C.  
(Note 2) To use at temperature above TA=25C reduce 5.5mW/°C.  
(Note 3) To use at temperature above TA=25C reduce 5.0mW/°C.  
(Note 4) To use at temperature above TA=25C reduce 4.7mW/°C.  
(Note 5) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 6) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input pin voltage is set to more than VSS.  
(Note 7) An excessive input current will flow when input voltages of more than VDD+0.6V or less than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case  
the IC is operated over the absolute maximum ratings.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
3/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Electrical Characteristics  
BU7265G, BU7265SGUnless otherwise specified VDD=+3V, VSS=0V, TA=25°C)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Max  
8.5  
Input Offset Voltage (Note 8)  
Input Offset Current (Note 8)  
Input Bias Current (Note 8)  
VIO  
IIO  
IB  
25°C  
25°C  
25°C  
1
1
1
mV  
pA  
pA  
VDD=1.8V to 5.5V  
-
-
-
-
-
-
25°C  
-
-
0.35  
-
0.9  
1.3  
RL=, AV=0dB  
IN+ =1.5V  
Supply Current (Note 9)  
IDD  
μA  
Full range  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Large Signal Voltage Gain  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
VDD-0.1  
-
-
-
V
V
RL=10kΩ  
RL=10kΩ  
RL=10kΩ  
VSS to VDD  
-
-
60  
0
VSS+0.1  
AV  
95  
-
-
3
-
dB  
V
Input Common-mode  
Voltage Range  
VICM  
CMRR  
PSRR  
ISOURCE  
ISINK  
SR  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 10)  
Output Sink Current (Note 10)  
Slew Rate  
45  
60  
1
60  
80  
2.4  
4
dB  
dB  
mA  
mA  
-
-
-
OUT=VDD-0.4V  
OUT=VSS+0.4V  
2
-
-
2.4  
4
-
V/ms CL=25pF  
Unity Gain Frequency  
fT  
-
-
kHz  
deg  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
Phase Margin  
θ
-
60  
-
(Note 8) Absolute value  
(Note 9) Full range BU7265: TA=-40C to +85C BU7265S: TA=-40C to +105C  
(Note 10) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
4/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Electrical Characteristics - continued  
BU7266xxx, BU7266SxxxUnless otherwise specified VDD=+3V, VSS=0V, TA=25°C)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Max  
8.5  
Input Offset Voltage (Note 11)  
Input Offset Current (Note 11)  
Input Bias Current (Note 11)  
1
1
1
VDD=1.8V to 5.5V  
VIO  
IIO  
IB  
25°C  
25°C  
25°C  
mV  
pA  
pA  
-
-
-
-
-
-
-
-
0.7  
-
1.55  
2.1  
25°C  
RL=, All Op-Amps  
AV=0dB, IN+=1.5V  
Supply Current (Note 12)  
IDD  
μA  
Full range  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Large Signal Voltage Gain  
VDD-0.1  
-
-
-
RL=10kΩ  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25℃  
V
V
-
60  
0
VSS+0.1  
RL=10kΩ  
95  
-
-
3
-
RL=10kΩ  
AV  
dB  
Input Common-mode  
Voltage Range  
VSS to VDD  
-
VICM  
CMRR  
PSRR  
ISOURCE  
ISINK  
SR  
V
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 13)  
Output Sink Current (Note 13)  
Slew Rate  
45  
60  
1
60  
80  
2.4  
4
dB  
-
-
dB  
-
OUT=VDD-0.4V  
OUT=VSS+0.4V  
CL=25pF  
mA  
mA  
V/ms  
kHz  
deg  
dB  
2
-
-
2.4  
4
-
Unity Gain Frequency  
Phase Margin  
-
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
fT  
-
60  
100  
-
θ
AV=40dB,  
OUT=1Vrms  
Channel Separation  
-
-
CS  
(Note 11) Absolute value  
(Note 12) Full range BU7266: TA=-40C to +85C BU7266S: TA=-40C to +105C  
(Note 13) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
5/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the VDD terminal and VSS terminal without  
deterioration or destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(2) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(3) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(4) Supply Current (IDD  
Indicates the current that flows within the IC under specified no-load conditions.  
(5) Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL  
)
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage High and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(6) Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
(7) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(8) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
(9) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
(10) Output Source Current/ Output Sink Current (ISOURCE / ISINK  
)
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(11) Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
(12) Unity Gain Frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
(13) Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
(14) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
6/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves  
BU7265G, BU7265SG  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0.0  
BU7265SG  
BU7265G  
105  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
]
Ambient Temperature [  
Figure 2.  
Figure 3.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
5.5V  
105℃  
85℃  
3.0V  
25℃  
1.8V  
-40℃  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 5.  
Figure 4.  
Supply Current vs Ambient Temperature  
Supply Current vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7265G: -40C to +85C BU7265SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
7/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7265G, BU7265SG  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.5V  
105℃  
3.0V  
1.8V  
85℃  
25℃  
-40℃  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 6.  
Figure 7.  
Maximum Output Voltage (High) vs Supply Voltage  
Maximum Output Voltage (High) vs Ambient Temperature  
(RL=10k)  
(RL=10k)  
20  
20  
15  
10  
5
105℃  
85℃  
15  
10  
5
5.5V  
3.0V  
25℃  
1.8V  
-40℃  
0
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 8.  
Figure 9.  
Maximum Output Voltage (Low) vs Supply Voltage  
Maximum Output Voltage (Low) vs Ambient Temperature  
(RL=10k)  
(RL=10k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7265G: -40C to +85C BU7265SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
8/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7265G, BU7265SG  
10  
8
10  
8
-40℃  
25℃  
6
6
85℃  
5.5V  
105℃  
4
4
3.0V  
1.8V  
2
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 10.  
Figure 11.  
Output Source Current vs Output Voltage  
(VDD=3 V)  
Output Source Current vs Ambient Temperature  
(OUT=VDD-0.4V)  
20  
20  
15  
10  
5
-40℃  
15  
10  
5
25℃  
85℃  
105℃  
5.5V  
3.0V  
1.8V  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 12.  
Figure 13.  
Output Sink Current vs Output Voltage  
(VDD=3V)  
Output Sink Current vs Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7265G: -40C to +85C BU7265SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
9/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7265G, BU7265SG  
10.0  
7.5  
10.0  
7.5  
5.0  
5.0  
2.5  
2.5  
-40℃  
25℃  
5.5V  
0.0  
0.0  
3.0V  
85℃  
1.8V  
105℃  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SupplyVoltage [V]  
Ambient Temperature [°C]  
Figure 14.  
Figure 15.  
Input Offset Voltage vs Supply Voltage  
(VICM=VDD, EK=-VDD/2)  
Input Offset Voltage vs Ambient Temperature  
(VICM=VDD, EK=-VDD/2)  
10.0  
160  
140  
120  
100  
80  
7.5  
5.0  
105℃  
85℃  
2.5  
-40℃  
85℃  
25℃  
25℃  
0.0  
-40℃  
105℃  
-2.5  
-5.0  
-7.5  
-10.0  
60  
-1  
0
1
2
3
4
1
2
3
4
5
6
Input Voltage [V]  
Supply Voltage [V]  
Figure 16.  
Figure 17.  
Input Offset Voltage vs Input Voltage  
(VDD=3V)  
Large Signal Voltage Gain vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7265G: -40C to +85C BU7265SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
10/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7265G, BU7265SG  
120  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
-40℃  
25℃  
5.5V  
85℃  
105℃  
3.0V  
1.8V  
60  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 18.  
Figure 19.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
5.5V  
3.0V  
1.8V  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 20.  
Figure 21.  
Power Supply Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7265G: -40C to +85C BU7265SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
11/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7265G, BU7265SG  
5
4
3
2
1
0
5
4
3
2
1
0
5.5V  
5.5V  
3.0V  
3.0V  
1.8V  
1.8V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 22.  
Figure 23.  
Slew Rate H-L vs Ambient Temperature  
Slew Rate L-H vs Ambient Temperature  
100  
200  
150  
100  
50  
Phase  
80  
60  
40  
20  
0
Gain  
0
1
10  
102  
103  
104  
105  
106  
Frequency [Hz]  
Figure 24.  
Voltage GainPhase vs Frequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7265G: -40C to +85C BU7265SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
12/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7266xxx, BU7266Sxxx  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7266F  
BU7266SF  
BU7266FV  
BU7266SFV  
BU7266FVM  
BU7266SFVM  
105  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 25.  
Figure 26.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
105℃  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5.5V  
3.0V  
85℃  
25℃  
1.8V  
-40℃  
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 27.  
Figure 28.  
Supply Current vs Supply Voltage  
Supply Current vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7266xxx: -40C to +85C BU7266Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
13/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7266xxx, BU7266Sxxx  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.5V  
105℃  
3.0V  
1.8V  
85℃  
25℃  
-40℃  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 29.  
Figure 30.  
Maximum Output Voltage (High) vs Supply Voltage  
Maximum Output Voltage High vs Ambient Temperature  
(RL=10k)  
(RL=10k)  
30  
25  
20  
15  
10  
5
30  
25  
20  
105℃  
85℃  
5.5V  
15  
3.0V  
10  
25℃  
1.8V  
-40℃  
5
0
0
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 31.  
Figure 32.  
Maximum Output Voltage (Low) vs Supply Voltage  
Maximum Output Voltage (Low) vs Ambient Temperature  
(RL=10k)  
(RL=10k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7266xxx: -40C to +85C BU7266Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
14/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7266xxx, BU7266Sxxx  
10  
8
10  
8
-40℃  
25℃  
6
6
85℃  
105℃  
5.5V  
3.0V  
4
4
2
2
1.8V  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 33.  
Figure 34.  
Output Source Current vs Output Voltage  
(VDD=3 V)  
Output Source Current vs Ambient Temperature  
(OUT=VDD-0.4V)  
20  
15  
10  
5
20  
15  
10  
5
-40℃  
25℃  
5.5V  
85℃  
105℃  
3.0V  
1.8V  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Output Voltage[V]  
Figure 35.  
Figure 36.  
Output Sink Current vs Output Voltage  
(VDD=3V)  
Output Sink Current vs Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7266xxx: -40C to +85C BU7266Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
15/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7266xxx, BU7266Sxxx  
10.0  
7.5  
10.0  
7.5  
5.0  
5.0  
5.5V  
2.5  
2.5  
-40℃  
3.0V  
1.8V  
0.0  
0.0  
25℃  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
85℃  
105℃  
-50  
-25  
0
25  
50  
75  
100  
125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 37.  
Figure 38.  
Input Offset Voltage vs Supply Voltage  
(VICM=VDD, EK=-VDD/2)  
Input Offset Voltage vs Ambient Temperature  
(VICM=VDD, EK=-VDD/2)  
10.0  
140  
120  
100  
80  
7.5  
5.0  
2.5  
105℃  
85℃  
105℃  
85℃  
25℃  
0.0  
25℃  
40℃  
-2.5  
-5.0  
-7.5  
-10.0  
-40℃  
60  
40  
20  
-1  
0
1
2
3
4
1
2
3
4
5
6
Supply Voltage [V]  
Input Voltage [V]  
Figure 39.  
Figure 40.  
Input Offset Voltage vs Input Voltage  
(VDD=3V)  
Large Signal Voltage Gain vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7266xxx: -40C to +85C BU7266Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
16/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7266xxx, BU7266Sxxx  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
85℃  
105℃  
5.5V  
3.0V  
-40℃  
25℃  
1.8V  
60  
40  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 41.  
Figure 42.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
(VDD=3V)  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
5.5V  
1.8V  
3.0V  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 43.  
Figure 44.  
Power Supply Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(VDD=3V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7266xxx: -40C to +85C BU7266Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
17/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Typical Performance Curves - continued  
BU7266xxx, BU7266Sxxx  
8
6
8
6
4
4
5.5V  
5.5V  
2
2
1.8V  
3.0V  
1.8V  
3.0V  
0
0
-2  
-4  
-2  
-4  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 45.  
Figure 46.  
Slew Rate L-H vs Ambient Temperature  
Slew Rate H-L vs Ambient Temperature  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Phase  
Gain  
0
110101010105106
2
3
4
Frequency [Hz]  
Figure 47.  
Voltage GainPhase vs Frequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7266xxx: -40C to +85C BU7266Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
18/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Application Information  
NULL method condition for Test circuit1  
VDD, VSS, EK, VICM Unit:V  
Parameter  
VF  
S1  
ON  
ON  
ON  
ON  
S2  
ON  
ON  
ON  
ON  
S3  
VDD VSS  
EK  
VICM Calculation  
Input Offset Voltage  
VF1  
OFF  
ON  
3
3
3
0
0
0
0
-1.5  
3
1
2
3
4
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
-0.5  
-2.5  
Large Signal Voltage Gain  
1.5  
0
3
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
OFF  
OFF  
-1.5  
-0.9  
1.8  
5.5  
Power Supply Rejection Ratio  
0
- Calculation -  
|VF1|  
1+RF/RS  
VIO  
=
[V]  
1. Input Offset Voltage (VIO)  
ΔEK × (1+RF/RS)  
Av  
[dB]  
= 20Log  
2. Large Signal Voltage Gain (AV)  
|VF2-VF3|  
ΔVICM × (1+RF/RS)  
CMRR  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
= 20Log  
[dB]  
|VF4 - VF5|  
ΔVDD × (1+ RF/RS)  
PSRR  
= 20Log  
[dB]  
|VF6 - VF7|  
0.1μF  
RF=50kΩ  
500kΩ  
SW1  
0.01μF  
VDD  
15V  
EK  
RS=50Ω  
RI=1MΩ  
0.015μF  
Vo  
500kΩ  
DUT  
0.015μF  
SW3  
NULL  
-15V  
1000pF  
RI=1MΩ  
RS=50Ω  
50kΩ  
RL  
VICM  
V VF  
SW2  
VRL  
VSS  
Figure 48. Test Circuit 1 (One Channel Only)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
19/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Application Information - continued  
Switch Condition for Test circuit2  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
SW No.  
Supply Current  
Maximum Output Voltage  
Output Current  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON  
ON OFF OFF ON ON OFF OFF OFF ON OFF OFF ON  
Slew Rate  
Unity Gain Frequency  
SW3  
R2 100k  
SW4  
VDD=3V  
SW1  
SW2  
SW8 SW9  
SW10 SW11 SW12  
SW5  
SW6  
SW7  
R1  
1kΩ  
VSS  
RL  
CL  
IN-  
IN+  
Vo  
Figure 49. Test Circuit 2  
Output Voltage  
Input Voltage  
V
/ Δ t  
SR =  
Δ
3.0 V  
3.0 V  
ΔV  
3.0 V P-P  
0 V  
0 V  
t
t
Δ t  
Input Wave  
Output Wave  
Figure 50. Slew Rate Input and Output Wave  
R2=100kΩ  
R2=100kΩ  
VDD  
VDD  
R1=1kΩ  
R1=1kΩ  
OUT1  
OUT2  
R1//R2  
R1//R2  
VSS  
VSS  
VIN  
100×OUT1  
OUT2  
CS=20Log  
Figure 51. Test circuit 3 (Channel Separation)  
20/33  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Examples of Circuit  
Voltage Follower  
Voltage gain is 0dB.  
VDD  
Using this circuit, the output voltage (OUT) is configured  
to be equal to the input voltage (IN). This circuit also  
stabilizes the output voltage (OUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (OUT) is shown below.  
OUT  
IN  
OUT=IN  
VSS  
Figure 52. Voltage Follower Circuit  
Inverting Amplifier  
R2  
For inverting amplifier, input voltage (IN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
VDD  
R1  
IN  
OUT  
OUT=-(R2/R1)IN  
This circuit has input impedance equal to R1.  
VSS  
Figure 53. Inverting Amplifier Circuit  
Non-inverting Amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is amplified  
by a voltage gain, which depends on the ratio of R1 and  
R2. The output voltage (OUT) is in-phase with the input  
voltage (IN) and is shown in the next expression.  
VDD  
OUT=(1 + R2/R1)IN  
OUT  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational  
amplifier.  
IN  
VSS  
Figure 54. Non-inverting Amplifier Circuit  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
21/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 55 (a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(PD).  
θJA  
= (TJmaxTA) / PD °C/W  
The derating curve in Figure 55 (b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 55(c) to 55(f) shows an example of the derating curve for  
BU7265G, BU7265SG, BU7266xxx, BU7266Sxxx.  
Power dissipation of LSI [W]  
PDmax  
P2  
θJA=(TJmax-TA)/ PD °C/W  
θJA2 < θJA1  
Ambient Temperature TA [ °C ]  
P1  
θJA2  
TJmax  
θJA1  
Chip Surface Temperature TJ [ °C ]  
0
50  
75  
100  
25  
125  
Ambient Temperature TA[C]  
(a) Thermal Resistance  
(b) Derating Curve  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7265G(Note 14)  
BU7265SG(Note 14)  
105  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(c)BU7265G  
(d)BU7265SG  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
22/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
BU7266SF(Note 15)  
0.6  
0.4  
0.2  
0.0  
BU7266F(Note 15)  
BU7266FV(Note 16)  
BU7266SFV(Note 16)  
BU7266SFVM(Note 17)  
BU7266FVM(Note 17)  
105  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(e)BU7266F/FV/FVM  
(f)BU7266SF/SFV/SFVM  
(Note 14)  
5.4  
(Note 15)  
5.5  
(Note 16)  
5.0  
(Note 17)  
4.7  
Unit  
mW/℃  
When using the unit above TA=25C, subtract the value above per Celsius degree. Power dissipation is the value  
when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area less than 3%) is mounted.  
Figure 55. Thermal Resistance and Derating Curve  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
23/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
24/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Operational Notes – continued  
12. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The  
operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical  
damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an  
input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when  
no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins  
have voltages within the values specified in the electrical characteristics of this IC.  
VDD  
13. Unused circuits  
When there are unused op-amps, it is recommended that they are  
connected as in Figure 58, setting the non-inverting input terminal to a  
potential within the in-phase input voltage range (VICM).  
Keep this potential  
in VICM  
VICM  
14. Input Voltage  
Applying VDD+0.3V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, regardless  
of the supply voltage. However, this does not ensure normal circuit  
operation. Please note that the circuit operates normally only when the  
input voltage is within the common mode input voltage range of the  
electric characteristics.  
VSS  
Figure 58. Example of Application Circuit  
for Unused Op-amp  
15. Power supply(single/dual)  
The operational amplifier operates when the voltage supplied is between VDD and VSS. Therefore, the single supply  
operational amplifiers can be used as dual supply operational amplifiers as well.  
16. Output capacitor  
If a large capacitor is connected between the output pin and VSS pin, current from the charged capacitor will flow into  
the output pin and may destroy the IC when the VDD pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 0.1uF between output pin and VSS pin.  
17. Oscillation by output capacitor  
Please pay attention to the oscillation by output capacitor and in designing an application of negative feedback loop  
circuit with these ICs.  
18. Latch Up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up and  
protect the IC from abnormaly noise.  
19. Crossorver distortion  
Inverting amplifier generates crossover distortion when feedback resistance value is small.  
To suppress the crosover distortion, connect a resistor between the output terminal and VSS.  
Feedback Resistor  
VDD  
Pull-down Resistor  
VSS  
Figure 56. To Suppress the Crosover Distortion  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
25/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Marking Diagram  
SSOP5(TOP VIEW)  
Part Number Marking  
SOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
1PIN MARK  
LOT Number  
SSOP-B8(TOP VIEW)  
Part Number Marking  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
Product Name  
BU7265  
Package Type  
SSOP5  
Marking  
D3  
FA  
G
BU7265S  
F
FV  
SOP8  
7266  
266  
BU7266  
SSOP-B8  
MSOP8  
SOP8  
FVM  
F
7266  
7266S  
266S  
7266S  
BU7266S  
FV  
SSOP-B8  
MSOP8  
FVM  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
26/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
27/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
28/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
29/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
MSOP8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
30/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
31/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
SSOP-B14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
32/33  
Datasheet  
BU7265G BU7265SG BU7266xxx BU7266Sxxx  
Land Pattern Data  
All dimensions in mm  
Land length  
Land pitch  
e
Land space  
MIE  
Land width  
b2  
PKG  
SSOP5  
≧ℓ 2  
0.95  
1.27  
0.65  
0.65  
2.4  
1.0  
0.6  
SOP8  
4.60  
4.60  
2.62  
1.10  
1.20  
0.99  
0.76  
0.35  
0.35  
SSOP-B8  
MSOP8  
SSOP5  
SOP8, SSOP-B8, MSOP8  
e
e
MIE  
b2  
2  
Revision History  
Date  
Revision  
001  
Changes  
12.Sep.2013  
New Release  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200270-1-2  
12.Sep.2013 Rev.001  
33/33  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BU7265G - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BU7265G  
SSOP5  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  
配单直通车
BU7266SFVM-TR产品参数
型号:BU7266SFVM-TR
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:ROHM CO LTD
包装说明:VSSOP,
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.33.00.01
Factory Lead Time:9 weeks
风险等级:1.68
放大器类型:OPERATIONAL AMPLIFIER
标称共模抑制比:60 dB
最大输入失调电压:8500 µV
JESD-30 代码:R-PDSO-G8
长度:2.9 mm
功能数量:2
端子数量:8
最高工作温度:105 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:VSSOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, VERY THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):NOT SPECIFIED
座面最大高度:0.9 mm
标称压摆率:2400 V/us
子类别:Operational Amplifier
供电电压上限:7 V
标称供电电压 (Vsup):3 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:2.8 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!