欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • CC1000PWR图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • CC1000PWR 现货库存
  • 数量92000 
  • 厂家TI/德州仪器 
  • 封装TSSOP28 
  • 批号24+ 
  • 原装现货假一罚十!可含税长期供货
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • CC1000PWR图
  • 集好芯城

     该会员已使用本站13年以上
  • CC1000PWR 现货库存
  • 数量19914 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • CC1000PWR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • CC1000PWR 现货库存
  • 数量22000 
  • 厂家TI/德州仪器 
  • 封装TSSOP28 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • CC1000PWR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • CC1000PWR 现货库存
  • 数量6200 
  • 厂家TI 
  • 封装TSSOP28 
  • 批号23+ 
  • 原装现货公司特价销售!
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • CC1000PWR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • CC1000PWR 现货库存
  • 数量2047 
  • 厂家TI 
  • 封装代理 
  • 批号24+ 
  • 假一罚万,原厂原装有COC,长期有订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • CC1000PWR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • CC1000PWR 现货库存
  • 数量3550 
  • 厂家TEXASINSTRU 
  • 封装TSSOP-28 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • CC1000PWR图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • CC1000PWR 现货库存
  • 数量
  • 厂家TI/BB 
  • 封装TSSOP28 
  • 批号12+ 
  • 一定原装房间现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • CC1000PWR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • CC1000PWR 现货库存
  • 数量9000 
  • 厂家TI 
  • 封装原厂原装封 
  • 批号2021+ 
  • 原装现货
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • CC1000PWR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • CC1000PWR 现货库存
  • 数量8000 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • CC1000PWR图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • CC1000PWR 现货库存
  • 数量20000 
  • 厂家TI 
  • 封装TSSOP-28 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • CC1000PWR图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • CC1000PWR 现货库存
  • 数量1250 
  • 厂家TI 
  • 封装TSSOP28 
  • 批号20+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • CC1000PWR图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • CC1000PWR 现货热卖
  • 数量35600 
  • 厂家TI 
  • 封装TSSOP28 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • CC1000PWR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CC1000PWR 优势库存
  • 数量4000 
  • 厂家TI 
  • 封装TSSOP28 
  • 批号24+ 
  • 全新原装现货, 欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • CC1000PWR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • CC1000PWR 热卖库存
  • 数量12800 
  • 厂家TI/CHIPCON 
  • 封装TSSOP-28 
  • 批号23+ 
  • 原装进口特价现货!
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • CC1000PWR图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • CC1000PWR 热卖库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装TSSOP28 
  • 批号2024+ 
  • 全新原装现货,全网最低价(上海,北京,深圳,青岛均可交货)
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • CC1000PWR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • CC1000PWR
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号21+ 
  • 全新原装正品,现货库存欢迎咨询
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • CC1000PW图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • CC1000PW
  • 数量65000 
  • 厂家TI 
  • 封装TSSOP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • CC1000PW图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • CC1000PW
  • 数量98500 
  • 厂家TexasInstruments 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • CC1000PWR图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • CC1000PWR
  • 数量13034 
  • 厂家TI/德州仪器 
  • 封装TSSOP28 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • CC1000PWR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • CC1000PWR
  • 数量20000 
  • 厂家TI/CHIPCO 
  • 封装SMD 
  • 批号2019+ 
  • 一级代理原装现货假一罚十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • CC1000PWR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • CC1000PWR
  • 数量6200 
  • 厂家TI 
  • 封装TSSOP28 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • CC1000PWR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • CC1000PWR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装TSSOP28 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • CC1000PWR图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • CC1000PWR
  • 数量5500 
  • 厂家TI/CHIPCON 
  • 封装TSSOP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • CC1000PW图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • CC1000PW
  • 数量5600 
  • 厂家TI 
  • 封装TSSOP 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • CC1000PWR图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • CC1000PWR
  • 数量92000 
  • 厂家TI/德州仪器 
  • 封装TSSOP28 
  • 批号24+ 
  • 原装现货假一罚十!可含税长期供货
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • CC1000PW图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • CC1000PW
  • 数量3279 
  • 厂家TI/CC 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • CC1000PWR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • CC1000PWR
  • 数量69800 
  • 厂家TI/德州仪器 
  • 封装TSSOP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • CC1000PWR图
  • 集好芯城

     该会员已使用本站13年以上
  • CC1000PWR
  • 数量13034 
  • 厂家TI/德州仪器 
  • 封装TSSOP28 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • CC1000PWR图
  • 深圳市恒佳微电子有限公司

     该会员已使用本站12年以上
  • CC1000PWR
  • 数量
  • 厂家666 
  • 封装TSSOP28 
  • 批号 
  • 正品原装 支持最低价
  • QQ:864187665QQ:864187665 复制
    QQ:1807086236QQ:1807086236 复制
  • 755-82533156 QQ:864187665QQ:1807086236
  • CC1000PWR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • CC1000PWR
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装TSSOP28 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • CC1000PWR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • CC1000PWR
  • 数量9548 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-28 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • CC1000PW图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • CC1000PW
  • 数量9851 
  • 厂家TI(德州仪器) 
  • 封装N/A 
  • 批号22+ 
  • 只做原装 ¥¥¥
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • CC1000PWR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • CC1000PWR
  • 数量65156 
  • 厂家TI 
  • 封装TSSOP28 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • CC1000PW图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • CC1000PW
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装TSSOP-28 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • CC1000PWR图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • CC1000PWR
  • 数量8000 
  • 厂家TI 
  • 封装 
  • 批号 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477

产品型号CC1000PW的概述

芯片CC1000PW的概述 CC1000PW是一款低功耗的无线收发器,主要用于短距离的无线通信应用。它结合了高灵敏度和较低功耗的特性,使其在物联网(IoT)、智能家居、工业自动化和农业监控等领域得到广泛应用。CC1000PW能在不同的频率范围内工作,通常是433MHz、868MHz和915MHz,可根据各地区的频段使用特点灵活配置。 CC1000PW的设计理念是实现高效的数据传输,同时降低整体系统的能耗,使其在电池供电的设备中具有特别的优势。其内置的数字信号处理器有效支持调制和解调,确保了信号的稳定性和准确性。此外,CC1000PW通过集成的无线收发组件,使得系统设计更加简洁,提高了开发效率。 芯片CC1000PW的详细参数 CC1000PW的主要参数包括: - 频率范围:315MHz、433MHz、868MHz、915MHz - 调制方式:FSK(频移键控) - 最大发射功率:10d...

产品型号CC1000PW的Datasheet PDF文件预览

CC1000  
CC1000  
Single Chip Very Low Power RF Transceiver  
Applications  
Very low power UHF wireless data  
transmitters and receivers  
315 / 433 / 868 and 915 MHz ISM/SRD  
band systems  
RKE – Two-way Remote Keyless Entry  
Home automation  
Wireless alarm and security systems  
AMR – Automatic Meter Reading  
Low power telemetry  
Game Controllers and advanced toys  
Product Description  
CC1000 is a true single-chip UHF trans-  
ceiver designed for very low power and  
very low voltage wireless applications. The  
circuit is mainly intended for the ISM  
(Industrial, Scientific and Medical) and  
SRD (Short Range Device) frequency  
bands at 315, 433, 868 and 915 MHz, but  
can easily be programmed for operation at  
other frequencies in the 300-1000 MHz  
range.  
CC1000 is based on Chipcon’s SmartRF®  
technology in 0.35 µm CMOS.  
The main operating parameters of CC1000  
can be programmed via a serial bus, thus  
making CC1000 a very flexible and easy to  
use transceiver.  
In a typical system  
CC1000 will be used together with a  
microcontroller and a few external passive  
components.  
Features  
True single chip UHF RF transceiver  
Very low current consumption  
Frequency range 300 – 1000 MHz  
Integrated bit synchroniser  
High sensitivity (typical -110 dBm at 2.4  
kBaud)  
RSSI output  
Single port antenna connection  
FSK data rate up to 76.8 kBaud  
Complies with EN 300 220 and FCC  
CFR47 part 15  
Programmable frequency in 250 Hz  
steps makes crystal temperature drift  
compensation possible without TCXO  
Programmable output power –20 to  
10 dBm  
Suitable  
for  
frequency  
hopping  
Small size (TSSOP-28 or UltraCSP™  
package)  
protocols  
Development kit available  
Easy-to-use software for generating the  
CC1000 configuration data  
Low supply voltage (2.1 V to 3.6 V)  
Very few external components required  
No external RF switch / IF filter  
required  
SWRS048A  
Page 1 of 55  
 
 
CC1000  
Table of Contents  
CC1000...........................................................................................................................1  
Single Chip Very Low Power RF Transceiver...........................................................1  
1. Absolute Maximum Ratings...................................................................................4  
2. Operating Conditions .............................................................................................4  
3. Electrical Specifications.........................................................................................4  
4. Pin Assignment.......................................................................................................8  
5. Circuit Description..................................................................................................9  
6. Application Circuit................................................................................................10  
6.1 Input / output matching...............................................................................................10  
6.2 VCO inductor..............................................................................................................10  
6.3 Additional filtering.......................................................................................................10  
6.4 Power supply decoupling ...........................................................................................10  
7. Configuration Overview .......................................................................................12  
8. Configuration Software ........................................................................................12  
9. 3-wire Serial Configuration Interface ..................................................................13  
Note: The set-up- and hold-times refer to 50% of VDD..........................................14  
10. Microcontroller Interface....................................................................................15  
10.1 Connecting the microcontroller ................................................................................15  
11. Signal interface ...................................................................................................16  
11.1 Manchester encoding and decoding ........................................................................16  
12. Bit synchroniser and data decision ..................................................................19  
13. Receiver sensitivity versus data rate and frequency separation....................22  
14. Frequency programming....................................................................................23  
15. Recommended RX settings for ISM frequencies .............................................24  
16. VCO......................................................................................................................25  
17. VCO and PLL self-calibration.............................................................................25  
18. VCO and LNA current control............................................................................28  
19. Power management............................................................................................28  
SWRS048A  
Page 2 of 55  
CC1000  
20. Input / Output Matching......................................................................................31  
21. Output power programming ..............................................................................32  
22. RSSI output .........................................................................................................33  
23. IF output ..............................................................................................................34  
24. Crystal oscillator.................................................................................................35  
25. Optional LC Filter................................................................................................36  
26. System Considerations and Guidelines............................................................37  
26.1 SRD regulations.......................................................................................................37  
26.2 Low cost systems.....................................................................................................37  
26.3 Battery operated systems.........................................................................................37  
26.4 Crystal drift compensation........................................................................................37  
26.5 High reliability systems.............................................................................................37  
26.6 Frequency hopping spread spectrum systems.........................................................37  
27. PCB Layout Recommendations.........................................................................38  
28. Antenna Considerations.....................................................................................38  
L = 7125 / f .................................................................................................................38  
29. Configuration registers ......................................................................................39  
30. Package Description (TSSOP-28)......................................................................48  
31. Package Description (UltraCSP™) ....................................................................49  
32. Plastic Tube Specification .................................................................................51  
33. Waffle Pack Specification ..................................................................................51  
34. Carrier Tape and Reel Specification..................................................................51  
35. Ordering Information..........................................................................................52  
36. General Information............................................................................................52  
36.1 Document Revision History......................................................................................52  
36.2 Product Status Definitions........................................................................................52  
37. Address Information...........................................................................................54  
38. TI Worldwide Technical Support .......................................................................54  
39. Product Information Centers .............................................................................54  
SWRS048A  
Page 3 of 55  
CC1000  
1. Absolute Maximum Ratings  
Parameter  
Min.  
-0.3  
-0.3  
Max.  
Units  
V
V
Condition  
Supply voltage, VDD  
5.0  
VDD+0.3,  
max 5.0  
10  
Voltage on any pin  
Input RF level  
dBm  
Storage temperature range  
(TSSOP)  
-50  
150  
°C  
Shelf life (UltraCSP™)  
1
year  
°C  
Room temperature and oxygen  
free cabinet  
Reflow soldering temperature  
(TSSOP)  
Peak reflow soldering temperature  
(UltraCSP™)  
260  
255  
IPC/JEDEC J-STD-020C  
IPC/JEDEC J-STD-020C  
°C  
Under no circumstances the absolute  
maximum ratings given above should be  
violated. Stress exceeding one or more of  
the limiting values may cause permanent  
damage to the device.  
Caution! ESD sensitive device.  
Precaution should be used when handling  
the device in order to prevent permanent  
damage.  
2. Operating Conditions  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Condition / Note  
RF Frequency Range  
300  
-40  
1000  
85  
MHz  
Programmable in steps of 250 Hz  
Operating ambient temperature range  
Supply voltage  
°C  
2.1  
3.0  
3.6  
V
Note: The same supply voltage  
should be used for digital (DVDD)  
and analogue (AVDD) power.  
3. Electrical Specifications  
Tc = 25°C, VDD = 3.0 V if nothing else stated  
Parameter  
Min.  
Typ.  
Max.  
Unit Condition / Note  
Transmit Section  
Transmit data rate  
0.6  
0
76.8  
65  
kBaud NRZ or Manchester encoding.  
76.8 kBaud equals 76.8 kbit/s  
using NRZ coding. See page 16.  
Binary FSK frequency separation  
kHz  
The frequency separation is  
programmable in 250 Hz steps.  
65 kHz is the maximum  
guaranteed separation at 1 MHz  
reference frequency. Larger  
separations can be achieved at  
higher reference frequencies.  
SWRS048A  
Page 4 of 55  
CC1000  
Parameter  
Min.  
Typ.  
Max.  
Unit Condition / Note  
Output power  
433 MHz  
868 MHz  
Delivered to 50 load.  
The output power is  
programmable.  
-20  
-20  
10  
5
dBm  
dBm  
RF output impedance  
433/868 MHz  
140 / 80  
-20  
Transmit mode. For matching  
details see “Input/ output  
matching” p.31.  
Harmonics  
dBc  
An external LC or SAW filter  
should be used to reduce  
harmonics emission to comply  
with SRD requirements. See  
p.36.  
Receive Section  
Receiver Sensitivity, 433 MHz  
Optimum sensitivity (9.3 mA)  
Low current consumption (7.4 mA)  
2.4 kBaud, Manchester coded  
data, 64 kHz frequency  
separation, BER = 10-3  
-110  
-109  
dBm  
dBm  
Receiver Sensitivity, 868 MHz  
Optimum sensitivity (11.8 mA)  
Low current consumption (9.6 mA)  
See Table 6 and Table 7 page 22  
for typical sensitivity figures at  
other data rates.  
-107  
-105  
dBm  
dBm  
System noise bandwidth  
30  
kHz  
dB  
2.4 kBaud, Manchester coded  
data  
Cascaded noise figure  
433/868 MHz  
12/13  
Saturation  
10  
dBm  
2.4 kBaud, Manchester coded  
data, BER = 10-3  
Input IP3  
-18  
40  
dBm  
dBc  
From LNA to IF output  
At +/- 1 MHz  
Blocking  
LO leakage  
Input impedance  
-57  
dBm  
Receive mode, series equivalent  
at 315 MHz  
at 433 MHz  
at 868 MHz.  
At 915 MHz  
88-j26  
70-j26  
52-j7  
52-j4  
For matching details see “Input/  
output matching” p. 31.  
Turn on time  
11  
128  
Baud  
The turn-on time is determined by  
the demodulator settling time,  
which is programmable. See p.  
19  
IF Section  
Intermediate frequency (IF)  
150  
175  
kHz  
MHz  
Internal IF filter  
External IF filter  
10.7  
-50  
IF bandwidth  
kHz  
dBm  
dB  
RSSI dynamic range  
RSSI accuracy  
RSSI linearity  
-105  
See p.33 for details  
± 6  
± 2  
dB  
SWRS048A  
Page 5 of 55  
CC1000  
Parameter  
Min.  
Typ.  
Max.  
Unit Condition / Note  
Frequency Synthesiser  
Section  
Crystal Oscillator Frequency  
3
16  
MHz  
ppm  
Crystal frequency can be 3-4, 6-8  
or 9-16 MHz. Recommended  
frequencies are 3.6864, 7.3728,  
11.0592 and 14.7456. See page  
35 for details.  
Crystal frequency accuracy  
requirement  
433 MHz  
868 MHz  
± 50  
± 25  
The crystal frequency accuracy  
and drift (ageing and  
temperature dependency) will  
determine the frequency accuracy  
of the transmitted signal.  
Crystal operation  
Parallel  
C171 and C181 are loading  
capacitors, see page 35  
Crystal load capacitance  
12  
12  
12  
22  
16  
16  
30  
30  
16  
pF  
pF  
pF  
3-4 MHz, 22 pF recommended  
6-8 MHz, 16 pF recommended  
9-16 MHz, 16 pF recommended  
Crystal oscillator start-up time  
5
1.5  
2
ms  
ms  
ms  
3.6864 MHz, 16 pF load  
7.3728 MHz, 16 pF load  
16 MHz, 16 pF load  
Output signal phase noise  
-85  
dBc/Hz At 100 kHz offset from carrier  
PLL lock time (RX / TX turn time)  
200  
Up to 1 MHz frequency step  
Crystal oscillator running  
µs  
µs  
PLL turn-on time, crystal oscillator  
on in power down mode  
250  
Digital Inputs/Outputs  
Logic “0” input voltage  
Logic ”1” input voltage  
Logic “0” output voltage  
0
0.7*VDD  
0
0.3*VDD  
VDD  
V
V
V
0.4  
Output current -2.5 mA,  
3.0 V supply voltage  
Logic “1” output voltage  
Logic “0” input current  
2.5  
NA  
VDD  
-1  
V
Output current 2.5 mA,  
3.0 V supply voltage  
Input signal equals GND  
Input signal equals VDD  
µA  
Logic “1” input current  
DIO setup time  
NA  
20  
1
µA  
ns  
TX mode, minimum time DIO  
must be ready before the positive  
edge of DCLK  
DIO hold time  
10  
ns  
TX mode, minimum time DIO  
must be held after the positive  
edge of DCLK  
Serial interface (PCLK, PDATA and  
PALE) timing specification  
See Table 2 page 14  
Current Consumption  
Power Down mode  
0.2  
1
Oscillator core off  
µA  
SWRS048A  
Page 6 of 55  
CC1000  
Parameter  
Min.  
Typ.  
Max.  
Unit Condition / Note  
Current Consumption,  
receive mode 433/868 MHz  
7.4/9.6  
mA  
Current is programmable and can  
be increased for improved  
sensitivity  
Current Consumption,  
average in receive mode using  
polling 433/868 MHz  
74/96  
Polling controlled by micro-  
controller using 1:100 receive to  
power down ratio  
µA  
Current Consumption,  
transmit mode 433/868 MHz:  
P=0.01mW (-20 dBm)  
P=0.3 mW (-5 dBm)  
P=1 mW (0 dBm)  
5.3/8.6  
8.9/13.8  
10.4/16.5  
14.8/25.4  
26.7/NA  
mA  
mA  
mA  
mA  
mA  
The ouput power is delivered to a  
50load, see also p. 32  
P=3 mW (5 dBm)  
P=10 mW (10 dBm)  
Current Consumption, crystal osc.  
30  
80  
105  
3-8 MHz, 16 pF load  
9-14 MHz, 12 pF load  
14-16 MHz, 16 pF load  
µA  
µA  
µA  
Current Consumption, crystal osc.  
And bias  
860  
µA  
Current Consumption, crystal osc.,  
bias and synthesiser, RX/TX  
4/5  
5/6  
< 500 MHz  
> 500 MHz  
mA  
mA  
SWRS048A  
Page 7 of 55  
CC1000  
4. Pin Assignment  
Pin no. UltraCSP Pin name  
pin no.  
Pin type  
Power (A)  
Ground (A)  
RF Input  
RF output  
Power (A)  
Ground (A)  
Ground (A)  
Ground (A)  
Power (A)  
Analog input  
Analog input  
Description  
1
2
G3  
F2  
G2  
G1  
F1  
E2  
E1  
D1  
C1  
B1  
A1  
B2  
AVDD  
AGND  
RF_IN  
RF_OUT  
AVDD  
AGND  
AGND  
AGND  
AVDD  
L1  
Power supply (3 V) for analog modules (mixer and IF)  
Ground connection (0 V) for analog modules (mixer and IF)  
RF signal input from antenna  
3
4
5
6
7
8
9
RF signal output to antenna  
Power supply (3 V) for analog modules (LNA and PA)  
Ground connection (0 V) for analog modules (LNA and PA)  
Ground connection (0 V) for analog modules (PA)  
Ground connection (0 V) for analog modules (VCO and prescaler)  
Power supply (3 V) for analog modules (VCO and prescaler)  
Connection no 1 for external VCO tank inductor  
Connection no 2 for external VCO tank inductor  
Charge pump current output  
10  
11  
12  
L2  
CHP_OUT Analog output  
(LOCK)  
The pin can also be used as PLL Lock indicator. Output is high  
when PLL is in lock.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
C2  
F3  
A2  
B3  
A3  
A4  
B4  
C3  
C4  
D4  
E4  
R_BIAS  
AGND  
AVDD  
AGND  
XOSC_Q2 Analog output  
XOSC_Q1 Analog input  
AGND  
DGND  
DVDD  
DGND  
DIO  
Analog output  
Ground (A)  
Power (A)  
Connection for external precision bias resistor (82 k, ± 1%)  
Ground connection (0 V) for analog modules (backplane)  
Power supply (3 V) for analog modules (general)  
Ground connection (0 V) for analog modules (general)  
Crystal, pin 2  
Ground (A)  
Crystal, pin 1, or external clock input  
Ground (A)  
Ground (D)  
Power (D)  
Ground (D)  
Digital  
input/output  
Digital output  
Digital input  
Digital  
Ground connection (0 V) for analog modules (guard)  
Ground connection (0 V) for digital modules (substrate)  
Power supply (3 V) for digital modules  
Ground connection (0 V) for digital modules  
Data input/output. Data input in transmit mode. Data output in  
receive mode  
24  
25  
26  
F4  
G4  
D3  
DCLK  
PCLK  
PDATA  
Data clock for data in both receive and transmit mode  
Programming clock for 3-wire bus  
Programming data for 3-wire bus. Programming data input for  
write operation, programming data output for read operation  
Programming address latch enable for 3-wire bus. Internal pull-up.  
The pin can be used as RSSI or 10.7 MHz IF output to optional  
external IF and demodulator. If not used, the pin should be left  
open (not connected).  
input/output  
Digital input  
Analog output  
27  
28  
D2  
E3  
PALE  
RSSI/IF  
A=Analog, D=Digital  
(Top View)  
1
2
3
4
28  
AVDD  
AGND  
RF_IN  
RSSI/IF  
27  
PALE  
26  
PDATA  
25  
RF_OUT  
AVDD  
AGND  
AGND  
AGND  
AVDD  
L1  
PCLK  
5
24  
DCLK  
6
23  
DIO  
1C0  
7
22  
21  
20  
19  
18  
17  
16  
15  
DGND  
DVDD  
8
9
DGND  
10  
11  
12  
13  
14  
AGND  
L2  
XOSC_Q1  
XOSC_Q2  
AGND  
CHP_OUT  
R_BIAS  
AGND  
AVDD  
SWRS048A  
Page 8 of 55  
CC1000  
5. Circuit Description  
RSSI/IF  
MIXER  
RF_IN  
LNA  
DEMOD  
CONTROL  
DIO  
IF STAGE  
DCLK  
PDATA, PCLK, PALE  
3
/N  
PA  
RF_OUT  
BIAS  
R_BIAS  
XOSC_Q2  
XOSC_Q1  
CHARGE  
PUMP  
VCO  
PD  
/R  
OSC  
LPF  
~
L1 L2  
CHP_OUT  
Figure 1. Simplified block diagram of the CC1000  
In transmit mode the voltage controlled  
oscillator (VCO) output signal is fed  
directly to the power amplifier (PA). The  
RF output is frequency shift keyed (FSK)  
by the digital bit stream fed to the pin DIO.  
The internal T/R switch circuitry makes the  
antenna interface and matching very easy.  
A simplified block diagram of CC1000 is  
shown in Figure 1. Only signal pins are  
shown.  
In receive mode CC1000 is configured as a  
traditional superheterodyne receiver. The  
RF input signal is amplified by the low-  
noise amplifier (LNA) and converted down  
to the intermediate frequency (IF) by the  
mixer (MIXER). In the intermediate  
frequency stage (IF STAGE) this  
downconverted signal is amplified and  
filtered before being fed to the  
demodulator (DEMOD). As an option a  
RSSI signal, or the IF signal after the  
mixer is available at the RSSI/IF pin. After  
demodulation CC1000 outputs the digital  
demodulated data on the pin DIO.  
Synchronisation is done on-chip providing  
data clock at DCLK.  
The frequency synthesiser generates the  
local oscillator signal which is fed to the  
MIXER in receive mode and to the PA in  
transmit mode. The frequency synthesiser  
consists of a crystal oscillator (XOSC),  
phase detector (PD), charge pump  
(CHARGE PUMP), VCO, and frequency  
dividers (/R and /N). An external crystal  
must be connected to XOSC, and only an  
external inductor is required for the VCO.  
The 3-wire digital serial interface  
(CONTROL) is used for configuration.  
SWRS048A  
Page 9 of 55  
 
CC1000  
6. Application Circuit  
Very few external components are  
required for the operation of CC1000. A  
typical application circuit is shown in  
Figure 2. Component values are shown in  
Table 1.  
Component values for the matching  
network and VCO inductor are easily  
calculated using the SmartRF® Studio  
software.  
6.3 Additional filtering  
6.1 Input / output matching  
Additional external components (e.g. RF  
LC or SAW-filter) may be used in order to  
improve the performance in specific  
applications. See also “Optional LC filter”  
p.36 for further information.  
C31/L32 is the input match for the  
receiver. L32 is also a DC choke for  
biasing. C41, L41 and C42 are used to  
match the transmitter to 50 . An internal  
T/R switch circuit makes it possible to  
connect the input and output together and  
match the CC1000 to 50 in both RX and  
TX mode. See “Input/output matching”  
p.31 for details.  
6.4 Power supply decoupling  
Power supply decoupling and filtering  
must be used (not shown in the  
application circuit). The placement and  
size of the decoupling capacitors and the  
power supply filtering are very important to  
achieve the optimum performance.  
Chipcon provides reference designs  
(CC1000PP and CC1000uCSP_EM) that  
should be followed very closely.  
6.2 VCO inductor  
The VCO is completely integrated except  
for the inductor L101.  
Figure 2. Typical CC1000 application circuit (power supply decoupling not shown)  
SWRS048A  
Page 10 of 55  
 
CC1000  
CC1000 TSSOP package  
Item  
C31  
C41  
315 MHz  
433 MHz  
868 MHz  
915 MHz  
10 pF, 5%, C0G, 0603  
Not used  
4.7 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
8.2 pF, 5%, C0G, 0603  
2.2 pF, 5%, C0G, 0603  
5.6 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
15 pF, 5%, C0G, 0603  
8.2 pF, 5%, C0G, 0603  
5.6 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
10 pF, 5%, C0G, 0603  
Not used  
4.7 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
18 pF, 5%, C0G, 0603  
C42  
C171  
C181  
L32  
39 nH, 10%, 0805  
(Coilcraft 0805CS-390XKBC)  
68 nH, 10%, 0805  
(Coilcraft 0805CS-680XKBC)  
120 nH, 10%, 0805  
(Coilcraft 0805CS-121XKBC)  
120 nH, 10%, 0805  
(Coilcraft 0805CS-121XKBC)  
L41  
20 nH, 10%, 0805  
(Coilcraft 0805HQ-  
20NXKBC)  
6.2 nH, 10%, 0805  
(Coilcraft 0805HQ-  
6N2XKBC)  
2.5 nH, 10%, 0805  
(Coilcraft 0805HQ-  
2N5XKBC)  
2.5 nH, 10%, 0805  
(Coilcraft 0805HQ-  
2N5XKBC)  
L101  
56 nH, 5%, 0805  
33 nH, 5%, 0805  
4.7 nH, 5%, 0805  
4.7 nH, 5%, 0805  
(Koa KL732ATE56NJ)  
(Koa KL732ATE33NJ)  
(Koa KL732ATE4N7C)  
(Koa KL732ATE4N7C)  
R131  
XTAL  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0603  
14.7456 MHz crystal,  
16 pF load  
CC1000 UltraCSP™ package  
Item  
C31  
C41  
315 MHz  
8.2 pF, 5%, C0G, 0402  
Not used  
433 MHz  
868 MHz  
915 MHz  
10 pF, 5%, C0G, 0402  
Not used  
15 pF, 5%, C0G, 0402  
Not used  
10 pF, 5%, C0G, 0402  
Not used  
C42  
4.7 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
39 nH, 5%, 0402  
(Ceramic multilayer)  
4.7 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
68 nH, 5%, 0402  
(Ceramic multilayer)  
6.8 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
120 nH, 5%, 0402  
(Ceramic multilayer)  
6.8 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
18 pF, 5%, C0G, 0402  
120 nH, 5%, 0402  
(Ceramic multilayer)  
C171  
C181  
L32  
L41  
22 nH, 5%, 0402  
(Ceramic multilayer)  
15 nH, 5%, 0402  
(Ceramic multilayer)  
2.7 nH, 5%, 0402  
(Ceramic multilayer)  
2.7 nH, 5%, 0402  
(Ceramic multilayer)  
L101  
56 nH, 5%, 0402  
(Thin film inductor)  
33 nH, 5%, 0402  
(Thin film inductor)  
7.5 nH, 5%, 0402  
(Thin film inductor)  
7.5 nH, 5%, 0402  
(Thin film inductor)  
R131  
XTAL  
82 k, 1%, 0402  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0402  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0402  
14.7456 MHz crystal,  
16 pF load  
82 k, 1%, 0402  
14.7456 MHz crystal,  
16 pF load  
Note: Items shaded are different for different frequencies  
Table 1. Bill of materials for the application circuit  
Note that the component values for  
868/915 MHz can be the same. However,  
it is important the layout is optimised for  
the selected VCO inductor in order to  
centre the tuning range around the  
operating frequency to account for  
inductor tolerance. The VCO inductor  
must be placed very close and  
symmetrical with respect to the pins (L1  
Chipcon provide reference layouts that  
should be followed very closely in order to  
achieve the best performance. The  
reference design can be downloaded from  
the  
Chipcon  
website.  
and  
L2).  
SWRS048A  
Page 11 of 55  
 
CC1000  
7. Configuration Overview  
frequency  
separation  
(deviation),  
CC1000 can be configured to achieve the  
crystal oscillator reference frequency  
Power-down / power-up mode  
Crystal oscillator power-up / power  
down  
best  
performance  
for  
different  
applications. Through the programmable  
configuration registers the following key  
parameters can be programmed:  
Data rate and data format (NRZ,  
Manchester coded or UART interface)  
Synthesiser lock indicator mode  
Optional RSSI or external IF  
Receive / transmit mode  
RF output power  
Frequency  
synthesiser  
key  
parameters: RF output frequency, FSK  
8. Configuration Software  
Chipcon provides users of CC1000 with a  
software program, SmartRF® Studio  
(Windows interface) that generates all  
necessary CC1000 configuration data  
based on the user’s selections of various  
parameters. These hexadecimal numbers  
will then be the necessary input to the  
microcontroller for the configuration of  
CC1000. In addition the program will  
provide the user with the component  
values needed for the input/output  
matching circuit and the VCO inductor.  
Figure 3 shows the user interface of the  
CC1000 configuration software.  
Figure 3. SmartRF® Studio user interface  
SWRS048A  
Page 12 of 55  
 
CC1000  
9. 3-wire Serial Configuration Interface  
The timing for the programming is also  
shown in Figure 4 with reference to Table  
2. The clocking of the data on PDATA is  
done on the negative edge of PCLK.  
When the last bit, D0, of the 8 data-bits  
has been loaded, the data word is loaded  
in the internal configuration register.  
CC1000 is configured via a simple 3-wire  
interface (PDATA, PCLK and PALE).  
There are 28 8-bit configuration registers,  
each addressed by a 7-bit address. A  
Read/Write bit initiates a read or write  
operation. A full configuration of CC1000  
requires sending 22 data frames of 16 bits  
each (7 address bits, R/W bit and 8 data  
The configuration data is stored in internal  
RAM. The data is retained during power-  
down mode, but not when the power-  
supply is turned off. The registers can be  
programmed in any order.  
bits). The time needed for  
a
full  
configuration depend on the PCLK  
frequency. With a PCLK frequency of 10  
MHz the full configuration is done in less  
than 46 µs. Setting the device in power  
down mode requires sending one frame  
only and will in this case take less than 2  
µs. All registers are also readable.  
The configuration registers can also be  
read by the microcontroller via the same  
configuration interface. The seven address  
bits are sent first, then the R/W bit set low  
to initiate the data read-back. CC1000 then  
returns the data from the addressed  
register. PDATA is in this case used as an  
output and must be tri-stated (or set high n  
the case of an open collector pin) by the  
microcontroller during the data read-back  
(D7:0). The read operation is illustrated in  
Figure 5.  
In each write-cycle 16 bits are sent on the  
PDATA-line. The seven most significant  
bits of each data frame (A6:0) are the  
address-bits. A6 is the MSB (Most  
Significant Bit) of the address and is sent  
as the first bit. The next bit is the R/W bit  
(high for write, low for read). During  
address and R/W bit transfer the PALE  
(Program Address Latch Enable) must be  
kept low. The 8 data-bits are then  
transferred (D7:0). See Figure 4.  
TSA  
THA  
TSA  
TCH,min  
TCL,min  
THD  
TSD  
PCLK  
PDATA  
PALE  
Address  
Write mode  
Data byte  
6
5
4
3
2
1
0
W
7
6
5
4
3
2
1
0
Figure 4. Configuration registers write operation  
SWRS048A  
Page 13 of 55  
 
CC1000  
PCLK  
PDATA  
PALE  
Address  
3
Read mode  
Data byte  
6
5
4
2
1
0
R
7
6
5
4
3
2
1
0
Figure 5. Configuration registers read operation  
Parameter Symbol  
Min  
Max  
Units  
Conditions  
PCLK, clock  
frequency  
FCLOCK  
-
10  
MHz  
PCLK low  
pulse  
duration  
TCL,min  
50  
50  
ns  
ns  
The minimum time PCLK must be low.  
The minimum time PCLK must be high.  
PCLK high  
pulse  
TCH,min  
duration  
PALE setup  
time  
TSA  
THA  
TSD  
THD  
10  
10  
10  
10  
-
-
-
-
ns  
ns  
ns  
ns  
The minimum time PALE must be low before  
negative edge of PCLK.  
PALE hold  
time  
The minimum time PALE must be held low after  
the positive edge of PCLK.  
PDATA setup  
time  
The minimum time data on PDATA must be ready  
before the negative edge of PCLK.  
PDATA hold  
time  
The minimum time data must be held at PDATA,  
after the negative edge of PCLK.  
Rise time  
Fall time  
Trise  
Tfall  
100  
100  
ns  
ns  
The maximum rise time for PCLK and PALE  
The maximum fall time for PCLK and PALE  
Note: The set-up- and hold-times refer to 50% of VDD.  
Table 2. Serial interface, timing specification  
SWRS048A  
Page 14 of 55  
CC1000  
10. Microcontroller Interface  
Used in a typical system, CC1000 will  
Optionally the microcontroller can do  
data encoding / decoding.  
Optionally the microcontroller can  
monitor the frequency lock status from  
pin CHP_OUT (LOCK).  
Optionally the microcontroller can  
monitor the RSSI output for signal  
strength acquisition.  
interface to  
a
microcontroller. This  
microcontroller must be able to:  
Program CC1000 into different modes  
via the 3-wire serial configuration  
interface (PDATA, PCLK and PALE).  
Interface  
to  
the  
bi-directional  
synchronous data signal interface  
(DIO and DCLK).  
10.1 Connecting the microcontroller  
The microcontroller uses 3 output pins for  
the configuration interface (PDATA, PCLK  
and PALE). PDATA should be a bi-  
directional pin for data read-back. A bi-  
directional pin is used for data (DIO) to be  
transmitted and data received. DCLK  
providing the data timing should be  
The microcontroller pins connected to  
PDATA and PCLK can be used for other  
purposes when the configuration interface  
is not used. PDATA and PCLK are high  
impedance inputs as long as PALE is  
high.  
PALE has an internal pull-up resistor and  
should be left open (tri-stated by the  
microcontroller) or set to a high level  
during power down mode in order to  
prevent a trickle current flowing in the pull-  
up. The pin state in power down mode is  
connected to  
a microcontroller input.  
Optionally another pin can be used to  
monitor the LOCK signal (available at the  
CHP_OUT pin). This signal is logic level  
high when the PLL is in lock. See Figure  
6.  
summarized  
in  
Table  
3.  
Also the RSSI signal can be connected to  
the microcontroller if it has an analogue  
ADC input.  
Pin  
Pin state  
Note  
PDATA Input  
Should be driven high or low  
Should be driven high or low  
PCLK  
PALE  
Input  
Input with internal pull- Should be driven high or high-impedance to minimize  
up resistor  
power consumption  
DIO  
Input  
Should be driven high or low  
DCLK  
High-impedance  
output  
Table 3. CC1000 pins in power-down mode  
PDATA  
Micro-  
controller  
PCLK  
PALE  
CC1000  
DIO  
DCLK  
(Optional)  
(Optional)  
CHP_OUT  
(LOCK)  
RSSI/IF  
ADC  
Figure 6. Microcontroller interface  
SWRS048A  
Page 15 of 55  
 
CC1000  
11. Signal interface  
The signal interface consists of DIO and  
DCLK and is used for the data to be  
transmitted and data received. DIO is the  
bi-directional data line and DCLK provides  
a synchronous clock both during data  
transmission and data reception.  
is presented at DIO. The data should be  
clocked into the interfacing circuit at the  
rising edge of DCLK. See Figure 8.  
Transparent Asynchronous UART mode.  
In transmit mode DIO is used as data  
input. The data is modulated at RF without  
synchronisation or encoding. In receive  
mode the raw data signal from the  
demodulator is sent to the output. No  
synchronisation or decoding of the signal  
is done in CC1000 and should be done by  
the interfacing circuit. The DCLK pin is  
used as data output in this mode. Data  
rates in the range from 0.6 to 76.8 kBaud  
can be used. For 38.4 and 76.8 kBaud a  
crystal frequency of 14.7456 MHz must be  
used. See Figure 9.  
The CC1000 can be used with NRZ (Non-  
Return-to-Zero) data or Manchester (also  
known as bi-phase-level) encoded data.  
CC1000 can also synchronise the data from  
the demodulator and provide the data  
clock at DCLK.  
CC1000 can be configured for three  
different data formats:  
Synchronous NRZ mode. In transmit  
mode CC1000 provides the data clock at  
DCLK, and DIO is used as data input.  
Data is clocked into CC1000 at the rising  
edge of DCLK. The data is modulated at  
RF without encoding. CC1000 can be  
configured for the data rates 0.6, 1.2, 2.4,  
4.8, 9.6, 19.2, 38.4 or 76.8 kbit/s. For 38.4  
and 76.8 kbit/s a crystal frequency of  
14.7456 MHz must be used. In receive  
mode CC1000 does the synchronisation  
and provides received data clock at DCLK  
and data at DIO. The data should be  
clocked into the interfacing circuit at the  
rising edge of DCLK. See Figure 7.  
11.1 Manchester encoding and  
decoding  
In the Synchronous Manchester encoded  
mode CC1000 uses Manchester coding  
when modulating the data. The CC1000  
also performs the data decoding and  
synchronisation. The Manchester code is  
based on transitions; a “0” is encoded as a  
low-to-high transition, a “1” is encoded as  
a high-to-low transition. See Figure 10.  
The CC1000 can detect a Manchester  
decoding violation and will set  
Manchester Violation Flag when such a  
violation is detected in the incoming  
a
Synchronous Manchester encoded mode.  
In transmit mode CC1000 provides the data  
clock at DCLK, and DIO is used as data  
input. Data is clocked into CC1000 at the  
rising edge of DCLK and should be in NRZ  
format. The data is modulated at RF with  
Manchester code. The encoding is done  
by CC1000. In this mode CC1000 can be  
configured for the data rates 0.3, 0.6, 1.2,  
2.4, 4.8, 9.6, 19.2 or 38.4 kbit/s. The 38.4  
kbit/s rate corresponds to the maximum  
76.8 kBaud due to the Manchester  
encoding. For 38.4 and 76.8 kBaud a  
crystal frequency of 14.7456 MHz must be  
used. In receive mode CC1000 does the  
synchronisation and provides received  
data clock at DCLK and data at DIO.  
CC1000 does the decoding and NRZ data  
signal.  
Manchester Violation can be set in the  
MODEM1 register. The Manchester  
The threshold limit for the  
Violation Flag can be monitored at the  
CHP_OUT (LOCK) pin, configured in the  
LOCK register.  
The Manchester code ensures that the  
signal has a constant DC component,  
which is necessary in some FSK  
demodulators. Using this mode also  
ensures compatibility with CC400/CC900  
designs.  
SWRS048A  
Page 16 of 55  
CC1000  
Transmitter side:  
DIO  
Data provided by microcontroller  
Clock provided by CC1000  
DCLK  
“RF”  
FSK modulating signal (NRZ),  
internal in CC1000  
Receiver side:  
“RF”  
Demodulated signal (NRZ),  
internal in CC1000  
DCLK  
DIO  
Clock provided by CC1000  
Data provided by CC1000  
Figure 7. Synchronous NRZ mode  
Transmitter side:  
DIO  
Data provided by microcontroller (NRZ)  
Clock provided by CC1000  
DCLK  
“RF”  
FSK modulating signal (Manchester encoded),  
internal in CC1000  
Receiver side:  
“RF”  
Demodulated signal (Manchester encoded),  
internal in CC1000  
DCLK  
DIO  
Clock provided by CC1000  
Data provided by CC1000 (NRZ)  
Figure 8. Synchronous Manchester encoded mode  
SWRS048A  
Page 17 of 55  
CC1000  
Transmitter side:  
DIO  
Data provided by UART (TXD)  
DCLK  
“RF”  
DCLK is not used in transmit mode.  
Used as data output in receive mode.  
FSK modulating signal,  
internal in CC1000  
Receiver side:  
“RF”  
Demodulated signal,  
internal in CC1000  
DIO  
DIO is not used in receive mode. Used only  
as data input in transmit mode.  
DCLK  
Data output provided by CC1000.  
Connect to UART (RXD).  
Figure 9. Transparent Asynchronous UART mode  
1 0 1 1 0 0 0 1 1 0 1  
TX  
data  
Time  
Figure 10. Manchester encoding  
SWRS048A  
Page 18 of 55  
CC1000  
12. Bit synchroniser and data decision  
Average  
filter  
Frequency  
detector  
Data  
filter  
Data slicer  
comparator  
Sampler  
Decimator  
Figure 11. Demodulator block diagram  
A block diagram of the digital demodulator  
is shown in Figure 11. The IF signal is  
sampled and its instantaneous frequency  
is detected. The result is decimated and  
filtered. In the data slicer the data filter  
output is compared to the average filter  
output to generate the data output.  
acquired value will be kept also after  
Power Down or Transmit mode. After a  
modem  
reset  
(MODEM1.MODEM_RESET_N), or  
a
main reset (using any of the standard  
reset sources), the averaging filter is reset.  
In a polled receiver system the automatic  
locking can be used. This is illustrated in  
Figure 12. If the receiver is operated  
The averaging filter is used to find the  
average value of the incoming data. While  
the averaging filter is running and  
acquiring samples, it is important that the  
number of high and low bits received is  
continuously and searching for  
a
preamble, the averaging filter should be  
locked manually as soon as the preamble  
is detected. This is shown in Figure 13. If  
the data is Manchester coded there is no  
need to lock the averaging filter  
(MODEM1.LOCK_AVG_IN=’0’), as shown  
in Figure 14.  
equal (e.g. Manchester code or  
balanced preamble).  
a
Therefore all modes, also synchronous  
NRZ mode, need DC balanced  
a
preamble for the internal data slicer to  
acquire correct comparison level from the  
averaging filter. The suggested preamble  
is a ‘010101…’ bit pattern. The same bit  
pattern should also be used in Manchester  
The minimum length of the preamble  
depends on the acquisition mode selected  
and the settling time. Table 4 gives the  
minimum recommended number of chips  
for the preamble in NRZ and UART  
modes. In this context ‘chips’ refer to the  
data coding. Using Manchester coding  
every bit consists of two ‘chips’. For  
mode, giving  
a
‘011001100110…chip  
pattern. This is necessary for the bit  
synchronizer to synchronize correctly.  
The averaging filter must be locked before  
any NRZ data can be received. If the  
Manchester  
recommended number of chips is shown  
in Table 5.  
mode  
the  
minimum  
averaging  
filter  
is  
locked  
(MODEM1.LOCK_AVG_MODE=’1’), the  
SWRS048A  
Page 19 of 55  
 
CC1000  
Settling  
Manual Lock  
Automatic Lock  
NRZ mode  
UART mode  
NRZ mode  
UART mode  
MODEM1.  
SETTLING  
(1:0)  
MODEM1.LOCK_  
AVG_MODE=’1’  
MODEM1.LOCK_  
MODEM1.LOCK_  
AVG_MODE=’1’  
MODEM1.LOCK_  
MODEM1.LOCK_  
AVG_MODE=’0’  
MODEM1.LOCK_  
AVG_IN=’X’***  
MODEM1.LOCK_  
AVG_MODE=’0’  
MODEM1.LOCK_  
AVG_IN=’X’***  
AVG_IN=’0’=’1’**  
AVG_IN=’0’=’1’**  
00  
01  
10  
14  
25  
46  
89  
11  
22  
43  
86  
16  
32  
64  
128  
16  
32  
64  
128  
11  
Notes:  
** The averaging filter is locked when MODEM1.LOCK_AVG_INis set to 1  
*** X = Do not care. The timer for the automatic lock is started when RX mode is set in the RFMAIN  
register  
Also please note that in addition to the number of bits required to lock the filter, you need to add the  
number of bits needed for the preamble detector. See the next section for more information.  
Table 4. Minimum preamble bits for locking the averaging filter, NRZ and UART mode  
Settling  
Free-running  
Manchester mode  
MODEM1. MODEM1.LOCK_  
SETTLING AVG_MODE=’1’  
(1:0)  
MODEM1.LOCK_  
AVG_IN=’0’  
00  
01  
10  
11  
23  
34  
55  
98  
Table 5. Minimum number preamble chips for averaging filter, Manchester mode  
SWRS048A  
Page 20 of 55  
CC1000  
Data package to be received  
Noise  
RX  
Preamble  
RX  
NRZ data  
Noise  
PD  
Averaging filter locked  
Averaging filter  
free-running / not used  
Automatically locked after a short period depending on “SETTLING”  
Figure 12. Automatic locking of the averaging filter  
Data package to be received  
Noise  
RX  
Averaging filter free-running  
Preamble  
NRZ data  
Noise  
PD  
Averaging filter locked  
Manually locked after preamble is detected  
Figure 13. Manual locking of the averaging filter  
Data package to be received  
Noise  
RX  
Preamble  
Manchester encoded data  
Noise  
PD  
Averaging filter always free-running  
Figure 14. Free-running averaging filter  
SWRS048A  
Page 21 of 55  
CC1000  
13. Receiver sensitivity versus data rate and frequency separation  
The receiver sensitivity depends on the  
data rate, the data format, FSK frequency  
separation and the RF frequency. Typical  
figures for the receiver sensitivity (BER =  
10-3) are shown in Table 6 for 64 kHz  
frequency separations and Table 7 for 20  
kHz separations. Optimised sensitivity  
configurations are used. For best  
performance the frequency separation  
should be as high as possible especially at  
high data rates. Table 8 shows the  
sensitivity for low current settings. See  
page 28 for how to program different  
current consumption.  
Data rate  
[kBaud]  
Separation  
[kHz]  
433 MHz  
Manchester  
mode  
-114  
868 MHz  
NRZ  
mode  
-113  
-111  
-109  
-107  
-105  
-103  
-102  
-100  
UART  
mode  
-113  
-111  
-109  
-107  
-105  
-103  
-102  
-100  
NRZ  
mode  
-110  
-108  
-106  
-104  
-102  
-100  
-98  
Manchester  
mode  
-111  
UART  
mode  
-110  
-108  
-106  
-104  
-102  
-100  
-98  
0.6  
1.2  
2.4  
4.8  
64  
64  
64  
64  
64  
64  
64  
64  
-112  
-110  
-108  
-106  
-104  
-103  
-101  
-109  
-107  
-105  
-103  
-101  
-99  
-98  
9.6  
19.2  
38.4  
76.8  
-97  
-97  
Average current  
consumption  
9.3 mA  
11.8 mA  
Table 6. Receiver sensitivity as a function of data rate at 433 and 868 MHz, BER = 10-3,  
frequency separation 64 kHz, normal current settings  
Data rate  
[kBaud]  
Separation  
[kHz]  
433 MHz  
Manchester  
mode  
-111  
868 MHz  
Manchester  
mode  
-108  
NRZ  
mode  
-109  
-108  
-106  
-104  
-103  
-102  
-98  
UART  
mode  
-109  
-108  
-106  
-104  
-103  
-102  
-98  
NRZ  
mode  
-106  
-104  
-103  
-101  
-100  
-99  
UART  
mode  
-106  
-104  
-103  
-101  
-100  
-99  
0.6  
1.2  
2.4  
4.8  
20  
20  
20  
20  
20  
20  
20  
20  
-110  
-108  
-106  
-104  
-103  
-100  
-98  
-106  
-105  
-103  
-101  
-100  
-99  
-96  
9.6  
19.2  
38.4  
76.8  
-98  
-94  
-98  
-94  
-94  
-94  
Average current  
consumption  
9.3 mA  
11.8 mA  
Table 7. Receiver sensitivity as a function of data rate at 433 and 868 MHz, BER = 10-3,  
frequency separation 20 kHz, normal current settings  
Data rate  
[kBaud]  
Separation  
[kHz]  
433 MHz  
Manchester  
mode  
-113  
868 MHz  
Manchester  
mode  
-109  
NRZ  
mode  
-111  
-110  
-108  
-106  
-104  
-102  
-101  
-99  
UART  
mode  
-111  
-110  
-108  
-106  
-104  
-102  
-101  
-99  
NRZ  
mode  
-107  
-106  
-104  
-102  
-100  
-98  
UART  
mode  
-107  
-106  
-104  
-102  
-100  
-98  
0.6  
1.2  
2.4  
4.8  
64  
64  
64  
64  
64  
64  
64  
64  
-111  
-109  
-107  
-105  
-103  
-102  
-100  
-107  
-105  
-103  
-101  
-99  
-97  
-96  
9.6  
19.2  
38.4  
76.8  
-96  
-95  
-96  
-95  
Average current  
consumption  
7.4 mA  
9.6 mA  
Table 8. Receiver sensitivity as a function of data rate at 433 and 868 MHz, BER = 10-3,  
frequency separation 64 kHz , low current settings  
SWRS048A  
Page 22 of 55  
 
 
 
CC1000  
14. Frequency programming  
RX mode:  
fvco  
fRF  
fLO (low-side)  
fLO (high-side)  
(Receive frequency)  
fIF  
fIF  
TX mode:  
f0  
fRF  
f1  
fvco  
(Lower FSK  
frequency)  
(Center frequency)  
(Upper FSK  
frequency)  
fsep  
Figure 15. Relation between fvco, fif, and LO frequency  
The frequency synthesiser (PLL) is  
controlled by the frequency word in the  
configuration registers. There are two  
frequency words, A and B, which can be  
programmed to two different frequencies.  
One of the frequency words can be used  
for RX (local oscillator frequency) and the  
other for TX (transmitting frequency, f0).  
This makes it possible to switch very fast  
between RX mode and TX mode. They  
can also be used for RX (or TX) on two  
different channels. The MAIN.F_REG  
control bit performs selection of frequency  
word A or B.  
number between 2 and 14 that should be  
chosen such that:  
1.0 MHz fref 2.46 MHz  
Thus, the reference frequency fref is:  
fxosc  
fref  
=
REFDIV  
fVCO is the Local Oscillator (LO) frequency  
in receive mode, and the f0 frequency in  
transmit mode (lower FSK frequency). The  
LO frequency must be fRF – fIF or fRF + fIF  
giving low-side or high side LO injection  
respectively. Note that the data on DIO will  
be inverted if high-side LO is used.  
The frequency word, FREQ, is 24 bits (3  
bytes)  
located  
in  
FREQ_2A:FREQ_1A:FREQ_0A  
and  
FREQ_2B:FREQ_1B:FREQ_0B for the A  
and B word, respectively.  
The upper FSK transmit frequency is  
given by:  
The frequency word FREQ can be  
calculated from:  
f1 = f0 + fsep  
,
where the frequency separation fsep is set  
by the 11 bit separation word  
(FSEP1:FSEP0):  
FREQ + FSEP TXDATA+ 8192  
,
fVCO = fref  
16384  
where TXDATA is 0 or 1 in transmit mode  
depending on the data bit to be  
transmitted on DIO. In receive mode  
TXDATA is always 0.  
FSEP  
fsep = fref  
16384  
PLL.ALARM_DISABLE  
enable generation of the frequency alarm  
bits PLL.ALARM_H and PLL.ALARM_L.  
These bits indicate that the frequency  
Clearing  
will  
The reference frequency fref is the crystal  
oscillator clock divided by PLL.REFDIV, a  
SWRS048A  
Page 23 of 55  
CC1000  
synthesis PLL is near the limit of generate  
the frequency requested, and the PLL  
should be recalibrated.  
register is checked when changing  
frequencies and when changing between  
RX and TX mode. If lock is not achieved, a  
calibration should be performed.  
It  
is  
recommended  
that  
the  
LOCK_CONTINOUS bit in the LOCK  
15. Recommended RX settings for ISM frequencies  
Shown in Table 9 are the recommended RX frequency synthesiser settings for a few  
operating frequencies in the popular ISM bands. These settings ensure optimum  
configuration of the synthesiser in receive mode for best sensitivity. For some settings of the  
synthesiser (combinations of RF frequencies and reference frequency), the receiver  
sensitivity is degraded. The FSK frequency separation is set to 64 kHz. The SmartRF®  
Studio can be used to generate optimised configuration data as well. Also an application note  
(AN011) and a spreadsheet are available from Chipcon generating configuration data for any  
frequency giving optimum sensitivity.  
ISM  
Frequency  
[MHz]  
Actual  
frequency  
[MHz]  
Crystal  
frequency  
[MHz]  
Low-side /  
high- side  
LO*  
Reference  
divider  
Frequency word  
RX mode  
Frequency word  
RX mode  
REFDIV  
FREQ  
FREQ  
(decimal)  
(decimal)  
4194304  
4194304  
4194304  
4194304  
5775168  
5775168  
5775168  
5775168  
5775360  
5775360  
5775360  
5775360  
5783552  
5783552  
5783552  
5783552  
7708672  
7708672  
7708672  
7708672  
7716864  
7716864  
7716864  
7716864  
11583488  
11583488  
11583488  
11583488  
7725056  
7725056  
7725056  
7725056  
8126464  
8126464  
8126464  
8126464  
(hex)  
400000  
400000  
400000  
400000  
580000  
580000  
580000  
580000  
582000  
582000  
582000  
582000  
584000  
584000  
584000  
584000  
75A000  
75A000  
75A000  
75A000  
75C000  
75C000  
75C000  
75C000  
B0C000  
B0C000  
B0C000  
B0C000  
75E000  
75E000  
75E000  
75E000  
7C0000  
7C0000  
7C0000  
7C0000  
315  
315.037200  
433.302000  
433.916400  
434.530800  
868.297200  
868.918800  
869.526000  
869.840400  
914.998800  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
3.6864  
7.3728  
11.0592  
14.7456  
High-side  
Low-side  
Low-side  
Low-side  
Low-side  
High-side  
Low-side  
High-side  
High-side  
3
6
9
12  
3
6
9
12  
3
6
9
12  
3
6
9
12  
2
4
6
8
2
4
433.3  
433.9  
434.5  
868.3  
868.95  
869.525  
869.85  
915  
6
3
6
9
12  
2
4
6
8
2
4
6
8
*Note: When using high-side LO injection the data at DIO will be inverted.  
Table 9. Recommended settings for ISM frequencies  
SWRS048A  
Page 24 of 55  
 
 
CC1000  
16. VCO  
Only one external inductor (L101) is  
required for the VCO. The inductor will  
determine the operating frequency range  
of the circuit. It is important to place the  
inductor as close to the pins as possible in  
order to reduce stray inductance. It is  
recommended to use a high Q, low  
tolerance inductor for best performance.  
Typical tuning range for the integrated  
varactor is 20-25%.  
Component values for various frequencies  
are given in Table 1. Component values  
for other frequencies can be found using  
the SmartRF® Studio software.  
17. VCO and PLL self-calibration  
To compensate for supply voltage,  
temperature and process variations the  
VCO and PLL must be calibrated. The  
calibration is done automatically and sets  
maximum VCO tuning range and optimum  
charge pump current for PLL stability.  
After setting up the device at the operating  
frequency, the self-calibration can be  
initiated by setting the CAL_START bit.  
The calibration result is stored internally in  
the chip, and is valid as long as power is  
not turned off. If large supply voltage  
variations (more than 0.5 V) or  
temperature variations (more than 40  
degrees) occur after calibration, a new  
calibration should be performed.  
There are separate calibration values for  
the two frequency registers. If the two  
frequencies, A and B, differ more than 1  
MHz, or different VCO currents are used  
(VCO_CURRENT[3:0] in the CURRENT  
register) the calibration should be done  
separately. When using a 10.7 MHz  
external IF the LO is 10.7 MHz  
below/above the transmit frequency,  
hence separate calibration must be done.  
The CAL_DUAL bit in the CAL register  
controls dual or separate calibration.  
The single calibration algorithm, using  
separate calibration for RX and TX  
frequency, is illustrated in Figure 16.  
The self-calibration is controlled through  
the CAL register (see configuration  
registers description p. 39). The  
CAL_COMPLETE bit indicates complete  
calibration. The user can poll this bit, or  
simply wait for 34 ms (calibration wait time  
when CAL_WAIT = 1). The wait time is  
proportional to the internal PLL reference  
frequency. The lowest permitted reference  
frequency (1 MHz) gives 34 ms wait time,  
which is therefore the worst case.  
In Figure 17 the dual calibration algorithm  
is shown for two RX frequencies. It could  
also be used for two TX frequencies, or  
even for one RX and one TX frequency if  
the same VCO current is used.  
In multi-channel and frequency hopping  
applications the PLL calibration values  
may be read and stored for later use. By  
reading back calibration values and  
frequency change can be done without  
doing a re-calibration which could take up  
to 34 ms. The calibration value is stored in  
the TEST0 and TEST2 registers after a  
calibration is completed. Note that when  
using single calibration, calibration values  
are stored separately for frequency  
registers A and B. This means that the  
TEST0 and TEST2 registers will contain  
calibration settings for the currently  
selected frequency register (selected by  
F_REG in the MAIN register). The  
calibration value can later be written into  
TEST5 and TEST 6 to bypass the  
calibration. Note that you must set  
VCO_OVERRIDE=1 in TEST5 and  
Reference  
Calibration time  
frequency [MHz]  
[ms]  
14  
17  
23  
34  
2.4  
2.0  
1.5  
1.0  
The CAL_COMPLETE bit can also be  
monitored at the CHP_OUT (LOCK) pin  
(configured by LOCK_SELECT[3:0]) and  
used as an interrupt input to the  
microcontroller.  
The CAL_START bit must be set to 0 by  
the microcontroller after the calibration is  
done.  
CHP_OVERRIDE=1  
register.  
in  
the  
TEST6  
SWRS048A  
Page 25 of 55  
CC1000  
Start single calibration  
Write FREQ_A, FREQ_B  
Frequency register A is used for  
RX mode, register B for TX  
If DR>=9.6kBd then write TEST4: L2KIO=3Fh  
Write CAL: CAL_DUAL = 0  
RX frequency register A is calibrated first  
Write MAIN:  
RXTX = 0; F_REG = 0  
RX_PD = 0; TX_PD = 1; FS_PD = 0  
CORE_PD = 0; BIAS_PD = 0; RESET_N=1  
Update CURRENT and PLL for RX mode  
Write CURRENT = RX current  
Write PLL = RX pll  
Calibration is performed in RX mode,  
Result is stored in TEST0 and TEST2,  
RX register  
Write CAL:  
CAL_START=1  
Calibration time depend on the reference  
frequency, see text.  
Wait for maximum 34 ms, or  
Read CAL and wait until  
CAL_COMPLETE=1  
Write CAL:  
CAL_START=0  
Write MAIN:  
TX frequency register B is calibrated second  
RXTX = 1; F_REG = 1  
RX_PD = 1; TX_PD = 0; FS_PD = 0  
CORE_PD = 0; BIAS_PD = 0; RESET_N=1  
Write CURRENT = TX current  
Write PLL = TX pll  
Write PA_POW = 00h  
Update CURRENT and PLL for TX mode  
PA is turned off to prevent spurious emission  
Calibration is performed in TX mode,  
Result is stored in TEST0 and TEST2,  
TX registers  
Write CAL:  
CAL_START=1  
Wait for 34 ms, or  
Read CAL and wait until  
CAL_COMPLETE=1  
Write CAL:  
CAL_START=0  
End of calibration  
Figure 16. Single calibration algorithm for RX and TX  
SWRS048A  
Page 26 of 55  
CC1000  
Start dual calibration  
Write FREQ_A, FREQ_B  
Frequency registers A and B are both used  
for RX mode  
If DR>=38kBd then write TEST4: L2KIO=3Fh  
Write CAL: CAL_DUAL = 1  
Either frequency register A or B is selected  
Write MAIN:  
RXTX = 0; F_REG = 0  
RX_PD = 0; TX_PD = 1; FS_PD = 0  
CORE_PD = 0; BIAS_PD = 0; RESET_N=1  
Update CURRENT and PLL for RX mode  
Write CURRENT= RX current  
Write PLL= RX pll  
Dual calibration is performed.  
Result is stored in TEST0 and TEST2,  
for both frequency A and B registers  
Write CAL:  
CAL_START=1  
Wait for maximum 34 ms, or  
Read CAL and wait until  
CAL_COMPLETE=1  
Calibration time depend on the reference  
frequency, see text.  
Write CAL:  
CAL_START=0  
End of calibration  
Figure 17. Dual calibration algorithm for RX mode  
SWRS048A  
Page 27 of 55  
CC1000  
18. VCO and LNA current control  
The VCO current is programmable and  
should be set according to operating  
frequency RX/TX mode and output power.  
The bias current for the LNA, and the LO  
and PA buffers are also programmable.  
Table 10 shows the current consumption  
and receiver sensitivity for different  
settings (2.4 kBaud Manchester encoded  
data).  
Recommended  
settings  
for  
the  
VCO_CURRENT bits in the CURRENT  
register are shown in the tables on page  
41.  
RF freq-  
uency  
[MHz]  
Current  
consumption  
[mA]  
Sensitivity  
[dBm]  
CURRENT register  
FRONT_END register  
VCO_  
CURRENT  
[3:0]  
LO_DRIVE  
[1:0]  
PA_DRIVE  
[1:0]  
BUF_CUR  
RENT  
LNA_CUR  
RENT[1:0]  
433  
433  
868  
868  
9.3  
7.4  
11.8  
9.6  
-110  
-109  
-107  
-105  
0100  
0100  
1000  
1000  
01  
00  
11  
10  
00  
00  
00  
00  
0
0
1
0
10  
00  
10  
00  
Note: Current consumption and sensitivity are typical figures at 2.4 kBaud Manchester encoded data, BER 10-3  
Table 10. Receiver sensitivity as function of current consumption  
19. Power management  
A
typical power-on and initialising  
CC1000 offers great flexibility for power  
management in order to meet strict power  
consumption requirements in battery  
operated applications. Power Down mode  
is controlled through the MAIN register.  
There are separate bits to control the RX  
part, the TX part, the frequency  
synthesiser and the crystal oscillator (see  
page 39). This individual control can be  
used to optimise for lowest possible  
sequence for minimum power  
consumption is shown in Figure 18 and  
Figure 19.  
PALE should be tri-stated or set to a high  
level during power down mode in order to  
prevent a trickle current from flowing in the  
internal pull-up resistor.  
PA_POW should be set to 00h before  
power down mode to ensure lowest  
possible leakage current.  
current consumption in  
application.  
a
certain  
SWRS048A  
Page 28 of 55  
 
 
CC1000  
Power Off  
Power turned on  
Initialise and reset CC1000  
MAIN:  
RXTX = 0  
Reset and turning on the  
crystal oscillator core  
F_REG = 0  
RX_PD = 1  
TX_PD = 1  
FS_PD = 1  
CORE_PD = 0  
BIAS_PD = 1  
RESET_N = 0  
*Time to wait depends on the crystal frequency  
and the load capacitance  
MAIN: RESET_N = 1  
Wait 2 ms*  
Frequency register A is used for  
RX mode, register B for TX  
Program all registers except MAIN  
Calibrate VCO and PLL  
Calibration is performed according  
to single calibration algorithm for both  
RX and TX mode  
MAIN: RX_PD = 1, TX_PD = 1, FS_PD = 1,  
CORE_PD = 1, BIAS_PD = 1  
PA_POW = 00h  
Power Down  
Figure 18. Initializing sequence  
SWRS048A  
Page 29 of 55  
CC1000  
Power Down  
Turn on crystal oscillator core  
MAIN: CORE_PD = 0  
Wait 2 ms*  
*Time to wait depends on the crystal frequency  
and the load capacitance  
Turn on bias generator  
BIAS_PD = 0  
Wait 200 µs  
RX  
TX  
RX or TX?  
Turn on RX:  
Turn on TX:  
MAIN: RXTX = 0, F_REG = 0  
RX_PD = 0, FS_PD = 0  
CURRENT = ‘RX current’  
PLL = ’RX pll’  
PA_POW = 00h  
MAIN: RXTX = 1, F_REG = 1  
TX_PD = 0, FS_PD = 0  
CURRENT = ‘TX current’  
PLL = ’RX pll’  
Wait 250 µs  
Wait 250 µs  
RX mode  
PA_POW = ‘Output power’  
Wait 20 µs  
Turn off RX:  
MAIN: RX_PD = 1, FS_PD = 1,  
CORE_PD=1, BIAS_PD=1  
TX mode  
Turn off TX:  
Power Down  
MAIN: TX_PD = 1, FS_PD = 1,  
CORE_PD=1, BIAS_PD=1  
PA_POW = 00h  
Power Down  
Figure 19. Sequence for activating RX or TX mode  
SWRS048A  
Page 30 of 55  
CC1000  
20. Input / Output Matching  
A
few passive external components  
Component values for various frequencies  
are given in Table 1. Component values  
for other frequencies can be found using  
the configuration software.  
combined with the internal T/R switch  
circuitry ensures match in both RX and TX  
mode. The matching network is shown in  
Figure 20.  
C31  
RF_IN  
TO ANTENNA  
RF_OUT  
CC1000  
C42  
C41  
L41  
L32  
AVDD=3V  
Figure 20. Input/output matching network  
SWRS048A  
Page 31 of 55  
 
CC1000  
21. Output power programming  
The RF output power is programmable  
and controlled by the PA_POW register.  
Table 11 shows the closest programmable  
value for output powers in steps of 1 dB.  
The typical current consumption is also  
shown.  
In power down mode the PA_POW should  
be set to 00h for minimum leakage  
current.  
Output power  
[dBm]  
RF frequency 433 MHz  
RF frequency 868 MHz  
PA_POW  
[hex]  
Current consumption,  
typ. [mA]  
PA_POW  
[hex]  
Current consumption,  
typ. [mA]  
-20  
-19  
-18  
-17  
-16  
-15  
-14  
-13  
-12  
-11  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
01  
6.9  
6.9  
7.1  
7.1  
7.1  
7.4  
7.4  
7.4  
7.6  
7.6  
7.9  
7.9  
8.2  
8.4  
8.7  
8.9  
9.6  
02  
8.6  
8.8  
9.0  
9.0  
9.1  
9.3  
9.3  
9.5  
01  
02  
02  
02  
03  
03  
03  
04  
04  
05  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0E  
0F  
40  
50  
50  
60  
70  
80  
90  
C0  
E0  
FF  
02  
03  
03  
04  
05  
05  
06  
07  
08  
09  
0B  
0C  
0D  
0F  
40  
50  
50  
60  
70  
80  
90  
B0  
C0  
F0  
FF  
9.7  
9.9  
10.1  
10.4  
10.6  
10.8  
11.1  
13.8  
14.5  
14.5  
15.1  
15.8  
16.8  
17.2  
18.5  
19.2  
21.3  
25.4  
9.4  
9.7  
10.2  
10.4  
11.8  
12.8  
12.8  
13.8  
14.8  
15.8  
16.8  
20.0  
22.1  
26.7  
0
1
2
3
4
5
6
7
8
9
10  
Table 11. Output power settings and typical current consumption  
SWRS048A  
Page 32 of 55  
 
CC1000  
22. RSSI output  
The RSSI measures the power referred to  
the RF_IN pin. The input power can be  
calculated using the following equations:  
CC1000 has a built-in RSSI (Received  
Signal Strength Indicator) giving an  
analogue output signal at the RSSI/IF pin.  
The IF_RSSI bits in the FRONT_END  
register enable the RSSI. When the RSSI  
function is enabled, the output current of  
this pin is inversely proportional to the  
input signal level. The output should be  
terminated in a resistor to convert the  
current output into a voltage. A capacitor  
is used in order to low-pass filter the  
signal.  
P = -51.3 VRSSI– 49.2 [dBm] at 433 MHz  
P = -50.0 VRSSI– 45.5 [dBm] at 868 MHz  
The external network for RSSI operation is  
shown in Figure 21. R281 = 27 k, C281  
= 1nF.  
A typical plot of RSSI voltage as function  
of input power is shown in Figure 22.  
The RSSI voltage range from 0 – 1.2 V  
when using a 27 kterminating resistor,  
giving approximately 50 dB/V. This RSSI  
voltage can be measured by an A/D  
converter. Note that a higher voltage  
means  
a
lower  
input  
signal.  
1.3  
1.2  
1.1  
1
433Mhz  
868Mhz  
RSSI/IF  
C281  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TO ADC  
CC1000  
R281  
-105 -100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50  
dBm  
Figure 22. RSSI voltage vs. input power  
Figure 21. RSSI circuit  
SWRS048A  
Page 33 of 55  
 
 
CC1000  
23. IF output  
CC1000 has a built-in 10.7 MHz IF output  
The external network provides 330 Ω  
source impedance for the 10.7 MHz  
ceramic filter.  
buffer. This buffer could be applied in  
narrowband  
applications  
with  
requirements on mirror image filtering.  
The system is then built with CC1000, a  
10.7 MHz ceramic filter and an external  
10.7 MHz demodulator.  
The external  
network for IF output operation is shown in  
Figure 23. R281 = 470 , C281 = 3.3nF.  
RSSI/IF  
To 10.7MHz filter  
and demodulator  
CC1000  
C281  
R281  
Figure 23. IF output circuit  
SWRS048A  
Page 34 of 55  
 
CC1000  
24. Crystal oscillator  
CC1000 has an advanced amplitude  
regulated crystal oscillator. A high current  
is used to start up the oscillations. When  
the amplitude builds up, the current is  
reduced to what is necessary to maintain  
a 600 mVpp amplitude. This ensures a  
Using the internal crystal oscillator, the  
crystal must be connected between  
XOSC_Q1 and XOSC_Q2. The oscillator  
is designed for parallel mode operation of  
the crystal. In addition loading capacitors  
(C171 and C181) for the crystal are  
required. The loading capacitor values  
depend on the total load capacitance, CL,  
specified for the crystal. The total load  
capacitance seen between the crystal  
terminals should equal CL for the crystal to  
oscillate at the specified frequency.  
fast  
start-up,  
keeps  
the  
current  
consumption as well as the drive level to a  
minimum and makes the oscillator  
insensitive to ESR variations.  
An external clock signal or the internal  
crystal oscillator can be used as main  
frequency reference. An external clock  
signal should be connected to XOSC_Q1,  
while XOSC_Q2 should be left open. The  
XOSC_BYPASS bit in the FRONT_END  
register should be set when an external  
clock signal is used.  
1
CL =  
+ Cparasitic  
1
1
+
C171 C181  
The parasitic capacitance is constituted by  
pin input capacitance and PCB stray  
capacitance. Typically the total parasitic  
capacitance is 8 pF. A trimming capacitor  
may be placed across C171 for initial  
tuning if necessary.  
The crystal frequency should be in the  
range 3-4, 6-8 or 9-16 MHz. Because the  
crystal frequency is used as reference for  
the data rate (as well as other internal  
functions), the following frequencies are  
recommended: 3.6864, 7.3728, 11.0592  
or 14.7456 MHz. These frequencies will  
give accurate data rates. The crystal  
The crystal oscillator circuit is shown in  
Figure 24. Typical component values for  
different values of CL are given in Table  
12.  
frequency  
range  
is  
selected  
by  
XOSC_FREQ1:0 in the MODEM0 register.  
The initial tolerance, temperature drift,  
ageing and load pulling should be carefully  
specified in order to meet the required  
To operate in synchronous mode at data  
rates different from the standards at 1.2,  
2.4, 4.8 kBaud and so on, the crystal  
frequency can be scaled. The data rate  
(DR) will change proportionally to the new  
crystal frequency (f). To calculate the new  
crystal frequency:  
frequency  
application. By specifying the total  
expected frequency accuracy in  
accuracy  
in  
a
certain  
SmartRF® Studio together with data rate  
and frequency separation, the software  
will calculate the total bandwidth and  
compare to the available IF bandwidth.  
DRnew  
fxtal _ new = fxtal  
DR  
XOSC_Q1  
XOSC_Q2  
XTAL  
C181  
C171  
Figure 24. Crystal oscillator circuit  
Item  
C171  
C181  
CL= 12 pF  
6.8 pF  
6.8 pF  
CL= 16 pF  
18 pF  
18 pF  
CL= 22 pF  
33 pF  
33 pF  
Table 12. Crystal oscillator component values  
SWRS048A  
Page 35 of 55  
 
 
CC1000  
25. Optional LC Filter  
An optional LC filter may be added  
between the antenna and the matching  
network in certain applications. The filter  
will reduce the emission of harmonics and  
increase the receiver selectivity.  
The filter topology is shown in Figure 25.  
Component values are given in Table 13.  
The filter is designed for 50  
terminations. The component values may  
have to be tuned to compensate for layout  
parasitics.  
L71  
C71  
C72  
Figure 25. LC filter  
Item  
C71  
C72  
L71  
315 MHz  
30 pF  
30 pF  
433 MHz  
20 pF  
20 pF  
868 MHz  
10 pF  
10 pF  
915 MHz  
10 pF  
10 pF  
15 nH  
12 nH  
5.6 nH  
4.7 nH  
Table 13. LC filter component values  
SWRS048A  
Page 36 of 55  
 
 
CC1000  
26. System Considerations and Guidelines  
TCXO and trimming in some applications.  
In less demanding applications a crystal  
with low temperature drift and low ageing  
26.1 SRD regulations  
International regulations and national laws  
regulate the use of radio receivers and  
transmitters. SRDs (Short Range Devices)  
for licence free operation are allowed to  
operate in the 433 and 868-870 MHz  
bands in most European countries. In the  
United States such devices operate in the  
260–470 and 902-928 MHz bands. CC1000  
is designed to meet the requirements for  
operation in all these bands. A summary  
of the most important aspects of these  
regulations can be found in Application  
Note AN001 SRD regulations for licence  
free transceiver operation, available from  
Chipcon’s web site.  
could  
be  
used  
without  
further  
compensation. A trimmer capacitor in the  
crystal oscillator circuit (in parallel with  
C171) could be used to set the initial  
frequency accurately. The fine frequency  
step programming cannot be used in RX  
mode if optimised frequency settings are  
required (see page 24).  
26.5 High reliability systems  
Using a SAW filter as a preselector will  
improve the communication reliability in  
harsh environments by reducing the  
probability of blocking. The receiver  
sensitivity and the output power will be  
reduced due to the filter insertion loss. By  
inserting the filter in the RX path only,  
together with an external RX/TX switch,  
only the receiver sensitivity is reduced,  
and output power is remained. The  
CHP_OUT (LOCK) pin can be configured  
to control an external LNA, RX/TX switch  
or power amplifier. This is controlled by  
LOCK_SELECT in the LOCK register.  
26.2 Low cost systems  
In systems where low cost is of great  
importance the CC1000 is the ideal choice.  
Very few external components keep the  
total cost at a minimum. The oscillator  
crystal can then be a low cost crystal with  
50 ppm frequency tolerance.  
26.3 Battery operated systems  
In low power applications the power down  
mode should be used when not being  
active. Depending on the start-up time  
requirement, the oscillator core can be  
powered during power down. See page 28  
for information on how effective power  
management can be implemented.  
26.6 Frequency hopping spread  
spectrum systems  
Due to the very fast frequency shift  
properties of the PLL, the CC1000 is also  
suitable for frequency hopping systems.  
Hop rates of 1-100 hops/s are usually  
used depending on the bit rate and the  
amount of data to be sent during each  
transmission. The two frequency registers  
(FREQ_A and FREQ_B) are designed  
such that the ‘next’ frequency can be  
programmed while the ‘present’ frequency  
is used. The switching between the two  
frequencies is done through the MAIN  
register.  
26.4 Crystal drift compensation  
A unique feature in CC1000 is the very fine  
frequency resolution of 250 Hz. This can  
be used to do the temperature  
compensation of the crystal if the  
temperature drift curve is known and a  
temperature sensor is included in the  
system. Even initial adjustment can be  
done using the frequency programmability.  
This eliminates the need for an expensive  
SWRS048A  
Page 37 of 55  
CC1000  
27. PCB Layout Recommendations  
Chipcon provide reference layouts that  
should be followed in order to achieve the  
best performance. The Chipcon reference  
devices are required. The VCO inductor  
must be placed as close as possible to the  
chip and symmetrical with respect to the  
input pins.  
design  
(CC1000PP  
and  
CC1000uCSP_EM) can be downloaded  
from the Chipcon website.  
Precaution should be used when placing  
the microcontroller in order to avoid  
interference with the RF circuitry.  
A two layer PCB is highly recommended.  
The bottom layer of the PCB should be the  
“ground-layer”.  
In certain applications where the ground  
plane for the digital circuitry is expected to  
be noisy, the ground plane may be split in  
an analogue and a digital part. All AGND  
pins and AVDD de-coupling capacitors  
should be connected to the analogue  
ground plane. All DGND pins and DVDD  
The top layer should be used for signal  
routing, and the open areas should be  
filled with  
etallization connected to  
ground using several vias.  
The ground pins should be connected to  
ground as close as possible to the  
package pin using individual vias. The de-  
coupling capacitors should also be placed  
as close as possible to the supply pins  
and connected to the ground plane by  
separate vias.  
de-coupling  
capacitors  
should  
be  
connected to the digital ground. The  
connection between the two ground  
planes should be implemented as a star  
connection with the power supply ground.  
A development kit with a fully assembled  
PCB is available, and can be used as a  
guideline for layout.  
The external components should be as  
small as possible and surface mount  
28. Antenna Considerations  
difficult impedance matching because of  
their very low radiation resistance.  
CC1000 can be used together with various  
types of antennas. The most common  
antennas for short range communication  
are monopole, helical and loop antennas.  
For low power applications the λ/4-  
monopole antenna is recommended giving  
the best range and because of its  
simplicity.  
Monopole  
antennas  
are  
resonant  
antennas with a length corresponding to  
one quarter of the electrical wavelength  
(λ/4). They are very easy to design and  
can be implemented simply as a “piece of  
wire” or even integrated into the PCB.  
The length of the λ/4-monopole antenna is  
given by:  
L = 7125 / f  
Non-resonant monopole antennas shorter  
than λ/4 can also be used, but at the  
expense of range. In size and cost critical  
applications such an antenna may very  
well be integrated into the PCB.  
where f is in MHz, giving the length in cm.  
An antenna for 869 MHz should be 8.2  
cm, and 16.4 cm for 434 MHz.  
The antenna should be connected as  
close as possible to the IC. If the antenna  
is located away from the input pin the  
antenna should be matched to the feeding  
transmission line (50 ).  
Helical antennas can be thought of as a  
combination of a monopole and a loop  
antenna. They are a good compromise in  
size critical applications. But helical  
antennas tend to be more difficult to  
optimise than the simple monopole.  
For a more thorough primer on antennas,  
please refer to Application Note AN003  
SRD Antennas available from Chipcon’s  
web site.  
Loop antennas are easy to integrate into  
the PCB, but are less effective due to  
SWRS048A  
Page 38 of 55  
CC1000  
29. Configuration registers  
Studio software. A complete description of  
the registers are given in the following  
tables. After a RESET is programmed all  
the registers have default values.  
The configuration of CC1000 is done by  
programming 22 8-bit configuration  
registers. The configuration data based on  
selected system parameters are most  
easily found by using the SmartRF®  
REGISTER OVERVIEW  
ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
Byte Name  
MAIN  
Description  
MAIN Register  
FREQ_2A  
FREQ_1A  
FREQ_0A  
FREQ_2B  
FREQ_1B  
FREQ_0B  
FSEP1  
Frequency Register 2A  
Frequency Register 1A  
Frequency Register 0A  
Frequency Register 2B  
Frequency Register 1B  
Frequency Register 0B  
Frequency Separation Register 1  
Frequency Separation Register 0  
Current Consumption Control Register  
FSEP0  
CURRENT  
FRONT_END Front End Control Register  
PA_POW  
PLL  
PA Output Power Control Register  
PLL Control Register  
LOCK Status Register and signal select to CHP_OUT (LOCK) pin  
VCO Calibration Control and Status Register  
Modem Control Register 2  
Modem Control Register 1  
Modem Control Register 0  
Match Capacitor Array Control Register for RX and TX impedance matching  
LOCK  
CAL  
MODEM2  
MODEM1  
MODEM0  
MATCH  
FSCTRL  
Frequency Synthesiser Control Register  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PRESCALER Prescaler and IF-strip test control register  
TEST6  
TEST5  
TEST4  
TEST3  
TEST2  
TEST1  
TEST0  
Test register for PLL LOOP  
Test register for PLL LOOP  
Test register for PLL LOOP (must be updated as specified)  
Test register for VCO  
Test register for Calibration  
Test register for Calibration  
Test register for Calibration  
SWRS048A  
Page 39 of 55  
CC1000  
MAIN Register (00h)  
REGISTER  
NAME  
Default Active Description  
value  
MAIN[7]  
MAIN[6]  
RXTX  
F_REG  
-
-
-
-
RX/TX switch, 0 : RX , 1 : TX  
Selection of Frequency Register, 0 : Register A, 1 :  
Register B  
MAIN[5]  
RX_PD  
-
H
Power Down of LNA, Mixer, IF, Demodulator, RX part of  
Signal Interface  
MAIN[4]  
MAIN[3]  
MAIN[2]  
MAIN[1]  
TX_PD  
FS_PD  
CORE_PD  
BIAS_PD  
-
-
-
-
H
H
H
H
Power Down of TX part of Signal Interface, PA  
Power Down of Frequency Synthesiser  
Power Down of Crystal Oscillator Core  
Power Down of BIAS (Global_Current_Generator)  
and Crystal Oscillator Buffer  
MAIN[0]  
RESET_N  
-
L
Reset, active low. Writing RESET_N low will write default  
values to all other registers than MAIN. Bits in MAIN do  
not have a default value, and will be written directly  
through the configurations interface. Must be set high to  
complete reset.  
FREQ_2A Register (01h)  
REGISTER  
NAME  
Default  
Active Description  
value  
FREQ_2A[7:0]  
FREQ_A[23:16]  
01110101  
-
8 MSB of frequency control word A  
FREQ_1A Register (02h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_1A[7:0]  
FREQ_A[15:8]  
10100000  
-
Bit 15 to 8 of frequency control word A  
FREQ_0A Register (03h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_0A[7:0]  
FREQ_A[7:0]  
11001011  
-
8 LSB of frequency control word A  
FREQ_2B Register (04h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_2B[7:0]  
FREQ_B[23:16]  
01110101  
-
8 MSB of frequency control word B  
FREQ_1B Register (05h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_1B[7:0]  
FREQ_B[15:8]  
10100101  
-
Bit 15 to 8 of frequency control word B  
FREQ_0B Register (06h)  
REGISTER  
NAME  
Default  
value  
Active Description  
FREQ_0B[7:0]  
FREQ_B[7:0]  
01001110  
-
8 LSB of frequency control word B  
FSEP1 Register (07h)  
REGISTER  
NAME  
-
Default  
value  
-
Active Description  
FSEP1[7:3]  
-
-
Not used  
FSEP1[2:0]  
FSEP_MSB[2:0]  
000  
3 MSB of frequency separation control  
FSEP0 Register (08h)  
REGISTER  
NAME  
FSEP_LSB[7:0]  
Default  
value  
01011001  
Active Description  
8 LSB of frequency separation control  
FSEP0[7:0]  
-
SWRS048A  
Page 40 of 55  
CC1000  
CURRENT Register (09h)  
REGISTER  
NAME  
Default Active Description  
value  
CURRENT[7:4]  
VCO_CURRENT[3:0]  
1100  
-
Control of current in VCO core for TX and RX  
0000 : 150µA  
0001 : 250µA  
0010 : 350µA  
0011 : 450µA  
0100 : 950µA, use for RX, f= 400 – 500 MHz  
0101 : 1050µA  
0110 : 1150µA  
0111 : 1250µA  
1000 : 1450µA, use for RX, f<400 MHz and f>500  
MHz; and TX, f= 400 – 500 MHz  
1001 : 1550µA, use for TX, f<400 MHz  
1010 : 1650µA  
1011 : 1750µA  
1100 : 2250µA  
1101 : 2350µA  
1110 : 2450µA  
1111 : 2550µA, use for TX, f>500 MHz  
CURRENT[3:2]  
CURRENT[1:0]  
LO_DRIVE[1:0]  
PA_DRIVE[1:0]  
10  
10  
Control of current in VCO buffer for LO drive  
00 : 0.5mA, use for TX  
01 : 1.0mA , use for RX, f<500 MHz*  
10 : 1.5mA,  
11 : 2.0mA, use for RX, f>500 MHz *  
* LO_DRIVE can be reduced to save current in  
RX mode. See Table 10 for details  
Control of current in VCO buffer for PA  
00 : 1mA, use for RX  
01 : 2mA, use for TX, f<500 MHz  
10 : 3mA  
11 : 4mA, use for TX, f>500 MHz  
FRONT_END Register (0Ah)  
REGISTER  
NAME  
Default Active Description  
value  
FRONT_END[7:6]  
FRONT_END[5]  
-
00  
0
-
-
Not used  
BUF_CURRENT  
Control of current in the LNA_FOLLOWER  
0 : 520uA, use for f<500 MHz  
1 : 690uA, use for f>500 MHz *  
*BUF_CURRENT can be reduced to save  
current in RX mode. See Table 10 for details.  
Control of current in LNA  
00 : 0.8mA, use for f<500 MHz *  
01 : 1.4mA  
FRONT_END[4:3]  
LNA_CURRENT  
[1:0]  
01  
-
10 : 1.8mA, use for f>500 MHz *  
11 : 2.2mA  
*LNA_CURRENT can be reduced to save  
current in RX mode. See Table 10 for details.  
Control of IF_RSSI pin  
00 : Internal IF and demodulator, RSSI inactive  
01 : RSSI active, RSSI/IF is analog RSSI output  
10 : External IF and demodulator, RSSI/IF is  
mixer output. Internal IF in power down mode.  
11 : Not used  
FRONT_END[2:1]  
FRONT_END[0]  
IF_RSSI[1:0]  
00  
0
-
-
XOSC_BYPASS  
0 : Internal XOSC enabled  
1 : Power-Down of XOSC, external CLK used  
SWRS048A  
Page 41 of 55  
CC1000  
PA_POW Register (0Bh)  
REGISTER  
NAME  
Default  
value  
0000  
Active Description  
PA_POW[7:4]  
PA_POW[3:0]  
PA_HIGHPOWER[3:0]  
PA_LOWPOWER[3:0]  
-
-
Control of output power in high power array.  
Should be 0000 in PD mode . See Table 11  
page 32 for details.  
Control of output power in low power array  
Should be 0000 in PD mode. See Table 11  
page 32 for details.  
1111  
PLL Register (0Ch)  
REGISTER  
NAME  
Default  
value  
Active Description  
PLL[7]  
EXT_FILTER  
0
-
1 : External loop filter  
0 : Internal loop filter  
1-to-0 transition samples F_COMP  
comparator when BREAK_LOOP=1  
(TEST3)  
PLL[6:3]  
REFDIV[3:0]  
0010  
-
Reference divider  
0000 : Not allowed  
0001 : Not allowed  
0010 : Divide by 2  
0011 : Divide by 3  
…........  
1111 : Divide by 15  
PLL[2]  
PLL[1]  
PLL[0]  
ALARM_DISABLE  
ALARM_H  
0
-
h
-
0 : Alarm function enabled  
1 : Alarm function disabled  
Status bit for tuning voltage out of range  
(too close to VDD)  
Status bit for tuning voltage out of range  
(too close to GND)  
ALARM_L  
-
-
SWRS048A  
Page 42 of 55  
CC1000  
LOCK Register (0Dh)  
REGISTE  
R
LOCK[7:4]  
NAME  
Default  
value  
0000  
Active Description  
LOCK_SELECT[3:0]  
-
Selection of signals to CHP_OUT (LOCK) pin  
0000 : Normal, pin can be used as CHP_OUT  
0001 : LOCK_CONTINUOUS (active high)  
0010 : LOCK_INSTANT (active high)  
0011 : ALARM_H (active high)  
0100 : ALARM_L (active high)  
0101 : CAL_COMPLETE (active high)  
0110 : IF_OUT  
0111 : REFERENCE_DIVIDER Output  
1000 : TX_PDB (active high, activates external PA  
when TX_PD=0)  
1001 : Manchester Violation (active high)  
1010 : RX_PDB (active high, activates external  
LNA when RX_PD=0)  
1011 : Not defined  
1100 : Not defined  
1101 : LOCK_AVG_FILTER  
1110 : N_DIVIDER Output  
1111 : F_COMP  
LOCK[3]  
LOCK[2]  
PLL_LOCK_  
ACCURACY  
0
0
-
-
0 : Sets Lock Threshold = 127, Reset Lock  
Threshold = 111. Corresponds to a worst case  
accuracy of 0.7%  
1 : Sets Lock Threshold = 31, Reset Lock  
Threshold =15. Corresponds to a worst case  
accuracy of 2.8%  
0 : Normal PLL lock window  
1 : Not used  
PLL_LOCK_  
LENGTH  
LOCK[1]  
LOCK[0]  
LOCK_INSTANT  
LOCK_CONTINUOUS  
-
-
-
-
Status bit from Lock Detector  
Status bit from Lock Detector  
CAL Register (0Eh)  
REGISTER  
NAME  
Default  
Active Description  
value  
CAL[7]  
CAL_START  
0
1 : Calibration started  
0 : Calibration inactive  
CAL_START must be set to 0 after  
calibration is done  
CAL[6]  
CAL[5]  
CAL_DUAL  
CAL_WAIT  
0
0
H
H
1 : Store calibration in both A and B  
0 : Store calibration in A or B defined by  
MAIN[6]  
1 : Normal Calibration Wait Time  
0 : Half Calibration Wait Time  
The calibration time is proportional to the  
internal reference frequency. 2 MHz  
reference frequency gives 14 ms wait time.  
1 : Calibration Current Doubled  
0 : Normal Calibration Current  
Status bit defining that calibration is  
complete  
CAL[4]  
CAL[3]  
CAL_CURRENT  
CAL_COMPLETE  
CAL_ITERATE  
0
0
H
H
H
CAL[2:0]  
101  
Iteration start value for calibration DAC  
000 – 101: Not used  
110 : Normal start value  
111 : Not used  
SWRS048A  
Page 43 of 55  
CC1000  
MODEM2 Register (0Fh)  
REGISTER  
NAME  
Default  
value  
1
Active Description  
MODEM2[7]  
PEAKDETECT  
H
Peak Detector and Remover disabled or  
enabled  
0 : Peak detector and remover is  
disabled  
1 : Peak detector and remover is  
enabled  
MODEM2[6:0] PEAK_LEVEL_OFFSET[6:0]  
Note: PEAK_LEVEL_OFFSET[6:0] =  
0010110  
where  
-
Threshold level for Peak Remover in  
Demodulator. Correlated to frequency  
deviation, see note.  
f _ xosc  
Fs  
Fs  
f  
5
8
Fs =  
XOSC _ FREQ +1  
IF  
low  
IF  
+
low  
2
and  
and f is the separation  
IF = 150kHz2f _ rf XTAL_ accuracy  
low  
MODEM1 Register (10h)  
REGISTER  
NAME  
Default Active Description  
value  
MODEM1[7:5]  
MLIMIT  
011  
-
Sets the limit for the Manchester Violation Flag.  
A Manchester Value = 14 is a perfect bit and a  
Manchester Value = 0 is a constant level (an  
unbalanced corrupted bit)  
000 : No Violation Flag is set  
001 : Violation Flag is set for Manchester Value < 1  
010 : Violation Flag is set for Manchester Value < 2  
011 : Violation Flag is set for Manchester Value < 3  
100 : Violation Flag is set for Manchester Value < 4  
101 : Violation Flag is set for Manchester Value < 5  
110 : Violation Flag is set for Manchester Value < 6  
111 : Violation Flag is set for Manchester Value < 7  
MODEM1[4]  
MODEM1[3]  
LOCK_AVG_IN  
0
0
H
-
Lock control bit of Average Filter  
0 : Average Filter is free-running  
1 : Average Filter is locked  
Automatic lock of Average Filter  
LOCK_AVG_MODE  
0 : Lock of Average Filter is controlled automatically  
1 : Lock of Average Filter is controlled by  
LOCK_AVG_IN  
MODEM1[2:1]  
SETTLING[1:0]  
11  
-
Settling Time of Average Filter  
00 : 11 baud settling time, worst case 1.2dB loss in  
sensitivity  
01 : 22 baud settling time, worst case 0.6dB loss in  
sensitivity  
10 : 43 baud settling time, worst case 0.3dB loss in  
sensitivity  
11 : 86 baud settling time, worst case 0.15dB loss in  
sensitivity  
MODEM1[0]  
MODEM_RESET_N  
1
L
Separate reset of MODEM  
SWRS048A  
Page 44 of 55  
CC1000  
MODEM0 Register (11h)  
REGISTER  
NAME  
-
Default Active Description  
value  
MODEM0[7]  
-
-
-
Not used  
MODEM0[6:4]  
BAUDRATE[2:0]  
010  
000 : 0.6 kBaud  
001 : 1.2 kBaud  
010 : 2.4 kBaud  
011 : 4.8 kBaud  
100 : 9.6 kBaud  
101 : 19.2, 38.4 and 76.8 kBaud  
110 : Not used  
111 : Not used  
MODEM0[3:2] DATA_FORMAT[1:0]  
01  
00  
-
-
00 : NRZ operation.  
01 : Manchester operation  
10 : Transparent Asyncronous UART operation  
11 : Not used  
Selection of XTAL frequency range  
00 : 3MHz – 4MHz crystal, 3.6864MHz  
recommended  
MODEM0[1:0]  
XOSC_FREQ[1:0]  
Also used for 76.8 kBaud, 14.7456MHz  
01 : 6MHz – 8MHz crystal, 7.3728MHz  
recommended  
Also used for 38.4 kBaud, 14.7456MHz  
10 : 9MHz – 12MHz crystal, 11.0592 MHz  
recommended  
11 : 12MHz – 16MHz crystal, 14.7456MHz  
recommended  
MATCH Register (12h)  
REGISTER  
NAME  
Default  
value  
0000  
Active Description  
MATCH[7:4]  
RX_MATCH[3:0]  
-
Selects matching capacitor array value for  
RX, step size is 0.4 pF  
0001: Use for RF frequency > 500 MHz  
0111: Use for RF frequency < 500 MHz  
Selects matching capacitor array value for  
TX, step size is 0.4 pF  
MATCH[3:0]  
TX_MATCH[3:0]  
0000  
-
FSCTRL Register (13h)  
REGISTER  
NAME  
-
Default Active Description  
value  
FSCTRL[7:4]  
FSCTRL[3:1]  
-
-
Not used  
Reserved  
FSCTRL[0]  
FS_RESET_N  
1
L
Separate reset of frequency synthesizer  
SWRS048A  
Page 45 of 55  
CC1000  
PRESCALER Register (1Ch)  
REGISTER  
NAME  
Default Active Description  
value  
PRESCALER[7:6]  
PRE_SWING[1:0]  
00  
-
Prescaler swing. Fractions for  
PRE_CURRENT[1:0] = 00  
00 : 1 * Nominal Swing  
01 : 2/3 * Nominal Swing  
10 : 7/3 * Nominal Swing  
11 : 5/3 * Nominal Swing  
Prescaler current scaling  
PRESCALER[5:4]  
PRE_CURRENT  
[1:0]  
00  
-
00 : 1 * Nominal Current  
01 : 2/3 * Nominal Current  
10 : 1/2 * Nominal Current  
11 : 2/5 * Nominal Current  
0 : Nominal setting  
1 : RSSI/IF pin is input to IF-strips  
0 : Nominal setting  
PRESCALER[3]  
PRESCALER[2]  
IF_INPUT  
0
0
-
-
IF_FRONT  
1 : Output of IF_Front_amp is switched to  
RSSI/IF pin  
PRESCALER[1:0]  
-
00  
-
Not used  
TEST6 Register (for test only, 40h)  
REGISTER  
NAME  
Default  
value  
0
Active Description  
TEST6[7]  
LOOPFILTER_TP1  
LOOPFILTER_TP2  
CHP_OVERRIDE  
CHP_CO[4:0]  
-
-
-
-
1 : Select testpoint 1 to CHP_OUT  
0 : CHP_OUT tied to GND  
1 : Select testpoint 2 to CHP_OUT  
0 : CHP_OUT tied to GND  
1 : use CHP_CO[4:0] value  
0 : use calibrated value  
TEST6 [6]  
TEST6 [5]  
TEST6[4:0]  
0
0
10000  
Charge_Pump Current DAC override value  
TEST5 Register (for test only, 41h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST5[7:6]  
TEST5[5]  
-
-
0
-
-
Not used  
CHP_DISABLE  
1 : CHP up and down pulses disabled  
0 : normal operation  
TEST5[4]  
VCO_OVERRIDE  
VCO_AO[3:0]  
0
-
-
1 : use VCO_AO[2:0] value  
0 : use calibrated value  
VCO_ARRAY override value  
TEST5[3:0]  
1000  
TEST4 Register (for test only, 42h)  
REGISTER  
NAME  
Default  
value  
-
Active Description  
TEST4[7:6]  
TEST4[5:0]  
-
-
Not used  
L2KIO[5:0]  
100101  
h
Constant setting charge pump current  
scaling/rounding factor. Sets Bandwidth of  
PLL. Use 3Fh for 9.6 kBaud and higher  
SWRS048A  
Page 46 of 55  
CC1000  
TEST3 Register (for test only, 43h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST3[7:5]  
TEST3[4]  
-
-
0
-
-
Not used  
1 : PLL loop open  
0 : PLL loop closed  
BREAK_LOOP  
TEST3[3:0]  
CAL_DAC_OPEN  
0100  
-
Calibration DAC override value, active when  
BREAK_LOOP =1  
TEST2 Register (for test only, 44h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST2[7:5]  
TEST2[4:0]  
-
-
-
-
-
Not used  
Status vector defining applied  
CHP_CURRENT value  
CHP_CURRENT  
[4:0]  
TEST1 Register (for test only, 45h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST1[7:4]  
TEST1[3:0]  
-
-
-
-
-
Not used  
CAL_DAC[3:0]  
Status vector defining applied Calibration  
DAC value  
TEST0 Register (for test only, 46h)  
REGISTER  
NAME  
Default  
Active Description  
value  
TEST0[7:4]  
TEST0[3:0]  
-
-
-
-
-
Not used  
VCO_ARRAY[3:0]  
Status vector defining applied VCO_ARRAY  
value  
SWRS048A  
Page 47 of 55  
CC1000  
30. Package Description (TSSOP-28)  
Note: The figure is an illustration only.  
Thin Shrink Small Outline Package (TSSOP)  
D
E1  
E
A
A1  
e
B
L
Copl.  
α
TSSOP 28  
Min  
9.60  
4.30  
0.05  
0.19  
0.45  
0°  
6.40  
0.65  
Max  
9.80  
4.50  
1.20  
0.15  
0.30  
0.75  
0.10  
8°  
All dimensions in mm  
SWRS048A  
Page 48 of 55  
CC1000  
31. Package Description (UltraCSP™)  
Top view  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
A2  
B2  
A3  
B3  
A4  
B4  
C4  
D4  
E4  
F4  
2339um +/- 20um  
C2  
D2  
C3  
D3  
4034um +/- 20um  
E2  
F2  
G2  
E3  
F3  
500um  
+/- 10um  
G3  
G4  
535um  
+/-20um  
392um  
+/-20um  
500um  
+/- 10um  
417um  
+/-20um  
292um  
+/-20um  
250um  
+/- 10um  
Bump pitch is 500um centre to centre in both directions.  
SWRS048A  
Page 49 of 55  
CC1000  
Vertical cross section (UltraCSP™)  
Before assembly on PCB:  
Die  
A
h1  
Solder bumps (Pb free)  
After assembly on PCB:  
Die  
A
h2  
PCB mounting pads  
Die thickness  
Bump height  
before  
assembly (h1)  
Bump height  
after assembly  
(h2)  
Total height  
before  
assembly  
632um  
Total  
(A)  
height after  
assembly  
572um