欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • CS4351-CZZR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • CS4351-CZZR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • CS4351-CZZR 现货库存
  • 数量3550 
  • 厂家CIRRUSLOGIC 
  • 封装TSSOP20 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • CS4351-CZZR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • CS4351-CZZR
  • 数量85000 
  • 厂家CIRRUS 
  • 封装TSSOP-20 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • CS4351-CZZR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • CS4351-CZZR
  • 数量5325 
  • 厂家CIRRUSLOG 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • CS4351-CZZR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • CS4351-CZZR
  • 数量28000 
  • 厂家CIRRUS 
  • 封装TSSOP-20 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • CS4351-CZZR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • CS4351-CZZR
  • 数量4500 
  • 厂家CIRRUS LOGIC 
  • 封装TSSOP-20 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • CS4351-CZZR图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • CS4351-CZZR
  • 数量12000 
  • 厂家Cirrus Logic 
  • 封装TSSOP-20 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • CS4351-CZZR图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • CS4351-CZZR
  • 数量6000 
  • 厂家Cirrus Logic Inc 
  • 封装20-TSSOP 
  • 批号16+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • CS4351-CZZR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • CS4351-CZZR
  • 数量3685 
  • 厂家CIRRUS 
  • 封装TSSOP-20 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • CS4351-CZZR图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • CS4351-CZZR
  • 数量865000 
  • 厂家CIRRUS 
  • 封装TSSOP-20 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • CS4351-CZZR图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • CS4351-CZZR
  • 数量2075 
  • 厂家CIRRUS LOGIC 
  • 封装TSSOP20 
  • 批号24+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • CS4351-CZZR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • CS4351-CZZR
  • 数量9000 
  • 厂家CIRRUS 
  • 封装TSSOP-20 
  • 批号2021+ 
  • 港瑞电子是实报/实单可以来谈价
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • CS4351-CZZR图
  • 深圳市恒嘉威智能科技有限公司

     该会员已使用本站7年以上
  • CS4351-CZZR
  • 数量25000 
  • 厂家CIRRUS LOGIC 
  • 封装TSSOP20 
  • 批号21+ 
  • 原装正品价格绝对优势
  • QQ:1036846627QQ:1036846627 复制
    QQ:2274045202QQ:2274045202 复制
  • -0755-23942980 QQ:1036846627QQ:2274045202
  • CS4351-CZZR图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • CS4351-CZZR
  • 数量30000 
  • 厂家ATHEROS 
  • 封装QFN 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • CS4351-CZZR图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • CS4351-CZZR
  • 数量22000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • CS4351-CZZR图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • CS4351-CZZR
  • 数量5800 
  • 厂家CIRRUS 
  • 封装20TSSOP 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • CS4351-CZZR图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • CS4351-CZZR
  • 数量20000 
  • 厂家CIRRUS 
  • 封装tssop16 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • CS4351-CZZR图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • CS4351-CZZR
  • 数量9800 
  • 厂家Cirrus Logic(凌云) 
  • 封装TSSOP-20 
  • 批号21+ 
  • TSSOP-20
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • CS4351-CZZR图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • CS4351-CZZR
  • 数量12000 
  • 厂家CIRRUS 
  • 封装TSSOP-20 
  • 批号19+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • CS4351-CZZR/B图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • CS4351-CZZR/B
  • 数量1001 
  • 厂家CIRRUS 
  • 封装SSOP-20 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97671956QQ:97671956 复制
  • 171-4729-1886(微信同号) QQ:97671956
  • CS4351-CZZR图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • CS4351-CZZR
  • 数量1001 
  • 厂家CIRRUS 
  • 封装SSOP-20 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97671956QQ:97671956 复制
  • 171-4729-1886(微信同号) QQ:97671956

产品型号CS4351-CZZR的概述

CS4351-CZZR 芯片概述 CS4351-CZZR 是由 Cirrus Logic 公司生产的一款高性能数字到模拟转换器(DAC)。其广泛应用于音频设备中,尤其在高保真音频应用、音响设备以及数字音频处理器中。在数字音频信号传输日益普及的今天,CS4351-CZZR 凭借其优越的性能和丰富的功能,成为相关工程师和设计人员的首选器件之一。这款芯片支持多种输入格式,能够满足专业音频和消费电子领域的严苛要求。 CS4351-CZZR 的详细参数 CS4351-CZZR 是一款 24 位高精度 DAC,具有高达 192 kHz 的采样率。其主要参数如下: - 类型: 24 位 DAC - 输出类型: 单端和差分输出 - 最大采样率: 192 kHz - 总谐波失真+噪声 (THD+N): 0.0024%(typical) - 动态范围 (DR): 112 dB - 工作电源电压: 5V ±...

产品型号CS4351-CZZR的Datasheet PDF文件预览

CS4351  
192 kHz Stereo DAC with 2 Vrms Line Out  
Features  
Description  
! Multi-Bit Delta-Sigma Modulator  
! 24-Bit Conversion  
The CS4351 is a complete stereo digital-to-analog sys-  
tem including digital interpolation, fifth-order multi-bit  
delta-sigma digital-to-analog conversion, digital de-em-  
phasis, volume control, channel mixing, analog filtering,  
and on-chip 2 Vrms line-level driver. The advantages of  
this architecture include ideal differential linearity, no  
distortion mechanisms due to resistor matching errors,  
no linearity drift over time and temperature, high toler-  
ance to clock jitter, and a minimal set of external  
components.  
! Up to 192 kHz Sample Rates  
! 112 dB Dynamic Range  
! -100 dB THD+N  
! +3.3 V, +9 to 12 V, and VL Power Supplies  
! 2 Vrms Output into 5 kAC Load  
! Digital Volume Control with Soft Ramp  
The CS4351 is available in a 20-pin TSSOP package in  
both Commercial (-10°C - +70°C) and Automotive  
grades (-40°C to +85°C). The CDB4351 Customer  
Demonstration board is also available for device evalu-  
ation and implementation suggestions. Please see  
“Ordering Information” on page 37 for complete details.  
119 dB Attenuation  
1/2 dB Step Size  
Zero Crossing Click-Free Transitions  
! ATAPI Mixing  
These features are ideal for cost-sensitive, 2-channel  
audio systems including DVD players, A/V receivers,  
set-top boxes, digital TVs and VCRs, mini-component  
systems, and mixing consoles.  
! Low Clock Jitter Sensitivity  
! Popguard® Technology for Control of Clicks  
and Pops  
9 V to 12 V  
8V to 3.3V  
3.3 V  
dware or I2C/ SPI  
Cont r ol Dat a  
Register/Hardware  
Configuration  
Reset  
Multibit  
∆Σ Modulator  
Amp  
+
Interpolation  
Fi l t er wi t h  
Volume Control  
2 Vrms Line Level  
DAC  
Left Channel Outpu  
Filter  
PCM  
Serial  
erial Audio Input  
Interface  
Interpolation  
Fi l t er wi t h  
Volume Control  
2 Vrms Line Level  
Right Channel  
Output  
Amp  
+
Filter  
Multibit  
∆Σ Modulator  
DAC  
Auto Speed Mode  
Detect  
Ext er nal  
Mute  
Cont r ol  
Left and Right  
Mute Controls  
Internal Voltage  
Reference  
Copyright © Cirrus Logic, Inc. 2005  
DECEMBER '05  
DS566F1  
(All Rights Reserved)  
http://www.cirrus.com  
CS4351  
TABLE OF CONTENTS  
1. PIN DESCRIPTION ............................................................................................................................... 5  
2. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 6  
SPECIFIED OPERATING CONDITIONS.............................................................................................. 6  
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 6  
DAC ANALOG CHARACTERISTICS .................................................................................................... 7  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ....................................... 8  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ....................................... 9  
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE ...................................................... 10  
®
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT........................................... 11  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI™ FORMAT......................................... 12  
DIGITAL CHARACTERISTICS............................................................................................................ 13  
POWER AND THERMAL CHARACTERISTICS ................................................................................. 13  
3. TYPICAL CONNECTION DIAGRAM .................................................................................................. 14  
4. APPLICATIONS .................................................................................................................................. 15  
4.1 Sample Rate Range/Operational Mode Detect ............................................................................ 15  
4.1.1 Auto-Detect Enabled ........................................................................................................ 15  
4.1.2 Auto-Detect Disabled ....................................................................................................... 15  
4.2 System Clocking ........................................................................................................................... 15  
4.3 Digital Interface Format ................................................................................................................ 16  
4.3.1 Stand-Alone Mode ........................................................................................................... 16  
4.3.2 Control Port Mode ........................................................................................................... 16  
4.4 De-Emphasis Control ................................................................................................................... 17  
4.4.1 Stand-Alone Mode ........................................................................................................... 18  
4.4.2 Control Port Mode ............................................................................................................ 18  
4.5 Recommended Power-Up Sequence ........................................................................................... 18  
4.5.1 Stand-Alone Mode ........................................................................................................... 18  
4.5.2 Control Port Mode ............................................................................................................ 18  
®
4.6 Popguard Transient Control ....................................................................................................... 18  
4.6.1 Power-Up ......................................................................................................................... 18  
4.6.2 Power-Down .................................................................................................................... 19  
4.6.3 Discharge Time ................................................................................................................ 19  
4.7 Mute Control ................................................................................................................................. 19  
4.8 Grounding and Power Supply Arrangements ............................................................................... 19  
4.8.1 Capacitor Placement ........................................................................................................ 19  
4.9 Control Port Interface ................................................................................................................... 20  
4.9.1 MAP Auto Increment ........................................................................................................ 20  
4.9.2 I²C Mode .......................................................................................................................... 20  
4.9.3 SPI Mode ......................................................................................................................... 21  
4.10 Memory Address Pointer (MAP) ................................................................................................. 22  
4.10.1 INCR (Auto Map Increment Enable) .............................................................................. 22  
4.10.2 MAP (Memory Address Pointer) .................................................................................... 22  
5. REGISTER QUICK REFERENCE ....................................................................................................... 23  
6. REGISTER DESCRIPTION ................................................................................................................. 24  
6.1 Chip ID - Register 01h .................................................................................................................. 24  
6.2 Mode Control 1 - Register 02h ..................................................................................................... 24  
6.2.1 Digital Interface Format (DIF2:0) Bits 6-4 ........................................................................ 24  
6.2.2 De-Emphasis Control (DEM1:0) Bits 3-2. ........................................................................ 24  
6.2.3 Functional Mode (FM) Bits 1-0 ......................................................................................... 25  
6.3 Volume Mixing and Inversion Control - Register 03h ................................................................... 25  
6.3.1 Channel A Volume = Channel B Volume (VOLB=A) Bit 7 ............................................... 25  
6.3.2 Invert Signal Polarity (Invert_A) Bit 6 ............................................................................... 25  
6.3.3 Invert Signal Polarity (Invert_B) Bit 5 ............................................................................... 25  
2
DS566F1  
CS4351  
6.3.4 ATAPI Channel Mixing and Muting (ATAPI3:0) Bits 3-0 .................................................. 26  
6.4 Mute Control - Register 04h ........................................................................................................ 27  
6.4.1 Auto-Mute (AMUTE) Bit 7 ................................................................................................ 27  
6.4.2 AMUTEC = BMUTEC (MUTEC A=B) Bit 5 ...................................................................... 27  
6.4.3 A Channel Mute (MUTE_A) Bit 4  
B Channel Mute (MUTE_B) Bit 3 .................................................................................... 27  
6.5 Channel A Volume Control - Register 05h  
Channel B Volume Control - Register 06h ................................................................................ 27  
6.5.1 Digital Volume Control (VOL7:0) Bits 7-0 ........................................................................ 28  
6.6 Ramp and Filter Control - Register 07h ........................................................................................ 28  
6.6.1 Soft Ramp and Zero Cross Control (SZC1:0) Bits 7-6 ..................................................... 28  
6.6.2 Soft Volume Ramp-Up After Error (RMP_UP) Bit 5 ......................................................... 29  
6.6.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) Bit 4 ....................................... 29  
6.6.4 Interpolation Filter Select (FILT_SEL) Bit 2 ..................................................................... 29  
6.7 Misc Control - Register 08h .......................................................................................................... 29  
6.7.1 Power Down (PDN) Bit 7 ................................................................................................. 30  
6.7.2 Control Port Enable (CPEN) Bit 6 .................................................................................... 30  
6.7.3 Freeze Controls (Freeze) Bit 5 ......................................................................................... 30  
7. DIGITAL FILTER RESPONSE PLOTS ............................................................................................. 31  
8. PARAMETER DEFINITIONS ............................................................................................................... 35  
9. PACKAGE DIMENSIONS .................................................................................................................. 36  
10. ORDERING INFORMATION ............................................................................................................. 37  
11. REVISION HISTORY ......................................................................................................................... 37  
LIST OF FIGURES  
Figure 1. Serial Input Timing..................................................................................................................... 10  
Figure 2. Control Port Timing - I²C Format................................................................................................ 11  
Figure 3. Control Port Timing - SPI Format (Write)................................................................................... 12  
Figure 4. Typical Connection Diagram...................................................................................................... 14  
Figure 5. Left-Justified up to 24-Bit Data................................................................................................... 17  
Figure 6. I²S, up to 24-Bit Data ................................................................................................................. 17  
Figure 7. Right-Justified Data.................................................................................................................... 17  
Figure 8. De-Emphasis Curve................................................................................................................... 17  
Figure 9. Control Port Timing, I²C Mode ................................................................................................... 21  
Figure 10.Control Port Timing, SPI mode .................................................................................................. 22  
Figure 11.De-Emphasis Curve................................................................................................................... 24  
Figure 12.ATAPI Block Diagram ................................................................................................................ 26  
Figure 13.Single-Speed (fast) Stopband Rejection.................................................................................... 31  
Figure 14.Single-Speed (fast) Transition Band.......................................................................................... 31  
Figure 15.Single-Speed (fast) Transition Band (detail).............................................................................. 31  
Figure 16.Single-Speed (fast) Passband Ripple........................................................................................ 31  
Figure 17.Single-Speed (slow) Stopband Rejection .................................................................................. 31  
Figure 18.Single-Speed (slow) Transition Band......................................................................................... 31  
Figure 19.Single-Speed (slow) Transition Band (detail)............................................................................. 32  
Figure 20.Single-Speed (slow) Passband Ripple....................................................................................... 32  
Figure 21.Double-Speed (fast) Stopband Rejection .................................................................................. 32  
Figure 22.Double-Speed (fast) Transition Band......................................................................................... 32  
Figure 23.Double-Speed (fast) Transition Band (detail)............................................................................. 32  
Figure 24.Double-Speed (fast) Passband Ripple....................................................................................... 32  
Figure 25.Double-Speed (slow) Stopband Rejection................................................................................. 33  
Figure 26.Double-Speed (slow) Transition Band ....................................................................................... 33  
Figure 27.Double-Speed (slow) Transition Band (detail) ........................................................................... 33  
Figure 28.Double-Speed (slow) Passband Ripple ..................................................................................... 33  
DS566F1  
3
CS4351  
Figure 29.Quad-Speed (fast) Stopband Rejection..................................................................................... 33  
Figure 30.Quad-Speed (fast) Transition Band ........................................................................................... 33  
Figure 31.Quad-Speed (fast) Transition Band (detail) ............................................................................... 34  
Figure 32.Quad-Speed (fast) Passband Ripple ......................................................................................... 34  
Figure 33.Quad-Speed (slow) Stopband Rejection.................................................................................... 34  
Figure 34.Quad-Speed (slow) Transition Band.......................................................................................... 34  
Figure 35.Quad-Speed (slow) Transition Band (detail).............................................................................. 34  
Figure 36.Quad-Speed (slow) Passband Ripple........................................................................................ 34  
LIST OF TABLES  
Table 1. CS4351 Auto-Detect .................................................................................................................... 15  
Table 2. CS4351 Mode Select ................................................................................................................... 15  
Table 3. Single-Speed Mode Standard Frequencies ................................................................................. 16  
Table 4. Double-Speed Mode Standard Frequencies................................................................................ 16  
Table 5. Quad-Speed Mode Standard Frequencies .................................................................................. 16  
Table 6. Digital Interface Format - Stand-Alone Mode............................................................................... 16  
Table 7. Digital Interface Formats.............................................................................................................. 24  
Table 8. ATAPI Decode ............................................................................................................................. 26  
Table 9. Example Digital Volume Settings................................................................................................. 28  
Table 10. Revision History ......................................................................................................................... 37  
4
DS566F1  
CS4351  
1. PIN DESCRIPTION  
20  
19  
18  
1
SDIN  
SCLK  
LRCK  
MCLK  
VD  
VL  
2
AMUTEC  
AOUTA  
VA_H  
GND  
AOUTB  
BMUTEC  
VQ  
3
4
17  
16  
15  
14  
13  
12  
5
6
GND  
7
DIF1(SCL/CCLK)  
DIF0(SDA/CDIN)  
DEM(AD0/CS)  
RST  
8
9
VBIAS  
VA  
10  
11  
Pin Name  
SDIN  
#
1
2
Pin Description  
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.  
Serial Clock (Input) - Serial clock for the serial audio interface.  
SCLK  
Left / Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial  
audio data line.  
LRCK  
3
MCLK  
VD  
4
5
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.  
Digital Power (Input) - Positive power supply for the digital section.  
6
16  
GND  
RST  
Ground (Input) - Ground reference.  
Reset (Input) - Powers down device and resets all internal resisters to their default settings when  
enabled.  
10  
VA  
11 Low Voltage Analog Power (Input) - Positive power supply for the analog section.  
12 Positive Voltage Reference (Output) - Positive reference voltage for the internal DAC.  
13 Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.  
17 High Voltage Analog Power (Input) - Positive power supply for the analog section.  
20 Serial Audio Interface Power (Input) - Positive power for the serial audio interface  
14  
VBIAS  
VQ  
VA_H  
VL  
BMUTEC  
AMUTEC  
Mute Control (Output) - Control signal for optional mute circuit.  
19  
AOUTB  
AOUTA  
15 Analog Outputs (Output) - The full scale analog line output level is specified in the Analog Character-  
18 istics table.  
Control Port Definitions  
SCL/CCLK  
SDA/CDIN  
AD0/CS  
7
8
9
Serial Control Port Clock (Input) - Serial clock for the control port interface.  
Serial Control Data (Input/Output) - Input/Output for I²C data. Input for SPI data.  
Address Bit 0 / Chip Select (Input) - Chip address bit in I²C Mode. Control Port enable in SPI Mode.  
Stand-Alone Definitions  
DIF0  
DIF1  
8
7
Digital Interface Format (Input) - Defines the required relationship between the Left Right Clock,  
Serial Clock, and Serial Audio Data.  
De-emphasis (Input) - Selects the standard 15 µs/50 µs digital de-emphasis filter response for 44.1  
kHz sample rates  
DEM  
9
DS566F1  
5
CS4351  
2. CHARACTERISTICS AND SPECIFICATIONS  
(Min/Max performance characteristics and specifications are guaranteed over the Specified Operating Conditions.  
Typical specifications are derived from performance measurements at T = 25 °C, VA_H = 12 V, VA = 3.3 V,  
A
VD = 3.3 V.)  
SPECIFIED OPERATING CONDITIONS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
High Voltage Analog power  
Low Voltage Analog power  
Digital power  
VA_H  
VA  
VD  
8.55  
3.13  
3.13  
1.7  
12  
3.3  
3.3  
3.3  
12.6  
3.47  
3.47  
3.47  
V
V
V
V
Interface power  
VL  
Specified Temperature Range  
-CZZ  
-DZZ  
TA  
TA  
-10  
-40  
-
-
70  
85  
°C  
°C  
ABSOLUTE MAXIMUM RATINGS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Max  
Units  
DC Power Supply  
High Voltage Analog power  
Low Voltage Analog power  
Digital power  
VA_H  
VA  
VD  
-0.3  
-0.3  
-0.3  
-0.3  
14  
V
V
V
V
3.63  
3.63  
3.63  
Interface power  
VL  
Input Current, Any Pin Except Supplies  
Digital Input Voltage  
Iin  
VIN-L  
TA  
-
±10  
VL+ 0.4  
125  
mA  
V
Digital Interface  
-0.3  
-55  
-65  
Ambient Operating Temperature (power applied)  
Storage Temperature  
°C  
°C  
Tstg  
150  
Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guar-  
anteed at these extremes.  
6
DS566F1  
CS4351  
DAC ANALOG CHARACTERISTICS  
(Test conditions (unless otherwise specified): input test signal is a 997 Hz sine wave at 0 dBFS; measurement  
bandwidth 10 Hz to 20 kHz)  
Parameter  
Symbol  
Fs = 48, 96, and 192 kHz  
Min  
Typ  
Max  
Unit  
All Speed Modes  
Dynamic Range (Note 1)  
24-bit unweighted  
A-Weighted  
16-bit unweighted  
A-Weighted  
99  
102  
-
-
109  
112  
95  
-
-
-
-
dB  
dB  
dB  
dB  
98  
Total Harmonic Distortion + Noise  
(Note 1) THD+N  
0 dB  
-20 dB  
-60 dB  
0 dB  
-
-
-
-
-
-
-
24-bit  
16-bit  
-100  
-89  
-49  
-92  
-75  
-35  
-90  
-79  
-39  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
All Speed Modes  
Idle Channel Noise / Signal-to-noise ratio  
Interchannel Isolation  
-
-
109  
100  
-
-
dB  
dB  
(1 kHz)  
Analog Output - All Modes  
Full Scale Output Voltage  
Common Mode Voltage  
Max DC Current draw from an AOUT pin  
Max Current draw from VQ  
Interchannel Gain Mismatch  
Gain Drift  
1.85  
2.00  
4
2.15  
Vrms  
Vdc  
µA  
VQ  
-
-
-
IOUTmax  
IQmax  
10  
1
-
-
-
µA  
-
0.1  
-100  
50  
-
-
dB  
-
-
ppm/°C  
Output Impedance  
ZOUT  
RL  
-
-
-
AC-Load Resistance  
5
-
kΩ  
Load Capacitance  
CL  
-
100  
pF  
Notes:  
1. One-half LSB of triangular PDF dither is added to data.  
DS566F1  
7
CS4351  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
(The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sam-  
ple rate by multiplying the given characteristic by Fs. See (Note 6)  
Fast Roll-Off  
Parameter  
Min  
Typ  
Max  
Unit  
Combined Digital and On-Chip Analog Filter Response - Single-Speed Mode - 48 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.454  
.499  
+0.01  
-
-
-
±0.56/Fs  
0
±0.23  
±0.14  
±0.09  
Fs  
Fs  
dB  
Fs  
dB  
s
s
s
dB  
dB  
dB  
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
De-emphasis Error (Note 5)  
(Relative to 1 kHz)  
-0.01  
0.547  
102  
-
-
-
-
-
-
(Note 4)  
-
9.4/Fs  
-
-
-
-
-
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
Combined Digital and On-Chip Analog Filter Response - Double-Speed Mode - 96 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.430  
.499  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
-0.01  
.583  
80  
-
-
(Note 4)  
-
-
4.6/Fs  
-
±0.03/Fs  
0
-
-
s
s
-
Combined Digital and On-Chip Analog Filter Response - Quad-Speed Mode - 192 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.105  
.490  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
-0.01  
.635  
90  
-
-
(Note 4)  
-
-
4.7/Fs  
-
±0.01/Fs  
0
-
-
s
s
-
8
DS566F1  
CS4351  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
(Continued)  
Slow Roll-Off (Note 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Single-Speed Mode - 48 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
0.417  
0.499  
+0.01  
-
-
-
±0.14/Fs  
0
±0.23  
±0.14  
±0.09  
Fs  
Fs  
dB  
Fs  
dB  
s
s
s
dB  
dB  
dB  
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
De-emphasis Error (Note 5)  
(Relative to 1 kHz)  
-0.01  
.583  
64  
-
-
-
-
-
-
(Note 4)  
-
6.5/Fs  
-
-
-
-
-
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
Double-Speed Mode - 96 kHz  
Passband (Note 3))  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.296  
.499  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
Quad-Speed Mode - 192 kHz  
Passband (Note 3))  
-0.01  
.792  
70  
-
-
(Note 4)  
-
-
3.9/Fs  
-
±0.01/Fs  
0
-
-
s
s
-
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.104  
.481  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Group Delay  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
-0.01  
.868  
75  
(Note 4)  
-
-
-
4.2/Fs  
-
±0.01/Fs  
0
-
-
s
s
-
Notes:  
2. Slow Roll-off interpolation filter is only available in Control Port mode.  
3. Response is clock dependent and will scale with Fs.  
4. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.  
5. De-emphasis is available only in Single-Speed Mode; Only 44.1 kHz De-emphasis is available in Stand-  
Alone Mode.  
6. Amplitude vs. Frequency plots of this data are available in the “Digital Filter Response Plots” on  
page 31.  
DS566F1  
9
CS4351  
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE  
Parameters  
Symbol  
Min  
1.024  
45  
Max  
51.2  
55  
Units  
MHz  
%
MCLK Frequency  
MCLK Duty Cycle  
Input Sample Rate (Manual selection)  
Single-Speed Mode  
Double-Speed Mode  
Fs  
Fs  
Fs  
4
50  
100  
50  
100  
200  
kHz  
kHz  
kHz  
Quad-Speed Mode  
Input Sample Rate (Auto selection)  
Single-Speed Mode  
Double-Speed Mode  
Fs  
Fs  
Fs  
4
84  
170  
50  
100  
200  
kHz  
kHz  
kHz  
Quad-Speed Mode  
LRCK Duty Cycle  
40  
20  
20  
60  
-
%
ns  
ns  
-
SCLK Pulse Width Low  
SCLK Pulse Width High  
SCLK Period  
tsclkl  
tsclkh  
tsclkw  
-
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
-
1
---------------------  
(128)Fs  
tsclkw  
-
-
-
-
1
------------------  
(64)Fs  
tsclkw  
2
-----------------  
MCLK  
SCLK rising to LRCK edge delay  
SCLK rising to LRCK edge setup time  
SDIN valid to SCLK rising setup time  
SCLK rising to SDIN hold time  
tslrd  
tslrs  
tsdlrs  
tsdh  
23  
-
-
-
-
ns  
ns  
ns  
ns  
20  
20  
20  
LRCK  
t
t
sclkh  
slrs  
t
slrd  
t
sclkl  
SCLK  
t
t
sdh  
sdlrs  
SDATA  
Figure 1. Serial Input Timing  
10  
DS566F1  
CS4351  
Switching Characteristics - Control Port - I²C® Format  
(Inputs: Logic 0 = GND, Logic 1 = VL, C = 20 pF)  
L
Parameter  
Symbol  
Min  
Max  
Unit  
SCL Clock Frequency  
fscl  
-
100  
kHz  
RST Rising Edge to Start  
tirs  
tbuf  
thdst  
tlow  
500  
4.7  
4.0  
4.7  
4.0  
4.7  
0
-
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
-
-
-
Clock High Time  
thigh  
tsust  
thdd  
-
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
-
(Note 7)  
-
tsud  
250  
-
-
1
trc, trc  
tfc, tfc  
tsusp  
tack  
Fall Time SCL and SDA  
-
300  
-
Setup Time for Stop Condition  
Acknowledge Delay from SCL Falling  
4.7  
300  
1000  
Notes:  
7. Data must be held for sufficient time to bridge the transition time, t , of SCL.  
fc  
RST  
t
irs  
Repeated  
Stop  
Start  
Stop  
Start  
t
t
rd  
fd  
SDA  
SCL  
t
t
t
t
t
buf  
t
high  
hdst  
fc  
susp  
hdst  
low  
t
t
t
t
t
t
sust  
sud  
ack  
rc  
hdd  
Figure 2. Control Port Timing - I²C Format  
DS566F1  
11  
CS4351  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPIFORMAT  
(Inputs: Logic 0 = GND, Logic 1 = VL, C = 20 pF)  
L
Parameter  
CCLK Clock Frequency  
Symbol  
fsclk  
tsrs  
Min  
-
Max  
Unit  
MHz  
ns  
6
RST Rising Edge to CS Falling  
CCLK Edge to CS Falling  
500  
500  
1.0  
20  
66  
66  
40  
17  
-
-
(Note 8)  
tspi  
-
ns  
CS High Time Between Transmissions  
CS Falling to CCLK Edge  
tcsh  
tcss  
tscl  
-
µs  
-
ns  
CCLK Low Time  
-
ns  
CCLK High Time  
tsch  
tdsu  
tdh  
-
-
ns  
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
ns  
(Note 9)  
(Note 10)  
(Note 10)  
-
ns  
tr2  
100  
100  
ns  
tf2  
-
ns  
Notes:  
8.  
9. Data must be held for sufficient time to bridge the transition time of CCLK.  
10. For F < 1 MHz.  
t
only needed before first falling edge of CS after RST rising edge. t = 0 at all other times.  
spi spi  
SCK  
RST  
t
t
srs  
CS  
t
t
t
spi css  
scl  
sch  
t
csh  
CCLK  
t
t
r2  
f2  
CDIN  
t
t
dsu  
dh  
Figure 3. Control Port Timing - SPI Format (Write)  
12  
DS566F1  
CS4351  
DIGITAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
High-Level Input Voltage  
VL = 3.3 V  
VL = 2.5 V  
VL = 1.8 V  
VIH  
VIH  
VIH  
2.0  
1.7  
0.65•VL  
-
-
-
-
-
-
V
V
V
Low-Level Input Voltage  
VL = 3.3 V  
VL = 2.5 V  
VL = 1.8 V  
VIL  
VIL  
VIL  
-
-
-
-
-
-
0.8  
0.7  
0.33•VL  
V
V
V
Input Leakage Current  
Iin  
-
-
-
-
-
-
±10  
µA  
pF  
mA  
V
Input Capacitance  
8
2
-
-
-
-
Maximum MUTEC Drive Current  
MUTEC High-Level Output Voltage  
MUTEC Low-Level Output Voltage  
VOH  
VOL  
VA_H  
0
V
POWER AND THERMAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power Supplies  
Power Supply Current  
(Note 11)  
normal operation, VA_H = 12 V  
IA_H  
IA_H  
IA  
ID  
IL  
-
-
-
-
-
-
15  
14  
6
21  
100  
200  
20  
19  
8
26  
400  
-
mA  
mA  
mA  
mA  
µA  
VA_H = 9 V  
VA= 3.3 V  
VD= 3.3 V  
Interface current (Note 12) VL= 3.3 V  
power-down state, all supplies (Note 13)  
Ipd  
µA  
Power Dissipation (all supplies)  
VA_H = 12 V  
(Note 11)  
normal operation  
power-down (Note 13)  
normal operation  
-
-
-
-
270  
1
216  
1
354  
mW  
mW  
mW  
mW  
-
285  
-
VA_H = 9 V  
power-down (Note 13)  
Power Supply Rejection Ratio (Note 14)  
(1 kHz)  
(60 Hz)  
PSRR  
-
-
60  
60  
-
-
dB  
dB  
Notes:  
11. Current consumption increases with increasing FS and increasing MCLK. Typ and Max values are  
based on highest FS and highest MCLK. Variance between speed modes is small.  
12. I measured with no external loading on pin 8 (SDA).  
L
13. Power-Down Mode is defined as RES pin = Low with all clock and data lines held static.  
14. Valid with the recommended capacitor values on VQ and V  
gram in Section 3.  
as shown in the typical connection dia-  
BIAS  
DS566F1  
13  
CS4351  
3. TYPICAL CONNECTION DIAGRAM  
5.1Ω∗  
+3.3 V  
+3.3 V *  
*Optional  
+
+
10 µF  
0.1 µF  
0.1 µF  
12  
10 µF  
*Remove this supply if  
optional resistor is present.  
The decoupling caps should  
remain.  
5
11  
VA  
3.3 µF  
+
VD  
VBIAS+  
4
MCLK  
3
2
1
17  
Digital  
Audio  
Source  
LRCK  
VA_H  
+9 V to +12 V  
0.1 µF  
+
SCLK  
SDIN  
10 µF  
Optional Mute Circuit  
19  
18  
AMUTEC  
AOUTA  
20  
+1.8 V to VD  
VL  
576 k  
412 k  
560  
0.1 µF  
AOUTA  
+
2.2 nF*  
CS4351  
3.3 µF  
10 k  
Optional Mute Circuit  
14  
15  
BMUTEC  
AOUTB  
576 k  
412 k  
10  
7
RST  
560 Ω  
µ C/  
Mode  
Configuration  
DIF1(SCL/CCLK)  
DIF0(SDA/CDIN)  
DEM(AD0/CS)  
AOUTA  
+
2.2 nF*  
8
9
3.3 µF  
10k  
*Shown value is  
for fc=130kHz  
13  
VQ  
3.3 µF  
+
GND  
6
GND  
16  
Figure 4. Typical Connection Diagram  
14  
DS566F1  
CS4351  
4. APPLICATIONS  
4.1  
Sample Rate Range/Operational Mode Detect  
The device operates in one of three operational modes. The allowed sample rate range in each mode will  
depend on whether the Auto-Detect Defeat bit is enabled/disabled.  
4.1.1  
Auto-Detect Enabled  
The Auto-Detect feature is enabled by default. In this state, the CS4351 will auto-detect the correct mode  
when the input sample rate (F ), defined by the LRCK frequency, falls within one of the ranges illustrated  
s
in Table 1. Sample rates outside the specified range for each mode are not supported.  
Input Sample Rate (F )  
MODE  
S
4 kHz - 50 kHz  
84 kHz - 100 kHz  
170 kHz - 200 kHz  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Table 1. CS4351 Auto-Detect  
4.1.2  
Auto-Detect Disabled  
The Auto-Detect feature can be defeated only by the format bits in the control port register 02h. In this  
state, the CS4351 will not auto-detect the correct mode based on the input sample rate (F ). The opera-  
s
tional mode must then be set manually according to one of the ranges illustrated in Table 2. Please refer  
to Section 6.2.3 for implementation details. Sample rates outside the specified range for each mode are  
not supported. In stand-alone mode it is not possible to disable auto-detect of sample rates.  
FM1  
FM0  
Input Sample Rate (F )  
MODE  
S
0
0
1
1
0
1
0
1
Auto speed mode detect  
4 kHz - 50 kHz  
Auto  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
50 kHz - 100 kHz  
100 kHz - 200 kHz  
Table 2. CS4351 Mode Select  
4.2  
System Clocking  
The device requires external generation of the master (MCLK), left/right (LRCK) and serial (SCLK) clocks.  
The left/right clock, defined also as the input sample rate (F ), must be synchronously derived from the  
s
MCLK according to specified ratios. The specified ratios of MCLK to LRCK, along with several standard au-  
dio sample rates and the required MCLK frequency, are illustrated in Tables 3 through 5.  
Refer to Section 4.3 for the required SCLK timing associated with the selected Digital Interface Format and  
to the “Switching Specifications - Serial Audio Interface” section on page 10 for the maximum allowed clock  
frequencies.  
DS566F1  
15  
CS4351  
Sample Rate  
(kHz)  
MCLK (MHz)  
256x  
8.1920  
11.2896  
12.2880  
384x  
512x  
768x  
1024x  
32.7680  
45.1584  
49.1520  
1152x  
36.8640  
32  
44.1  
48  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
Table 3. Single-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
128x  
8.1920  
11.2896  
12.2880  
192x  
256x  
384x  
512x  
64  
88.2  
96  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
32.7680  
45.1584  
49.1520  
Table 4. Double-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
64x  
96x  
128x  
192x  
256x  
176.4  
192  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
33.8688  
36.8640  
45.1584  
49.1520  
Table 5. Quad-Speed Mode Standard Frequencies  
= Denotes clock modes which are NOT auto detected  
4.3  
Digital Interface Format  
The device will accept audio samples in 1 of 4 digital interface formats in Stand-Alone mode, as illustrated  
in Table 6, and 1 of 6 formats in Control Port mode, as illustrated in Table 7.  
4.3.1  
Stand-Alone Mode  
The desired format is selected via the DIF1 and DIF0 pins. For an illustration of the required relationship  
between the LRCK, SCLK and SDIN, see Figures 5 through 7. For all formats, SDIN is valid on the rising  
edge of SCLK. Also, SCLK must have at least 32 cycles per LRCK period in format 2, and 48 cycles per  
LRCK period in format 3.  
DIF0 DIF1  
DESCRIPTION  
I S, up to 24-bit Data  
Left Justified, up to 24-bit Data  
Right Justified, 24-bit Data  
Right Justified, 16-bit Data  
FORMAT FIGURE  
2
0
0
1
1
0
1
0
1
0
1
2
3
6
5
7
7
Table 6. Digital Interface Format - Stand-Alone Mode  
4.3.2  
Control Port Mode  
The desired format is selected via the DIF2, DIF1 and DIF0 bits in the Mode Control 2 register (see section  
Section 6.2.1). For an illustration of the required relationship between LRCK, SCLK and SDIN, see  
Figures 5 through 7. For all formats, SDIN is valid on the rising edge of SCLK. Also, SCLK must have at  
16  
DS566F1  
CS4351  
least 32 cycles per LRCK period in format 2, 48 cycles in format 3, 40 cycles in format 4, and 36 cycles  
in format 5.  
Left Channel  
Right Channel  
LRCK  
SCLK  
LSB  
LSB  
MSB  
-1 -2 -3 -4  
MSB  
SDIN  
+5 +4 +3 +2 +1  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
Figure 5. Left-Justified up to 24-Bit Data  
Left Channel  
Right Channel  
LRCK  
SCLK  
LSB  
LSB  
MSB  
-1 -2 -3 -4  
MSB  
SDIN  
+5 +4 +3 +2 +1  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
Figure 6. I²S, up to 24-Bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
MSB  
LSB  
MSB  
+1 +2 +3 +4 +5  
-7 -6 -5 -4 -3 -2 -1  
MSB  
LSB  
-7 -6 -5 -4 -3 -2 -1  
SDIN  
+1 +2 +3 +4  
+5  
Figure 7. Right-Justified Data  
4.4  
De-Emphasis Control  
The device includes on-chip digital de-emphasis. Figure 8 shows the de-emphasis curve for F equal to 44.1  
s
kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in sample  
rate, Fs.  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 8. De-Emphasis Curve  
Note:  
DS566F1  
De-emphasis is only available in Single-Speed Mode.  
17  
CS4351  
4.4.1  
4.4.2  
Stand-Alone Mode  
When pulled to VL the DEM pin activates the 44.1 kHz de-emphasis filter. When pulled to GND the DEM  
pin turns off the de-emphasis filter.  
Control Port Mode  
The Mode Control bits selects either the 32, 44.1, or 48 kHz de-emphasis filter. Please see Section 6.2.2  
for the desired de-emphasis control.  
4.5  
Recommended Power-Up Sequence  
4.5.1  
Stand-Alone Mode  
1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right  
clocks are locked to the appropriate frequencies, as discussed in Section 4.2. In this state, the control  
port is reset to its default settings, VQ will remain low, and VBIAS will be connected to VA.  
2. Bring RST high. The device will remain in a low power state with VQ low and will initiate the Stand-  
Alone power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK  
cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).  
4.5.2  
Control Port Mode  
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the  
appropriate frequencies, as discussed in Section 4.2. In this state, the control port is reset to its  
default settings, VQ will remain low, and VBIAS will be connected to VA.  
2. Bring RST high. The device will remain in a low power state with VQ low.  
3. Perform a control port write to the CP_EN bit prior to the completion of approximately 512 LRCK  
cycles in Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in  
Quad-Speed Mode). The desired register settings can be loaded while keeping the PDN bit set to 1.  
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs when  
the POPG bit is set to 0. If the POPG bit is set to 1, see Section 4.6 for a complete description of  
power-up timing.  
®
4.6  
Popguard Transient Control  
The CS4351 uses a novel technique to minimize the effects of output transients during power-up and power-  
down. This technology, when used with external DC-blocking capacitors in series with the audio outputs,  
minimizes the audio transients commonly produced by single-ended single-supply converters. It is activated  
inside the DAC when the RST pin is toggled and requires no other external control, aside from choosing the  
appropriate DC-blocking capacitors.  
4.6.1  
Power-Up  
When the device is initially powered-up, the audio outputs, AOUTA and AOUTB, are clamped to GND.  
Following a delay of approximately 1000 sample periods, each output begins to ramp toward the quies-  
cent voltage. Approximately 10,000 LRCK cycles later, the outputs reach V and audio output begins.  
Q
This gradual voltage ramping allows time for the external DC-blocking capacitors to charge to the quies-  
cent voltage, minimizing audible power-up transients.  
18  
DS566F1  
CS4351  
4.6.2  
4.6.3  
4.7  
Power-Down  
To prevent audible transients at power-down, the device must first enter its power-down state. When this  
occurs, audio output ceases and the internal output buffers are disconnected from AOUTA and AOUTB.  
In their place, a soft-start current sink is substituted which allows the DC-blocking capacitors to slowly dis-  
charge. Once this charge is dissipated, the power to the device may be turned off and the system is ready  
for the next power-on.  
Discharge Time  
To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully discharge be-  
fore turning on the power or exiting the power-down state. If full discharge does not occur, a transient will  
occur when the audio outputs are initially clamped to GND. The time that the device must remain in the  
power-down state is related to the value of the DC-blocking capacitance and the output load. For example,  
with a 3.3 µF capacitor, the minimum power-down time will be approximately 0.4 seconds.  
Mute Control  
The Mute Control pins go active during power-up initialization, reset, muting (see Section 6.4.3), or if the  
MCLK to LRCK ratio is incorrect. These pins are intended to be used as control for external mute circuits to  
prevent the clicks and pops that can occur in any single-ended single supply system.  
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute min-  
imum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer  
to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit.  
Please see the “Typical Connection Diagram” on page 14 for a suggested mute circuit for single supply sys-  
tems. This FET circuit must be placed in series after the RC filter, otherwise noise may occur during muting  
conditions. Further ESD protection will need to be taken into consideration for the FET used. If dual supplies  
are available, the BJT mute circuit from Figure 12 in the CS4398 datasheet (active Low) may be used.  
4.8  
Grounding and Power Supply Arrangements  
As with any high resolution converter, the CS4351 requires careful attention to power supply and grounding  
arrangements if its potential performance is to be realized. Figure 4 shows the recommended power ar-  
rangements, with VA_H, VA, VD, and VL connected to clean supplies. If the ground planes are split between  
digital ground and analog ground, the GND pins of the CS4351 should be connected to the analog ground  
plane.  
All signals, especially clocks, should be kept away from the VBIAS and VQ pins in order to avoid unwanted  
coupling into the DAC.  
4.8.1  
Capacitor Placement  
Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceramic ca-  
pacitor being the closest. To further minimize impedance, these capacitors should be located on the same  
layer as the DAC. If desired, all supply pins may be connected to the same supply, but a decoupling ca-  
pacitor should still be placed on each supply pin.  
Note:  
All decoupling capacitors should be referenced to analog ground.  
The CDB4351 evaluation board demonstrates the optimum layout and power supply arrangements.  
DS566F1  
19  
CS4351  
4.9  
Control Port Interface  
The control port is used to load all the internal register settings (see Section 6). The operation of the control  
port may be completely asynchronous with the audio sample rate. However, to avoid potential interference  
problems, the control port pins should remain static if no operation is required.  
The control port operates in one of two modes: I²C or SPI.  
4.9.1  
4.9.2  
MAP Auto Increment  
The device has MAP (memory address pointer) auto increment capability enabled by the INCR bit (also  
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and  
SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written, allowing block reads or  
writes of successive registers.  
I²C Mode  
In the I²C mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial  
control port clock, SCL (see Figure 9 for the clock to data relationship). There is no CS pin. Pin AD0 en-  
ables the user to alter the chip address (100110[AD0][R/W]) and should be tied to VL or GND as required,  
before powering up the device. If the device ever detects a high to low transition on the AD0/CS pin after  
power-up, SPI mode will be selected.  
4.9.2.1 I²C Write  
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions in Section 8.  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
100110. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth  
bit of the address byte is the R/W bit.  
2. Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This  
byte points to the register to be written.  
3. Wait for an acknowledge (ACK) from the part, then write the desired data to the register pointed to  
by the MAP.  
4. If the INCR bit (see Section 4.9.1) is set to 1, repeat the previous step until all the desired registers  
are written, then initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate  
a repeated START condition and follow the procedure detailed from step 1. If no further writes to oth-  
er registers are desired, initiate a STOP condition to the bus.  
20  
DS566F1  
CS4351  
4.9.2.2 I²C Read  
To read from the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions.  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
100110. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. The eighth  
bit of the address byte is the R/W bit.  
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register  
pointed to by the MAP. The MAP register will contain the address of the last register written to the  
MAP, or the default address (see Section 4.10.2) if an I²C read is the first operation performed on  
the device.  
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.  
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers.  
Continue providing a clock and issue an ACK after each byte until all the desired registers are read,  
then initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to  
initiate a repeated START condition and follow the procedure detailed from steps 1 and 2 from the  
I²C Write instructions followed by step 1 of the I²C Read section. If no further reads from other reg-  
isters are desired, initiate a STOP condition to the bus.  
NOTE  
DATA  
1-8  
DATA  
1-8  
100110  
R/W  
ACK  
ACK  
ACK  
SDA  
SCL  
AD0  
Start  
Stop  
NOTE: If operation is a write, this byte contains the Memory Address Pointer, MAP. If  
operation is a read, this byte contains the data of the register pointed to by the MAP.  
Figure 9. Control Port Timing, I²C Mode  
4.9.3  
SPI Mode  
In SPI mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK  
(see Figure 10 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip select signal and  
is used to control SPI writes to the control port. When the device detects a high to low transition on the  
AD0/CS pin after power-up, SPI mode will be selected. All signals are inputs and data is clocked in on the  
rising edge of CCLK.  
4.9.3.1 SPI Write  
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions in Section 8.  
1. Bring CS low.  
2. The address byte on the CDIN pin must then be 10011000.  
3. Write to the memory address pointer, MAP. This byte points to the register to be written.  
DS566F1  
21  
CS4351  
4. Write the desired data to the register pointed to by the MAP.  
5. If the INCR bit (see Section 4.9.1) is set to 1, repeat the previous step until all the desired registers  
are written, then bring CS high.  
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring  
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are de-  
sired, bring CS high.  
)
CS  
CCLK  
CHIP  
ADDRESS  
MAP  
DATA  
1001100  
LSB  
CDIN  
MSB  
R/W  
byte 1  
byte n  
MAP = Memory Address Pointer  
Figure 10. Control Port Timing, SPI mode  
4.10 Memory Address Pointer (MAP)  
7
INCR  
0
6
Reserved  
0
5
Reserved  
0
4
Reserved  
0
3
MAP3  
0
2
1
MAP1  
0
0
MAP0  
0
MAP2  
0
4.10.1 INCR (AUTO MAP INCREMENT ENABLE)  
Default = ‘0’  
0 - Disabled  
1 - Enabled  
4.10.2 MAP (MEMORY ADDRESS POINTER)  
Default = ‘0000’  
22  
DS566F1  
CS4351  
5. REGISTER QUICK REFERENCE  
Addr  
Function  
7
6
PART3  
1
5
PART2  
1
4
PART1  
1
3
PART0  
1
2
REV2  
-
1
REV1  
-
0
REV0  
-
1h Chip ID  
PART4  
default  
2h Mode Control  
default  
1
Reserved  
0
DIF2  
0
DIF1  
0
DIF0  
0
DEM1  
0
DEM0  
0
FM1  
0
FM0  
0
3h Volume, Mixing,  
and Inversion  
Control  
VOLB=A INVERTA INVERTB Reserved  
ATAPI3  
ATAPI2  
ATAPI1  
ATAPI0  
default  
4h Mute Control  
0
0
0
0
1
0
0
1
AMUTE  
Reserved MUTEC  
A=B  
MUTE_A  
MUTE_B Reserved Reserved Reserved  
default  
1
0
0
0
0
0
0
0
5h Channel A Volume  
Control  
VOL7  
VOL6  
VOL5  
VOL4  
VOL3  
VOL2  
VOL1  
VOL0  
default  
0
0
0
0
0
0
0
0
6h Channel B Volume  
Control  
VOL7  
VOL6  
VOL5  
VOL4  
VOL3  
VOL2  
VOL1  
VOL0  
default  
0
0
0
0
0
0
0
0
7h Ramp and Filter  
Control  
SZC1  
SZC0  
RMP_UP RMP_DN  
Reserved FILT_SEL Reserved Reserved  
default  
8h Misc. Control  
default  
1
PDN  
1
0
CPEN  
0
1
1
0
0
0
1
FREEZE Reserved  
Reserved Reserved Reserved Reserved  
0
0
0
0
0
0
DS566F1  
23  
CS4351  
6. REGISTER DESCRIPTION  
** All register access is R/W unless specified otherwise**  
6.1  
Chip ID - Register 01h  
7
PART4  
1
6
PART3  
1
5
PART2  
1
4
PART1  
1
3
PART0  
1
2
REV2  
-
1
REV1  
-
0
REV0  
-
Function:  
This register is Read-Only. Bits 7 through 3 are the part number ID which is 11111b and the remaining Bits  
(2 through 0) are for the chip revision (Rev. A = 000, Rev. B = 001, ...)  
6.2  
Mode Control 1 - Register 02h  
7
6
DIF2  
0
5
DIF1  
0
4
DIF0  
0
3
DEM1  
0
2
DEM0  
0
1
FM1  
0
0
FM0  
0
Reserved  
0
6.2.1  
Digital Interface Format (DIF2:0) Bits 6-4  
Function:  
These bits select the interface format for the serial audio input.  
The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital  
Interface Format and the options are detailed in Figures 5 through 7.  
DIF2  
DIF1  
DIF0  
DESCRIPTION  
Format  
FIGURE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5
6
7
7
7
7
Left Justified, up to 24-bit data  
I S, up to 24-bit data  
0 (Default)  
2
1
2
3
4
5
Right Justified, 16-bit data  
Right Justified, 24-bit data  
Right Justified, 20-bit data  
Right Justified, 18-bit data  
Reserved  
Reserved  
Table 7. Digital Interface Formats  
6.2.2  
De-Emphasis Control (DEM1:0) Bits 3-2.  
Gain  
dB  
Default = 0  
00 - No De-emphasis  
01 - 44.1 kHz De-emphasis  
10 - 48 kHz De-emphasis  
11 - 32 kHz De-emphasis  
T1=50 µs  
0dB  
T2 = 15 µs  
Frequency  
-10dB  
Function:  
Selects the appropriate digital filter to maintain the stan-  
dard 15 µs/50 µs digital de-emphasis filter response at  
32, 44.1 or 48 kHz sample rates. (See Figure 11.)  
F1  
3.183 kHz  
F2  
10.61 kHz  
Figure 11. De-Emphasis Curve  
Note: De-emphasis is only available in Single-Speed Mode  
24  
DS566F1  
CS4351  
6.2.3  
Functional Mode (FM) Bits 1-0  
Default = 00  
00 - Auto speed mode detect  
01 - Single-Speed Mode (4 to 50 kHz sample rates)  
10 - Double-Speed Mode (50 to 100 kHz sample rates)  
11 - Quad-Speed Mode (100 to 200 kHz sample rates)  
Function:  
Selects the required range of input sample rates or DSD Mode.  
6.3  
Volume Mixing and Inversion Control - Register 03h  
B7  
VOLB=A  
0
B6  
INVERT A  
0
B5  
INVERT B  
0
B4  
Reserved  
0
B3  
ATAPI3  
1
B2  
ATAPI2  
0
B1  
ATAPI1  
0
B0  
ATAPI0  
1
6.3.1  
Channel A Volume = Channel B Volume (VOLB=A) Bit 7  
Function:  
When set to 0 (default) the AOUTA and AOUTB volume levels are independently controlled by the A and  
the B Channel Volume Control Bytes.  
When set to 1 the volume on both AOUTA and AOUTB are determined by the A Channel Attenuation and  
Volume Control Bytes, and the B Channel Bytes are ignored.  
6.3.2  
6.3.3  
Invert Signal Polarity (Invert_A) Bit 6  
Function:  
When set to 1, this bit inverts the signal polarity of channel A.  
When set to 0 (default), this function is disabled.  
Invert Signal Polarity (Invert_B) Bit 5  
Function:  
When set to 1, this bit inverts the signal polarity of channel B.  
When set to 0 (default), this function is disabled.  
DS566F1  
25  
CS4351  
6.3.4  
ATAPI Channel Mixing and Muting (ATAPI3:0) Bits 3-0  
Default = 1001 - AOUTA=aL, AOUTB=bR (Stereo)  
Function:  
The CS4351 implements the channel mixing functions of the ATAPI CD-ROM specification. Refer to  
Table 8 and Figure 12 for additional information.  
A Channel  
Volume  
Control  
Left Channel  
Audio Data  
MUTE  
AoutA  
Σ
Σ
B Channel  
Volume  
Control  
Right Channel  
Audio Data  
MUTE  
AoutB  
Figure 12. ATAPI Block Diagram  
ATAPI3 ATAPI2 ATAPI1 ATAPI0  
AOUTA  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
AOUTB  
MUTE  
bR  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
bL  
b[(L+R)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
b[(L+R)/2]  
MUTE  
bR  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
bL  
b[(L+R)/2]  
Table 8. ATAPI Decode  
26  
DS566F1  
CS4351  
6.4  
Mute Control - Register 04h  
7
6
Reserved  
0
5
4
MUTE_A  
0
3
MUTE_B  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
AMUTE  
1
MUTEC A=B  
0
6.4.1  
Auto-Mute (AMUTE) Bit 7  
Function:  
When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 8192  
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. De-  
tection and muting is done independently for each channel. The quiescent voltage on the output will be  
retained and the Mute Control pin will go active during the mute period. When set to 0, this function is  
disabled  
6.4.2  
6.4.3  
AMUTEC = BMUTEC (MUTEC A=B) Bit 5  
Function:  
When set to 0 (default), the AMUTEC and BMUTEC pins operate independently.  
When set to 1, the individual controls for AMUTEC and BMUTEC are internally connected through an  
AND gate prior to the output pins. Therefore, the external AMUTEC and BMUTEC pins will go active only  
when the requirements for both AMUTEC and BMUTEC are valid.  
A Channel Mute (MUTE_A) Bit 4  
B Channel Mute (MUTE_B) Bit 3  
Function:  
When set to 1, the Digital-to-Analog converter output will mute. The quiescent voltage on the output will  
be retained. The muting function is effected, similar to attenuation changes, by the Soft and Zero Cross  
bits in the Volume and Mixing Control register. The corresponding MUTEC pin will go active following any  
ramping due to the soft and zero cross function.  
When set to 0 (default), this function is disabled.  
6.5  
Channel A Volume Control - Register 05h  
Channel B Volume Control - Register 06h  
7
6
VOL6  
0
5
VOL5  
0
4
VOL4  
0
3
VOL3  
0
2
VOL2  
0
1
VOL1  
0
0
VOL0  
0
VOL7  
0
DS566F1  
27  
CS4351  
6.5.1  
Digital Volume Control (VOL7:0) Bits 7-0  
Default = 00h (0 dB)  
Function:  
The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments  
from 0 to -127.5 dB. Volume settings are decoded as shown in Table 9. The volume changes are imple-  
mented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register.  
The actual attenuation is determined by taking the decimal value of the volume register and multiplying  
by 6.02/12.  
Binary Code  
00000000  
00000001  
00000110  
11111111  
Decimal Value  
Volume Setting  
0 dB  
0
1
6
-0.5 dB  
-3.0 dB  
-127.5 dB  
255  
Table 9. Example Digital Volume Settings  
6.6  
Ramp and Filter Control - Register 07h  
7
6
SZC0  
0
5
RMP_UP  
1
4
RMP_DN  
1
3
Reserved  
0
2
FILT_SEL  
0
1
Reserved  
0
0
Reserved  
1
SZC1  
1
6.6.1  
Soft Ramp and Zero Cross Control (SZC1:0) Bits 7-6  
Default = 10  
SZC1 SZC0  
Description  
Immediate Change  
Zero Cross  
0
0
1
1
0
1
0
1
Soft Ramp  
Soft Ramp on Zero Crossings  
Function:  
Immediate Change  
When Immediate Change is selected all level changes will take effect immediately in one step.  
Zero Cross  
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur  
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a time-  
out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal  
does not encounter a zero crossing. The zero cross function is independently monitored and implemented  
for each channel.  
Soft Ramp PCM  
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-  
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.  
28  
DS566F1  
CS4351  
Soft Ramp and Zero Cross  
Soft Ramp and Zero Cross Enable dictate that signal level changes, either by attenuation changes or mut-  
ing, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will  
occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample  
rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored  
and implemented for each channel.  
6.6.2  
Soft Volume Ramp-Up After Error (RMP_UP) Bit 5  
Function:  
When set to 1 (default), an un-mute will be performed after executing a filter mode change, after a  
LRCK/MCLK ratio change or error, and after changing the Functional Mode. This un-mute is affected, sim-  
ilar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.  
When set to 0, an immediate un-mute is performed in these instances.  
Note: For best results, it is recommended this feature be used in conjunction with the RMP_DN bit.  
6.6.3  
Soft Ramp-Down Before Filter Mode Change (RMP_DN) Bit 4  
Function:  
When set to 1 (default), a mute will be performed prior to executing a filter mode change. This mute is  
affected, similar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control  
register.  
When set to 0, an immediate mute is performed prior to executing a filter mode change.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.  
6.6.4  
Interpolation Filter Select (FILT_SEL) Bit 2  
Function:  
When set to 0 (default), the Interpolation Filter has a fast roll off.  
When set to 1, the Interpolation Filter has a slow roll off.  
The specifications for each filter can be found in the “Combined Interpolation & On-Chip Analog Filter Re-  
sponse” section on page 8, and response plots can be found in Figures 15 to 36.  
6.7  
Misc Control - Register 08h  
7
PDN  
1
6
CPEN  
0
5
FREEZE  
0
4
Reserved  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
DS566F1  
29  
CS4351  
6.7.1  
6.7.2  
6.7.3  
Power Down (PDN) Bit 7  
Function:  
When set to 1 (default), the entire device will enter a low-power state and the contents of the control reg-  
isters will be retained. The power-down bit defaults to ‘1’ on power-up and must be disabled before normal  
operation in Control Port mode can occur. This bit is ignored if CPEN is not set.  
Control Port Enable (CPEN) Bit 6  
Function:  
This bit is set to 0 by default, allowing the device to power-up in Stand-Alone Mode. Control Port Mode  
can be accessed by setting this bit to 1. This will allow operation of the device to be controlled by the reg-  
isters and the pin definitions will conform to Control Port Mode.  
Freeze Controls (Freeze) Bit 5  
Function:  
When set to 1, this function allows modifications to be made to the registers without the changes taking  
effect until FREEZE is set back to 0. To make multiple changes in the Control Port registers take effect  
simultaneously, enable the FREEZE bit, make all register changes, then disable the FREEZE bit.  
When set to 0 (default), register changes take effect immediately.  
30  
DS566F1  
CS4351  
7. DIGITAL FILTER RESPONSE PLOTS  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
−120  
−120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 13. Single-Speed (fast) Stopband Rejection  
Figure 14. Single-Speed (fast) Transition Band  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.02  
0.015  
0.01  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 15. Single-Speed (fast) Transition Band (detail)  
Figure 16. Single-Speed (fast) Passband Ripple  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 17. Single-Speed (slow) Stopband Rejection  
Figure 18. Single-Speed (slow) Transition Band  
DS566F1  
31  
CS4351  
0.02  
0.015  
0.01  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 19. Single-Speed (slow) Transition Band (detail)  
Figure 20. Single-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 21. Double-Speed (fast) Stopband Rejection  
Figure 22. Double-Speed (fast) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 23. Double-Speed (fast) Transition Band (detail)  
Figure 24. Double-Speed (fast) Passband Ripple  
32  
DS566F1  
CS4351  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 25. Double-Speed (slow) Stopband Rejection  
Figure 26. Double-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 27. Double-Speed (slow) Transition Band (detail)  
Figure 28. Double-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 29. Quad-Speed (fast) Stopband Rejection  
Figure 30. Quad-Speed (fast) Transition Band  
DS566F1  
33  
CS4351  
0
0.2  
0.15  
0.1  
1
2
3
0.05  
0
4
5
6
0.05  
7
0.1  
0.15  
0.2  
8
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 31. Quad-Speed (fast) Transition Band (detail)  
Figure 32. Quad-Speed (fast) Passband Ripple  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 33. Quad-Speed (slow) Stopband Rejection  
Figure 34. Quad-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
0.005  
0
2
3
4
5
6
0.005  
0.01  
0.015  
0.02  
7
8
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 35. Quad-Speed (slow) Transition Band (detail)  
Figure 36. Quad-Speed (slow) Passband Ripple  
34  
DS566F1  
CS4351  
8. PARAMETER DEFINITIONS  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.  
Dynamic Range  
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the  
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made  
with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full  
scale. This technique ensures that the distortion components are below the noise level and do not effect the  
measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-  
1991, and the Electronic Industries Association of Japan, EIAJ CP-307.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in deci-  
bels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full scale analog output for a full scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
Intra-Channel Phase Deviation  
The deviation from linear phase within a given channel.  
Inter-Channel Phase Deviation  
The difference in phase between channels.  
DS566F1  
35  
CS4351  
9. PACKAGE DIMENSIONS  
20L TSSOP (4.4 mm BODY) PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2
3
TOP VIEW  
INCHES  
NOM  
MILLIMETERS  
NOM  
NOTE  
DIM  
MIN  
MAX  
MIN  
MAX  
A
A1  
A2  
b
D
E
E1  
e
L
--  
0.002  
0.03346  
0.00748  
0.252  
0.248  
0.169  
--  
--  
0.043  
0.006  
0.037  
0.012  
0.259  
0.256  
0.177  
0.026  
0.028  
8°  
--  
--  
--  
1.10  
0.15  
0.95  
0.30  
6.60  
6.50  
4.50  
0.65  
0.70  
8°  
0.004  
0.0354  
0.0096  
0.256  
0.2519  
0.1732  
--  
0.05  
0.85  
0.19  
6.40  
6.30  
4.30  
--  
0.90  
0.245  
6.50  
6.40  
4.40  
--  
2,3  
1
1
0.020  
0°  
0.024  
4°  
0.50  
0°  
0.60  
4°  
µ
JEDEC #: MO-153  
Controlling Dimension is Millimeters.  
Notes:  
1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mis-  
match and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.  
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm  
total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimen-  
sion “b” by more than 0.07 mm at least material condition.  
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
Parameters  
Package Thermal Resistance  
Symbol  
Min  
-
Typ  
72  
Max  
-
Units  
°C/Watt  
20L TSSOP  
θJA  
36  
DS566F1  
CS4351  
10.ORDERING INFORMATION  
Product  
Description  
Package Pb-Free  
Grade  
Temp Range Container  
Order #  
Rail  
CS4351-CZZ  
Commercial -10° to +70° C  
Automotive -40° to +85° C  
Tape & Reel  
CS4351-CZZR  
CS4351-DZZ  
CS4351-DZZR  
CDB4351  
192 kHz Stereo DAC  
with 2 Vrms Line Out  
20-pin  
YES  
CS4351  
TSSOP  
Rail  
Tape & Reel  
-
CDB4351  
CS4351 Evaluation Board  
-
-
-
11.REVISION HISTORY  
Release  
Date  
Changes  
PP3  
March 2005  
Removed CS4351-CZ ordering option.  
Added CS4351-DZZ ordering option.  
Updated Tslrd spec on page 10.  
Updated Tdh spec on page 12.  
Updated VIL specification on page 13.  
Updated legal text.  
PP4  
F1  
July 2005  
Updated full-scale output specification on page 7.  
Updated gain drift on page 7  
Updated ordering information.  
December 2005 Updated status to final  
Updated legal text  
Table 10. Revision History  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find one nearest you, go to www.cirrus.com/corporate/contacts/sales.cfm  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED  
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-  
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER  
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE  
USES.  
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be  
trademarks or service marks of their respective owners.  
SPI is a trademark of Motorola, Inc.  
I²C is a registered trademark of Philips Semiconductor.  
DS566F1  
37  
配单直通车
CS4351-CZZR产品参数
型号:CS4351-CZZR
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Obsolete
零件包装代码:TSSOP
包装说明:TSSOP, TSSOP20,.25
针数:20
Reach Compliance Code:compliant
风险等级:5.8
Is Samacsys:N
最大模拟输出电压:2.15 V
最小模拟输出电压:1.85 V
转换器类型:D/A CONVERTER
输入位码:2'S COMPLEMENT
输入格式:SERIAL
JESD-30 代码:R-PDSO-G20
JESD-609代码:e3
长度:6.5 mm
湿度敏感等级:3
位数:24
功能数量:1
端子数量:20
最高工作温度:70 °C
最低工作温度:-10 °C
封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP
封装等效代码:TSSOP20,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):260
电源:3.3,12 V
认证状态:Not Qualified
座面最大高度:1.1 mm
子类别:Other Converters
最大压摆率:26 mA
标称供电电压:3.3 V
表面贴装:YES
温度等级:COMMERCIAL
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:4.4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!