欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • CS51413ED8G图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • CS51413ED8G 现货库存
  • 数量4200 
  • 厂家ON 
  • 封装SOP8 
  • 批号23+ 
  • 原装现货公司特价销售!
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • CS51413EDR8G图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • CS51413EDR8G 现货库存
  • 数量60030 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • CS51413ED图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • CS51413ED
  • 数量10000 
  • 厂家ON 
  • 封装SOP8 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • CS51413ED8图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • CS51413ED8
  • 数量13880 
  • 厂家ON Semiconductor 
  • 封装8SOIC 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • CS51413ED8G图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • CS51413ED8G
  • 数量4772 
  • 厂家ON 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • CS51413EDR8G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • CS51413EDR8G
  • 数量12850 
  • 厂家ON 
  • 封装SOP8 
  • 批号NEW 
  • 绝对进口原装现货,市场价格最低!!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • CS51413EDR8G图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • CS51413EDR8G
  • 数量18800 
  • 厂家ON-安森美 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥10一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • CS51413ED8G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • CS51413ED8G
  • 数量5000 
  • 厂家ON 
  • 封装SOP-8 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • CS51413E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • CS51413E
  • 数量58 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • CS51413ED8G图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • CS51413ED8G
  • 数量4200 
  • 厂家ON 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • CS51413ED8图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • CS51413ED8
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • CS51413ED8G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • CS51413ED8G
  • 数量13500 
  • 厂家ON 
  • 封装 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • CS51413ED8图
  • 集好芯城

     该会员已使用本站13年以上
  • CS51413ED8
  • 数量19871 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • CS51413EDR8G图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • CS51413EDR8G
  • 数量9868 
  • 厂家ON 
  • 封装SOP 
  • 批号06+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • CS51413ED8G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • CS51413ED8G
  • 数量18310 
  • 厂家ON 
  • 封装SOIC-8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • CS51413ED8G图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • CS51413ED8G
  • 数量99000 
  • 厂家ON 
  • 封装SOP8 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • CS51413E图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • CS51413E
  • 数量12500 
  • 厂家ON 
  • 封装QFN 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • CS51413EDR8G图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CS51413EDR8G
  • 数量7500 
  • 厂家ON 
  • 封装SOP-8 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,低价出售,欢迎询购★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • CS51413EMNR2G图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CS51413EMNR2G
  • 数量3800 
  • 厂家ON 
  • 封装18-VFDFN 
  • 批号24+ 
  • 授权分销 现货热卖
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • CS51413ED8G图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • CS51413ED8G
  • 数量5500 
  • 厂家ON 
  • 封装QFN 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • CS51413ED图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • CS51413ED
  • 数量10000 
  • 厂家ON 
  • 封装SOP8 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • CS51413ED8图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • CS51413ED8
  • 数量15830 
  • 厂家ON 
  • 封装SOP-8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • CS51413ED8G图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • CS51413ED8G
  • 数量660000 
  • 厂家ON Semiconductor(安森美) 
  • 封装
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • CS51413E图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • CS51413E
  • 数量5000 
  • 厂家ON 
  • 封装深圳原装现货0755-83975781 
  • 批号A/N 
  • QQ:767621813QQ:767621813 复制
    QQ:541766577QQ:541766577 复制
  • 0755-83975781 QQ:767621813QQ:541766577
  • CS51413EDR8G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • CS51413EDR8G
  • 数量8800 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • CS51413ED8图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • CS51413ED8
  • 数量7153 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • CS51413EDR8G图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • CS51413EDR8G
  • 数量73754 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • CS51413EDR8G图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • CS51413EDR8G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号24+ 
  • 百域芯优势 实单必成 可开13点增值税发票
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • CS51413ED8图
  • 深圳市奥伟斯科技有限公司

     该会员已使用本站7年以上
  • CS51413ED8
  • 数量90000 
  • 厂家ON 
  • 封装N/A 
  • 批号11+ 
  • 安森美专业供应商
  • QQ:3003412773QQ:3003412773 复制
    QQ:3003714016QQ:3003714016 复制
  • 0755-83254770 QQ:3003412773QQ:3003714016
  • CS51413ED图
  • 深圳市西昂特科技有限公司

     该会员已使用本站13年以上
  • CS51413ED
  • 数量5000 
  • 厂家ON 
  • 封装SOP8 
  • 批号08+/09+ 
  • 全新原装现货特价
  • QQ:2881291855QQ:2881291855 复制
    QQ:1158574719QQ:1158574719 复制
  • 0755-82524647 QQ:2881291855QQ:1158574719
  • CS51413EDR8图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • CS51413EDR8
  • 数量65000 
  • 厂家ON 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • CS51413ED8GOS-ND图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • CS51413ED8GOS-ND
  • 数量890 
  • 厂家ON 
  • 封装 8-SOIC  
  • 批号12+ 
  • 正品,刚到货
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899

产品型号CS51413E的Datasheet PDF文件预览

ꢌ ꢍꢎ ꢏꢐꢑ  
ꢐꢜ ꢡꢞꢓꢐꢠ ꢎ ꢏꢗꢠꢓ ꢐ  
http://onsemi.com  
ꢟ ꢞ  
ꢥ ꢏꢦ ꢠꢖ ꢠꢗ  
SO–8  
The CS5141X products are 1.5 A buck regulator ICs. These devices  
are fixed–frequency operating at 260 kHz and 520 kHz. The regulators  
use the V control architecture to provide unmatched transient  
D SUFFIX  
CASE 751  
8
1
2
response, the best overall regulation and the simplest loop  
compensation for today’s high–speed logic. These products  
accommodate input voltages from 4.5 V to 40 V.  
MARKING DIAGRAM  
8
The CS51411 and CS51413 contain synchronization circuitry. The  
CS51412 and CS51414 have the option of powering the controller  
from an external 3.3 V to 6.0 V supply in order to improve efficiency,  
especially in high input voltage, light load conditions.  
The on–chip NPN transistor is capable of providing a minimum of  
1.5 A of output current, and is biased by an external “boost” capacitor  
to ensure saturation, thus minimizing on–chip power dissipation.  
Protection circuitry includes thermal shutdown, cycle–by–cycle  
current limiting and frequency foldback. The CS51411 and CS51413  
are functionally pin–compatible with the LT1375. The CS51412 and  
CS51414 are functionally pin–compatible with the LT1376.  
5141X  
ALYWT  
1
X
A
WL, L  
YY, Y  
= 1, 2, 3 or 4  
= Assembly Location  
= Wafer Lot  
= Year  
WW, W = Work Week  
= Temperature Range, E or G  
T
Features  
PIN CONNECTIONS  
CS51411/3  
2
V Architecture Provides Ultra–Fast Transient Response, Improved  
Regulation and Simplified Design  
1
8
2.0% Error Amp Reference Voltage Tolerance  
BOOST  
V
V
C
Switch Frequency Decrease of 4:1 in Short Circuit Conditions  
V
IN  
FB  
Reduces Short Circuit Power Dissipation  
V
SW  
GND  
BOOST Lead Allows “Bootstrapped” Operation to Maximize  
Efficiency  
Sync Function for Parallel Supply Operation or Noise Minimization  
Shutdown Lead Provides Power–Down Option  
85 µA Quiescent Current During Power–Down  
Thermal Shutdown  
Soft Start  
Pin–Compatible with LT1375 and LT1376  
SHDNB  
SYNC  
CS51412/4  
1
8
BOOST  
V
V
C
V
IN  
FB  
V
SW  
GND  
BIAS  
SHDNB  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
September, 2002 – Rev. 11  
CS51411/D  
CS51411, CS51412, CS51413, CS51414  
PRODUCT SELECTION GUIDE  
Part Number  
CS51411E  
Frequency  
260 kHz  
260 kHz  
260 kHz  
260 kHz  
520 kHz  
520 kHz  
520 kHz  
520 kHz  
Temperature Range  
–40°C to 85°C  
0°C to 70°C  
Bias/Sync  
Sync  
Sync  
Bias  
CS51411G  
CS51412E  
–40°C to 85°C  
0°C to 70°C  
CS51412G  
Bias  
CS51413E  
–40°C to 85°C  
0°C to 70°C  
Sync  
Sync  
Bias  
CS51413G  
CS51414E  
–40°C to 85°C  
0°C to 70°C  
CS51414G  
Bias  
1N4148  
D1  
C1  
4.5 V – 16 V  
0.1 µF  
C2  
100 µF  
1
U1  
2
3
V
3.3 V  
BOOST  
IN  
V
SW  
L1  
15 µH  
4
5
Shutdown  
SYNC  
SHDNB  
CS51411/3  
R1  
205  
C3  
D3  
1N5821  
SYNC  
100 µF  
V
C
GND  
V
7
FB  
8
6
R2  
127  
C4  
0.1 µF  
Figure 1. Application Diagram, 4.5 V 16 V to 3.3 V @ 1.0 A Converter  
MAXIMUM RATINGS*  
Rating  
Value  
–40 to 150  
230 peak  
–65 to +150  
2.0  
Unit  
°C  
Operating Junction Temperature Range, T  
Lead Temperature Soldering:  
J
Reflow: (SMD styles only) (Note 1)  
°C  
Storage Temperature Range, T  
°C  
S
ESD Damage Threshold (Human Body Model)  
kV  
1. 60 second maximum above 183°C.  
*The maximum package power dissipation must be observed.  
http://onsemi.com  
2
CS51411, CS51412, CS51413, CS51414  
MAXIMUM RATINGS  
Pin Name  
V
Max  
V
MIN  
I
I
SINK  
SOURCE  
V
40 V  
40 V  
40 V  
7.0 V  
7.0 V  
7.0 V  
7.0 V  
7.0 V  
7.0 V  
0.3 V  
0.3 V  
N/A  
4.0 A  
100 mA  
10 mA  
1.0 mA  
1.0 mA  
1.0 mA  
50 mA  
1.0 mA  
1.0 mA  
IN  
BOOST  
N/A  
V
SW  
0.6 V/1.0 V, t < 50 ns  
0.3 V  
4.0 A  
V
1.0 mA  
1.0 mA  
1.0 mA  
1.0 mA  
1.0 mA  
50 mA  
C
SHDNB  
SYNC  
BIAS  
0.3 V  
0.3 V  
0.3 V  
V
FB  
0.3 V  
GND  
0.3 V  
ELECTRICAL CHARACTERISTICS (40°C < T < 125°C (CS51411E/2E/3E/4E); 40°C < T < 85°C (CS51411E/2E/3E/4E);  
J
A
0°C < T < 70°C (CS51411G/2G/3G/4G), 4.5 V< V < 40 V; unless otherwise specified.)  
A
IN  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Oscillator  
Operating Frequency  
Operating Frequency  
Frequency Line Regulation  
Maximum Duty Cycle  
CS51411/CS51412  
CS51413/CS51414  
224  
446  
260  
520  
0.05  
90  
296  
594  
0.15  
95  
kHz  
kHz  
%/V  
%
85  
V
FB  
Frequency Foldback Threshold  
0.29  
0.32  
0.36  
V
PWM Comparator  
Slope Compensation Voltage  
CS51411/CS51412, Fix V V /T  
ON  
CS51413/CS51414  
8.0  
25  
17  
50  
26  
75  
mV/µs  
mV/µs  
FB,  
C
Minimum Output Pulse Width  
CS51411/CS51412, V to V  
150  
300  
230  
ns  
ns  
FB  
SW  
CS51413/CS51414, V to V  
FB  
SW  
Power Switch  
Current Limit  
V
V
> 0.36 V  
< 0.29 V  
= 1.5 A, V  
1.6  
0.9  
0.4  
2.3  
1.5  
0.7  
120  
3.0  
2.1  
1.0  
160  
A
A
FB  
Foldback Current  
FB  
Saturation Voltage  
Current Limit Delay  
Error Amplifier  
I
= V + 2.5 V  
V
OUT  
BOOST  
IN  
Note 2  
ns  
Internal Reference Voltage  
Reference PSRR  
1.244  
1.270  
40  
1.296  
V
dB  
Note 2  
FB Input Bias Current  
Output Source Current  
Output Sink Current  
Output High Voltage  
Output Low Voltage  
Unity Gain Bandwidth  
Open Loop Amplifier Gain  
Amplifier Transconductance  
0.02  
25  
0.1  
35  
35  
1.53  
60  
µA  
V
V
V
V
= 1.270 V, V = 1.0 V  
15  
15  
1.39  
5.0  
µA  
C
FB  
= 1.270 V, V = 2.0 V  
25  
µA  
C
FB  
= 1.0 V  
= 2.0 V  
1.46  
20  
V
FB  
FB  
mV  
kHz  
dB  
Note 2  
Note 2  
Note 2  
500  
70  
6.4  
mA/V  
2. Guaranteed by design, not 100% tested in production.  
http://onsemi.com  
3
CS51411, CS51412, CS51413, CS51414  
ELECTRICAL CHARACTERISTICS (continued) (40°C < T < 125°C (CS51411E/2E/3E/4E); 40°C < T < 85°C (CS51411E/2E/3E/4E);  
J
A
0°C < T < 70°C (CS51411G/2G/3G/4G), 4.5 V< V < 40 V; unless otherwise specified.)  
A
IN  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Sync  
Sync Frequency Range  
Sync Frequency Range  
Sync Pin Bias Current  
CS51411/CS51412  
CS51413/CS51414  
305  
575  
470  
880  
kHz  
kHz  
V
SYNC  
V
SYNC  
= 0 V  
= 5.0 V  
250  
0.1  
360  
0.2  
460  
µA  
µA  
Sync Threshold Voltage  
1.0  
1.5  
1.9  
V
Shutdown  
Shutdown Threshold Voltage  
1.0  
1.3  
1.6  
35  
V
Shutdown Pin Bias Current  
V
= 0 V  
0.14  
5.00  
µA  
SHDNB  
Thermal Shutdown  
Overtemperature Trip Point  
Note 3  
Note 3  
175  
185  
42  
195  
°C  
°C  
Thermal Shutdown Hysteresis  
General  
Quiescent Current  
I
= 0 A  
3.0  
8.0  
6.0  
4.0  
20  
15  
6.25  
85  
mA  
µA  
SW  
Shutdown Quiescent Current  
Boost Operating Current  
Minimum Boost Voltage  
Start up Voltage  
V
= 0 V  
SHDNB  
BOOST  
V
V  
= 2.5 V  
40  
mA/A  
V
SW  
Note 3  
2.5  
4.4  
12  
2.2  
3.3  
7.0  
V
Minimum Output Current  
mA  
3. Guaranteed by design, not 100% tested in production.  
PACKAGE PIN DESCRIPTION  
PACKAGE PIN #  
PIN SYMBOL  
FUNCTION  
1
BOOST  
The BOOST pin provides additional drive voltage to the onchip NPN power transistor.  
The resulting decrease in switch on voltage increases efficiency.  
2
3
V
This pin is the main power input to the IC.  
IN  
V
SW  
This is the connection to the emitter of the onchip NPN power transistor and serves  
as the switch output to the inductor. This pin may be subjected to negative voltages  
during switch offtime. A catch diode is required to clamp the pin voltage in normal  
operation. This node can stand 1.0 V for less than 50 ns during switch node flyback.  
4 (CS51412/CS51414)  
5 (CS51411/CS51413)  
BIAS  
The BIAS pin connects to the onchip power rail and allows the IC to run most of its  
internal circuitry from the regulated output or another low voltage supply to improve  
efficiency. The BIAS pin is left floating if this feature is not used.  
SYNC  
This pin provides the synchronization input.  
5 (CS51412/CS51414)  
4 (CS51411/CS51413)  
SHDNB  
The shutdown pin is active low and TTL compatible. The IC goes into sleep mode,  
drawing less than 85 µA when the pin voltage is pulled below 1.0 V. This pin should be  
left floating in normal position.  
6
7
GND  
Power return connection for the IC.  
V
FB  
The FB pin provides input to the inverting input of the error amplifier. If V is lower  
FB  
than 0.29 V, the oscillator frequency is divided by four, and current limit folds back to  
about 1 ampere. These features protect the IC under severe overcurrent or short  
circuit conditions.  
8
V
C
The V pin provides a connection point to the output of the error amplifier and input to  
the PWM comparator. Driving of this pin should be avoided because onchip test  
C
circuitry becomes active whenever current exceeding 0.5 mA is forced into the IC.  
http://onsemi.com  
4
CS51411, CS51412, CS51413, CS51414  
SHDNB  
SYNC  
V
IN  
5.0 µA  
Shutdown  
Comparator  
+
2.9 V LDO  
Voltage  
Regulator  
Thermal  
Shutdown  
Artificial  
Ramp  
Oscillator  
BIAS  
BOOST  
+
1.3 V  
Output  
Driver  
S
R
Q
V
SW  
+
Current  
Limit  
Comparator  
+
PWM  
Comparator  
I
REF  
1.46 V  
V
FB  
+
I
FOLDBACK  
+
Frequency  
+
GND  
0.32 V  
and Current  
Limit Foldback  
+
1.270 V  
Error  
Amplifier  
V
C
Figure 2. Block Diagram  
http://onsemi.com  
5
CS51411, CS51412, CS51413, CS51414  
APPLICATIONS INFORMATION  
THEORY OF OPERATION  
The slope compensation signal is a fixed voltage ramp  
provided by the oscillator. Adding this signal eliminates  
subharmonic oscillation associated with the operation at  
duty cycle greater than 50%. The artificial ramp also ensures  
the proper PWM function when the output ripple voltage is  
inadequate. The slope compensation signal is properly sized  
to serve it purposes without sacrificing the transient  
response speed.  
Under load and line transient, not only the ramp signal  
changes, but more significantly the DC component of the  
feedback voltage varies proportionally to the output voltage.  
FFB path connects both signals directly to the PWM  
comparator. This allows instant modulation of the duty cycle  
to counteract any output voltage deviations. The transient  
response time is independent of the error amplifier  
bandwidth. This eliminates the delay associated with error  
amplifier and greatly improves the transient response time.  
The error amplifier is used here to ensure excellent DC  
accuracy.  
V2 Control  
The CS5141X family of buck regulators provides leading  
edge technology, a high level of integration and high  
operating frequencies allowing the layout of a switchmode  
power supply in a very small board area. These devices are  
based on the proprietary V control architecture. V control  
uses the output voltage and its ripple as the ramp signal,  
providing an ease of use not generally associated with  
voltage or current mode control. Improved line regulation,  
load regulation and very fast transient response are also  
major advantages.  
2
2
S1  
L1  
V
IN  
V
O
R1  
C1  
Duty Cycle  
D1  
Buck  
Controller  
Error Amplifier  
Slope  
Comp  
The CS5141X has a transconductance error amplifier,  
whose noninverting input is connected to an Internal  
Reference Voltage generated from the onchip regulator.  
Oscillator  
+
FFB  
The inverting input connects to the V pin. The output of  
FB  
Latch  
R
S
the error amplifier is made available at the V pin. A typical  
C
frequency compensation requires only a 0.1 µF capacitor  
R2  
+
SFB  
connected between the V pin and ground, as shown in  
C
+
V
C
Figure 1. This capacitor and error amplifiers output  
resistance (approximately 8.0 M) create a low frequency  
V
REF  
PWM  
Comparator  
+
2
pole to limit the bandwidth. Since V control does not  
Error  
Amplifier  
require a high bandwidth error amplifier, the frequency  
compensation is greatly simplified.  
2
V
Control  
The V pin is clamped below Output High Voltage. This  
C
allows the regulator to recover quickly from over current or  
short circuit conditions.  
Figure 3. Buck Converter with V2 Control.  
As shown in Figure 3, there are two voltage feedback  
paths in V control, namely FFB(Fast Feedback) and  
Oscillator and Sync Feature (CS51411 and CS51413 only)  
The onchip oscillator is trimmed at the factory and  
requires no external components for frequency control. The  
high switching frequency allows smaller external  
components to be used, resulting in a board area and cost  
savings. The tight frequency tolerance simplifies magnetic  
components selection. The switching frequency is reduced  
2
SFB(Slow Feedback). In FFB path, the feedback voltage  
connects directly to the PWM comparator. This feedback  
path carries the ramp signal as well as the output DC voltage.  
Artificial ramp derived from oscillator is added to the  
feedback signal to improve stability. The other feedback  
path SFB connects the feedback voltage to the error  
to 25% of the nominal value when the V pin voltage is  
FB  
amplifier whose output V feeds to the other input of the  
C
below Frequency Foldback Threshold. In short circuit or  
overload conditions, this reduces the power dissipation of  
the IC and external components.  
PWM comparator. In a constant frequency mode, the  
oscillator signal sets the output latch and turns on the switch  
S1. This starts a new switch cycle. The ramp signal,  
composed of both artificial ramp and output ripple,  
An external clock signal can sync CS51411/CS51414 to  
a higher frequency. The rising edge of the sync pulse turns  
on the power switch to start a new switching cycle, as shown  
in Figure 4. There is approximately 0.5 µs delay between the  
eventually comes across the V voltage, and consequently  
C
resets the latch to turn off the switch. The switch S1 will turn  
on again at the beginning of the next switch cycle. In a buck  
converter, the output ripple is determined by the ripple  
current of the inductor L1 and the ESR (equivalent series  
resistor) of the output capacitor C1.  
rising edge of the sync pulse and rising edge of the V pin  
SW  
voltage. The sync threshold is TTL logic compatible, and  
duty cycle of the sync pulses can vary from 10% to 90%. The  
http://onsemi.com  
6
CS51411, CS51412, CS51413, CS51414  
frequency foldback feature is disabled during the sync  
mode.  
components. When the peak of the switching current reaches  
the Current Limit, the power switch turns off after the  
Current Limit Delay. The switch will not turn on until the  
next switching cycle. The current limit threshold is  
independent of switching duty cycle. The maximum load  
current, given by the following formula under continuous  
conduction mode, is less than the Current Limit due to the  
ripple current.  
V (V * V )  
IN  
O
O
I
+ I *  
LIM  
O(MAX)  
2(L)(V )(f )  
IN  
s
where:  
f = switching frequency,  
S
I
= current limit threshold,  
LIM  
V = output voltage,  
O
V
IN  
= input voltage,  
L = inductor value.  
When the regulator runs under current limit, the  
subharmonic oscillation may cause low frequency  
oscillation, as shown in Figure 6. Similar to current mode  
control, this oscillation occurs at the duty cycle greater than  
50% and can be alleviated by using a larger inductor value.  
The current limit threshold is reduced to Foldback Current  
when the FB pin falls below Foldback Threshold. This  
feature protects the IC and external components under the  
power up or overload conditions.  
Figure 4. A CS51411 Buck Regulator is Synced by an  
External 350 kHz Pulse Signal  
Power Switch and Current Limit  
The collector of the builtin NPN power switch is  
connected to the V pin, and the emitter to the V pin.  
IN  
SW  
When the switch turns on, the V voltage is equal to the  
SW  
V
IN  
minus switch Saturation Voltage. In the buck regulator,  
the V  
voltage swings to one diode drop below ground  
SW  
when the power switch turns off, and the inductor current is  
commutated to the catch diode. Due to the presence of high  
pulsed current, the traces connecting the V pin, inductor  
SW  
and diode should be kept as short as possible to minimize the  
noise and radiation. For the same reason, the input capacitor  
should be placed close to the V pin and the anode of the  
IN  
diode.  
The saturation voltage of the power switch is dependent  
on the switching current, as shown in Figure 5.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Figure 6. The Regulator in Current Limit  
BOOST Pin  
The BOOST pin provides base driving current for the  
power switch. A voltage higher than V provides required  
IN  
headroom to turn on the power switch. This in turn reduces  
IC power dissipation and improves overall system  
efficiency. The BOOST pin can be connected to an external  
booststrapping circuit which typically uses a 0.1 µF capacitor  
and a 1N914 or 1N4148 diode, as shown in Figure 1. When the  
power switch is turned on, the voltage on the BOOST pin is  
equal to  
0.1  
0
0
0.5  
1.0  
1.5  
Switching Current (A)  
Figure 5. The Saturation Voltage of the Power Switch  
Increases with the Conducting Current  
V
+ V ) V * V  
IN F  
BOOST  
O
Members of the CS5141X family contain pulsebypulse  
current limiting to protect the power switch and external  
where:  
http://onsemi.com  
7
CS51411, CS51412, CS51413, CS51414  
2
V = diode forward voltage.  
to the inductor, IC and catch diode. In V control , the  
compensation capacitor provides Soft Start with no need for  
extra pin or circuitry. During the power up, the Output  
Source Current of the error amplifier charges the  
F
The anode of the diode can be connected to any DC voltage  
other than the regulated output voltage. However, the  
maximum voltage on the BOOST pin shall not exceed 40 V.  
As shown in Figure 7, the BOOST pin current includes a  
constant 7.0 mA predriver current and base current  
proportional to switch conducting current. A detailed  
discussion of this current is conducted in Thermal  
Consideration section. A 0.1 µF capacitor is usually  
adequate for maintaining the Boost pin voltage during the on  
time.  
compensation capacitor which forces V pin and thus output  
voltage ramp up gradually. The Soft Start duration can be  
calculated by  
C
V
  C  
C
I
COMP  
T
+
SS  
SOURCE  
where:  
V = V pin steadystate voltage, which is approximately  
C
C
equal to error amplifiers reference voltage.  
30  
25  
20  
15  
C
I
= Compensation capacitor connected to the V pin  
COMP  
C
= Output Source Current of the error amplifier.  
SOURCE  
Using a 0.1 µF C  
, the calculation shows a T over  
SS  
5.0 ms which is adequate to avoid any current stresses.  
COMP  
Figure 8 shows the gradual rise of the V , V and envelope  
C
O
of the V during power up. There is no voltage overshoot  
SW  
after the output voltage reaches the regulation. If the supply  
10  
5
voltage rises slower than the V pin, output voltage may  
C
overshoot.  
0
0
0.5  
1.0  
1.5  
Switching Current (A)  
Figure 7. The Boost Pin Current Includes 7.0 mA  
PreDriver Current and Base Current when the  
Switch is Turned On. The Beta Decline of the  
Power Switch Further Increases the Base  
Current at High Switching Current  
BIAS Pin (CS51412 and CS51414 Only)  
The BIAS pin allows a secondary power supply to bias the  
control circuitry of the IC. The BIAS pin voltage should be  
between 3.3 V and 6.0 V. If the BIAS pin voltage falls below  
that range, use a diode to prevent current drain from the  
BIAS pin. Powering the IC with a voltage lower than the  
regulators input voltage reduces the IC power dissipation  
and improves energy transfer efficiency.  
Figure 8. The Power Up Transition of CS5141X  
Regulator  
Short Circuit  
When the V  
Shutdown  
pin voltage drops below Foldback  
FB  
The internal power switch will not turn on until the V  
IN  
Threshold, the regulator reduces the peak current limit by  
40% and switching frequency to 1/4 of the nominal  
frequency. These features are designed to protect the IC and  
external components during over load or short circuit  
conditions. In those conditions, peak switching current is  
clamped to the current limit threshold. The reduced  
switching frequency significantly increases the ripple  
current, and thus lowers the DC current. The short circuit can  
cause the minimum duty cycle to be limited by Minimum  
Output Pulse Width. The foldback frequency reduces the  
minimum duty cycle by extending the switching cycle. This  
protects the IC from overheating, and also limits the power  
that can be transferred to the output. The current limit  
foldback effectively reduces the current stress on the  
pin rises above the Start Up Voltage. This ensures no  
switching until adequate supply voltage is provided to the  
IC.  
The IC enters a sleep mode when the SHDNB pin is pulled  
below Shutdown Threshold Voltage. In the sleep mode, the  
power switch keeps open and the supply current reduces to  
Shutdown Quiescent Current. This pin has internal pullup  
current. So when this pin is not used, leave the SHDNB pin  
open.  
StartUp  
During power up, the regulator tends to quickly charge up  
the output capacitors to reach voltage regulation. This gives  
rise to an excessive inrush current which can be detrimental  
http://onsemi.com  
8
CS51411, CS51412, CS51413, CS51414  
inductor and diode. When the output is shorted, the DC  
current when the transistor needs to be on. The power  
dissipated by the IC due to this current is  
current of the inductor and diode can approach the current  
limit threshold. Therefore, reducing the current limit by 40%  
can result in an equal percentage drop of the inductor and  
diode current. The short circuit waveforms are captured in  
Figure 9, and the benefit of the foldback frequency and  
current limit is selfevident.  
2
V
V
I
S
60  
O
W
+
 
BASE  
IN  
where:  
I = DC switching current.  
S
When the power switch turns on, the saturation voltage  
and conduction current contribute to the power loss of a  
nonideal switch. The power loss can be quantified as  
V
O
W
+
  I   V  
S SAT  
SAT  
V
IN  
where:  
V
SAT  
= saturation voltage of the power switch which is  
shown in Figure 5.  
The switching loss occurs when the switch experiences  
both high current and voltage during each switch transition.  
This regulator has a 30 ns turnoff time and associated  
power loss is equal to  
I
S
  V  
2
IN  
W
+
  20 ns   f  
S
S
Figure 9. In Short Circuit, the Foldback Current and  
Foldback Frequency Limit the Switching Current to  
Protect the IC, Inductor and Catch Diode  
The turnon time is much shorter and thus turnon loss is  
not considered here.  
The total power dissipated by the IC is sum of all the above  
W
+ W ) W  
) W  
) W  
) W  
SAT S  
IC  
Q
DRV  
BASE  
Thermal Considerations  
A calculation of the power dissipation of the IC is always  
necessary prior to the adoption of the regulator. The current  
drawn by the IC includes quiescent current, predriver  
current, and power switch base current. The quiescent  
current drives the low power circuits in the IC, which  
include comparators, error amplifier and other logic blocks.  
Therefore, this current is independent of the switching  
current and generates power equal to  
The IC junction temperature can be calculated from the  
ambient temperature, IC power dissipation and thermal  
resistance of the package. The equation is shown as follows,  
T + W   R  
J IC  
) T  
A
qJA  
The maximum IC junction temperature shall not exceed  
125°C to guarantee proper operation and avoid any damages  
to the IC.  
W
+ V   I  
IN  
Q
Q
Minimum Load Requirement  
As pointed out in the previous section, a minimum load is  
required for this regulator due to the predriver current  
where:  
I = quiescent current.  
Q
feeding the output. Placing a resistor equal to V divided by  
O
The predriver current is used to turn on/off the power  
switch and is approximately equal to 12 mA in worst case.  
During steady state operation, the IC draws this current from  
the Boost pin when the power switch is on and then receives  
12 mA should prevent any voltage overshoot at light load  
conditions. Alternatively, the feedback resistors can be  
valued properly to consume 12 mA current.  
it from the V pin when the switch is off. The predriver  
IN  
COMPONENT SELECTION  
current always returns to the V pin. Since the predriver  
SW  
current goes out to the regulators output even when the  
power switch is turned off, a minimum load is required to  
prevent overvoltage in light load conditions. If the Boost pin  
Input Capacitor  
In a buck converter, the input capacitor witnesses pulsed  
current with an amplitude equal to the load current. This  
pulsed current and the ESR of the input capacitors determine  
voltage is equal to V + V when the switch is on, the power  
IN  
O
dissipation due to predriver current can be calculated by  
the V ripple voltage, which is shown in Figure 10. For V  
IN  
IN  
2
ripple, low ESR is a critical requirement for the input  
capacitor selection. The pulsed input current possesses a  
significant AC component, which is absorbed by the input  
capacitors. The RMS current of the input capacitor can be  
calculated using:  
V
V
O
W
+ 12 mA   (V * V  
IN  
)
O
)
DRV  
IN  
The base current of a bipolar transistor is equal to collector  
current divided by beta of the device. Beta of 60 is used here  
to estimate the base current. The Boost pin provides the base  
http://onsemi.com  
9
CS51411, CS51412, CS51413, CS51414  
Selecting the capacitor type is determined by each  
Ǹ
D(1 * D)  
O
I
+ I  
RMS  
designs constraint and emphasis. The aluminum  
electrolytic capacitors are widely available at lowest cost.  
Their ESR and ESL (equivalent series inductor) are  
relatively high. Multiple capacitors are usually paralleled to  
achieve lower ESR. In addition, electrolytic capacitors  
usually need to be paralleled with a ceramic capacitor for  
filtering high frequency noises. The OSCON are solid  
aluminum electrolytic capacitors, and therefore has a much  
lower ESR. Recently, the price of the OSCON capacitors  
has dropped significantly so that it is now feasible to use  
them for some low cost designs. Electrolytic capacitors are  
physically large, and not used in applications where the size,  
and especially height is the major concern.  
where:  
D = switching duty cycle which is equal to V /V .  
I = load current.  
O
O
IN  
Ceramic capacitors are now available in values over 10 µF.  
Since the ceramic capacitor has low ESR and ESL, a single  
ceramic capacitor can be adequate for both low frequency  
and high frequency noises. The disadvantage of ceramic  
capacitors are their high cost. Solid tantalum capacitors can  
have low ESR and small size. However, the reliability of the  
tantalum capacitor is always a concern in the application  
where the capacitor may experience surge current.  
Figure 10. Input Voltage Ripple in a Buck Converter  
To calculate the RMS current, multiply the load current  
with the constant given by Figure 11 at each duty cycle. It is  
a common practice to select the input capacitor with an RMS  
current rating more than half the maximum load current. If  
multiple capacitors are paralleled, the RMS current for each  
capacitor should be the total current divided by the number  
of capacitors.  
Output Capacitor  
In a buck converter, the requirements on the output  
capacitor are not as critical as those on the input capacitor.  
The current to the output capacitor comes from the inductor  
and thus is triangular. In most applications, this makes the  
RMS ripple current not an issue in selecting output  
capacitors.  
The output ripple voltage is the sum of a triangular wave  
caused by ripple current flowing through ESR, and a square  
wave due to ESL. Capacitive reactance is assumed to be  
small compared to ESR and ESL. The peak to peak ripple  
current of the inductor is:  
0.6  
0.5  
0.4  
V (V * V )  
IN  
O
O
I
+
P * P  
(V )(L)(f )  
IN  
S
0.3  
0.2  
V
, the output ripple due to the ESR, is equal  
RIPPLE(ESR)  
to the product of I  
and ESR. The voltage developed  
PP  
across the ESL is proportional to the di/dt of the output  
capacitor. It is realized that the di/dt of the output capacitor  
is the same as the di/dt of the inductor current. Therefore,  
when the switch turns on, the di/dt is equal to (V V )/L,  
and it becomes V /L when the switch turns off. The total  
0.1  
0
IN  
O
0
0.2  
0.4  
0.6  
Duty Cycle  
0.8  
1.0  
O
ripple voltage induced by ESL can then be derived from  
Figure 11. Input Capacitor RMS Current can be  
Calculated by Multiplying Y Value with Maximum Load  
Current at any Duty Cycle  
V
IN  
* V  
L
V
L
V
IN  
L
O
IN  
V
+ ESL(  
) ) ESL(  
) + ESL(  
)
RIPPLE(ESL)  
http://onsemi.com  
10  
CS51411, CS51412, CS51413, CS51414  
The total output ripple is the sum of the V  
and  
RIPPLE(ESR)  
V
.
RIPPLE(ESR)  
Figure 15. The Output Voltage Ripple Using  
One 100 mF Tantalum Capacitor  
Figure 12 to Figure 15 show the output ripple of a 5.0 V  
to 3.3 V/500 mA regulator using 22 µH inductor and various  
capacitor types. At the switching frequency, the low ESR  
and ESL make the ceramic capacitors behave capacitively  
as shown in Figure 12. Additional paralleled ceramic  
capacitors will further reduce the ripple voltage, but  
inevitably increase the cost. POSCAP, manufactured by  
SANYO, is a solid electrolytic capacitor. The anode is  
sintered tantalum and the cathode is a highly conductive  
polymerized organic semiconductor. TPC series, featuring  
low ESR and low profile, is used in the measurement of  
Figure 13. It is shown that POSCAP presents a good balance  
of capacitance and ESR, compared with a ceramic capacitor.  
In this application, the low ESR generates less than 5.0 mV  
of ripple and the ESL is almost unnoticeable. The ESL of the  
throughhole OSCON capacitor give rise to the inductive  
impedance. It is evident from Figure 14 which shows the  
step rise of the output ripple on the switch turnon and large  
spike on the switch turnoff. The ESL prevents the output  
capacitor from quickly charging up the parasitic capacitor of  
the inductor when the switch node is pulled below ground  
through the catch diode conduction. This results in the spike  
associated with the falling edge of the switch node. The D  
package tantalum capacitor used in Figure 15 has the same  
footprint as the POSCAP, but doubles the height. The ESR  
of the tantalum capacitor is apparently higher than the  
POSCAP. The electrolytic and tantalum capacitors provide  
a lowcost solution with compromised performance. The  
reliability of the tantalum capacitor is not a serious concern  
for output filtering because the output capacitor is usually  
free of surge current and voltage.  
Figure 12. The Output Voltage Ripple Using Two 10 mF  
Ceramic Capacitors in Parallel  
Figure 13. The Output Voltage Ripple Using One 100 mF  
POSCAP Capacitor  
Diode Selection  
The diode in the buck converter provides the inductor  
current path when the power switch turns off. The peak  
reverse voltage is equal to the maximum input voltage. The  
peak conducting current is clamped by the current limit of  
the IC. The average current can be calculated from:  
Figure 14. The Output Voltage Ripple Using  
One 100 mF OSCON  
http://onsemi.com  
11  
CS51411, CS51412, CS51413, CS51414  
The DC current through the inductor is equal to the load  
I (V * V )  
IN  
O
O
I
+
D(AVG)  
current. The worse case occurs during maximum load  
current. Check the vendors spec to adjust the inductor value  
under current loading. Inductors can lose over 50% of  
inductance when it nears saturation.  
V
IN  
The worse case of the diode average current occurs during  
maximum load current and maximum input voltage. For the  
diode to survive the short circuit condition, the current rating  
of the diode should be equal to the Foldback Current Limit.  
See Table 1 for schottky diodes from ON Semiconductor  
which are suggested for CS5141X regulator.  
The core materials have a significant effect on inductor  
performance. The ferrite core has benefits of small physical  
size, and very low power dissipation. But be careful not to  
operate these inductors too far beyond their maximum  
ratings for peak current, as this will saturate the core.  
Powered Iron cores are low cost and have a more gradual  
saturation curve. The cores with an open magnetic path, such  
as rod or barrel, tend to generate high magnetic field  
radiation. However, they are usually cheap and small. The  
cores providing a close magnetic loop, such as potcore and  
toroid, generate low electromagnetic interference (EMI).  
There are many magnetic component vendors providing  
standard product lines suitable for CS5141X. Table 2 lists  
three vendors, their products and contact information.  
Inductor Selection  
When choosing inductors, one might have to consider  
maximum load current, core and copper losses, component  
height, output ripple, EMI, saturation and cost. Lower  
inductor values are chosen to reduce the physical size of the  
inductor. Higher value cuts down the ripple current, core  
losses and allows more output current. For most  
applications, the inductor value falls in the range between  
2.2 µH and 22 µH. The saturation current ratings of the  
inductor shall not exceed the I  
, calculated according to  
L(PK)  
V (V * V )  
IN  
O
O
I
+ I  
)
L(PK)  
O
2(f )(L)(V  
)
S
IN  
Table 1.  
Part Number  
1N5817  
V
(V)  
I
(A)  
V
(F)  
(V) @ I  
AVERAGE  
Package  
Axial Lead  
Axial Lead  
Axial Lead  
SOD123  
SOD123  
SOD123  
SMB  
BREAKDOWN  
AVERAGE  
20  
1.0  
0.45  
0.55  
0.6  
1N5818  
30  
40  
20  
30  
40  
20  
30  
40  
1.0  
1.0  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1N5819  
MBR0520  
MBR0530  
MBR0540  
MBRS120  
MBRS130  
MBRS140  
0.385  
0.43  
0.53  
0.55  
0.395  
0.6  
SMB  
SMB  
Table 2.  
Vendor  
Product Family  
Web Site  
Telephone  
Coiltronics  
UNIPac1/2: SMT, barrel  
www.coiltronics.com  
(516) 2417876  
THINPAC: SMT, toroid, low profile  
CTX: Leaded, toroid  
Coilcraft  
Pulse  
DO1608: SMT, barrel  
DS/DT 1608: SMT, barrel, magnetically shielded  
DO3316: SMT, barrel  
DS/DT 3316: SMT, barrel, magnetically shielded  
DO3308: SMT, barrel, low profile  
www.coilcraft.com  
(800) 3222645  
(619) 6748100  
www.pulseeng.com  
http://onsemi.com  
12  
CS51411, CS51412, CS51413, CS51414  
R2  
373  
U1  
7
V
5.0 V 12 V input  
C5  
0.1 µF  
D2  
L1  
2
4
FB  
V
IN  
1N4148  
1
3
BOOST  
C1  
22 µF  
SHDNB  
CS51411/3  
V
SW  
5
15 µH  
R3  
SYNC  
V
C
GND  
6
127  
D1  
MBR0520  
C6  
22 µ  
8
C2  
0.1 µF  
5.0 V output  
C3  
C4  
0.01 µF  
R1  
50 k  
0.1 µF  
Figure 16. Additional Application Diagram, 5.0 V 12 V to 5.0 V/400 mA Inverting Converter  
1N4148  
D2  
1N4148  
D1  
12 V  
C1  
0.1 µF  
C1  
100 µF  
U1  
2
V
1
4
3
BIAS  
BOOST  
5.0 V  
IN  
V
SW  
L1  
15 µH  
5
Shutdown  
SHDNB  
CS51412/4  
R1  
373  
C3  
100 µF  
D3  
1N5821  
V
V
7
GND  
C
FB  
8
6
R2  
127  
C4  
0.1 µF  
Figure 17. Additional Application Diagram, 12 V to 5.0 V/1.0 A Buck Converter using the BIAS Pin  
http://onsemi.com  
13  
CS51411, CS51412, CS51413, CS51414  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Package  
Shipping  
CS51411ED8  
95 Units/Rail  
CS51411EDR8  
CS51412ED8  
CS51412EDR8  
CS51413ED8  
CS51413EDR8  
CS51414ED8  
CS51414EDR8  
CS51411GD8  
CS51411GDR8  
CS51412GD8  
CS51412GDR8  
CS51413GD8  
CS51413GDR8  
CS51414GD8  
CS51414GDR8  
2500 Tape & Reel  
95 Units/Rail  
2500 Tape & Reel  
95 Units/Rail  
40°C < T < 85°C  
A
2500 Tape & Reel  
95 Units/Rail  
2500 Tape & Reel  
95 Units/Rail  
SO
–8  
2500 Tape & Reel  
95 Units/Rail  
2500 Tape & Reel  
95 Units/Rail  
0°C < T < 70°C  
A
2500 Tape & Reel  
95 Units/Rail  
2500 Tape & Reel  
http://onsemi.com  
14  
CS51411, CS51412, CS51413, CS51414  
PACKAGE DIMENSIONS  
SO8  
D SUFFIX  
CASE 75107  
ISSUE V  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ  
ꢆꢇ ꢈ ꢉ ꢊꢃꢀ ꢄ ꢉ ꢁꢀ ꢉ ꢀ ꢋ ꢌ ꢀꢈ ꢂꢁ ꢍꢃ ꢎ ꢌꢀ ꢏ ꢉ ꢀ ꢋ ꢐꢃ ꢎ ꢌꢀ ꢄ ꢉ  
ꢑ ꢆꢒꢇ ꢓꢊꢔ ꢆꢕꢖ ꢗꢇ  
ꢗꢇ ꢏ ꢁ ꢀ ꢂꢎ ꢁ ꢍꢍ ꢉꢀ ꢋ ꢈ ꢉ ꢊꢃꢀ ꢄ ꢉꢁ ꢀ ꢅ ꢊꢉ ꢍꢍꢉ ꢊꢃ ꢂꢃ ꢎꢇ  
ꢘꢇ ꢈ ꢉ ꢊꢃꢀ ꢄ ꢉ ꢁꢀ ꢌ ꢌ ꢀ ꢈ ꢙ ꢈ ꢁ ꢀ ꢁ ꢂ ꢉ ꢀ ꢏꢍ ꢚ ꢈ ꢃ ꢊ ꢁ ꢍꢈ  
ꢐ ꢎꢁ ꢂ ꢎ ꢚ ꢄꢉ ꢁ ꢀ ꢇ  
X–  
A
8
5
4
ꢒꢇ ꢊꢌ ꢛꢉ ꢊꢚ ꢊ ꢊꢁ ꢍꢈ ꢐ ꢎ ꢁꢂ ꢎ ꢚ ꢄꢉ ꢁ ꢀ ꢜꢇ ꢆꢓ ꢝ ꢜꢇ ꢜꢜ ꢞꢟ ꢐꢃ ꢎ  
ꢄ ꢉꢈ ꢃ ꢇ  
ꢓꢇ ꢈ ꢉ ꢊꢃꢀ ꢄ ꢉ ꢁꢀ ꢈ ꢈ ꢁ ꢃꢄ ꢀ ꢁ ꢂ ꢉ ꢀ ꢏꢍ ꢚ ꢈ ꢃ ꢈ ꢌꢊ ꢙꢌꢎ  
ꢐ ꢎꢁ ꢂ ꢎ ꢚ ꢄꢉ ꢁ ꢀ ꢇ ꢌ ꢍꢍꢁ ꢠꢌ ꢙꢍꢃ ꢈ ꢌ ꢊꢙꢌ ꢎ  
ꢐ ꢎꢁ ꢂ ꢎ ꢚ ꢄꢉ ꢁ ꢀ ꢄ ꢡꢌ ꢍꢍ ꢙ ꢃ ꢜꢇ ꢆꢗꢢ ꢝꢜ ꢇꢜꢜ ꢓꢟ ꢂꢁ ꢂꢌꢍ ꢉꢀ  
ꢃ ꢛꢏ ꢃ ꢄꢄ ꢁ ꢣ ꢂ ꢡ ꢃ ꢈ ꢈ ꢉ ꢊꢃꢀ ꢄ ꢉꢁ ꢀ ꢌꢂ ꢊꢌꢛ ꢉꢊ ꢚ ꢊ  
ꢊꢌꢂ ꢃꢎ ꢉ ꢌꢍ ꢏ ꢁ ꢀ ꢈ ꢉꢂ ꢉ ꢁꢀ ꢇ  
S
B
ꢜꢇ ꢗꢓ ꢤꢝ ꢜ ꢇꢜ ꢆꢜꢟ  
1
K
Y–  
G
MILLIMETERS  
INCHES  
C
N X 45  
DIM MIN  
MAX  
ꢓꢇ ꢜꢜ  
ꢒꢇ ꢜꢜ  
ꢆꢇ ꢢꢓ  
ꢜꢇ ꢓꢆ  
MIN  
MAX  
ꢜꢇ ꢆ ꢕꢢ  
ꢜꢇ ꢆ ꢓꢢ  
ꢜꢇ ꢜ ꢞꢕ  
ꢜꢇ ꢜ ꢗꢜ  
_
A
B
C
D
G
H
J
ꢒꢇ ꢖꢜ  
ꢘꢇ ꢖꢜ  
ꢆꢇ ꢘꢓ  
ꢜꢇ ꢘꢘ  
ꢜꢇ ꢆꢖꢕ  
ꢜꢇ ꢆꢓꢜ  
ꢜꢇ ꢜꢓꢘ  
ꢜꢇ ꢜꢆꢘ  
SEATING  
PLANE  
Z–  
ꢜꢇ ꢆꢜ ꢤꢝ ꢜ ꢇꢜꢜ ꢒ ꢟ  
ꢆꢇ ꢗꢢꢤ ꢙ ꢄꢏ  
M
ꢜꢇ ꢆꢜ  
ꢜꢇ ꢆꢕ  
ꢜꢇ ꢒꢜ  
ꢜꢤ ꢤ  
ꢜꢇ ꢗꢓ  
ꢜꢇ ꢗꢓ  
ꢆꢇ ꢗꢢ  
ꢖꢤ ꢤ  
ꢜꢇ ꢜꢜꢒ  
ꢜꢇ ꢜꢜꢢ  
ꢜꢇ ꢜꢆꢞ ꢜꢇꢜ ꢓꢜ  
ꢜꢇ ꢜ ꢆꢜ  
ꢜꢇ ꢜ ꢆꢜ  
J
H
D
K
M
N
S
ꢜꢤ ꢤ  
ꢜꢇ ꢜꢆꢜ  
ꢜꢇ ꢗꢗꢖ  
ꢖ ꢤꢤ  
ꢜꢇ ꢜ ꢗꢜ  
ꢜꢇ ꢗ ꢒꢒ  
_
_
_
_
ꢜꢇ ꢗꢓ ꢤꢝ ꢜ ꢇꢜ ꢆꢜꢟ  
ꢜꢇ ꢗꢓ  
ꢓꢇ ꢖꢜ  
ꢜꢇ ꢓꢜ  
ꢞꢇ ꢗꢜ  
PACKAGE THERMAL DATA  
Parameter  
SO8  
45  
Unit  
R
R
Typical  
Typical  
°C/W  
°C/W  
Θ
Θ
JC  
JA  
165  
http://onsemi.com  
15  
CS51411, CS51412, CS51413, CS51414  
2
V is a trademark of Switch Power, Inc.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Typicalparameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicalsmust be  
validated for each customer application by customers technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
291 Kamimeguro, Meguroku, Tokyo, Japan 1530051  
Phone: 81357733850  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 8002829855 Toll Free USA/Canada  
CS51411/D  

    CS51413E相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504