欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • CS5331AKS图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • CS5331AKS 现货库存
  • 数量131 
  • 厂家CRYSTAL 
  • 封装SOP 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • CS5331AKS图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • CS5331AKS 现货库存
  • 数量26800 
  • 厂家CRYSTAL 
  • 封装SOP 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • CS5331AKS图
  • 深圳市科时进电子有限公司

     该会员已使用本站11年以上
  • CS5331AKS 现货库存
  • 数量72 
  • 厂家CS 
  • 封装SOP8 
  • 批号21+ 
  • 全新进口现货▊一手货源▊热卖支持实单▊bom配单专家
  • QQ:2355850215QQ:2355850215 复制
  • 0755-83997989 QQ:2355850215
  • CS5331AKS图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • CS5331AKS 热卖库存
  • 数量50000 
  • 厂家CRYSTAL 
  • 封装SOP8 
  • 批号21+ 
  • 原装现货
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • CS5331AKSZ图
  • 深圳市双微电子科技有限公司

     该会员已使用本站10年以上
  • CS5331AKSZ
  • 数量
  • 厂家CIRRUS 
  • 封装SOP8 
  • 批号20+ 
  • 询货请加QQ 全新原装 现货库存
  • QQ:1965209269QQ:1965209269 复制
    QQ:1079402399QQ:1079402399 复制
  • 15889219681 QQ:1965209269QQ:1079402399
  • CS5331AKS图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • CS5331AKS
  • 数量131 
  • 厂家CRYSTAL 
  • 封装SOP 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • CS5331AKS图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • CS5331AKS
  • 数量65800 
  • 厂家CRYSTAL 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • CS5331AKS图
  • 集好芯城

     该会员已使用本站13年以上
  • CS5331AKS
  • 数量14801 
  • 厂家CRYSTRL 
  • 封装SOP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • CS5331AKS图
  • 深圳市西昂特科技有限公司

     该会员已使用本站13年以上
  • CS5331AKS
  • 数量5000 
  • 厂家CRYSTAL 
  • 封装SOP8 
  • 批号08+/09+ 
  • 全新原装现货特价
  • QQ:2881291855QQ:2881291855 复制
    QQ:1158574719QQ:1158574719 复制
  • 0755-82524647 QQ:2881291855QQ:1158574719
  • CS5331AKS2图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • CS5331AKS2
  • 数量36766 
  • 厂家 
  • 封装 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • CS5331AKS图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • CS5331AKS
  • 数量8870 
  • 厂家CRYSTRL 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • CS5331AKSZ图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • CS5331AKSZ
  • 数量4500 
  • 厂家CIRRUS 
  • 封装SOP 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • CS5331AKS图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • CS5331AKS
  • 数量3000 
  • 厂家CSI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • CS5331AKS图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • CS5331AKS
  • 数量19856 
  • 厂家CS 
  • 封装SOP 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • CS5331AKSZ图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • CS5331AKSZ
  • 数量6000 
  • 厂家CRYSTAL 
  • 封装SOP8 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • CS5331AKS图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CS5331AKS
  • 数量618 
  • 厂家CIRRUS 
  • 封装SOP-8 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,低价出售,欢迎询购★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • CS5331AKS图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CS5331AKS
  • 数量4886 
  • 厂家CS 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • CS5331AKS图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • CS5331AKS
  • 数量2015 
  • 厂家CS 
  • 封装SOP/DIP 
  • 批号19889 
  • ★一级代理原装现货,特价热卖!★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • CS5331AKS图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • CS5331AKS
  • 数量24114 
  • 厂家CRYSTRL 
  • 封装SOP8 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • CS5331AKS图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • CS5331AKS
  • 数量12800 
  • 厂家CS 
  • 封装SOP8 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • CS5331AKS图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • CS5331AKS
  • 数量18800 
  • 厂家CIRRUS 
  • 封装TSOP-8 
  • 批号▉▉:2年内 
  • ▉▉¥10一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • CS5331AKSI图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • CS5331AKSI
  • 数量50000 
  • 厂家CS 
  • 封装SOP8 
  • 批号24+ 
  • 公司原装现货可含税!假一罚十!
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • CS5331AKS图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • CS5331AKS
  • 数量5800 
  • 厂家 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • CS5331AKS图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • CS5331AKS
  • 数量12850 
  • 厂家CS 
  • 封装SOP8 
  • 批号NEW 
  • 绝对进口原装现货,市场价格最低!!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • CS5331AKS图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • CS5331AKS
  • 数量5000 
  • 厂家
  • 封装CIRRUSLO 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • CS5331AKS图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • CS5331AKS
  • 数量3315 
  • 厂家CRYSTAL 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • CS5331AKS图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • CS5331AKS
  • 数量9000 
  • 厂家CS 
  • 封装SOP8 
  • 批号2021+ 
  • 优势价格.十年专营渠道.深圳原装现货
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • CS5331AKS图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • CS5331AKS
  • 数量39062 
  • 厂家CIRRUS 
  • 封装SOP 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • CS5331AKS图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • CS5331AKS
  • 数量3000 
  • 厂家CIRRUS 
  • 封装SOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • CS5331AKS图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • CS5331AKS
  • 数量99000 
  • 厂家CRYSTAL 
  • 封装SOP-8 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • CS5331AKS图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • CS5331AKS
  • 数量680 
  • 厂家 
  • 封装SOP-8 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872153 QQ:1484215649QQ:729272152
  • CS5331AKS图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • CS5331AKS
  • 数量15280 
  • 厂家CIRRUSL 
  • 封装SOP 
  • 批号23+ 
  • 原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • CS5331AKS图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • CS5331AKS
  • 数量832 
  • 厂家CS 
  • 封装SOP 
  • 批号 
  • 原装现货 专业集成电路,二三极管供应商
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236

产品型号CS5331AKS的概述

CS5331AKS芯片概述 CS5331AKS是一款高性能的音频数字-模拟转换器(DAC),主要应用于音频处理领域,如高保真音响系统、数字音频播放器和其他需要信号转换的设备。作为Cirrus Logic公司推出的一款产品,CS5331AKS以其出色的音质和灵活的功能配置而受到电子工程师的广泛欢迎。 CS5331AKS芯片的详细参数 CS5331AKS芯片具有多种技术与参数,关键指标包括但不限于以下几点: 1. 转换精度:CS5331AKS支持24位音频数据转换,能够提供高达112dB的动态范围,确保音频输出的清晰度与细节。 2. 采样率范围:该芯片支持多种采样率,通常从44.1 kHz到192 kHz,适应不同音频设备的需求。 3. 功耗:其工作电压范围在2.5V至5.5V之间,具有较低的功耗特性,这使其在便携式设备中尤为适用。 4. 失真指标:总谐波失真加噪声(THD+N)通...

产品型号CS5332的Datasheet PDF文件预览

CS5332  
Two−Phase Buck Controller  
with Integrated Gate  
Drivers for VRM 9.0  
The CS5332 is a twophase step down controller which  
incorporates all control functions required to power high performance  
processors and high current power supplies. Proprietary multiphase  
architecture guarantees balanced load current distribution and reduces  
overall solution cost in high current applications. Enhanced V ™  
control architecture provides the fastest possible transient response,  
excellent overall regulation, and ease of use.  
The CS5332 multiphase architecture reduces output voltage and  
input current ripple, allowing for a significant reduction in inductor  
values and a corresponding increase in inductor current slew rate. This  
approach allows a considerable reduction in input and output capacitor  
requirements, as well as reducing overall solution size and cost.  
http://onsemi.com  
2
SO28L  
DW SUFFIX  
CASE 751F  
28  
1
MARKING DIAGRAM  
28  
CS5332  
Features  
Enhanced V Control Method  
VRM 9.0 Compatible 5Bit DAC with 1.0% Accuracy  
Adjustable Output Voltage Positioning  
4 OnBoard GATE Drivers  
AWLYYWW  
2
1
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
200 kHz to 800 kHz Operation Set by Resistor  
Current Sensed through Buck Inductors, or Sense Resistors  
Hiccup Mode Current Limit  
Individual Current Limits for Each Phase  
OnBoard Current Sense Amplifiers  
3.3 V, 1.0 mA Reference Output  
5.0 V and/or 12 V Operation  
On/Off Control (through Soft Start Pin)  
Power Good Output with Internal Delay  
PIN CONNECTIONS  
1
28  
COMP  
R
OSC  
CCL  
V
V
V
FB  
V
DRP  
CCL1  
CS1  
CS2  
GATE(L)1  
GND1  
GATE(H)1  
CS  
REF  
PWRGD  
V
CCH1  
V
V
V
V
V
LGND  
SS  
ID0  
ID1  
ID2  
ID3  
ID4  
LIM  
V
CCL2  
GATE(L)2  
GND2  
GATE(H)2  
I
REF  
V
CCH2  
ORDERING INFORMATION  
Device  
Package  
Shipping  
CS5332GDW28  
27 Units/Rail  
SO28L  
SO28L  
CS5332GDWR28  
1000 Tape & Reel  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
July, 2006 Rev. 11  
CS5332/D  
CS5332  
300 nH  
+12 V  
+5 V  
3 × 16SP270M  
+
1.0 μF  
1.0 μF  
1.0 μF  
ENABLE  
600 nH  
56.2 k  
1.0 nF  
1.0 nF  
1.0 nF  
2.74 k  
R
COMP  
+
OSC  
V
V
CCL  
CCL1  
GATE(L)1  
FB  
DRP  
8 × 4SP560M  
V
V
25.4 k  
CS1  
CS2  
GND1  
10 k  
GATE(H)1  
CS  
V
OUT  
REF  
V
PWRGD  
CCH1  
LGND  
V
ID0  
ID1  
ID2  
ID3  
ID4  
LIM  
PWRGD  
12 × 10 μF  
SS  
V
V
V
V
CCL2  
0.1 μF  
V
ID0  
V
ID1  
V
ID2  
GATE(L)2  
V
GND2  
GATE(H)2  
I
V
REF  
CCH2  
V
ID3  
4.87 k  
1.0 k  
1.0 μF  
0.1 μF  
V
ID4  
600 nH  
25.5 k  
.01 μF  
25.5 k  
.01 μF  
.01 μF  
Figure 1. Application Diagram, Pentium4 Converter  
http://onsemi.com  
2
 
CS5332  
ABSOLUTE MAXIMUM RATINGS*  
Rating  
Value  
150  
Unit  
°C  
Operating Junction Temperature  
Lead Temperature Soldering:  
Storage Temperature Range  
Reflow: (SMD styles only) (Note 1)  
230 peak  
65 to +150  
2.0  
°C  
°C  
ESD Susceptibility (Human Body Model)  
kV  
1. 60 second maximum above 183°C.  
*The maximum package power dissipation must be observed.  
ABSOLUTE MAXIMUM RATINGS  
Pin Name  
Pin Symbol  
V
V
I
I
SINK  
MAX  
MIN  
SOURCE  
Power for Logic  
V
16 V  
16 V  
16 V  
20 V  
20 V  
6.0 V  
6.0 V  
6.0 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
N/A  
50 mA  
CCL  
Power for GATE(L)1  
Power for GATE(L)2  
Power for GATE(H)1  
Power for GATE(H)2  
Power Good Output  
Soft Start Capacitor  
V
V
N/A  
N/A  
1.5 A, 1.0 μs 200 mA DC  
1.5 A, 1.0 μs 200 mA DC  
1.5 A, 1.0 μs 200 mA DC  
1.5 A, 1.0 μs 200 mA DC  
20 mA  
CCL1  
CCL2  
CCH1  
CCH2  
V
V
N/A  
N/A  
PWRGD  
SS  
1.0 mA  
1.0 mA  
1.0 mA  
1.0 mA  
Voltage Feedback Compensation  
Network  
COMP  
1.0 mA  
Voltage Feedback Input  
V
6.0 V  
6.0 V  
0.3 V  
0.3 V  
1.0 mA  
1.0 mA  
1.0 mA  
1.0 mA  
FB  
Output for Adjusting Adaptive  
Voltage Positioning  
V
DRP  
Frequency Resistor  
Reference Output  
R
6.0 V  
6.0 V  
20 V  
0.3 V  
0.3 V  
1.0 mA  
1.0 mA  
1.0 mA  
50 mA  
OSC  
REF  
HighSide FET Drivers  
GATE(H)12  
0.3 V DC  
1.5 A, 1.0 μs 200 mA DC 1.5 A, 1 μs 200 mA DC  
2.0 V for 100 nS  
LowSide FET Drivers  
GATE(L)12  
16 V  
0.3 V DC  
1.5 A, 1.0 μs 200 mA DC 1.5 A, 1.0 μs 200 mA DC  
2.0 V for 100 nS  
Return for Logic  
Return for #1 Driver  
LGND  
GND1  
N/A  
N/A  
50 mA  
2.0 A, 1.0 μs 200 mA DC  
2.0 A, 1.0 μs 200 mA DC  
1.0 mA  
N/A  
N/A  
0.3 V  
0.3 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
0.3 V  
Return for #2 Driver  
GND2  
N/A  
Current Sense for Phases 1 2  
Current Limit Set Point  
Current Sense Reference  
Voltage ID DAC Inputs  
CS1CS2  
1.0 mA  
1.0 mA  
1.0 mA  
1.0 mA  
I
1.0 mA  
LIM  
CS  
1.0 mA  
REF  
VID04  
1.0 mA  
http://onsemi.com  
3
 
CS5332  
ELECTRICAL CHARACTERISTICS (0°C < T < 70°C; 0°C < T < 125°C; 4.7 V < V  
< 14 V; 8.0 V < V  
< 20 V;  
A
J
CCL  
CCH  
C
= 3.3 nF, C  
= 3.3 nF, R  
= 32.4 k, C  
= 1.0 nF, C = 0.1 μF, C  
= 0.1 μF, DAC Code 10000, C = 1.0 μF,  
VCC  
GATE(H)  
GATE(L)  
R(OSC)  
COMP  
SS  
REF  
I
1.0 V; unless otherwise specified.)  
LIM  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Voltage Identification DAC (0 = Connected to V ; 1 = Open or Pullup to 3.3 V)  
SS  
Accuracy (all codes)  
Measure V = COMP  
± 1.0  
%
FB  
V
V
V
V
V
ID0  
ID4  
ID3  
ID2  
ID1  
1
1
1
1
1
1.064  
1.089  
1.114  
1.139  
1.163  
1.188  
1.213  
1.238  
1.262  
1.287  
1.312  
1.337  
1.361  
1.386  
1.411  
1.436  
1.460  
1.485  
1.510  
1.535  
1.559  
1.584  
1.609  
1.634  
1.658  
1.683  
1.708  
1.733  
1.757  
1.782  
1.807  
1.832  
1.00  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.25  
1.086  
1.111  
1.136  
1.162  
1.187  
1.212  
1.237  
1.263  
1.288  
1.313  
1.338  
1.364  
1.389  
1.414  
1.439  
1.465  
1.490  
1.515  
1.540  
1.566  
1.591  
1.616  
1.641  
1.667  
1.692  
1.717  
1.742  
1.768  
1.793  
1.818  
1.843  
1.869  
1.50  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
kΩ  
V
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Input Threshold  
V
V
, V , V , V , V  
ID3 ID2 ID1  
ID4  
ID0  
Input Pullup Resistance  
Pullup Voltage  
, V , V , V , V  
25  
50  
100  
ID4  
ID3  
ID2  
ID1  
ID0  
3.15  
3.30  
3.45  
http://onsemi.com  
4
CS5332  
ELECTRICAL CHARACTERISTICS (continued) (0°C < T < 70°C; 0°C < T < 125°C; 4.7 V < V  
< 14 V; 8.0 V < V  
< 20 V;  
A
J
CCL  
CCH  
C
= 3.3 nF, C  
= 3.3 nF, R  
= 32.4 k, C  
= 1.0 nF, C = 0.1 μF, C  
= 0.1 μF, DAC Code 10000, C = 1.0 μF,  
VCC  
GATE(H)  
GATE(L)  
R(OSC)  
COMP  
SS  
REF  
I
1.0 V; unless otherwise specified.)  
LIM  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
PowerGood Output  
Power Good Fault Delay  
Output Low Voltage  
CS  
CS  
CS  
= V  
to V  
± 15%  
25  
50  
0.25  
0.1  
125  
0.40  
10.0  
10  
2.1  
μs  
V
REF  
REF  
REF  
DAC  
DAC  
= 1.0 V, I  
= 4.0 mA  
PWRGD  
Output Leakage Current  
Lower Threshold  
= 1.45 V, PWRGD = 5.5 V  
μA  
%
V
% of Nominal VID Code  
18  
1.9  
14  
2.0  
Upper Threshold  
Voltage Feedback Error Amplifier  
V
Bias Current (Note 2)  
28.5  
15  
31  
30  
33.5  
60  
μA  
μA  
1.0 V < V < 1.9 V  
FB  
FB  
COMP Source Current  
COMP = 0.5 V to 2.0 V;  
V
= 1.8 V; DAC = 00000  
FB  
COMP Sink Current  
15  
30  
60  
μA  
COMP = 0.5 V to 2.0 V;  
V
= 1.9 V; DAC = 00000  
FB  
COMP Max Voltage  
COMP Min Voltage  
Transconductance  
V
V
= 1.8 V COMP Open; DAC = 00000  
= 1.9 V COMP Open; DAC = 00000  
2.4  
2.7  
0.1  
32  
0.2  
V
V
FB  
FB  
mmho  
10 μA < I  
< +10 μA  
COMP  
Output Impedance  
Open Loop DC Gain  
Unity Gain Bandwidth  
60  
2.5  
90  
MΩ  
dB  
Note 3  
400  
kHz  
0.01 μF COMP Capacitor  
70  
dB  
PSRR @ 1.0 kHz  
Soft Start  
Soft Start Charge Current  
Soft Start DisCharge Current  
Hiccup Mode Charge/Discharge Ratio  
Peak Soft Start Charge Voltage  
Soft Start DisCharge Threshold Voltage  
PWM Comparators  
0.2 V SS 3.0 V  
15  
4.0  
30  
7.5  
50  
13.0  
μA  
μA  
0.2 V SS 3.0 V  
3.0  
4.0  
3.3  
4.0  
4.2  
0.34  
V
0.20  
0.27  
V
Minimum Pulse Width  
Measured from CSx to GATE(H)x  
350  
0.4  
515  
0.5  
ns  
V
V(V ) = V(CS  
) = 1.0 V, V(COMP) = 1.5 V  
REF  
FB  
60 mV step applied between V  
and  
CSX  
V
CREF  
Channel Start Up Offset  
0.3  
V(CS1) = V(CS2) = V(V ) = V(CS  
) = 0 V;  
REF  
FB  
Measure V(COMP) when GATE(H)1,  
GATE(H)2, switch high  
2. The V Bias Current changes with the value of R  
per Figure 4.  
OSC  
FB  
3. Guaranteed by design. Not tested in production.  
http://onsemi.com  
5
 
CS5332  
ELECTRICAL CHARACTERISTICS (continued) (0°C < T < 70°C; 0°C < T < 125°C; 4.7 V < V  
< 14 V; 8.0 V < V  
< 20 V;  
A
J
CCL  
CCH  
C
= 3.3 nF, C  
= 3.3 nF, R  
= 32.4 k, C  
= 1.0 nF, C = 0.1 μF, C  
= 0.1 μF, DAC Code 10000, C = 1.0 μF,  
VCC  
GATE(H)  
GATE(L)  
R(OSC)  
COMP  
SS  
REF  
I
1.0 V; unless otherwise specified.)  
LIM  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
GATE(H) and GATE(L)  
High Voltage (AC)  
Note 4 Measure V  
GATE(L) or  
0
1.0  
V
CCLX  
X
V
GATE(H)  
CCHX  
X
Low Voltage (AC)  
Note 4 Measure GATE(L) or GATE(H)  
0
0.5  
80  
V
X
X
Rise Time GATE(H)  
1.0 V < GATE < 8.0 V; V  
1.0 V < GATE < 8.0 V; V  
8.0 V > GATE > 1.0 V; V  
8.0 V > GATE > 1.0 V; V  
= 10 V  
= 10 V  
= 10 V  
= 10 V  
35  
35  
35  
35  
65  
65  
1.2  
ns  
ns  
ns  
ns  
ns  
ns  
V
X
CCHX  
CCLX  
CCHX  
CCLX  
Rise Time GATE(L)  
80  
X
Fall Time GATE(H)  
80  
X
Fall Time GATE(L)  
80  
X
GATE(H) to GATE(L) Delay  
GATE(L) to GATE(H) Delay  
GATE Pulldown  
GATE(H) < 2.0 V, GATE(L) > 2.0 V  
30  
30  
110  
110  
1.6  
X
X
GATE(L) < 2.0 V, GATE(H) > 2.0 V  
X
X
Force 100 μA into GATE Driver with no power  
applied to V and V = 2.0 V.  
CCHX  
CCLX  
Oscillator  
Switching Frequency  
Switching Frequency  
Switching Frequency  
Measure any phase (R  
= 32.4k)  
300  
150  
600  
400  
200  
800  
1.00  
180  
500  
250  
1000  
kHz  
kHz  
kHz  
V
OSC  
Note 4 Measure any phase (R  
Note 4 Measure any phase (R  
= 63.4 k)  
OSC  
OSC  
= 16.2 k)  
R
OSC  
Voltage  
Phase Delay  
Rising Edge Only  
165  
195  
deg  
Adaptive Voltage Positioning  
V
Output Voltage to DAC  
Offset  
CS1 = CS2 = CS , V = COMP  
REF FB  
15  
240  
2.75  
15  
mV  
mV  
V/V  
DRP  
OUT  
Measure V  
COMP  
DRP  
Maximum V  
Voltage  
(CS1 = CS2) C  
= 50 mV,  
310  
3.15  
380  
3.65  
DRP  
REF  
V
= COMP, Measure V  
COMP  
FB  
DRP  
Current Sense Amp to V  
Gain  
DRP  
Current Sensing and Sharing  
CS Input Bias Current  
V(CSx) = V(CS  
V(CSx) = V(CS  
) = 0 V  
) = 0 V  
0.5  
0.2  
3.15  
4.0  
2.0  
μA  
μA  
V/V  
mV  
V
REF  
REF  
CS1CS2 Input Bias Current  
Current Sense Amplifiers Gain  
Current Sense Amp Mismatch  
REF  
2.80  
5.0  
0
3.53  
5.0  
Note 4 0 (CSx CS  
) 50 mV  
REF  
Current Sense Amplifiers Input  
Common Mode Range Limit  
Note 4  
V
2  
CCL  
Current Sense Input to I  
Gain  
0.25 V < I  
< 1.20 V  
LIM  
5.00  
4.0  
6.25  
10  
8.00  
26  
V/V  
mV/μs  
μA  
LIM  
Current Limit Filter Slew Rate  
Bias Current  
Note 4  
I
0 < I  
< 1.0 V  
0.1  
105  
1.0  
135  
LIM  
LIM  
Single Phase Pulse by Pulse  
90  
mV  
Current Limit: V(CSx) V(CS  
)
REF  
Current Share Amplifier Bandwidth  
Note 4  
1.0  
mHz  
4. Guaranteed by design. Not tested in production.  
http://onsemi.com  
6
 
CS5332  
ELECTRICAL CHARACTERISTICS (continued) (0°C < T < 70°C; 0°C < T < 125°C; 4.7 V < V  
< 14 V; 8.0 V < V  
< 20 V;  
A
J
CCL  
CCH  
C
= 3.3 nF, C  
= 3.3 nF, R  
= 32.4 k, C  
= 1.0 nF, C = 0.1 μF, C  
= 0.1 μF, DAC Code 10000, C = 1.0 μF,  
VCC  
GATE(H)  
GATE(L)  
R(OSC)  
COMP  
SS  
REF  
I
1.0 V; unless otherwise specified.)  
LIM  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Reference Output  
Output Voltage  
V
3.2  
3.3  
3.4  
V
0 mA < I(V ) < 1.0 mA  
REF  
REF  
General Electrical Specifications  
V
V
V
V
V
V
V
V
V
V
V
Operating Current  
V
V
V
V
V
= COMP (no switching)  
= COMP (no switching)  
= COMP (no switching)  
= COMP (no switching)  
= COMP (no switching)  
20.0  
4.0  
24.5  
5.5  
mA  
mA  
mA  
mA  
mA  
V
CCL  
FB  
FB  
FB  
FB  
FB  
Operating Current  
Operating Current  
Operating Current  
Operating Current  
CCL1  
CCL2  
CCH1  
CCH2  
4.0  
5.5  
2.8  
4.0  
2.5  
3.5  
Start Threshold  
Stop Threshold  
Hysteresis  
GATEs switching, Soft Start charging  
4.05  
3.75  
100  
1.8  
1.55  
100  
4.40  
4.20  
200  
2.0  
4.70  
4.60  
300  
2.2  
CCL  
GATEs stop switching, Soft Start discharging  
GATEs not switching, Soft Start not charging  
GATEs switching, Soft Start charging  
V
CCL  
mV  
V
CCL  
Start Threshold  
Stop Threshold  
Hysteresis  
CCH1  
CCH1  
CCH1  
GATEs stop switching, Soft Start discharging  
GATEs not switching, Soft Start not charging  
1.75  
200  
1.90  
300  
V
mV  
http://onsemi.com  
7
CS5332  
PACKAGE PIN DESCRIPTION  
PACKAGE PIN #  
28 Lead SO Wide  
1
PIN SYMBOL  
COMP  
FUNCTION  
Output of the error amplifier and input for the PWM  
comparators.  
2
V
Voltage Feedback Pin. To use Adaptive Voltage Positioning  
(AVP) select an offset voltage at light load and connect a  
FB  
resistor between V and V  
. The input current of the V  
FB  
OUT  
FB  
pin and the resistor value determine output voltage offset for  
zero output current. Short V to V for no AVP.  
FB  
OUT  
3
V
Current sense output for AVP. The offset of this pin above the  
DAC voltage is proportional to the output current. Connect a  
DRP  
resistor from this pin to V to set amount AVP or leave this  
FB  
pin open for no AVP.  
45  
CS1CS2  
Current sense inputs. Connect current sense network for the  
corresponding phase to each input.  
6
CS  
Reference for current sense amplifiers and input for Power  
Good comparators. To balance input offset voltages between  
the inverting and noninverting inputs of the current sense  
REF  
amplifiers, connect a resistor between CS  
and the output  
REF  
voltage. The value should be 2/5 of the value of the resistors  
connected to the CSx pins.  
7
PWRGD  
PowerGood Output. Open collector output goes low when  
the CS  
is out of regulation.  
REF  
812  
V
V  
Voltage ID DAC inputs. These pins are internally pulled up to  
3.3 V if left open.  
ID4  
ID0  
13  
I
Sets threshold for current limit. Connect to reference through  
a resistive divider.  
LIM  
Reference output. Decouple with 0.1 μF to LGND  
Power for GATE(H)2.  
14  
15  
16  
17  
18  
19  
20  
REF  
V
CCH2  
GATE(H)2  
GND2  
High side driver #2.  
Return for #2 drivers.  
GATE(L)2  
Low side driver #2.  
V
Power for GATE(L)2.  
CCL2  
SS  
Soft Start capacitor pin. The Soft Start capacitor controls both  
Soft Start time and hiccup mode frequency. The COMP pin is  
clamped below Soft Start during start up and hiccup mode.  
21  
22  
LGND  
Return for internal control circuits and IC substrate connection.  
V
Power for GATE(H)1. UVLO Sense for High Side Driver sup-  
ply connects to this pin.  
CCH1  
23  
24  
25  
26  
27  
GATE(H)1  
GND1  
High side driver #1.  
Return for #1 drivers.  
Low side driver #1.  
Power for GATE(L)1.  
GATE(L)1  
V
CCL1  
V
Power for internal control circuits. UVLO Sense for Logic  
connects to this pin.  
CCL  
28  
R
OSC  
A resistor from this pin to ground sets operating frequency  
and V bias current.  
FB  
http://onsemi.com  
8
CS5332  
V
CCL  
Start  
Stop  
+
PWRGD  
+
3.3 V  
REF  
4.4 V  
4.2 V  
REF  
V
Start  
CCH1  
Stop  
+
PH 1  
+
2.0 V  
1.8 V  
V
V
ID0  
ID1  
DAC  
OUT  
S
R
GATE(H)1  
Gate  
Nonoverlap  
V
CCL1  
DAC  
V
V
ID2  
ID3  
PWMC1  
+
GATE(L)1  
GND1  
Delay  
CO1  
+
V
ID4  
MAXC1  
+
LGN-  
D
FAULT  
CO1  
0.33 V  
V
CCH2  
PH 2  
V
S
R
AVPA  
2.0 V  
DRP  
+
GATE(H)2  
+
Gate  
Nonoverlap  
V
CCL2  
PWMC2  
+
GATE(L)2  
GND2  
CS  
REF  
CO2  
+
+
+
MAXC2  
CS1  
CO1  
CO2  
CSA1  
+
14%  
FAULT  
0.33 V  
CO2  
+
+
×
2.0  
CSA2  
CS2  
Offset  
I
LIM  
Filter  
+
Current  
Source  
Gen  
I
LIM  
BIAS  
EA  
SS  
+
FAULT  
Charge  
Current  
S
R
DAC  
OUT  
FAULT  
PH 1  
PH 2  
+
+ SS  
Discharge  
Current  
SS  
Discharge  
Current  
OSC  
+
V
COMP  
R
OSC  
SS  
FB  
Figure 2. Block Diagram  
http://onsemi.com  
9
CS5332  
TYPICAL PERFORMANCE CHARACTERISTICS  
900  
800  
700  
80  
60  
40  
20  
0
600  
500  
400  
300  
200  
100  
10  
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
70  
80  
R
OSC  
Value, kΩ  
R
OSC  
Value, kΩ  
Figure 3. Oscillator Frequency  
Figure 4. VFB Bias Current vs. ROSC Value  
120  
120  
100  
80  
100  
80  
60  
60  
40  
40  
20  
0
20  
0
16  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
Load Capacitance, nF  
Load Capacitance, nF  
Figure 5. GATE(H) Risetime vs. Load Capacitance  
Figure 6. GATE(H) Falltime vs. Load Capacitance  
measured from 1.0 V to 4.0 V with VCC at 5.0 V.  
measured from 4.0 V to 1.0 V with VCC at 5.0 V.  
120  
100  
80  
120  
100  
80  
60  
60  
40  
40  
20  
0
20  
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Capacitance, nF  
Load Capacitance, nF  
Figure 7. GATE(L) Risetime vs. Load Capacitance  
Figure 8. GATE(L) Falltime vs. Load Capacitance  
measured from 4.0 V to 1.0 V with VCC at 5.0 V.  
measured from 4.0 V to 1.0 V with VCC at 5.0 V.  
http://onsemi.com  
10  
 
CS5332  
APPLICATIONS INFORMATION  
FIXED FREQUENCY MULTIPHASE CONTROL  
comparator rises and terminates the PWM cycle. If the  
inductor starts the cycle with a higher current, the PWM  
cycle will terminate earlier providing negative feedback.  
In a multiphase converter, multiple converters are  
connected in parallel and are switched on at different times.  
This reduces output current from the individual converters  
and increases the apparent ripple frequency. Because several  
converters are connected in parallel, output current can ramp  
up or down faster than a single converter (with the same  
value output inductor) and heat is spread among multiple  
components.  
The CS5332 provides a C input for each phase, but the  
X
CS , V and COMP inputs are common to all phases.  
REF FB  
Current sharing is accomplished by referencing all phases to  
the same V and COMP pins, so that a phase with a larger  
FB  
current signal will turn off earlier than phases with a smaller  
current signal.  
Including both current and voltage information in the  
feedback signal allows the open loop output impedance of  
the power stage to be controlled. If the COMP pin is held  
steady and the inductor current changes, there must also be  
a change in the output voltage. Or, in a closed loop  
configuration when the output current changes, the COMP  
pin must move to keep the same output voltage. The required  
change in the output voltage or COMP pin depends on the  
scaling of the current feedback signal and is calculated as  
The CS5332 uses a twophase, fixed frequency,  
2
Enhanced V architecture. Each phase is delayed 180° from  
the previous phase. Normally GATE(H) transitions high at  
the beginning of each oscillator cycle. Inductor current  
ramps up until the combination of the current sense signal  
and the output ripple trip the PWM comparator and bring  
GATE(H) low. Once GATE(H) goes low, it will remain low  
until the beginning of the next oscillator cycle. While  
2
GATE(H) is high, the Enhanced V loop will respond to line  
DV + R   CSA Gain   DI  
S
and load transients. Once GATE(H) is low, the loop will not  
respond again until the beginning of the next cycle.  
The singlephase power stage output impedance is;  
2
Therefore, constant frequency Enhanced V will typically  
Single Stage Impedance + DVńDI + R   CSA Gain.  
S
respond within the offtime of the converter.  
The multiphase power stage output impedance is the  
singlephase output impedance divided by the number of  
phases. The output impedance of the power stage determines  
how the converter will respond during the first few μs of a  
transient before the feedback loop has repositioned the  
COMP pin.  
2
The Enhanced V architecture measures and adjusts  
current in each phase. An additional input (C ) for inductor  
X
2
current information has been added to the V loop for each  
phase as shown in Figure 9.  
The peak output current of each phase can also be  
calculated from;  
SWNODE  
CS  
L
X
R
L
+
CSA  
+
+
+
V
* V  
FB  
* V  
OFFSET  
COMP  
R
R
I
(per phase) +  
S
pkout  
OFFSET  
  CSA Gain  
S
CS  
V
REF  
PWM-  
COMP  
Figure 10 shows the step response of a single phase with  
the COMP pin at a fixed level. Before T1 the converter is in  
normal steady state operation. The inductor current provides  
the PWM ramp through the Current Sense Amplifier. The  
PWM cycle ends when the sum of the current signal, voltage  
signal and OFFSET exceed the level of the COMP pin. At  
T1 the output current increases and the output voltage sags.  
The next PWM cycle begins and the cycle continues longer  
than previously while the current signal increases enough to  
V
+
OUT  
FB  
+
E.A.  
+
DAC  
OUT  
+
COMP  
Figure 9. Enhanced V2 Current Sense Scheme  
make up for the lower voltage at the V pin and the cycle  
FB  
ends at T2. After T2 the output voltage remains lower than  
at light load and the current signal level is raised so that the  
sum of the current and voltage signal is the same as with the  
original load. In a closed loop system the COMP pin would  
move higher to restore the output voltage to the original level.  
The inductor current is measured across R , amplified by  
S
CSA and summed with the OFFSET and Output Voltage at  
the noninverting input of the PWM comparator. The  
inductor current provides the PWM ramp and as inductor  
current increases the voltage on the positive pin of the PWM  
http://onsemi.com  
11  
 
CS5332  
considered when setting the I  
threshold. If a more  
LIM  
accurate current sense is required than inductive sensing can  
provide, current can be sensed through a resistor as shown  
in Figure 9.  
SWNODE  
Current Sharing Accuracy  
PCB traces that carry inductor current can be used as part  
of the current sense resistance depending on where the  
current sense signal is picked off. For accurate current  
sharing, the current sense inputs should sense the current at  
the same point for each phase and the connection to the  
V
(V  
)
FB  
OUT  
CSA Out  
CS  
should be made so that no phase is favored. (In some  
REF  
COMP Offset  
CSA Out + V  
cases, especially with inductive sensing, resistance of the  
pcb can be useful for increasing the current sense  
resistance.) The total current sense resistance used for  
calculations must include any pcb trace between the CS  
FB  
T1  
T2  
Figure 10. Open Loop Operation  
inputs and the CS  
input that carries inductor current.  
REF  
Current Sense Amplifier Input Mismatch and the value of  
the current sense element will determine the accuracy of  
current sharing between phases. The worst case Current  
Sense Amplifier Input Mismatch is 5.0 mV and will typically  
be within 3.0 mV. The difference in peak currents between  
phases will be the CSA Input Mismatch divided by the current  
sense resistance. If all current sense elements are of equal  
resistance, a 3.0 mV mismatch with a 2.0 mΩ sense resistance  
will produce a 1.5 A difference in current between phases.  
Inductive Current Sensing  
For lossless sensing current can be sensed across the  
inductor as shown in Figure 11. In the diagram, L is the  
output inductance and R is the inherent inductor resistance.  
L
To compensate the current sense signal the values of R1 and  
C1 are chosen so that L/R = R1 × C1. If this criteria is met  
L
the current sense signal will be the same shape as the  
inductor current, the voltage signal at Cx will represent the  
instantaneous value of inductor current and the circuit can be  
analyzed as if a sense resistor of value R was used as a sense  
L
Operation at > 50% Duty Cycle  
For operation at duty cycles above 50% Enhanced V  
2
resistor (R ).  
S
will exhibit subharmonic oscillation unless a compensation  
ramp is added to each phase. A circuit like the one on the left  
side of Figure 12 can be added to each current sense network  
to implement slope compensation. The value of R1 can be  
varied to adjust the ramp size.  
R1  
SWNODE  
CS  
X
+
L
+
+
+
CSA  
C1  
R
L
OFFSET  
CS  
REF  
PWM-  
COMP  
Switch Node  
GATE(L)X  
+
V
OUT  
V
FB  
E.A.  
+
DAC  
OUT  
25 k  
R1  
3.0 k  
COMP  
CS  
X
Figure 11. Lossless Inductive Current Sensing with  
Enhanced V2  
1.0 nF  
.01 μF  
0.1 μF  
When choosing or designing inductors for use with  
inductive sensing, tolerances and temperature effects should  
be considered. Cores with a low permeability material or a  
large gap will usually have minimal inductance change with  
temperature and load. Copper magnet wire has a  
temperature coefficient of 0.39% per °C. The increase in  
winding resistance at higher temperatures should be  
CS  
REF  
MMBT2222LT1  
Existing Current  
Sense Circuit  
Slope Comp  
Circuit  
Figure 12. External Slope Compensation Circuit  
http://onsemi.com  
12  
 
CS5332  
Ramp Size and Current Sensing  
Because the current ramp is used for both the PWM ramp  
and to sense current, the inductor and sense resistor values  
will be constrained. A small ramp will provide a quick  
transient response by minimizing the difference over which  
the COMP pin must travel between light and heavy loads,  
but a steady state ramp of 25 mV  
or greater is typically  
PP  
required to prevent pulse skipping and minimize pulse width  
jitter. For resistive current sensing, the combination of the  
inductor and sense resistor values must be chosen to provide  
a large enough steady state ramp. For large inductor values  
the sense resistor value must also be increased.  
For inductive current sensing the RC network must meet  
the requirement of L/R = R × C to accurately sense the AC  
L
and DC components of the current the signal. Again the  
values for L and R will be constrained in order to provide  
L
a large enough steady state ramp with a compensated current  
sense signal. A smaller L, or a larger R than optimum might  
L
Figure 13. Inductive Sensing waveform during a  
Load Step with Fast RC Time Constant (50 μs/div)  
be required. But unlike resistive sensing, with inductive  
sensing small adjustments can be made easily with the  
values of R and C to increase the ramp size if needed.  
Current Limit  
If RC is chosen to be smaller (faster) than L/R , the AC  
L
Two levels of overcurrent protection are provided. Any  
portion of the current sensing signal will be scaled larger  
than the DC portion. This will provide a larger steady state  
ramp, but circuit performance will be affected and must be  
evaluated carefully. The current signal will overshoot during  
transients and settle at the rate determined by R × C. It will  
eventually settle to the correct DC level, but the error will  
decay with the time constant of R × C. If this error is  
excessive it will effect transient response, adaptive  
positioning and current limit. During transients, the COMP  
pin will be required to overshoot along with the current  
time the voltage on a Current Sense pin exceeds CS  
by  
REF  
more than the Single Phase Pulse by Pulse Current Limit, the  
PWM comparator for that phase is turned off. This provides  
fast peak current protection for individual phases. The  
outputs of all the currents are also summed and filtered to  
compare an averaged current signal to the voltage on the  
I
pin. If this voltage is exceeded, the fault latch trips and  
LIM  
the Soft Start capacitor is discharged by a 7.5 μA source until  
the COMP pin reaches 0.2 V. Then SoftStart begins. The  
converter will continue to operate in this mode until the fault  
condition is corrected.  
signal in order to maintain the output voltage. The V  
pin  
DRP  
will also overshoot during transients and possibly slow the  
response. Single phase overcurrent will trip earlier than it  
would if compensated correctly and hiccup mode current  
limit will have a lower threshold for fast rise step loads than  
for slowly rising output currents.  
The waveforms in Figure 13 show a simulation of the  
current sense signal and the actual inductor current during  
a positive step in load current with values of L = 500 nH,  
Overvoltage Protection  
Overvoltage protection (OVP) is provided as a result of  
2
the normal operation of the Enhanced V control topology  
with synchronous rectifiers. The control loop responds to an  
overvoltage condition within 400 ns, causing the top  
MOSFET’s to shut off, and the synchronous MOSFET’s to  
turn on. This results in a “crowbar” action to clamp the  
output voltage and prevent damage to the load. The regulator  
will remain in this state until the overvoltage condition  
ceases or the input voltage is pulled low.  
R = 1.6 mΩ, R1 = 20 k and C1 = .01 μF. For ideal current  
L
signal compensation the value of R1 should be 31 kΩ. Due  
to the faster than ideal RC time constant there is an  
overshoot of 50% and the overshoot decays with a 200 μs  
time constant. With this compensation the I  
pin  
LIM  
Transient Response and Adaptive Positioning  
For applications with fast transient currents the output  
filter is frequently sized larger than ripple currents require in  
threshold must be set more than 50% above the full load  
current to avoid triggering hiccup mode during a large  
output load step.  
http://onsemi.com  
13  
 
CS5332  
order to reduce voltage excursions during transients.  
to the final voltage after a transient. This will be most  
apparent with lower capacitance output filters.  
Note: Large levels of adaptive positioning can cause pulse  
width jitter.  
Adaptive voltage positioning can reduce peakpeak output  
voltage deviations during load transients and allow for a  
smaller output filter. The output voltage can be set higher  
than nominal at light loads to reduce output voltage sag  
when the load current is stepped up and set lower than  
nominal during heavy loads to reduce overshoot when the  
load current is stepped up. For low current applications a  
droop resistor can provide fast accurate adaptive  
positioning. However at high currents, the loss in a droop  
resistor becomes excessive. For example, in a 50 A  
converter a 1.0 mΩ resistor to provide a 50 mV change in  
output voltage between no load and full load would dissipate  
2.5 Watts.  
Lossless adaptive positioning is an alternative to using a  
droop resistor, but must respond quickly to changes in load  
current. Figure 14 shows how adaptive positioning works.  
The waveform labeled normal shows a converter without  
adaptive positioning. On the left, the output voltage sags  
when the output current is stepped down and later  
overshoots when current is stepped back down. With fast  
(ideal) adaptive positioning the peak to peak excursions are  
cut in half. In the slow adaptive positioning waveform the  
output voltage is not repositioned quickly enough after  
current is stepped up and the upper limit is exceeded.  
Error Amp Compensation  
The transconductance error amplifier requires a capacitor  
between the COMP pin and GND. Use of values less than 1.0  
nF may result in error amp oscillation of several MHz.  
The capacitor between the COMP pin and the inverting  
error amplifier input and the parallel resistance of the V  
FB  
resistor and the V  
resistor are used to roll off the error  
DRP  
amp gain. The gain is rolled off at a high enough frequency  
to give a quick transient response, but low enough to cross  
zero dB well below the switching frequency to minimize  
ripple and noise on the COMP pin.  
UVLO  
The CS5332 has undervoltage lockout functions  
connected to two pins. One, intended for the logic and  
lowside drivers, with a 4.4 V turnon threshold is  
connected to the V  
pin. A second, for the high side  
CCL  
drivers, has a 2.0 V threshold and is connected to the V  
pin.  
CCH1  
The UVLO threshold for the high side drivers was chosen  
at a low value to allow for flexibility in the part and an input  
voltage as low as 3.3 V. In many applications this will be  
disabled or will only check that the applicable supply is on  
not that it is at a high enough voltage to run the converter.  
For the 12 V converter in Figure 1. the UVLO pin for the  
IN  
high side driver is pulled up by the 5.0 V supply (through two  
diode drops) and the function is not used. The diode between  
the Soft Start pin and the 12 V supply holds the Soft Start pin  
near GND and prevents startup while the 12 V supply is off.  
In an application where a higher UVLO threshold is  
necessary a circuit like the one in Figure 15 will lock out the  
converter until the 12 V supply exceeds 9.0 V.  
Normal  
FastAdaptive Positioning  
SlowAdaptive Positioning  
Limits  
Figure 14. Adaptive Positioning  
The CS5332 can be configured to adjust the output  
voltage based on the output current of the converter. (Refer  
to Figure 1.)  
+12 V  
+5.0 V  
To set the noload positioning, a resistor is placed  
50 k  
between the output voltage and V pin. The V bias  
FB  
FB  
Soft Start  
current will develop a voltage across the resistor to decrease  
the output voltage. The V bias current is dependent on the  
FB  
value of R  
. See Figure 4 on the datasheet.  
OSC  
During no load conditions the V  
pin is at the same  
FB  
DRP  
100 k  
voltage as the V pin, so none of the V bias current flows  
FB  
100 k  
through the V  
resistor. When output current increases  
DRP  
the V  
pin increases proportionally and the V  
pin  
DRP  
DRP  
current offsets the V bias current and causes the output  
FB  
voltage to decrease.  
Figure 15. External UVLO Circuit  
The V and V  
pins take care of the slower and DC  
FB  
DRP  
Remote Sense  
voltage positioning. The first few μs are controlled primarily  
by the ESR and ESL of the output filter. The transition  
between fast and slow positioning is controlled by the ramp  
size and the error amp compensation. If the ramp size is too  
large or the error amp too slow there will be a long transition  
In some applications that require remote output voltage  
sensing, there are conditions when the path of the feedback  
signal can be broken. In a voltage regulator module (VRM)  
the remote voltage feedback sense point is typically off the  
http://onsemi.com  
14  
 
CS5332  
module. If the module is powered apart from the intended  
considered when laying out the power, filter and feedback  
signal sections of the board. Typically, a multilayer board  
with at least one ground plane is recommended. If the layout  
is such that high currents can exist in the ground plane  
underneath the controller or control circuitry, the ground  
plane can be slotted to reroute the currents away from the  
controller. The slots should typically not be placed between  
the controller and the output voltage or in the return path of  
the gate drive. Additional power and ground planes or  
islands can be added as required for a particular layout.  
Gate drives experience high di/dt during switching and the  
inductance of gate drive traces should be minimized. Gate  
drive traces should be kept as short and wide as practical and  
should have a return path directly below the gate trace.  
Output filter components should be placed on wide planes  
connected directly to the load to minimize resistive drops  
during heavy loads and inductive drops and ringing during  
transients. If required, the planes for the output voltage and  
return can be interleaved to minimize inductance between  
the filter and load.  
application, the feedback will be left open. On a  
motherboard, the feedback path might be broken when the  
processor socket is left open. Without the feedback  
connection the output voltage is likely to exceed the  
intended voltage. To protect the circuit from overvoltage  
conditions, a resistor can be connected between the local  
output voltage and the remote sense line as shown in Figure 16.  
Local V  
Remote V  
OUT  
OUT  
Remote  
Sense  
Line  
100 Ω  
Voltage feedback should be taken from a point of the  
output or the output filter that doesn’t favor any one phase.  
If the feedback connection is closer to one inductor than the  
others the ripple associated with that phase may appear  
larger than the ripple associated with the other phases and  
poor current sharing can result.  
The current sense signal is typically tens of millivolts.  
Noise pickup should be avoided wherever possible.  
Current feedback traces should be routed away from noisy  
areas such as switch nodes and gate drive signals. The paths  
should be matched as well as possible. It is especially  
important that all current sense signals be picked off at  
similar points for accurate current sharing. If the current  
signal is taken from a place other than directly at the inductor  
any additional resistance between the pickoff point and the  
inductor appears as part of the inherent inductor resistance  
and should be considered in design calculations. Capacitors  
for the current feedback networks should be placed as close  
to the current sense pins as practical.  
CS  
Network  
V
Network  
REF  
FB  
Figure 16. Remote Sense Connection  
Soft Start Enable, and Hiccup Mode  
A capacitor between the Soft Start pin and GND controls  
Soft Start and hiccup mode slopes. A 0.1 μF capacitor with  
30 μA charge current will allow the output to ramp up at 0.3  
V/ms or 1.5 V in 5.0 ms at startup.  
When a fault is detected due to overcurrent or UVLO the  
converter will enter a low duty cycle hiccup mode. During  
hiccup mode the converter will not switch from the time a  
fault is detected until the Soft Start capacitor has discharged  
below the Soft Start Discharge Threshold and then charged  
back up above the Channel Start Up Offset.  
The Soft Start pin will disable the converter when pulled  
below 0.3 V.  
Layout Guidelines  
With the fast rise, high output currents of microprocessor  
applications, parasitic inductance and resistance should be  
http://onsemi.com  
15  
 
CS5332  
DESIGN PROCEDURE  
Multiply the converterZ by the output current step size  
to calculate where the output voltage should recover to  
within the first switching cycle after a transient. If the  
ConverterZ is higher than the value required to recover  
to where the adaptive positioning is set, the remainder  
of the recovery will be controlled by the error amp  
compensation and will typically recover in 10 20 μs.  
Current Sensing, Power Stage and  
Output Filter Components  
1. Choose the output filter components to meet peak  
transient requirements. The formula below can be  
used to provide an approximate starting point for  
capacitor choice, but will be inadequate to calculate  
actual values.  
DVR + DI  
  ConverterZ  
OUT  
Make sure that ΔVR is less than the expected peak  
transient for a good transient response.  
DV  
+ (DIńDT)   ESL ) DI   ESR  
PEAK  
Ideally the output filter should be simulated with  
models including ESR, ESL, circuit board parasitics  
and delays due to switching frequency and converter  
response. Typically both bulk capacitance  
(electrolytic, Oscon, etc,) and low impedance  
capacitance (ceramic chip) will be required. The bulk  
capacitance provides “hold up” during the converter  
response. The low impedance capacitance reduces  
steady state ripple and bypasses the bulk capacitance  
during slewing of output current.  
5. Adjust L and R or R as required to meet the best  
L
S
combination of transient response, steady state output  
voltage ripple and pulse width jitter.  
Current Limit  
When the sum of the Current Sense amplifiers (V  
)
ITOTAL  
exceeds the voltage on the I  
pin the part will enter hiccup  
LIM  
mode. For inductive sensing the I  
pin voltage should be  
LIM  
set based on the inductor resistance (or current sense  
resistor) at max temperature and max current. To set the level  
of the I  
pin:  
LIM  
2. For inductive current sensing (only) choose the  
current sense network RC to provide a 25 mV  
minimum ramp during steady state operation.  
6. V  
+ R   I  
  CS to I  
Gain  
LIM  
I(LIM)  
OUT(LIM)  
where:  
R is R or R  
V
ńV  
L
S;  
OUT IN  
R + (V * V  
)   
IN OUT  
I
is the current limit threshold.  
F   C   25 mV  
OUT(LIM)  
For the overcurrent to work properly the inductor time  
constant (L/R) should bethe Current sense RC. If the  
RC is too fast, during step loads the current waveform  
will appear larger than it is (typically for a few hundred  
μs) and may trip the current limit at a level lower than  
the DC limit.  
Then choose the inductor value and inherent resistance  
to satisfy L/R = R × C.  
L
For ideal current sense compensation the ratio of L and  
R
L
is fixed, so the values of L and R will be a  
L
compromise typically with the maximum value R  
L
limited by conduction losses or inductor temperature  
rise and the minimum value of L limited by ripple  
current.  
Adaptive Positioning  
7. To set the amount of voltage positioning below the  
DAC setting at no load, connect a resistor (R ( ))  
3. For resistive current sensing choose L and R to  
S
V FB  
provide a steady state ramp greater than 25 mV.  
between the output voltage and the V pin. Choose  
FB  
LńR + (V * V  
IN OUT  
)   T  
ń25 mV  
ON  
R ( ) as;  
V FB  
S
R
V(FB)  
+ NL PositionńV Bias Current  
FB  
Again the ratio of L and R is fixed and the values of  
L
L and R will be a compromise.  
S
See Figure 4 for V Bias Current.  
FB  
4. Calculate the high frequency output impedance  
(ConverterZ) of the converter during transients. This  
is the impedance of the Output filter ESR in parallel  
with the power stage output impedance (PwrstgZ)  
and will indicate how far from the original level  
(ΔVR) the output voltage will typically recover to  
within one switching cycle. For a good transient  
response ΔVR should be less than the peak output  
voltage overshoot or undershoot.  
8. To set the difference in output voltage between no  
load and full load, connect a resistor (R  
)
V(DRP)  
between the V  
and V pins. R  
can be  
DRP  
FB  
V(DRP)  
calculated in two steps. First calculate the difference  
between the V and V pin at full load. (The V  
FB  
DRP  
FB  
voltage should be the same as the DAC voltage during  
closed loop operation.) Then choose the R to  
V(DRP)  
source enough current across R ( ) for the desired  
V FB  
change in output voltage.  
DVR + ConverterZ   ESR  
DV  
+ I  
  R   CS to V  
Gain  
DRP  
V(DRP)  
OUTFL  
PwrstgZ   ESR  
ConverterZ +  
where:  
PwrstgZ ) ESR  
R = R or R for one phase;  
L
S
where:  
I
is the full load output current.  
OUTFL  
PwrstgZ + R   CSA Gainń2.0  
S
http://onsemi.com  
16  
CS5332  
The peak output voltage transient is 70 mV max during a 41  
A step current.  
R
+ DV  
DRP  
  R  
ńDV  
V(FB) OUT  
V(DRP)  
Calculate Input Filter Capacitor Current Ripple  
The procedure below assumes that phases do not overlap  
and output inductor ripple current (PP) is less than the  
average output current of one phase.  
Current Sensing, Power Stage and  
Output Filter Components  
1.Assume 1.5 mΩ of output filter ESR.  
+ (V * V  
)   (V ńV ń(F   C   25 mV)  
OUT IN)  
2.R  
IN  
OUT  
9. Calculate Input Current  
+ (12 * 1.55)   (1.55ń12)ń(240 k   .01mF   25mV)  
+ 22.5 k  
V
  I  
OUT  
OUT  
Efficiency   V  
I
+
IN  
(
)
IN  
LńR + .01 mF   22.5 kW + 225 ms  
L
10. Calculate Duty Cycle (per phase).  
Choose R + 2.0 mW  
L
V
L + 2.0 mW   225 ms + 450 nH  
OUT  
Duty Cycle +  
(
)
Efficiency   V  
3. n/a  
4. PwrstgZ+ R   CSA Gainń2.0  
IN  
11. Calculate Apparent Duty Cycle.  
L
+ 2.0 mW   3.15ń2 + 3.1 mW  
Apparent Duty Cycle + Duty Cycle   # of Phases  
PwrstgZ   ESR  
12. Calculate Input Filter Capacitor Ripple Current. Use  
the chart in Figure 17 to calculate the normalized  
+
+
ConverterZ  
PwrstgZ ) ESR  
3.1 mW   1.5 mW  
3.1 mW ) 1.5 mW  
ripple current (K ) based on the reciprocal of  
RMS  
^ 1.0 mW  
Apparent Duty Cycle. Then multiply the input current  
by K to obtain the Input Filter Capacitor Ripple  
DVR + 1.0 mW   41 A + 41 mV  
RMS  
Current.  
5. n/a  
Ripple (RMS) + I   K  
IN  
RMS  
Current Limit  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
6.  
V
+ R   I  
+ 2.0 mW   50 A   6.25 + 625 mV  
  CS to I  
Gain  
LIM  
I(LIM)  
L
OUT(LIM)  
Adaptive Positioning  
7. R  
+ NL PositionńV  
FB  
+ 50 mVń18 mA + 2.78 kW  
Bias Current  
V(FB)  
8.  
+ R   I   Current Sense to V  
Gain  
DRP  
DV  
1.00  
0.50  
0.00  
L
OUT  
DRP  
+ 2.0 mW   41 A   3.1 + 254 mV  
+ DV  
DRP  
  R  
ńDV  
V(FB) OUT  
R
V(DRP)  
15  
10  
5
0
+ 254 mV   2.78 kWń50 mV + 25.4 kW  
1/ Apparent Duty Cycle  
Figure 17. Normalized Input Filter Capacitor  
Ripple Current  
1.52 V   41 A  
9.  
I
+
+ 6.1 A  
IN  
(
)
0.85   12V  
IN  
DESIGN EXAMPLE  
1.52 V  
Duty Cycle +  
+ 0.15  
10.  
(
)
0.85   12 V  
IN  
Choose the component values for a 240 kHz, 12 V to 1.525  
V, 41 A converter with lossless current sensing, adaptive  
positioning and a 50 A current limit. The adaptive  
positioning is chosen 50 mV below the DAC setting at no  
load and 50 mV below the noload position with 41 A out.  
11.Apparent Duty Cycle + 0.15   2.0 + 0.3  
12.RMS ripple is 6.1 A   1.5 + 9.2 A  
http://onsemi.com  
17  
 
CS5332  
300 nH  
V
IN  
+
1.0 μF  
1.0 μF  
1.0 μF  
ENABLE  
1.2 μH  
10 k  
1 nF  
56.2 k  
1 nF  
1 nF  
R
COMP  
OSC  
CCL  
3 × 4SP560M  
V
V
FB  
DRP  
2.74 k  
12.7 k  
V
CCL1  
V
25.4 k  
GATE(L)1  
GND1  
CS1  
CS2  
V
OUT  
GATE(H)1  
CS  
REF  
V
PWRGD  
CCH1  
LGND  
V
ID0  
ID1  
ID2  
ID3  
ID4  
PWRGD  
3 × 10 μF  
SS  
V
V
V
CCL2  
0.1 μF  
GATE(L)2  
V
GND2  
V
GATE(H)2  
V
I
LIM  
REF  
CCH2  
1.0 μF  
2.8 k  
1.0 k  
0.1 μF  
1.2 μH  
25.5 k  
0.1 μF  
0.1 μF  
25.5 k  
0.1 μF  
GL1  
GL2  
Figure 18. Additional Application Diagram, 5.0 V only to 2.5 V  
300 nH  
+5 V  
+
+12 V  
3 × 16SP270M  
1.0 μF  
ENABLE  
470 nH  
56.2 k  
1.0 nF  
1.0 nF  
2.74 k  
1.0 nF  
R
V
COMP  
OSC  
CCL  
+
V
FB  
8 × 4SP560M  
V
CCL1  
V
DRP  
GATE(L)1  
GND1  
25.4 k  
12.7 k  
CS1  
CS2  
GATE(H)1  
CS  
REF  
V
OUT  
V
CCH1  
PWRGD  
LGND  
V
PWRGD  
ID0  
ID1  
12 × 1.0 μF  
SS  
V
V
CCL2  
V
0.1 μF  
ID2  
ID3  
ID4  
V
V
ID0  
GATE(L)2  
GND2  
V
V
GATE(H)2  
I
LIM  
ID1  
V
CCH2  
REF  
V
ID2  
V
V
ID3  
1.0 μF  
4.87 k  
1.0 k  
0.1 μF  
ID4  
470 nH  
25.5 k  
.01 μF  
25.5 k  
.01 μF  
.01 μF  
Figure 19. Additional Application Diagram, 5.0 V to 1.6 V with 12 V Bias  
http://onsemi.com  
18  
CS5332  
300 nH  
+5 V  
+
1.0 μF  
3 × 6SP680M  
ENABLE  
470 nH  
56.2 k  
1.0 nF  
1.0 nF  
1.0 nF  
2.74 k  
R
+
COMP  
OSC  
CCL  
V
V
DRP  
8 × 4SP560M  
FB  
V
CCL1  
V
25.4 k  
12.7 k  
GATE(L)1  
GND1  
CS1  
CS2  
CS  
GATE(H)1  
REF  
V
OUT  
V
CCH1  
PWRGD  
V
LGND  
SS  
ID0  
PWRGD  
12 × 10 μF  
V
ID1  
V
V
CCL2  
ID2  
0.1 μF  
V
ID0  
ID1  
ID2  
ID3  
V
GATE(L)2  
GND2  
ID3  
ID4  
V
I
GATE(H)2  
LIM  
V
V
V
CCH2  
REF  
V
4.87 k  
1.0 k  
1.0 μF  
0.1 μF  
V
ID4  
470 nH  
25.5 k  
.01 μF  
25.5 k  
.01 μF  
.01 μF  
Figure 20. Additional Application Diagram, 5.0 V only to 1.6 V  
http://onsemi.com  
19  
CS5332  
PACKAGE DIMENSIONS  
SO28  
DW SUFFIX  
CASE 751F05  
ISSUE F  
D
NOTES:  
A
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSIONS.  
4. MAXIMUM MOLD PROTRUSION 0.015 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS  
OF B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
28  
15  
1
14  
MILLIMETERS  
B
PIN 1 IDENT  
DIM MIN  
MAX  
2.65  
0.29  
0.49  
0.32  
18.05  
7.60  
A
A1  
B
C
D
E
2.35  
0.13  
0.35  
0.23  
17.80  
7.40  
L
0.10  
e
1.27 BSC  
H
L
10.05  
0.41  
10.55  
0.90  
e
C
q
0
8
SEATING  
PLANE  
B
C
q
M
S
S
B
0.025  
C A  
PACKAGE THERMAL DATA  
Parameter  
SO28L  
Unit  
R
R
Typical  
Typical  
15  
75  
°C/W  
°C/W  
Θ
JC  
JA  
Θ
2
V
is a trademark of Switch Power, Inc.  
Pentium is a registered trademark of Intel Corporation.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
CS5332/D  
配单直通车
CS5332GDW28产品参数
型号:CS5332GDW28
是否Rohs认证:不符合
生命周期:Obsolete
IHS 制造商:ROCHESTER ELECTRONICS INC
零件包装代码:SOIC
包装说明:SOP,
针数:28
Reach Compliance Code:unknown
风险等级:5.91
Is Samacsys:N
其他特性:ALSO REQUIRES 8V TO 20V SUPPLY
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT/VOLTAGE-MODE
控制技术:PHASE-SHIFT CONTROL
最大输入电压:14 V
最小输入电压:4.7 V
标称输入电压:10 V
JESD-30 代码:R-PDSO-G28
JESD-609代码:e0
长度:17.925 mm
湿度敏感等级:NOT SPECIFIED
功能数量:1
端子数量:28
最高工作温度:70 °C
最低工作温度:
最大输出电流:1.5 A
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT SPECIFIED
座面最大高度:2.65 mm
表面贴装:YES
切换器配置:PHASE-SHIFT
最大切换频率:1000 kHz
温度等级:COMMERCIAL
端子面层:TIN LEAD
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!