欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • CS8416-CZZR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • CS8416-CZZR图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • CS8416-CZZR 现货库存
  • 数量29500 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • CS8416-CZZR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CS8416-CZZR 现货库存
  • 数量5540 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • CS8416-CZZR图
  • 集好芯城

     该会员已使用本站13年以上
  • CS8416-CZZR 现货库存
  • 数量27564 
  • 厂家Cirrus Logic 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • CS8416-CZZR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站2年以上
  • CS8416-CZZR 现货库存
  • 数量15229 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号2020+ 
  • 专营CIRRUS原装现货最低价
  • QQ:2885514619QQ:2885514619 复制
  • 0755-89345486 QQ:2885514619
  • CS8416-CZZR图
  • 深圳市宏芯微科技有限公司

     该会员已使用本站15年以上
  • CS8416-CZZR 现货库存
  • 数量15877 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号20+ 
  • 公司优势现货库存,价格优势,假冒必究,应对市场激烈竞争,超低价热卖
  • QQ:1678302500QQ:1678302500 复制
  • 0755-82815382 QQ:1678302500
  • CS8416-CZZR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • CS8416-CZZR 现货库存
  • 数量6980 
  • 厂家Cirrus Logic(凌云) 
  • 封装NA 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • CS8416-CZZR图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • CS8416-CZZR 现货库存
  • 数量25355 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • CS8416-CZZR图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • CS8416-CZZR 现货库存
  • 数量3000 
  • 厂家CIRRUS LOGIC/凌云 
  • 封装TSSOP-28 
  • 批号22+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • CS8416-CZZR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • CS8416-CZZR 现货库存
  • 数量3395 
  • 厂家CSI 
  • 封装TSSOP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • CS8416-CZZR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • CS8416-CZZR 现货库存
  • 数量8000 
  • 厂家Cirrus Logic 
  • 封装TSSOP-28 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • CS8416-CZZR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • CS8416-CZZR
  • 数量5300 
  • 厂家CirrusLogic(凌云逻辑) 
  • 封装TSSOP-28 
  • 批号21+ 
  • 全新原装正品,现货库存欢迎咨询
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • CS8416-CZZR图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • CS8416-CZZR
  • 数量29500 
  • 厂家Cirrus Logic Inc. 
  • 封装IC AUDIO RECEIVER 28TSSOP 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • CS8416-CZZR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • CS8416-CZZR
  • 数量1970 
  • 厂家CIRRUS 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • CS8416-CZZR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • CS8416-CZZR
  • 数量5000 
  • 厂家CIRRUS 
  • 封装TSSOP 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • CS8416-CZZR图
  • 深圳市奥伟斯科技有限公司

     该会员已使用本站7年以上
  • CS8416-CZZR
  • 数量30000 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号13+ 
  • 专注型号,长期供应
  • QQ:3003412773QQ:3003412773 复制
    QQ:3003714016QQ:3003714016 复制
  • 0755-83254770 QQ:3003412773QQ:3003714016
  • CS8416-CZZR图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • CS8416-CZZR
  • 数量16680 
  • 厂家 
  • 封装TSSOP28 
  • 批号16+ 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • CS8416-CZZR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • CS8416-CZZR
  • 数量13500 
  • 厂家CIRRUS LOGIC 
  • 封装4000 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • CS8416-CZZR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • CS8416-CZZR
  • 数量28998 
  • 厂家CIRRUS 
  • 封装TSSOP 
  • 批号2020+ 
  • 全新原装特价热卖
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • CS8416-CZZR图
  • 集好芯城

     该会员已使用本站13年以上
  • CS8416-CZZR
  • 数量13298 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • CS8416-CZZR图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • CS8416-CZZR
  • 数量3100 
  • 厂家CIRRUS 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • CS8416-CZZR图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • CS8416-CZZR
  • 数量6328 
  • 厂家CIRRUS 
  • 封装TSSOP-28 
  • 批号▉▉:2年内 
  • ▉▉¥34.2元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • CS8416-CZZR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • CS8416-CZZR
  • 数量22000 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号23+ 
  • 进口原装原盘原标签假一赔十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • CS8416-CZZR图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • CS8416-CZZR
  • 数量16000 
  • 厂家CIRRUS 
  • 封装TSSOP-28 
  • 批号21+ 
  • 只做原装正品,支持实单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • CS8416-CZZR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • CS8416-CZZR
  • 数量660000 
  • 厂家Cirrus Logic(凌云) 
  • 封装TSSOP-28 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • CS8416-CZZR图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • CS8416-CZZR
  • 数量5500 
  • 厂家CIRRUS 
  • 封装TSSOP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • CS8416-CZZR图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • CS8416-CZZR
  • 数量10000 
  • 厂家Cirrus Logic(凌云) 
  • 封装TSSOP28 
  • 批号24+ 
  • 原装进口现货 假一罚十
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-13686833545 QQ:1902134819QQ:2881689472
  • CS8416-CZZR图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • CS8416-CZZR
  • 数量30000 
  • 厂家MPS 
  • 封装SOT23-6 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • CS8416-CZZR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CS8416-CZZR
  • 数量5213 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • CS8416-CZZR图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • CS8416-CZZR
  • 数量10000 
  • 厂家CIRRUS 
  • 封装TSSOP28 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792

产品型号CS8416-CZZR的概述

CS8416-CZZR 芯片概述 CS8416-CZZR 是由 Cirrus Logic 公司生产的一款高性能数字音频接收器。它广泛应用于各种音频处理设备,尤其是在高保真音响系统和家庭影院中。该芯片可以有效地接收和解码多种音频格式,从而实现高质量的音频播放和处理。CS8416-CZZR 的设计目标是提供一种具有高灵活性和高兼容性的音频解决方案,以满足不断变化的市场需求。 CS8416-CZZR 的详细参数 CS8416-CZZR 芯片的技术参数通常包括以下几个方面: 1. 输入接口类型:此芯片通常支持多种数字音频接口,包括 S/PDIF 和 AES/EBU 接口。 2. 输出格式:可输出的格式为 I2S、左对齐或右对齐,便于与不同的 DAC(数字模拟转换器)连接。 3. 数字音频标准:支持多种数字音频标准,如 PCM 和 Dolby Digital,增强了其在多媒体应用中的能力。...

产品型号CS8416-CZZR的Datasheet PDF文件预览

CS8416  
192 kHz Digital Audio Interface Receiver  
 32 kHz to 192 kHz Sample Frequency Range  
Features  
 Low-Jitter Clock Recovery  
 Complete EIAJ CP1201, IEC-60958, AES3,  
S/PDIF-Compatible Receiver  
 Pin and Microcontroller Read Access to  
 +3.3 V Analog Supply (VA)  
Channel Status and User Data  
 +3.3 V Digital Supply (VD)  
 SPI™ or I²C® Control Port Software Mode and  
Stand-Alone Hardware Mode  
 +3.3 V or +5.0 V Digital Interface Supply (VL)  
 8:2 S/PDIF Input MUX  
 Differential Cable Receiver  
 AES/SPDIF Input Pins Selectable in Hardware  
 On-Chip Channel Status Data Buffer Memories  
Mode  
 Auto-Detection of Compressed Audio Input  
 Three General Purpose Outputs (GPO) Allow  
Streams  
Signal Routing  
 Decodes CD Q Sub-Code  
 OMCK System Clock Mode  
 Selectable Signal Routing to GPO Pins  
 S/PDIF-to-TX Inputs Selectable in Hardware  
Mode  
See the General Description and Ordering Information  
on page 2.  
 Flexible 3-wire Serial Digital Output Port  
VA  
VD  
VL DGND  
OMCK  
AGND FILT RMCK  
De-emphasis  
RXN  
Filter  
Receiver  
OLRCK  
OSCLK  
SDOUT  
Clock &  
Data  
AES3  
Serial  
Audio  
Output  
C & U bit  
Data Buffer  
S/PDIF  
RXP0  
RXP1  
RXP2  
RXP3  
RXP4  
RXP5  
RXP6  
RXP7  
Recovery Decoder  
TX Passthrough  
8:2  
MUX  
GPO0  
GPO1  
AD2/GPO2  
Control  
n:3  
MUX  
Port &  
Format  
Detect  
Misc.  
Control  
Registers  
RST  
SDA/  
SCL/ AD1/ AD0/  
CDOUT CCLK CDIN CS  
Copyright © Cirrus Logic, Inc. 2007  
(All Rights Reserved)  
AUGUST '07  
DS578F3  
http://www.cirrus.com  
CS8416  
General Description  
The CS8416 is a monolithic CMOS device that receives and decodes one of eight stereo pairs of digital audio data  
according to the IEC60958, S/PDIF, EIAJ CP1201, or AES3 interface standards. The CS8416 has a serial digital  
audio output port and comprehensive control ability through a selectable control port in Software Mode or through  
selectable pins in Hardware Mode. Channel status data are assembled in buffers, making read access easy. GPO  
pins may be assigned to route a variety of signals to output pins.  
A low-jitter clock recovery mechanism yields a very clean recovered clock from the incoming AES3 stream.  
Stand-alone operation allows systems with no microcontroller to operate the CS8416 with dedicated output pins for  
channel status data.  
The CS8416 is available in 28-pin TSSOP, SOIC, and QFN packages in Commercial grade (-10° to +70° C) and  
Automotive grade (-40° to +85° C). The CDB8416 Customer Demonstration board is also available for device eval-  
uation and implementation suggestions. Please refer to “Ordering Information” on page 59 for complete ordering  
information.  
Target applications include A/V receivers, CD-R, DVD receivers, multimedia speakers, digital mixing consoles, ef-  
fects processors, set-top boxes, and computer and automotive audio systems.  
2
DS578F3  
CS8416  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 6  
SPECIFIED OPERATING CONDITIONS ............................................................................................... 6  
ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 6  
DC ELECTRICAL CHARACTERISTICS................................................................................................. 7  
DIGITAL INPUT CHARACTERISTICS ................................................................................................... 7  
DIGITAL INTERFACE SPECIFICATIONS.............................................................................................. 7  
SWITCHING CHARACTERISTICS ........................................................................................................ 8  
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORTS............................................................... 9  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI MODE.................................................. 10  
SWITCHING CHARACTERISTICS - CONTROL PORT- I²C FORMAT ............................................... 11  
2. PIN DESCRIPTION - SOFTWARE MODE .......................................................................................... 12  
2.1 TSSOP Pin Description ................................................................................................................. 12  
2.2 QFN Pin Description ...................................................................................................................... 14  
3. PIN DESCRIPTION - HARDWARE MODE ......................................................................................... 16  
3.1 TSSOP Pin Description ................................................................................................................. 16  
3.2 QFN Pin Description ...................................................................................................................... 18  
4. TYPICAL CONNECTION DIAGRAMS ................................................................................................ 20  
5. APPLICATIONS .................................................................................................................................. 22  
5.1 Reset, Power-Down and Start-Up ................................................................................................. 22  
5.2 ID Code and Revision Code .......................................................................................................... 22  
5.3 Power Supply, Grounding, and PCB Layout ................................................................................. 22  
6. GENERAL DESCRIPTION .................................................................................................................. 23  
6.1 AES3 and S/PDIF Standards Documents ..................................................................................... 23  
7. SERIAL AUDIO OUTPUT PORT ......................................................................................................... 23  
7.1 Slip/Repeat Behavior ..................................................................................................................... 25  
7.2 AES11 Behavior ............................................................................................................................ 26  
8. S/PDIF RECEIVER .............................................................................................................................. 27  
8.1 8:2 S/PDIF Input Multiplexer ......................................................................................................... 27  
8.1.1 General ............................................................................................................................... 27  
8.1.2 Software Mode ................................................................................................................... 27  
8.1.3 Hardware Mode .................................................................................................................. 28  
8.2 OMCK System Clock Mode ........................................................................................................... 28  
8.3 Clock Recovery and PLL Filter ...................................................................................................... 28  
9. GENERAL PURPOSE OUTPUTS ....................................................................................................... 29  
10. ERROR AND STATUS REPORTING ................................................................................................ 30  
10.1 General ........................................................................................................................................ 30  
10.1.1 Software Mode ................................................................................................................. 30  
10.1.2 Hardware Mode ................................................................................................................ 30  
10.2 Non-Audio Detection ................................................................................................................... 31  
10.2.1 Format Detection .............................................................................................................. 31  
10.3 Interrupts ..................................................................................................................................... 31  
11. CHANNEL STATUS AND USER-DATA HANDLING ....................................................................... 32  
11.1 Software Mode ............................................................................................................................ 32  
11.2 Hardware Mode ........................................................................................................................... 32  
12. CONTROL PORT DESCRIPTION ..................................................................................................... 33  
12.1 SPI Mode ..................................................................................................................................... 33  
12.2 I²C Mode ...................................................................................................................................... 34  
13. CONTROL PORT REGISTER QUICK REFERENCE ....................................................................... 35  
14. CONTROL PORT REGISTER DESCRIPTIONS .............................................................................. 36  
14.1 Memory Address Pointer (MAP) .................................................................................................. 36  
14.2 Control0 (00h) ............................................................................................................................. 36  
14.3 Control1 (01h) ............................................................................................................................. 37  
DS578F3  
3
CS8416  
14.4 Control2 (02h) ............................................................................................................................. 38  
14.5 Control3 (03h) ............................................................................................................................. 39  
14.6 Control4 (04h) ............................................................................................................................. 39  
14.7 Serial Audio Data Format (05h) ................................................................................................... 40  
14.8 Receiver Error Mask (06h) ......................................................................................................... 41  
14.9 Interrupt Mask (07h) .................................................................................................................... 41  
14.10 Interrupt Mode MSB (08h) and Interrupt Mode LSB(09h) ......................................................... 41  
14.11 Receiver Channel Status (0Ah) ................................................................................................ 42  
14.12 Format Detect Status (0Bh) ....................................................................................................... 42  
14.13 Receiver Error (0Ch) ................................................................................................................ 43  
14.14 Interrupt 1 Status (0Dh) ............................................................................................................ 44  
14.15 Q-Channel Subcode (0Eh - 17h) ............................................................................................... 44  
14.16 OMCK/RMCK Ratio (18h) ....................................................................................................... 45  
14.17 Channel Status Registers (19h - 22h) ....................................................................................... 45  
14.18 IEC61937 PC/PD Burst Preamble (23h - 26h) .......................................................................... 45  
14.19 CS8416 I.D. and Version Register (7Fh) ................................................................................... 45  
15. HARDWARE MODE .......................................................................................................................... 46  
15.1 Serial Audio Port Formats ........................................................................................................... 46  
15.2 Hardware Mode Function Selection ............................................................................................ 46  
15.3 Hardware Mode Equivalent Register Settings ............................................................................. 47  
16. EXTERNAL AES3/SPDIF/IEC60958 RECEIVER COMPONENTS ................................................... 49  
16.1 AES3 Receiver External Components ........................................................................................ 49  
16.2 Isolating Transformer Requirements ........................................................................................... 49  
17. CHANNEL STATUS BUFFER MANAGEMENT ............................................................................... 51  
17.1 AES3 Channel Status (C) Bit Management ................................................................................ 51  
17.2 Accessing the E Buffer ................................................................................................................ 51  
17.2.1 Serial Copy Management System (SCMS) ...................................................................... 51  
18. PLL FILTER ....................................................................................................................................... 53  
18.1 General ........................................................................................................................................ 53  
18.2 External Filter Components ......................................................................................................... 53  
18.2.1 General ............................................................................................................................. 53  
18.2.2 Capacitor Selection .......................................................................................................... 54  
18.2.3 Circuit Board Layout ......................................................................................................... 54  
18.2.4 Component Value Selection ............................................................................................. 54  
18.2.5 Jitter Attenuation ............................................................................................................... 55  
19. PACKAGE DIMENSIONS ................................................................................................................. 56  
TSSOP THERMAL CHARACTERISTICS............................................................................................. 57  
QFN THERMAL CHARACTERISTICS ................................................................................................. 58  
20. ORDERING INFORMATION ............................................................................................................. 59  
21. REVISION HISTORY ......................................................................................................................... 60  
4
DS578F3  
CS8416  
LIST OF FIGURES  
Figure 1. Audio Port Master Mode Timing ................................................................................................... 9  
Figure 2. Audio Port Slave Mode and Data Input Timing............................................................................. 9  
Figure 3. SPI Mode Timing ........................................................................................................................ 10  
Figure 4. I²C Mode Timing ......................................................................................................................... 11  
Figure 5. Typical Connection Diagram - Software Mode ........................................................................... 20  
Figure 6. Typical Connection Diagram - Hardware Mode.......................................................................... 21  
Figure 7. Serial Audio Output Example Formats........................................................................................ 24  
Figure 8. AES3 Data Format...................................................................................................................... 25  
Figure 9. Receiver Input Structure ............................................................................................................. 27  
Figure 10. C/U Data Outputs...................................................................................................................... 32  
Figure 11. Control Port Timing in SPI Mode .............................................................................................. 33  
Figure 12. Control Port Timing, I²C Slave Mode Write............................................................................... 34  
Figure 13. Control Port Timing, I²C Slave Mode Read............................................................................... 34  
Figure 14. De-Emphasis Filter Response .................................................................................................. 39  
Figure 15. Hardware Mode Data Flow ....................................................................................................... 46  
Figure 16. Professional Input Circuit.......................................................................................................... 49  
Figure 17. Transformerless Professional Input Circuit............................................................................... 49  
Figure 18. Consumer Input Circuit ............................................................................................................. 50  
Figure 19. S/PDIF MUX Input Circuit ......................................................................................................... 50  
Figure 20. TTL/CMOS Input Circuit............................................................................................................ 50  
Figure 21. Channel Status Data Buffer Structure....................................................................................... 52  
Figure 22. Flowchart for Reading the E Buffer........................................................................................... 52  
Figure 23. PLL Block Diagram ................................................................................................................... 53  
Figure 24. Recommended Layout Example............................................................................................... 54  
Figure 25. Jitter Attenuation Characteristics of PLL................................................................................... 55  
LIST OF TABLES  
Table 1. Typical Delays by Frequency Values........................................................................................... 26  
Table 2. Clock Switching Output Clock Rates............................................................................................ 28  
Table 3. GPO Pin Configurations............................................................................................................... 29  
Table 4. Hardware Mode Start-Up Pin Conditions..................................................................................... 47  
Table 5. Hardware Mode Serial Audio Format Select................................................................................ 48  
Table 6. External PLL Component Values................................................................................................. 54  
DS578F3  
5
CS8416  
1. CHARACTERISTICS AND SPECIFICATIONS  
All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical  
performance characteristics and specifications are derived from measurements taken at nominal supply voltages  
and TA = 25°C.  
SPECIFIED OPERATING CONDITIONS  
(AGND, DGND = 0 V, all voltages with respect to 0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
VA  
VD  
VL  
3.13  
3.13  
3.13  
3.3  
3.3  
3.3 or 5.0  
3.46  
3.46  
5.25  
V
V
V
Power Supply Voltage  
Ambient Operating Temperature:  
Commercial Grade  
Automotive Grade  
-10  
-40  
-
-
+70  
+85  
TA  
°C  
ABSOLUTE MAXIMUM RATINGS  
(AGND, DGND = 0 V; all voltages with respect to 0 V. Operation beyond these limits may result in permanent dam-  
age to the device. Normal operation is not guaranteed at these extremes.)  
Parameter  
Symbol  
Min  
-
Max  
6.0  
Units  
V
Power Supply Voltage  
VA, VD,VL  
Input Current, Any Pin Except Supplies  
Input Voltage  
(Note 1)  
Iin  
Vin  
TA  
-
±10  
mA  
V
-0.3  
-55  
-65  
(VL) + 0.3  
125  
Ambient Operating Temperature (power applied)  
Storage Temperature  
°C  
Tstg  
150  
°C  
Notes:  
1. Transient currents of up to 100 mA will not cause SCR latch-up.  
6
DS578F3  
CS8416  
DC ELECTRICAL CHARACTERISTICS  
(AGND = DGND = 0 V; all voltages with respect to 0 V.)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power-Down Mode (Notes 2, 4)  
Supply Current in power-down  
VA  
VD  
VL = 3.3 V  
VL = 5.0 V  
IA  
ID  
IL  
IL  
-
-
-
-
10  
70  
10  
12  
-
-
-
-
μA  
μA  
μA  
μA  
Normal Operation (Notes 3, 4)  
Supply Current at 48 kHz frame rate  
VA  
VD  
VL = 3.3 V  
VL = 5.0 V  
IA  
ID  
IL  
IL  
-
-
-
-
5.7  
5.9  
2.8  
4.2  
-
-
-
-
mA  
mA  
mA  
mA  
Supply Current at 192 kHz frame rate  
VA  
VD  
VL = 3.3 V  
VL = 5.0 V  
IA  
ID  
IL  
IL  
-
-
-
-
9.4  
23  
7.8  
11.8  
-
-
-
-
mA  
mA  
mA  
mA  
Notes:  
2. Power-Down Mode is defined as RST = LO with all clocks and data lines held static.  
3. Normal operation is defined as RST = HI.  
4. Assumes that no inputs are floating. It is recommended that all inputs be driven high or low at all times.  
DIGITAL INPUT CHARACTERISTICS  
(AGND = DGND = 0 V; all voltages with respect to 0 V.)  
Parameters  
Symbol  
IIN  
Min  
Typ  
Max  
±0.5  
200  
1.0  
Units  
μA  
mVpp  
V
Input Leakage Current  
-
-
-
150  
-
Differential Input Sensitivity, RXP[7:0] to RXN  
Input Hysteresis  
VTH  
VH  
0.15  
DIGITAL INTERFACE SPECIFICATIONS  
(AGND = DGND = 0 V; all voltages with respect to 0 V.)  
Parameters  
Symbol  
Min  
Max  
Units  
High-Level Output Voltage (IOH = -3.2 mA)  
VOH  
VOL  
(VL) - 1.0  
-
-
V
Low-Level Output Voltage (IOL = 3.2 mA)  
0.5  
V
High-Level Input Voltage, except RXP[7:0], RXN  
Low-Level Input Voltage, except RXP[7:0], RXN  
VIH  
VIL  
2.0  
(VL) + 0.3  
0.8  
V
V
-0.3  
DS578F3  
7
CS8416  
SWITCHING CHARACTERISTICS  
(Inputs: Logic 0 = 0 V, Logic 1 = VL; CL = 20 pF)  
Parameter  
Symbol  
Min  
200  
30  
-
Typ  
Max  
Units  
μS  
RST Pin Low Pulse Width  
-
-
-
200  
-
PLL Clock Recovery Sample Rate Range  
kHz  
RMCK Output Jitter  
(Note 5)  
200  
ps RMS  
RMCK Output Duty-Cycle  
(Note 6)  
(Note 7)  
45  
50  
50  
55  
55  
65  
%
%
RMCK/OMCK Maximum Frequency  
-
-
50  
MHz  
Notes:  
5. Typical RMS cycle-to-cycle jitter.  
6. Duty cycle when clock is recovered from biphase encoded input.  
7. Duty cycle when OMCK is switched over for output on RMCK.  
8
DS578F3  
CS8416  
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORTS  
(Inputs: Logic 0 = 0 V, Logic 1 = VL; CL = 20 pF)  
Parameter  
OSCLK/OLRCK Active Edge to SDOUT Output Valid  
Master Mode  
Symbol  
Min  
Typ  
Max  
Units  
(Note 8)  
tdpd  
-
-
23  
ns  
RMCK to OSCLK active edge delay  
RMCK to OLRCK delay  
(Note 8)  
(Note 9)  
tsmd  
tlmd  
0
0
-
-
-
12  
12  
-
ns  
ns  
%
OSCLK and OLRCK Duty Cycle  
Slave Mode  
50  
OSCLK Period  
tsckw  
tsckl  
36  
14  
14  
10  
10  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
OSCLK Input Low Width  
OSCLK Input High Width  
tsckh  
tlrckd  
tlrcks  
OSCLK Active Edge to OLRCK Edge  
(Notes 8,9,10)  
OSCLK Edge Setup Before OSCLK Active-Edge (Notes 8,9,11)  
Notes:  
8. In Software Mode the active edges of OSCLK are programmable.  
9. In Software Mode the polarity of OLRCK is programmable.  
10. This delay is to prevent the previous OSCLK edge from being interpreted as the first one after OLRCK  
has changed.  
11. This setup time ensures that this OSCLK edge is interpreted as the first one after OLRCK has changed.  
OSCLK  
(output)  
OLRCK  
(input)  
t
t
t
sckh  
t
lrckd  
lrcks  
sckl  
OLRCK  
(output)  
OSCLK  
(input)  
t
t
sckw  
smd  
t
lmd  
t
dpd  
RMCK  
(output)  
SDOUT  
Figure 1. Audio Port Master Mode Timing  
Figure 2. Audio Port Slave Mode and Data Input  
DS578F3  
9
CS8416  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI MODE  
(Inputs: Logic 0 = 0 V, Logic 1 = VL; CL = 20 pF)  
Parameter  
Symbol  
Min  
Max  
Unit  
CCLK Clock Frequency  
(Note 12)  
fsck  
0
6.0  
MHz  
CS High Time Between Transmissions  
tcsh  
1.0  
-
µs  
CS Falling to CCLK Edge  
CCLK Low Time  
tcss  
tscl  
tsch  
tdsu  
tdh  
tpd  
tr1  
20  
66  
66  
40  
15  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK High Time  
-
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
CCLK Falling to CDOUT Stable  
Rise Time of CDOUT  
-
(Note 13)  
-
50  
25  
25  
100  
100  
-
Fall Time of CDOUT  
tf1  
-
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
(Note 14)  
(Note 14)  
tr2  
-
tr2  
-
Notes:  
12. If Fs is lower than 46.875 kHz, the maximum CCLK frequency should be less than 128 Fs. This is dic-  
tated by the timing requirements necessary to access the Channel Status memory. Access to the con-  
trol register file can be carried out at the full 6 MHz rate. The minimum allowable input sample rate is  
32 kHz, so choosing CCLK to be less than or equal to 4.1 MHz should be safe for all possible conditions.  
13. Data must be held for sufficient time to bridge the transition time of CCLK.  
14. For fsck <1 MHz.  
CS  
t
t
scl  
sch  
t
t
csh  
css  
CCLK  
CDIN  
t
t
r2  
f2  
t
dsu  
t
dh  
t
pd  
CDOUT  
Figure 3. SPI Mode Timing  
10  
DS578F3  
CS8416  
SWITCHING CHARACTERISTICS - CONTROL PORT- I²C FORMAT  
(Inputs: Logic 0 = 0 V, Logic 1 = VL; CL = 20 pF)  
Parameter  
Symbol  
fscl  
Min  
-
Max  
Unit  
kHz  
µs  
SCL Clock Frequency  
100  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
tbuf  
4.7  
4.0  
4.7  
4.0  
4.7  
10  
250  
-
-
thdst  
tlow  
thigh  
tsust  
thdd  
tsud  
tr  
-
µs  
-
µs  
Clock High Time  
-
µs  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
-
µs  
(Note 15)  
-
-
ns  
ns  
1000  
300  
-
ns  
Fall Time SCL and SDA  
tf  
-
ns  
Setup Time for Stop Condition  
tsusp  
4.7  
µs  
Notes:  
15. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.  
Repeated  
Stop  
Start  
Stop  
Start  
SDA  
SCL  
t
t
t
t
t
buf  
t
high  
hdst  
f
susp  
hdst  
t
t
t
t
t
sust  
sud  
r
hdd  
low  
Figure 4. I²C Mode Timing  
DS578F3  
11  
CS8416  
2. PIN DESCRIPTION - SOFTWARE MODE  
2.1  
TSSOP Pin Description  
RXP3  
RXP2  
RXP1  
RXP0  
RXN  
OLRCK  
OSCLK  
SDOUT  
OMCK  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
3
4
RMCK  
5
VA  
VD  
6
AGND  
FILT  
DGND  
7
VL  
8
RST  
GPO0  
9
RXP4  
RXP5  
RXP6  
RXP7  
AD0 / CS  
GPO1  
10  
11  
12  
13  
14  
AD2 / GPO2  
SDA / CDOUT  
SCL / CCLK  
AD1 / CDIN  
Top-Down View  
28-pin SOIC/TSSOP  
Package  
Pin  
Pin #  
Pin Description  
Name  
Analog Power (Input) - Analog power supply. Nominally +3.3 V. This supply should have as little noise  
as possible since noise on this pin will directly affect the jitter performance of the recovered clock  
VA  
6
VD  
VL  
23  
21  
Digital Power (Input) – Digital core power supply. Nominally +3.3 V  
Logic Power (Input) – Input/Output power supply. Nominally +3.3 V or +5.0 V  
Analog Ground (Input) - Ground for the analog circuitry in the chip. AGND and DGND should be con-  
nected to a common ground area under the chip.  
AGND  
DGND  
7
Digital & I/O Ground (Input) - Ground for the I/O and core logic. AGND and DGND should be connected  
to a common ground area under the chip.  
22  
Reset (Input) - When RST is low, the CS8416 enters a low power mode and all internal states are reset.  
On initial power up, RST must be held low until the power supply is stable, and all input clocks are stable  
in frequency and phase.  
RST  
FILT  
9
8
PLL Loop Filter (Output) - An RC network should be connected between this pin and analog ground.  
For minimum PLL jitter, return the ground end of the filter network directly to AGND. See “PLL Filter” on  
page 53 for more information on the PLL and the external components.  
RXP0  
RXP1  
RXP2  
RXP3  
RXP4  
RXP5  
RXP6  
RXP7  
4
3
2
Positive AES3/SPDIF Input (Input) - Single-ended or differential receiver inputs carrying AES3 or  
S/PDIF encoded digital data. The RXP[7:0] inputs comprise the 8:2 S/PDIF Input Multiplexer. The select  
line control is accessed using the Control 4 register (04h). Unused multiplexer inputs should be left float-  
ing or tied to AGND. See “External AES3/SPDIF/IEC60958 Receiver Components” on page 49 for rec-  
ommended input circuits.  
1
10  
11  
12  
13  
12  
DS578F3  
CS8416  
Pin  
Pin #  
Pin Description  
Name  
Negative AES3/SPDIF Input (Input) - Single-ended or differential receiver input carrying AES3 or  
S/PDIF encoded digital data. Used along with RXP[7:0] to form an AES3 differential input. In single-  
ended operation this should be AC coupled to ground through a capacitor. See “External  
AES3/SPDIF/IEC60958 Receiver Components” on page 49 for recommended input circuits.  
RXN  
5
System Clock (Input) - When the OMCK System Clock Mode is enabled using the SWCLK bit in the  
Control 1 register, the clock signal input on this pin is automatically output through RMCK on PLL unlock.  
OMCK serves as the reference signal for OMCK/RMCK ratio expressed in register 18h. “OMCK System  
Clock Mode” section on page 28  
OMCK  
RMCK  
25  
24  
Input Section Recovered Master Clock (Output) - Input section recovered master clock output from  
the PLL. Frequency defaults to 256x the sample rate (Fs) and may be set to 128x through the RMCKF bit  
in the Control 1 register (01h). RMCK may also be set to high impedance by the RXD bit in the Control 4  
register (04h).  
OSCLK  
OLRCK  
27  
28  
Serial Audio Output Bit Clock (Input/Output) - Serial bit clock for audio data on the SDOUT pin  
Serial Audio Output Left/Right Clock (Input/Output) - Word rate clock for the audio data on the  
SDOUT pin. Frequency will be the output sample rate (Fs)  
Serial Audio Output Data (Output) - Audio data serial output pin. This pin must be pulled high to VL  
through a 47 kΩ resistor to place the part in Software Mode.  
SDOUT  
26  
17  
Serial Control Data I/O (I²C) / Data Out (SPI) (Input/Output) - In I²C Mode, SDA is the control I/O data  
line. SDA is open drain and requires an external pull-up resistor to VL. In SPI Mode, CDOUT is the out-  
put data from the control port interface on the CS8416. See the “Control Port Description” section on  
page 33.  
SDA /  
CDOUT  
Control Port Clock (Input) - Serial control interface clock and is used to clock control data bits into and  
out of the CS8416. CCLK is an open drain output and requires an external pull-up resistor to VL. See the  
“Control Port Description” section on page 33.  
SCL /  
CCLK  
16  
14  
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - A falling edge on this pin puts the CS8416  
into SPI Control Port Mode. With no falling edge, the CS8416 defaults to I²C Mode. In I²C Mode, AD0 is  
a chip address pin. In SPI Mode, CS is used to enable the control port interface on the CS8416. See the  
“Control Port Description” section on page 33.  
AD0 / CS  
Address Bit 1 (I²C) / Serial Control Data in (SPI) (Input) - In I²C Mode, AD1 is a chip address pin. In  
SPI Mode, CDIN is the input data line for the control port interface. See the “Control Port Description”  
section on page 33.  
AD1 /  
CDIN  
15  
18  
General Purpose Output 2 (Output) - If using the I²C control port, this pin must be pulled high or low  
through a 47 kΩ resistor. See the “Control Port Description” section on page 33 and “General Purpose  
Outputs” on page 29 for GPO functions.  
AD2 /  
GPO2  
GPO1  
GPO0  
19  
20  
General Purpose Output 1 (Output) - See “General Purpose Outputs” on page 29 for GPO functions.  
General Purpose Output 0 (Output) - See “General Purpose Outputs” on page 29 for GPO functions.  
DS578F3  
13  
CS8416  
2.2  
QFN Pin Description  
28  
27  
26  
25  
24  
23  
22  
RMCK  
RXP0  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
VD  
RXN  
VA  
DGND  
VL  
AGND  
FILT  
Thermal Pad  
GPO0  
GPO1  
AD2 / GPO2  
RST  
Top-Down View  
28-pin QFN Package  
RXP4  
8
9
10  
12  
13  
14  
11  
Pin  
Pin #  
Pin Description  
Name  
Analog Power (Input) - Analog power supply. Nominally +3.3 V. This supply should have as little noise  
as possible since noise on this pin will directly affect the jitter performance of the recovered clock  
VA  
3
VD  
VL  
20  
18  
Digital Power (Input) – Digital core power supply. Nominally +3.3 V  
Logic Power (Input) – Input/Output power supply. Nominally +3.3 V or +5.0 V  
Analog Ground (Input) - Ground for the analog circuitry in the chip. AGND and DGND should be con-  
nected to a common ground area under the chip.  
AGND  
DGND  
4
Digital & I/O Ground (Input) - Ground for the I/O and core logic. AGND and DGND should be connected  
to a common ground area under the chip.  
19  
Reset (Input) - When RST is low, the CS8416 enters a low power mode and all internal states are reset.  
On initial power up, RST must be held low until the power supply is stable, and all input clocks are stable  
in frequency and phase.  
RST  
FILT  
6
5
PLL Loop Filter (Output) - An RC network should be connected between this pin and analog ground.  
For minimum PLL jitter, return the ground end of the filter network directly to AGND. See “PLL Filter” on  
page 53 for more information on the PLL and the external components.  
14  
DS578F3  
CS8416  
Pin  
Pin #  
Pin Description  
Name  
RXP0  
RXP1  
RXP2  
RXP3  
RXP4  
RXP5  
RXP6  
RXP7  
1
28  
27  
26  
7
8
9
10  
Positive AES3/SPDIF Input (Input) - Single-ended or differential receiver inputs carrying AES3 or  
S/PDIF encoded digital data. The RXP[7:0] inputs comprise the 8:2 S/PDIF Input Multiplexer. The select  
line control is accessed using the Control 4 register (04h). Unused multiplexer inputs should be left float-  
ing or tied to AGND. See “External AES3/SPDIF/IEC60958 Receiver Components” on page 49 for rec-  
ommended input circuits.  
Negative AES3/SPDIF Input (Input) - Single-ended or differential receiver input carrying AES3 or  
S/PDIF encoded digital data. Used along with RXP[7:0] to form an AES3 differential input. In single-  
ended operation this should be AC coupled to ground through a capacitor. See “External  
AES3/SPDIF/IEC60958 Receiver Components” on page 49 for recommended input circuits.  
RXN  
2
System Clock (Input) - When the OMCK System Clock Mode is enabled using the SWCLK bit in the  
Control 1 register, the clock signal input on this pin is automatically output through RMCK on PLL unlock.  
OMCK serves as the reference signal for OMCK/RMCK ratio expressed in register 18h. “OMCK System  
Clock Mode” section on page 28  
OMCK  
RMCK  
22  
21  
Input Section Recovered Master Clock (Output) - Input section recovered master clock output from  
the PLL. Frequency defaults to 256x the sample rate (Fs) and may be set to 128x through the RMCKF bit  
in the Control 1 register (01h). RMCK may also be set to high impedance by the RXD bit in the Control 4  
register (04h).  
OSCLK  
OLRCK  
24  
25  
Serial Audio Output Bit Clock (Input/Output) - Serial bit clock for audio data on the SDOUT pin  
Serial Audio Output Left/Right Clock (Input/Output) - Word rate clock for the audio data on the  
SDOUT pin. Frequency will be the output sample rate (Fs)  
Serial Audio Output Data (Output) - Audio data serial output pin. This pin must be pulled high to VL  
through a 47 kΩ resistor to place the part in Software Mode.  
SDOUT  
23  
14  
Serial Control Data I/O (I²C) / Data Out (SPI) (Input/Output) - In I²C Mode, SDA is the control I/O data  
line. SDA is open drain and requires an external pull-up resistor to VL. In SPI Mode, CDOUT is the out-  
put data from the control port interface on the CS8416. See the “Control Port Description” section on  
page 33.  
SDA /  
CDOUT  
Control Port Clock (Input) - Serial control interface clock and is used to clock control data bits into and  
out of the CS8416. CCLK is an open drain output and requires an external pull-up resistor to VL. See the  
“Control Port Description” section on page 33.  
SCL /  
CCLK  
13  
11  
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - A falling edge on this pin puts the CS8416  
into SPI Control Port Mode. With no falling edge, the CS8416 defaults to I²C Mode. In I²C Mode, AD0 is  
a chip address pin. In SPI Mode, CS is used to enable the control port interface on the CS8416. See the  
“Control Port Description” section on page 33.  
AD0 / CS  
Address Bit 1 (I²C) / Serial Control Data in (SPI) (Input) - In I²C Mode, AD1 is a chip address pin. In  
SPI Mode, CDIN is the input data line for the control port interface. See the “Control Port Description”  
section on page 33.  
AD1 /  
CDIN  
12  
15  
General Purpose Output 2 (Output) - If using the I²C control port, this pin must be pulled high or low  
through a 47 kΩ resistor. See the “Control Port Description” section on page 33 and “General Purpose  
Outputs” on page 29 for GPO functions.  
AD2 /  
GPO2  
GPO1  
GPO0  
16  
17  
General Purpose Output 1 (Output) - See “General Purpose Outputs” on page 29 for GPO functions.  
General Purpose Output 0 (Output) - See “General Purpose Outputs” on page 29 for GPO functions.  
THERMAL  
PAD  
-
Thermal Pad - Thermal relief pad for optimized heat dissipation.  
DS578F3  
15  
CS8416  
3. PIN DESCRIPTION - HARDWARE MODE  
3.1  
TSSOP Pin Description  
RXP3  
RXP2  
OLRCK  
OSCLK  
SDOUT  
OMCK  
RMCK  
VD  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
RXP1  
3
RXP0  
4
RXN  
5
VA  
6
AGND  
FILT  
DGND  
VL  
7
8
RST  
TX  
9
RXSEL1  
RXSEL0  
TXSEL1  
TXSEL0  
NV / RERR  
C
10  
11  
12  
13  
14  
U
Top-Down View  
28-pin SOIC/TSSOP  
Package  
RCBL  
96KHZ  
AUDIO  
Pin Name  
Pin #  
Pin Description  
Analog Power (Input) - Analog power supply. Nominally +3.3 V. This supply should have as little  
VA  
6
noise as possible since noise on this pin will directly affect the jitter performance of the recovered  
clock  
VD  
VL  
23  
21  
Digital Power (Input) – Digital core power supply. Nominally +3.3 V  
Logic Power (Input) – Input/Output power supply. Nominally +3.3 V or +5.0 V  
Analog Ground (Input) - Ground for the analog circuitry in the chip. AGND and DGND should be  
connected to a common ground area under the chip.  
AGND  
DGND  
7
Digital & I/O Ground (Input) - Ground for the I/O and core logic. AGND and DGND should be con-  
nected to a common ground area under the chip.  
22  
Reset (Input) - When RST is low, the CS8416 enters a low power mode and all internal states are  
reset. On initial power up, RST must be held low until the power supply is stable, and all input clocks  
are stable in frequency and phase.  
RST  
FILT  
9
8
PLL Loop Filter (Output) - An RC network should be connected between this pin and analog  
ground.  
For minimum PLL jitter, return the ground end of the filter network directly to AGND. See “PLL Filter”  
on page 53 for more information on the PLL and the external components.  
Positive AES3/SPDIF Input (Input) - Single-ended or differential receiver inputs carrying AES3 or  
S/PDIF encoded digital data. The RXP[3:0] inputs comprise the 4:2 S/PDIF Input Multiplexer. The  
select line control is accessed using the RXPSEL[1:0] pins. Unused multiplexer inputs should be left  
floating or tied to AGND. See “External AES3/SPDIF/IEC60958 Receiver Components” on page 49  
for recommended input circuits.  
RXP0  
RXP1  
RXP2  
RXP3  
4
3
2
1
Negative AES3/SPDIF Input (Input) - Single-ended or differential receiver input carrying AES3 or  
S/PDIF encoded digital data. Used along with RXP[3:0] to form an AES3 differential input. In single-  
ended operation this should be AC coupled to ground through a capacitor. See “External  
AES3/SPDIF/IEC60958 Receiver Components” on page 49 for recommended input circuits.  
RXN  
5
16  
DS578F3  
CS8416  
Pin Name  
Pin #  
Pin Description  
System Clock (Input) - OMCK System Clock Mode is enabled by a transition (rising edge active) on  
OMCK after reset. When enabled, the clock signal input on this pin is automatically output through  
RMCK on PLL unlock. See “OMCK System Clock Mode” on page 28.  
OMCK  
25  
Input Section Recovered Master Clock (Output) - Input section recovered master clock output  
from the PLL. Frequency is 256x the sample rate (Fs) when the U pin is pulled down by a 47 kΩ  
resistor to DGND. Frequency is 128x the sample rate (Fs) when the U pin is pulled up by a 47 kΩ  
resistor to VL.  
RMCK  
24  
OSCLK  
OLRCK  
27  
28  
Serial Audio Output Bit Clock (Input/Output) - Serial bit clock for audio data on the SDOUT pin  
Serial Audio Output Left/Right Clock (Input/Output) - Word rate clock for the audio data on the  
SDOUT pin. Frequency will be the output sample rate (Fs)  
Serial Audio Output Data (Output) - Audio data serial output pin. This pin must be pulled low to  
DGND through a 47 kΩ resistor to place the part in Hardware Mode.  
SDOUT  
26  
RXSEL1  
RXSEL0  
10  
11  
Receiver MUX Selector (Input) - Used to select which pin, RXP[3:0], is used for the receiver input.  
TXSEL1  
TXSEL0  
12  
13  
TX Pin MUX SELECTION (Input) - Used to select which pin, RXP[3:0], is passed to the TX pin out-  
put. If TX passthrough is not used, the user should set it to output one of the unused receiver inputs.  
S/PDIF MUX Passthrough (Output) - Single-ended signal is resolved to full-rail, but is not de-jittered  
before it is output. Output is set by TXSEL[1:0]. This pin is also used to select the type of phase  
detector (PDUR) at reset. If TX passthrough is not used, the user should set it to output one of the  
unused receiver inputs.  
TX  
20  
Non-Validity Receiver Error/Receiver Error (Output) - Receiver error indicator. NVERR is selected  
by a 47 kΩ resistor to DGND. RERR is selected by a 47 kΩ resistor to VL.  
NV/RERR  
AUDIO  
14  
15  
Audio Channel Status Bit (Output) When low, a valid linear PCM audio stream is indicated. See  
“Non-Audio Detection” on page 31. This pin is also used to select the serial port format (SFSEL1) at  
reset.  
96 kHz Sample Rate Detect (Output) - If the input sample rate is 48 kHz, outputs a “0”. Outputs a  
“1” if the sample rate is 88.1 kHz. Otherwise the output is indeterminate. Also used to set the  
Emphasis Audio Match feature at reset.  
96KHZ  
RCBL  
16  
17  
Receiver Channel Status Block (Output) -Indicates the beginning of a received channel status block.  
RCBL goes high two frames after the reception of a Z preamble, remains high for 16 frames and then  
returns low for the remainder of the block. RCBL changes on rising edges of RMCK. Also used to set  
the serial audio port to master or slave at reset.  
Channel Status Data (Output) - Outputs channel status data from the AES3 receiver, clocked by the  
rising and falling edges of OLRCK. Also used to select the serial port format (SFSEL0) at reset.  
C
U
19  
18  
User Data (Output) - Outputs user data from the AES3 receiver, clocked by the rising and falling  
edges of OLRCK. Also used to select the frequency of RMCK to either 256*Fs or 128*Fs at reset.  
DS578F3  
17  
CS8416  
3.2  
QFN Pin Description  
28  
27  
26  
25  
24  
23  
22  
RMCK  
RXP0  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
VD  
RXN  
VA  
DGND  
AGND  
FILT  
Thermal Pad  
VL  
TX  
C
RST  
Top-Down View  
28-pin QFN Package  
U
RXSEL1  
8
9
10  
12  
13  
14  
11  
Pin Name  
Pin #  
Pin Description  
Analog Power (Input) - Analog power supply. Nominally +3.3 V. This supply should have as little  
VA  
3
noise as possible since noise on this pin will directly affect the jitter performance of the recovered  
clock  
VD  
VL  
20  
18  
Digital Power (Input) – Digital core power supply. Nominally +3.3 V  
Logic Power (Input) – Input/Output power supply. Nominally +3.3 V or +5.0 V  
Analog Ground (Input) - Ground for the analog circuitry in the chip. AGND and DGND should be  
connected to a common ground area under the chip.  
AGND  
DGND  
4
Digital & I/O Ground (Input) - Ground for the I/O and core logic. AGND and DGND should be con-  
nected to a common ground area under the chip.  
19  
Reset (Input) - When RST is low, the CS8416 enters a low power mode and all internal states are  
reset. On initial power up, RST must be held low until the power supply is stable, and all input clocks  
are stable in frequency and phase.  
RST  
FILT  
6
5
PLL Loop Filter (Output) - An RC network should be connected between this pin and analog  
ground.  
For minimum PLL jitter, return the ground end of the filter network directly to AGND. See “PLL Filter”  
on page 53 for more information on the PLL and the external components.  
Positive AES3/SPDIF Input (Input) - Single-ended or differential receiver inputs carrying AES3 or  
S/PDIF encoded digital data. The RXP[3:0] inputs comprise the 4:2 S/PDIF Input Multiplexer. The  
select line control is accessed using the RXPSEL[1:0] pins. Unused multiplexer inputs should be left  
floating or tied to AGND. See “External AES3/SPDIF/IEC60958 Receiver Components” on page 49  
for recommended input circuits.  
RXP0  
RXP1  
RXP2  
RXP3  
1
28  
27  
26  
18  
DS578F3  
CS8416  
Pin Name  
Pin #  
Pin Description  
Negative AES3/SPDIF Input (Input) - Single-ended or differential receiver input carrying AES3 or  
S/PDIF encoded digital data. Used along with RXP[3:0] to form an AES3 differential input. In single-  
ended operation this should be AC coupled to ground through a capacitor. See “External  
AES3/SPDIF/IEC60958 Receiver Components” on page 49 for recommended input circuits.  
RXN  
2
System Clock (Input) - OMCK System Clock Mode is enabled by a transition (rising edge active) on  
OMCK after reset. When enabled, the clock signal input on this pin is automatically output through  
RMCK on PLL unlock. See “OMCK System Clock Mode” on page 28.  
OMCK  
RMCK  
22  
21  
Input Section Recovered Master Clock (Output) - Input section recovered master clock output  
from the PLL. Frequency is 256x the sample rate (Fs) when the U pin is pulled down by a 47 kΩ  
resistor to DGND. Frequency is 128x the sample rate (Fs) when the U pin is pulled up by a 47 kΩ  
resistor to VL.  
OSCLK  
OLRCK  
24  
25  
Serial Audio Output Bit Clock (Input/Output) - Serial bit clock for audio data on the SDOUT pin  
Serial Audio Output Left/Right Clock (Input/Output) - Word rate clock for the audio data on the  
SDOUT pin. Frequency will be the output sample rate (Fs)  
Serial Audio Output Data (Output) - Audio data serial output pin. This pin must be pulled low to  
DGND through a 47 kΩ resistor to place the part in Hardware Mode.  
SDOUT  
23  
RXSEL1  
RXSEL0  
7
8
Receiver MUX Selector (Input) - Used to select which pin, RXP[3:0], is used for the receiver input.  
TXSEL1  
TXSEL0  
9
10  
TX Pin MUX SELECTION (Input) - Used to select which pin, RXP[3:0], is passed to the TX pin out-  
put. If TX passthrough is not used, the user should set it to output one of the unused receiver inputs.  
S/PDIF MUX Passthrough (Output) - Single-ended signal is resolved to full-rail, but is not de-jittered  
before it is output. Output is set by TXSEL[1:0]. This pin is also used to select the type of phase  
detector (PDUR) at reset. If TX passthrough is not used, the user should set it to output one of the  
unused receiver inputs.  
TX  
17  
Non-Validity Receiver Error/Receiver Error (Output) - Receiver error indicator. NVERR is selected  
by a 47 kΩ resistor to DGND. RERR is selected by a 47 kΩ resistor to VL.  
NV/RERR  
AUDIO  
11  
12  
Audio Channel Status Bit (Output) When low, a valid linear PCM audio stream is indicated. See  
“Non-Audio Detection” on page 31. This pin is also used to select the serial port format (SFSEL1) at  
reset.  
96 kHz Sample Rate Detect (Output) - If the input sample rate is 48 kHz, outputs a “0”. Outputs a  
“1” if the sample rate is 88.1 kHz. Otherwise the output is indeterminate. Also used to set the  
Emphasis Audio Match feature at reset.  
96KHZ  
RCBL  
13  
14  
Receiver Channel Status Block (Output) -Indicates the beginning of a received channel status block.  
RCBL goes high two frames after the reception of a Z preamble, remains high for 16 frames and then  
returns low for the remainder of the block. RCBL changes on rising edges of RMCK. Also used to set  
the serial audio port to master or slave at reset.  
Channel Status Data (Output) - Outputs channel status data from the AES3 receiver, clocked by the  
rising and falling edges of OLRCK. Also used to select the serial port format (SFSEL0) at reset.  
C
U
16  
15  
-
User Data (Output) - Outputs user data from the AES3 receiver, clocked by the rising and falling  
edges of OLRCK. Also used to select the frequency of RMCK to either 256*Fs or 128*Fs at reset.  
THERMAL  
PAD  
Thermal Pad - Thermal relief pad for optimized heat dissipation.  
DS578F3  
19  
CS8416  
4. TYPICAL CONNECTION DIAGRAMS  
*
Ferrite  
Bead  
+3.3 V  
+3.3 V  
Analog  
Supply  
+3.3 V or +5 V  
*
10μF 0.1μF  
0.1μF  
0.1μF  
47kΩ  
VA VD  
VL  
VL  
SDOUT  
OLRCK  
OSCLK  
Serial Audio  
RXN  
Input  
Device  
RXP0  
RXP1  
CS8416  
RXP2  
RXP3  
RXP4  
RXP5  
RXP6  
RXP7  
AES3 /  
S/PDIF  
Sources  
**  
RMCK  
OMCK  
Clock Control  
Clock Source  
VL  
GPO0  
GPO1  
AD2/GPO2  
AD0 / CS  
External  
Interface  
AD1 / CDIN  
SCL / CCLK  
SDA / CDOUT  
RST  
Microcontroller  
AGND  
FILT  
DGND  
RFLT  
CFLT  
CRIP  
***  
* A separate analog supply is only necessary in applications where RMCK is used for a jitter sensitive task. For  
applications where RMCK is not used for a jitter sensitive task, connect VA to VD via a ferrite bead. Keep decou-  
pling capacitors between VA and AGND.  
** See “S/PDIF Receiver” on page 27 and “External AES3/SPDIF/IEC60958 Receiver Components” on page 49  
for typical input configurations and recommended input circuits.  
*** For best jitter performance, connect the filter ground directly to the AGND pin. See Table 6 on page 54 for PLL  
filter values.  
Figure 5. Typical Connection Diagram - Software Mode  
20  
DS578F3  
CS8416  
**  
Ferrite  
Bead  
+3.3 V  
+3.3 V  
Analog  
Supply  
+3.3 V or +5 V  
**  
10μF  
0.1μF  
0.1μF  
0.1μF  
VD  
VA  
VL  
VL  
OLRCK  
OSCLK  
SDOUT  
RXN  
Serial Audio  
Input Device  
RXP0  
RXP1  
RXP2  
RXP3  
RST  
AES3 /  
S/PDIF  
Sources  
***  
CS8416  
47k Ω  
VL  
RXSEL0  
RXSEL1  
TXSEL0  
TXSEL1  
NV/RERR  
RMCK  
OMCK  
Clock Control  
Clock Source  
Hardware  
Control  
*
*
AUDIO  
96KHZ  
External  
Interface  
*
*
TX  
RCBL  
*
*
*
U
C
AGND  
FILT  
DGND  
CRIP  
RFLT  
CFLT  
****  
* These pins must be pulled high to VL or low to DGND through a 47 kΩ resistor.  
** A separate analog supply is only necessary in applications where RMCK is used for a jitter sensitive task. For  
applications where RMCK is not used for a jitter sensitive task, connect VA to VD via a ferrite bead. Keep decou-  
pling capacitors between VA and AGND.  
*** See “S/PDIF Receiver” on page 27 and “External AES3/SPDIF/IEC60958 Receiver Components” on page 49  
for typical input configurations and recommended input circuits.  
**** For best jitter performance connect the filter ground directly to the AGND pin. See Table 6 on page 54 for PLL  
filter values.  
Figure 6. Typical Connection Diagram - Hardware Mode  
DS578F3  
21  
CS8416  
5. APPLICATIONS  
5.1  
Reset, Power-Down and Start-Up  
When RST is low, the CS8416 enters a low power mode and all internal states are reset, including the con-  
trol port and registers, and the outputs are muted. In Software Mode, when RST is high, the control port  
becomes operational, and the desired settings should be loaded into the control registers. Writing a 1 to the  
RUN bit will then cause the part to leave the low power state and begin operation. After the PLL has settled,  
the serial audio outputs will be enabled.  
Some options within the CS8416 are controlled by a start-up mechanism. During the reset state, some of  
the pins are reconfigured internally to be inputs. Immediately upon exiting the reset state, the level of these  
pins is sensed. The pins are then switched to be outputs. This mechanism allows output pins to be used to  
set alternative modes in the CS8416 by connecting a 47 kΩ resistor to between the pin and either VL (HI)  
or DGND (LO). For each mode, every start-up option select pin MUST have an external pull-up or pull-down  
resistor as there are no internal pull-up or pull-down resistors for these startup conditions (except for TX,  
which has an internal pull-down). In Software Mode, the only start-up option pins are GPO2, which are used  
to set a chip address bit for the control port in I²C Mode, and SDOUT, which selects between Hardware and  
Software Modes. The Hardware Mode uses many start-up options, which are detailed in Section 15.2 “Hard-  
ware Mode Function Selection” on page 46.  
5.2  
ID Code and Revision Code  
The CS8416 has a register that contains a 4-bit code to indicate that the addressed device is a CS8416.  
This is useful when other CS84XX family members are resident in the same system, allowing common soft-  
ware modules.  
The CS8416 4-bit revision code is also available. This allows the software driver for the CS8416 to identify  
which revision of the device is in a particular system, and modify its behavior accordingly. To allow for future  
revisions, it is strongly recommend that the revision code is read into a variable area within the microcon-  
troller, and used wherever appropriate as revision details become known.  
5.3  
Power Supply, Grounding, and PCB Layout  
For most applications, the CS8416 can be operated from a single +3.3 V supply, following normal supply  
decoupling practices (See Figures 5 and 6). For applications where the recovered input clock, output on the  
RMCK pin, is required to be low jitter, then use a separate, quiet, analog +3.3 V supply for VA, decoupled  
to AGND. Make certain that no digital traces are routed near VA, AGND, or FILT as noise may couple and  
degrade performance. These pins should be well isolated from switching signals and other noise sources.  
VL sets the level for the digital inputs and outputs, as well as the AES/SPDIF receiver inputs.  
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling  
capacitors are recommended. Decoupling capacitors should be mounted on the same side of the board as  
the CS8416 to minimize inductance effects, and all decoupling capacitors should be as close to the CS8416  
as possible. See “PLL Filter” on page 53 for layout recommendations for the PLL.  
22  
DS578F3  
CS8416  
6. GENERAL DESCRIPTION  
The CS8416 is a monolithic CMOS device that receives and decodes audio data according to the AES3, IEC60958,  
S/PDIF, and EIAJ CP1201 interface standards.  
The CS8416 provides an 8:2 multiplexer to select between eight inputs for decoding and to allow an input signal to  
be routed to an output of the CS8416. Input data can be either differential or single-ended. A low jitter clock is re-  
covered from the incoming data using a PLL. The decoded audio data is output through a configurable, 3-wire serial  
audio output port. The channel status and Q-channel subcode portion of the user data are assembled in registers  
and may be accessed through an SPI or I²C port.  
Three General Purpose Output (GPO) pins are provided to allow a variety of signals to be accessed under software  
control. In Hardware Mode, dedicated pins are used to select audio stream inputs for decoding and transmission to  
a dedicated TX pin. Hardware Mode also provides channel status and user data output pins.  
Figures 5 and 6 show the power supply and external connections to the CS8416 when configured for Software Mode  
and Hardware Mode. Please note that all I/O pins, including RXN and RXP[7:0], operate at the VL voltage.  
6.1  
AES3 and S/PDIF Standards Documents  
This document assumes that the user is familiar with the AES3 and S/PDIF data formats. It is advisable to  
have current copies of the AES3, IEC60958, and IEC61937 specifications on hand for easy reference.  
The latest AES3 standard is available from the Audio Engineering Society or ANSI at www.aes.org or at  
www.ansi.org. Obtain a copy of the latest IEC60958/61937 standard from ANSI or from the International  
Electrotechnical Commission at www.iec.ch. The latest EIAJ CP-1201 standard is available from the  
Japanese Electronics Bureau.  
Application Note 22: Overview of Digital Audio Interface Data Structures contains a useful tutorial on digital  
audio specifications, but it should not be considered a substitute for the standards.  
The paper An Understanding and Implementation of the SCMS Serial Copy Management System for  
Digital Audio Transmission, by Clifton Sanchez, is an excellent tutorial on SCMS. It is available from the  
AES as reprint 3518.  
7. SERIAL AUDIO OUTPUT PORT  
A 3-wire serial audio output port is provided. The port can be adjusted to suit the attached device by setting the con-  
trol registers. The following parameters are adjustable: master or slave, serial clock frequency, audio data resolu-  
tion, left- or right-justification of the data relative to left/right clock, optional one-bit cell delay of the first data bit, the  
polarity of the bit clock, and the polarity of the left/right clock. By setting the appropriate control bits, many formats  
are possible.  
Figure 7 shows a selection of common output formats, along with the control bit settings. A special AES3 direct out-  
put format is included, which allows the serial output port access to the V, U, and C bits embedded in the serial audio  
data stream. When using the part in AES3 direct-output format, the de-emphasis filter must be off (see Section 14.4  
on page 38). The P bit, which would normally be a parity bit, is replaced by a Z bit, which is used to indicate the start  
of each block. The received channel status block start signal is also available as the RCBL pin in Hardware Mode  
and through a GPO pin in Software Mode.  
In master mode, the left/right clock (OLRCK) and the serial bit clock (OSCLK) are outputs, derived from the recov-  
ered RMCK clock. In slave mode, OLRCK and OSCLK are inputs. OLRCK is normally synchronous to the appropri-  
ate master clock, but OSCLK can be asynchronous and discontinuous if required. By appropriate phasing of OLRCK  
and control of the serial clocks, multiple CS8416’s can share one serial port. OLRCK should be continuous, but the  
duty cycle can be less than the specified typical value of 50% if enough serial clocks are present in each phase to  
DS578F3  
23  
CS8416  
clock all the data bits. When in slave mode, the serial audio output port cannot be set for right-justified data. The  
CS8416 allows immediate mute of the serial audio output port audio data by the MUTESAO bit of Control Register 1.  
For more information about serial audio formats, refer to the Cirrus Logic applications note AN282, “The 2-Channel  
Serial Audio Interface: A Tutorial”, available at www.cirrus.com.  
OLRCK  
Channel A  
Channel B  
Left  
Justified OSCLK  
(Out)  
LSB  
MSB  
LSB  
MSB  
MSB  
SDOUT  
Channel A  
Channel B  
OLRCK  
I²S  
(Out)  
OSCLK  
MSB  
LSB  
MSB  
LSB  
MSB  
SDOUT  
Channel A  
Channel B  
OLRCK  
Right  
Justified OSCLK  
(Out)  
LSB  
MSB  
MSB  
LSB  
MSB Extended  
Channel A  
MSB Extended  
Channel A  
SDOUT  
Channel B  
OLRCK  
AES3  
Channel B  
Direct  
(Out)  
OSCLK  
LSB  
LSB  
LSB  
MSB  
V
U
C
MSB  
V
U
C
MSB  
V
U
C
Z
LSB  
MSB  
V U C Z  
SDOUT  
Frame 191  
Frame 0  
SOMS*  
SOSF*  
SORES[1:0]* SOJUST*  
SODEL* SOSPOL* SOLRPOL*  
Left-Justified  
X
X
1
X
X
X
X
XX  
XX  
XX  
11  
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
I²S  
Right-Justified  
AES3 Direct  
X
X = don’t care to match format, but does need to be set to the desired setting  
* See Serial Output Data Format Register Bit Descriptions for an explanation of the meaning of each bit  
Figure 7. Serial Audio Output Example Formats  
24  
DS578F3  
CS8416  
7.1  
Slip/Repeat Behavior  
When using the serial audio output port in slave mode with an OLRCK input that is asynchronous to the  
incoming AES3 data, the interrupt bit OSLIP (bit 5 in the Interrupt 1 Status register, 0Dh) is provided to in-  
dicate when repeated or dropped samples occur. Refer to Figure 8 for the AES3 data format diagram.  
When the serial output port is configured as slave, depending on the relative frequency of OLRCK to the  
input AES3 data (Z/X) preamble frequency, the data will be slipped or repeated at the output of the CS8416.  
After a fixed delay from the Z/X preamble (a few periods of the internal clock, which is running at 256Fs),  
the circuit will look back in time until the previous Z/X preamble and check which of the following conditions  
occurred:  
1. If during that time, the internal data buffer was not updated, a slip has occurred. Data from the previous  
frame will be output and OSLIP will be set to 1. Due to the OSLIP bit being “sticky,” it will remain 1 until  
the register is read. It will then be reset until another slip/repeat condition occurs.  
2. If during that time the internal data buffer did not update between two positive or negative edges (de-  
pending on OLRPOL) of OLRCK, a repeat has occurred. In this case, the buffer data was updated twice,  
so the part has lost one frame of data. This event will also trigger OSLIP to be set to 1. Due to the OSLIP  
bit being “sticky,” it will remain 1 until the register is read. It will then be reset until another slip/repeat  
condition occurs.  
3. If during that time, it did see a positive edge on OLRCK (or negative edge if the SOLRPOL is set to 1)  
no slip or repeat has happened. Due to the OSLIP bit being “sticky,” it will remain in its previous state  
until either the register is read or a slip/repeat condition occurs.  
If the user reads OSLIP as soon as the event triggers, over a long period of time the rate of occurring INT  
will be equal to the difference in frequency between the input AES data and the slave serial output LRCK.  
The CS8416 uses a hysteresis window when a slip/repeat event occurs. The slip/repeat is triggered when  
an edge of OLRCK passes a window size from the beginning of the Z/X preamble. Without the hysteresis  
window, jitter on OLRCK with a frequency very close to Fs could slip back and forth, causing multiple slip/re-  
peat events. The CS8416 uses a hysteresis window to ensure that only one slip/repeat happens even with  
jitter on OLRCK  
Frame 191  
Frame 0  
Frame 1  
Channel A  
Data  
Channel B  
Data  
Channel A  
Data  
Channel B  
Data  
Channel A  
Data  
Channel B  
Data  
X
Y
Z
Y
X
Y
Preambles  
OLRCK (in slave mode)  
Figure 8. AES3 Data Format  
DS578F3  
25  
CS8416  
7.2  
AES11 Behavior  
When OLRCK is configured as a master, the positive or negative edge of OLRCK (depending on the setting  
of SOLRPOL in register 05h) will be within -1.0%(1/Fs) to 1.1%(1/Fs) from the start of the preamble X/Z. In  
master mode, the latency through the part is dependent on the input sample frequency. The typical delay  
through the part from the beginning of the preamble to the active edge of OLRCK for the various sample  
frequencies is given in Table 1. In master mode without the de-emphasis filter engaged, the latency of the  
audio data will be 3 frames.  
Fs (kHz)  
32  
Delay (ns)  
98.0  
44.1  
48  
80.5  
78.0  
64  
67.0  
96  
57.5  
192  
47.0  
Table 1. Typical Delays by Frequency Values  
When OLRCK is configured as a slave, any synchronized input within +/-28%(1/Fs) from the positive or neg-  
ative edge of OLRCK (depending on the setting of SOLRPOL in register 05h) will be treated as being sam-  
pled at the same time. Since the CS8416 has no control of the OLRCK in slave mode, the latency of the  
data through the part will be a multiple of 1/Fs plus the delay between OLRCK and the preambles.  
Both of these conditions are within the tolerance range set forth in the AES11 standard.  
26  
DS578F3  
CS8416  
8. S/PDIF RECEIVER  
The CS8416 includes an AES3/SPDIF digital audio receiver. The receiver accepts and decodes bi-phase encoded  
audio and digital data according to the AES3, IEC60958 (S/PDIF), and EIAJ CP-1201 interface standards. The re-  
ceiver consists of an analog differential input stage, driven through analog input pins RXP0 to RXP7 and a common  
RXN, a PLL based clock recovery circuit, and a decoder which separates the audio data from the channel status  
and user data. External components are used to terminate the incoming data cables and isolate the CS8416. These  
components are detailed in “External AES3/SPDIF/IEC60958 Receiver Components” on page 49. Figure 9 shows  
the input structure of the receiver.  
VL  
22 kΩ  
(22000/N ) Ω  
VL = 5.0 V: 2.3 kΩ  
VL = 3.3 V: 3.0 kΩ  
R XN  
+
R XP[7:0]  
-
VL = 5.0 V: (1500 + 800/N) Ω  
VL = 3.3 V: (1500 + 1500/N ) Ω  
22 kΩ  
(22000/N ) Ω  
AG N D  
If RXP[7:0] is selected by either the receiver MUX or the TX passthrough MUX, N=1.  
If RXP[7:0] is selected by both the receiver MUX and the TX passthrough MUX, N=2.  
If RXP[7:0] is not selected at all, N=0 (i.e. high impedance).  
Figure 9. Receiver Input Structure  
8.1  
8:2 S/PDIF Input Multiplexer  
8.1.1  
General  
The CS8416 employs a 8:2 S/PDIF input multiplexer to accommodate up to eight channels of input digital  
audio data. Digital audio data may be single-ended or differential. Differential inputs utilize RXP[7:0] and  
a shared RXN. Single ended signals are accommodated by using the RXP[7:0] inputs and AC coupling  
RXN to ground.  
All active inputs to the CS8416 8:2 input multiplexer should be coupled through a capacitor as these inputs  
are biased at VL/2 when selected. These inputs are floating when not selected. Unused multiplexer inputs  
should be left floating or tied to AGND. The recommended capacitor value is 0.01 μF to 0.1 μF. The rec-  
ommended dielectrics for the AC coupling capacitors are C0G or X7R.  
The input voltage range for the input multiplexer is set by the I/O power supply pin, VL. The input voltage  
of the RXP[7:0] and RXN pins is also set by the level of VL. Input signals with voltage levels above VL or  
below DGND may degrade performance or damage the part.  
8.1.2  
Software Mode  
The multiplexer select line control is accessed through bits RXSEL[2:0] in control port register 04h. The  
multiplexer defaults to RXP0.  
DS578F3  
27  
CS8416  
The second output of the input multiplexer is used to provide the selected input as a source to be output  
on a GPO pin. This pass through signal is selected by TXSEL[2:0] in control port register 04h. This single-  
ended signal is resolved to full-rail, but is not de-jittered before it is output.  
8.1.3  
Hardware Mode  
In Hardware Mode the input to the decoder is selected by dedicated pins, RXSEL[1:0].  
The pass through signal is selected by dedicated pins, TXSEL[1:0] for output on the dedicated TX pin.  
This single-ended signal is resolved to full-rail, but is not de-jittered before it is output.  
Selectable inputs are restricted to RXP0 to RXP3 for both the receiver and the TX output pin. These inputs  
are selected by RXSEL[1:0] and TXSEL[1:0] respectively.  
8.2  
OMCK System Clock Mode  
A special clock switching mode is available that allows the OMCK clock input to automatically replace  
RMCK when the PLL becomes unlocked. This is accomplished without spurious transitions or glitches on  
RMCK. In Hardware Mode this feature is enabled by a transition (rising edge active) on the OMCK pin after  
reset. Therefore to not enable the clock switching feature in Hardware Mode, OMCK should be tied to DGND  
or VL. However, in Hardware Mode, once the clock switching feature has been enabled, it can only be dis-  
abled by resetting the part. In Software Mode the automatic clock switching feature is enabled by setting  
SWCLK bit in Control1 register to a “1”. Additionally in Software Mode, OMCK can be manually forced to  
output on RMCK by using the FSWCLK bit in the Control0 register.  
When the clock switching feature is enabled, OSCLK and OLRCK are derived from the OMCK input when  
the clock has been switched and the serial port is in master mode. When clock switching is enabled and the  
PLL is not locked, OLRCK will be OMCK/256 and OSCLK will be OMCK/4. When the PLL loses lock, the  
frequency of the VCO drops to ~750 kHz. When this system clock mode is not enabled, the OSCLK and  
OLRCK will be based on the VCO when the PLL is not locked and has reached its steady-state idle frequen-  
cy. Table 2 shows an example of output clocks based on clock switching being enabled or disabled.  
Clock Switching  
Enabled/Disabled  
PLL  
RMCK Clock  
Ratio  
RMCK  
OSCLK  
OLRCK  
Locked/Unlocked  
128*Fs  
128*Fs  
128*Fs  
128*Fs  
256*Fs  
256*Fs  
256*Fs  
256*Fs  
Disabled  
Locked  
Locked  
6.144 MHz  
6.144 MHz  
~375 kHz  
3.072 MHz  
3.072 MHz  
~187.5 kHz  
2.8224 MHz  
3.072 MHz  
3.072 MHz  
~187.5 kHz  
2.8224 MHz  
48 kHz  
48 kHz  
Enabled  
Disabled  
Unlocked  
Unlocked  
Locked  
~2.925 kHz  
44.1 kHz  
48 kHz  
Enabled  
11.2896 MHz  
12.288 MHz  
12.288 MHz  
~750 kHz  
Disabled  
Enabled  
Locked  
48 kHz  
Disabled  
Unlocked  
Unlocked  
~2.925 kHz  
44.1 kHz  
Enabled  
11.2896 MHz  
Example with OMCK = 11.2896 MHz, the receiver input sample rate = 48 kHz,  
OSLCK = 64*Fs, and FSWCLK (Software Mode only) = ‘0’.  
Table 2. Clock Switching Output Clock Rates  
8.3  
Clock Recovery and PLL Filter  
Please see “PLL Filter” on page 53 for a general description of the PLL, selection of recommended PLL filter  
components, and layout considerations. Figures 5 and 6 show the recommended configuration of the two  
capacitors and one resistor that comprise the PLL filter.  
28  
DS578F3  
CS8416  
9. GENERAL PURPOSE OUTPUTS  
Three General Purpose Outputs (GPO) are provided to allow the equipment designer flexibility in configuring the  
CS8416. Fourteen signals are available to be routed to any of the GPO pins. The outputs of the GPO pins are set  
through the GPOxSEL[3:0] bits in the Control2 (02h) and Control3 (03h) registers. All GPO pins default to GND  
after reset.  
GPO pins may be configured to provide the following data:  
Function  
Code  
Definition  
GND  
0000  
Fixed low level  
EMPH  
INT  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
State of EMPH bit in the incoming data stream.  
CS8416 interrupt output  
Channel status bit  
C
U
User data bit  
RERR  
NVERR  
RCBL  
Receiver Error  
Non-Validity Receiver Error  
Receiver Channel Status Block  
If the input sample rate is 48 kHz, outputs a “0”. Outputs a “1” if the sample rate is 88.1 kHz.  
Otherwise the output is indeterminate.  
96KHZ  
1000  
AUDIO  
VLRCK  
TX  
1001  
1010  
1011  
1100  
Non-audio indicator for decoded input stream  
Virtual LRCK. Can be used to frame the C and U output data.  
Pass through of AES/SPDIF input selected by TXSEL[2:0] in the Control 4 register (04h)  
VDD fixed high level  
VDD  
HRMCK  
1101  
FS X 512 (Note 1)  
Codes 1110 to 1111 - Reserved  
Table 3. GPO Pin Configurations  
Notes:  
1. Frequency = 25 MHz Max, duty cycle not guaranteed, target duty cycle = 50% @ FS = 48 kHz.  
DS578F3  
29  
CS8416  
10.ERROR AND STATUS REPORTING  
10.1 General  
While decoding the incoming bi-phase encoded data stream, the CS8416 has the ability to identify various  
error conditions.  
10.1.1 Software Mode  
Software Mode allows the most flexibility in reading errors. When unmasked, bits in the Receiver Error  
register (0Ch) indicate the following errors:  
1. QCRC – CRC error in Q subcode data.  
2. CCRC – CRC error in channel status data.  
3. UNLOCK – PLL is not locked to incoming data stream.  
4. V – Data Validity bit is set.  
5. CONF – The logical OR of UNLOCK and BIP. The input data stream may be near error condition due  
to jitter degradation.  
6. BIP – Biphase encoding error.  
7. PAR – Parity error in incoming data.  
The error bits are “sticky,” meaning that they are set on the first occurrence of the associated error and  
will remain set until the user reads the register through the control port. This enables the register to log all  
unmasked errors that occurred since the last time the register was read.  
As a result of the bits “stickiness,” it is necessary to perform two reads on these registers to see if the error  
condition still exists.  
The Receiver Error Mask register (06h) allows masking of individual errors. The bits in this register default  
to 00h and serve as masks for the corresponding bits of the Receiver Error register. If a mask bit is set to  
1, the error is unmasked, which implies the following: its occurrence will be reported in the receiver error  
register, induce a pulse on RERR, invoke the occurrence of a RERR interrupt, and affect the current audio  
sample according to the status of the HOLD bits. The exceptions are the QCRC and CCRC errors, which  
do not affect the current audio sample, even if unmasked.  
The HOLD bits allow a choice of:  
Holding the previous sample  
Replacing the current sample with zero (mute)  
OR  
Not changing the current audio sample  
10.1.2 Hardware Mode  
In Hardware Mode, the user may only choose between Non-Validity Receiver Error (NVERR) or Receiver  
Error (RERR) by pulling the NV/RERR pin low or high, respectively. The pull-up/pull-down condition will  
be sensed on start-up, and the appropriate error reporting will be set.  
RERR – The previous audio sample is held and passed to the serial audio output port if the validity bit is  
high, or a parity, bi-phase, confidence or PLL lock error occurs during the current sample.  
NVERR – The previous audio sample is held and passed to the serial audio output port if a parity, bi-  
phase, confidence or PLL lock error occurs during the current sample.  
30  
DS578F3  
CS8416  
10.2 Non-Audio Detection  
An AES3 data stream may be used to convey non-audio data, thus it is important to know whether the in-  
coming AES3 data stream is digital audio or not. This information is typically conveyed in channel status bit  
1, which is extracted automatically by the CS8416. However, certain non-audio sources, such as AC-3™ or  
MPEG encoders, may not adhere to this convention, and the bit may not be properly set. The CS8416 AES3  
receiver can detect such non-audio data through the use of an autodetect module. The autodetect module  
is similar to autodetect software used in Cirrus Logic DSPs.  
If the AES3 stream contains sync codes in the proper format for IEC61937 or DTS® data transmission, an  
internal AUTODETECT signal will be asserted. If the sync codes no longer appear after a certain amount  
of time, autodetection will time-out and AUTODETECT will be de-asserted until another format is detected.  
The AUDIO signal is the logical OR of AUTODETECT and the received channel status bit 1 (as decoded  
according to the CHS bit in the Control1 register).  
In Hardware Mode, AUDIO is output on pin 15. In Software Mode, AUDIO is available through the GPO pins.  
If non-audio data is detected, the data is still processed exactly as if it were normal audio. The exception is  
the use of de-emphasis auto-select feature which will bypass the de-emphasis filter if the input stream is  
detected to be non-audio. It is up to the user to mute the outputs as required.  
10.2.1 Format Detection  
In Software Mode, the CS8416 can automatically detect various serial audio input formats. The Format  
Detect Status register (0Bh) is used to indicate a detected format. The register will indicate if uncom-  
pressed PCM data, IEC61937 data, DTS_LD data, DTS_CD data, or digital silence was detected. Addi-  
tionally, the IEC61937 Pc/Pd burst preambles are available in registers 23h-26h. See the register  
descriptions for more information.  
10.3 Interrupts  
The CS8416 has a comprehensive interrupt capability. The INT signal, available in Software Mode, indi-  
cates when an interrupt condition has occurred and may be output on one of the GPOs. It can also be set  
through bits INT[1:0] in the Control1 register (01h) to be active low, active high or active low with no active  
pull-up transistor. This last mode is used for active low, wired-OR hook- ups, with multiple peripherals con-  
nected to the microcontroller interrupt input pin.  
Many conditions can cause an interrupt, as listed in the interrupt status register descriptions. Each source  
may be masked off through mask register bits. In addition, each source may be set to rising edge, falling  
edge, or level sensitive. Combined with the option of level sensitive or edge sensitive modes within the mi-  
crocontroller, many different configurations are possible, depending on the needs of the equipment design-  
er. Refer to the register descriptions for the Interrupt Mask (07h), Interrupt Mode MSB (08h), Interrupt Mode  
LSB (09h), and Interrupt 1 Status (0Dh) registers  
DS578F3  
31  
CS8416  
11.CHANNEL STATUS AND USER-DATA HANDLING  
“Channel Status Buffer Management” on page 51 describes Channel Status and User data control.  
11.1 Software Mode  
In Software Mode, several options are available for accessing the Channel Status and User data that is en-  
coded in the received AES3/SPDIF stream.  
The first option allows access directly through registers. The first 5 bytes of the Channel Status block are  
decoded into the Receiver Channel Status Registers 19h - 22h. Registers 19h - 1Dh contain the A channel  
status data. Registers 1Eh - 22h contain the B channel status data.  
Received Channel Status (C), User (U), and EMPH bits may also be output to the GPO pins by appropriately  
setting the GPOxSEL bits in control port registers 02h and 03h. In serial port master mode, OLRCK and  
RCBL can be made available to qualify the U data output. In serial port slave mode, VLRCK and RCBL can  
be made available to qualify the U data output. VLRCK is a virtual word clock, equal to the receiver recov-  
ered sample rate, that can be used to frame the C/U output. VLRCK and RCBL are available through the  
GPO pins. Figure 10 illustrates timing of the C and U data and their related signals.  
The user may also access all of the C and U bits directly from the output data stream (SDOUT) by setting  
bits SORES[1:0]=11 (AES3 Direct Mode) in the Serial Audio Data Format register (05h). The appropriate  
bits can be stripped from the SDOUT signal by external control logic such as a DSP or microcontroller.  
If the incoming User data bits have been encoded as Q-channel subcode, the data is decoded, buffered,  
and presented in 10 consecutive register locations (0Eh-17h). An interrupt may be enabled to indicate the  
decoding of a new Q-channel block, which may be read through the control port.  
The encoded Channel Status bits which indicate sample word length are decoded according to AES3-1992  
or IEC 60958. The number of auxiliary bits are reported in bits 7 to 4 of the Receiver Channel Status register  
(0Ah).  
11.2 Hardware Mode  
In Hardware Mode, Received Channel Status (C), and User (U) bits are output on pins 19 and 18. In serial  
port master mode, OLRCK and RCBL are made available to qualify the C and U data output. Figure 10 il-  
lustrates timing of the C and U data and their related signals.  
The user may also access all of the C and U bits directly from the output data stream (SDOUT) by pulling  
the AUDIO and C pins high through 47 kΩ resistors to VL (AES3 Direct Mode). The appropriate bits can be  
stripped from the SDOUT signal by external control logic such as a DSP or microcontroller. Only OLRCK in  
master mode is available to qualify the U output. See “Hardware Mode Function Selection” on page 46 and  
“Hardware Mode Equivalent Register Settings” on page 47 to configure these pins..  
RCBL  
(out)  
VLRCK  
(out)  
C/U  
(out)  
RCBL goes high 2 frames after receipt of a Z preamble and is high for 16 frames.  
VLRCK is a virtual work clock, available through the GPO pins, that can be used  
to frame the C/U output.  
VLRCK duty cycle is 50%. VLRCK frequency is always equal to the incoming  
Figure 10. C/U Data Outputs  
32  
DS578F3  
CS8416  
12.CONTROL PORT DESCRIPTION  
The control port is used to access the registers, allowing the CS8416 to be configured for the desired operational  
modes and formats. The operation of the control port may be completely asynchronous with respect to the audio  
sample rates. However, to avoid potential interference problems, the control port pins should remain static if no op-  
eration is required.  
The control port has 2 modes: SPI and I²C, with the CS8416 acting as a slave device. SPI Mode is selected if there  
is a high to low transition on the AD0/CS pin, after the RST pin has been brought high. I²C Mode is selected by con-  
necting the AD0/CS pin through a resistor to VL or DGND, thereby permanently selecting the desired AD0 bit ad-  
dress state.  
12.1 SPI Mode  
In SPI Mode, CS is the CS8416 chip select signal, CCLK is the control port bit clock (input into the CS8416  
from the microcontroller), CDIN is the input data line from the microcontroller, CDOUT is the output data line  
to the microcontroller. Data is clocked in on the rising edge of CCLK and out on the falling edge.  
Figure 11 shows the operation of the control port in SPI Mode. To write to a register, bring CS low. The first  
seven bits on CDIN form the chip address and must be 0010000. The eighth bit is a read/write indicator  
(R/W), which should be low to write. The next eight bits include the 7-bit Memory Address Pointer (MAP),  
which is set to the address of the register that is to be updated. The next eight bits are the data which will  
be placed into the register designated by the MAP. During writes, the CDOUT output stays in the Hi-Z state.  
It may be externally pulled high or low with a 47 kΩ resistor, if desired.  
To read a register, the MAP has to be set to the correct address by executing a partial write cycle which  
finishes (CS high) immediately after the MAP byte. To begin a read, bring CS low, send out the chip address  
and set the read/write bit (R/W) high. The next falling edge of CCLK will clock out the MSB of the addressed  
register (CDOUT will leave the high impedance state). The MAP automatically increments, so data for suc-  
cessive registers will appear consecutively.  
CS  
C C L K  
C H IP  
C H IP  
M A P  
DATA  
A D D R E S S  
ADDRESS  
0010000  
0010000  
LSB  
MSB  
b y te 1  
R/W  
R/W  
C D IN  
b y te n  
High Impedance  
LSB  
LSB  
MSB  
MSB  
C D O U T  
MAP = Memory Address Pointer, 8 bits, MSB first  
Figure 11. Control Port Timing in SPI Mode  
DS578F3  
33  
CS8416  
12.2 I²C Mode  
In I²C Mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL. There  
is no CS pin. Pins AD0 and AD1 form the two least significant bits of the chip address and should be con-  
nected through a resistor to VL or DGND as desired. The GPO2 pin is used to set the AD2 bit by connecting  
a 47 kΩ resistor from the GPO2 pin to VL or to DGND. The states of the pins are sensed while the CS8416  
is being reset.  
The signal timings for a read and write cycle are shown in Figures 12 and 13. A Start condition is defined  
as a falling transition of SDA while the clock is high. A Stop condition is a rising transition while the clock is  
high. All other transitions of SDA occur while the clock is low. The first byte sent to the CS8416 after a Start  
condition consists of a 7-bit chip address field and a R/W bit (high for a read, low for a write). The upper 4  
bits of the 7-bit address field are fixed at 0010. To communicate with a CS8416, the chip address field, which  
is the first byte sent to the CS8416, should match 0010 followed by the settings of the AD2, AD1, and AD0  
pins. The eighth bit of the address is the R/W bit. If the operation is a write, the next byte includes the Mem-  
ory Address Pointer (MAP) which selects the register to be read or written. If the operation is a read, the  
contents of the register pointed to by the MAP will be output. The MAP automatically increments, so data  
from successive registers will appear consecutively. Each byte is separated by an acknowledge bit (ACK).  
The ACK bit is output from the CS8416 after each input byte is read, and is input to the CS8416 from the  
microcontroller after each transmitted byte.  
Note that the read operation can not set the MAP, so an aborted write operation is used as a preamble. As  
shown in Figure 13, the write operation is aborted after the acknowledge for the MAP byte by sending a stop  
condition.  
26  
27 28  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
24 25  
SCL  
SDA  
DATA +1  
DATA +n  
CHIP ADDRESS (WRITE)  
0 AD2 AD1 AD0  
MAP BYTE  
DATA  
0
1
0
0
7
6
1
0
7
6
1
0
7
6
1
0
0
6
5
4
3
2
1
0
ACK  
ACK  
ACK  
ACK  
STOP  
START  
Figure 12. Control Port Timing, I²C Slave Mode Write  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
26 27 28  
SCL  
SDA  
STOP  
CHIP ADDRESS (WRITE)  
AD2 AD1 AD0  
MAP BYTE  
CHIP ADDRESS (READ)  
AD2 AD1 AD0  
DATA  
DATA +1 DATA + n  
0
0
1
0
0
0
0
0
1
0
1
6
5
4
3
2
1
0
7
0
7
0
7
0
ACK  
ACK  
START  
ACK  
ACK  
NO  
ACK  
START  
STOP  
Figure 13. Control Port Timing, I²C Slave Mode Read  
34  
DS578F3  
CS8416  
13.CONTROL PORT REGISTER QUICK REFERENCE  
Addr R/W  
Function  
7
6
5
4
3
2
1
0
(HEX)  
00  
01  
02  
R/W  
R/W  
R/W  
Control0  
Control1  
Control2  
0
FSWCLK  
MUTSAO  
0
0
PDUR  
TRUNC  
HOLD0  
Reserved  
RMCKF  
Reserved  
CHS  
SWCLK  
DETCI  
INT1  
INT0  
HOLD1  
EMPH_CN EMPH_CN EMPH_CN GPO0SEL3 GPO0SEL2 GPO0SEL1 GPO0SEL0  
TL2 TL1 TL0  
03  
04  
05  
R/W  
R/W  
Control3  
Control4  
GPO1SEL3 GPO1SEL2 GPO1SEL1 GPO1SEL0 GPO2SEL3 GPO2SEL2 GPO2SEL1 GPO2SEL0  
RUN  
RXD  
RXSEL2  
SORES1  
RXSEL1  
SORES0  
RXSEL0  
SOJUST  
TXSEL2  
SODEL  
TXSEL1  
TXSEL0  
R/W Serial Audio Data  
Format  
SOMS  
SOSF  
SOSPOL SOLRPOL  
06  
R/W  
Receiver Error  
Mask  
0
QCRCM  
CCRCM UNLOCKM  
VM  
CONFM  
BIPM  
PARM  
07  
08  
R/W  
R/W  
Interrupt Mask  
0
0
PCCHM  
PCCH1  
OSLIPM  
OSLIP1  
DETCM  
DETC1  
CCHM  
CCH1  
RERRM  
RERR1  
QCHM  
QCH1  
FCHM  
FCH1  
Interrupt Mode  
MSB  
09  
0A  
0B  
R/W  
R
Interrupt Mode  
LSB  
0
AUX3  
0
PCCH0  
AUX2  
PCM  
OSLIP0  
AUX1  
DETC0  
AUX0  
CCH0  
PRO  
RERR0  
COPY  
QCH0  
ORIG  
FCH0  
EMPH  
96KHZ  
Receiver Channel  
Status  
R
Audio Format  
Detect  
IEC61937  
DTS_LD  
DTS_CD  
Reserved DGTL_SIL  
0C  
0D  
0E  
R
R
R
Receiver Error  
Interrupt Status  
0
0
QCRC  
PCCH  
CCRC  
OSLIP  
UNLOCK  
DETC  
V
CONF  
RERR  
BIP  
PAR  
FCH  
CCH  
QCH  
Q-Channel  
CONTROL CONTROL CONTROL CONTROL ADDRESS ADDRESS ADDRESS ADDRESS  
Subcode [0:7]  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R
R
R
R
R
R
R
R
R
R
Q-Channel  
Subcode [8:15]  
TRACK  
INDEX  
TRACK  
INDEX  
TRACK  
INDEX  
TRACK  
INDEX  
TRACK  
INDEX  
TRACK  
INDEX  
TRACK  
INDEX  
TRACK  
INDEX  
Q-Channel  
Subcode [16:23]  
Q-Channel  
Subcode [24:31]  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
Q-Channel  
Subcode [32:39]  
Q-Channel  
Subcode [40:47]  
Q-Channel  
Subcode [48:55]  
Q-Channel  
Subcode [56:63]  
ABS  
MINUTE  
ABS  
MINUTE  
ABS  
MINUTE  
ABS  
MINUTE  
ABS  
MINUTE  
ABS  
MINUTE  
ABS  
MINUTE  
ABS  
MINUTE  
[Q-Channel  
Subcode 64:71]  
ABS  
SECOND  
ABS  
SECOND  
ABS  
SECOND  
ABS  
SECOND  
ABS  
SECOND  
ABS  
SECOND  
ABS  
SECOND  
ABS  
SECOND  
Q-Channel  
Subcode [72:79]  
ABS  
FRAME  
ABS  
FRAME  
ABS  
FRAME  
ABS  
FRAME  
ABS  
FRAME  
ABS  
FRAME  
ABS  
FRAME  
ABS  
FRAME  
OMCK_RMCK  
Ratio  
ORR7  
ORR6  
ORR5  
ORR4  
ORR3  
ORR2  
ORR1  
ORR0  
19  
1A  
1B  
1C  
1D  
R
R
R
R
R
Channel A Status  
Channel A Status  
Channel A Status  
Channel A Status  
Channel A Status  
AC0[7]  
AC1[7]  
AC2[7]  
AC3[7]  
AC4[7]  
AC0[6]  
AC1[6]  
AC2[6]  
AC3[6]  
AC4[6]  
AC0[5]  
AC1[5]  
AC2[5]  
AC3[5]  
AC4[5]  
AC0[4]  
AC1[4]  
AC2[4]  
AC3[4]  
AC4[4]  
AC0[3]  
AC1[3]  
AC2[3]  
AC3[3]  
AC4[3]  
AC0[2]  
AC1[2]  
AC2[2]  
AC3[2]  
AC4[2]  
AC0[1]  
AC1[1]  
AC2[1]  
AC3[1]  
AC4[1]  
AC0[0]  
AC1[0]  
AC2[0]  
AC3[0]  
AC4[0]  
DS578F3  
35  
CS8416  
Addr R/W  
(HEX)  
Function  
7
6
5
4
3
2
1
0
1E  
1F  
20  
21  
22  
23  
R
R
R
R
R
R
Channel B Status  
Channel B Status  
Channel B Status  
Channel B Status  
Channel B Status  
BC0[7]  
BC1[7]  
BC2[7]  
BC3[7]  
BC4[7]  
PC0[7]  
BC0[6]  
BC1[6]  
BC2[6]  
BC3[6]  
BC4[6]  
PC0[6]  
BC0[5]  
BC1[5]  
BC2[5]  
BC3[5]  
BC4[5]  
PC0[5]  
BC0[4]  
BC1[4]  
BC2[4]  
BC3[4]  
BC4[4]  
PC0[4]  
BC0[3]  
BC1[3]  
BC2[3]  
BC3[3]  
BC4[3]  
PC0[3]  
BC0[2]  
BC1[2]  
BC2[2]  
BC3[2]  
BC4[2]  
PC0[2]  
BC0[1]  
BC1[1]  
BC2[1]  
BC3[1]  
BC4[1]  
PC0[1]  
BC0[0]  
BC1[0]  
BC2[0]  
BC3[0]  
BC4[0]  
PC0[0]  
BurstPreamblePC  
Byte 0  
24  
25  
26  
7F  
R
R
R
R
BurstPreamblePC  
Byte 1  
PC1[7]  
PD0[7]  
PD1[7]  
ID3  
PC1[6]  
PD0[6]  
PD1[6]  
ID2  
PC1[5]  
PD0[5]  
PD1[5]  
ID1  
PC1[4]  
PD0[4]  
PD1[4]  
ID0  
PC1[3]  
PD0[3]  
PD1[3]  
VER3  
PC1[2]  
PD0[2]  
PD1[2]  
VER2  
PC1[1]  
PD0[1]  
PD1[1]  
VER1  
PC1[0]  
PD0[0]  
PD1[0]  
VER0  
BurstPreamblePD  
Byte 0  
BurstPreamblePD  
Byte 1  
ID & Version  
14. CONTROL PORT REGISTER DESCRIPTIONS  
14.1 Memory Address Pointer (MAP)  
Not a register  
7
0
6
5
4
3
2
1
0
MAP6  
MAP5  
MAP4  
MAP3  
MAP2  
MAP1  
MAP0  
MAP[6:0] - Memory Address Pointer. Will automatically increment after each read or write.  
Default = ‘0000000’  
14.2 Control0 (00h)  
7
6
5
4
3
2
1
0
0
FSWCLK  
0
0
PDUR  
TRUNC  
Reserved  
Reserved  
FSWCLK – Forces the clock signal on OMCK to be output on RMCK regardless of the SWCLK (Control1  
register bit 6) bit functionality or PLL lock.  
Default = ‘0’  
0 – Clock signal on OMCK is output on RMCK according to the SWCLK bit functionality.  
1 – Forces the clock signal on OMCK to be output on RMCK regardless of the SWCLK bit functionality.  
PDUR – Changes the type of phase detector used to lock to the active RXP[7:0] input. This bit should only  
be set if the sample rate range is between 32 kHz and 108 kHz. If the sample rate is outside of this range  
and the PDUR bit is set, loss of lock may occur.  
Default = ‘0’  
0 – Normal Update Rate Phase Detector - Recovered master clock (RMCK) will have low wide-band jitter,  
but increased in-band jitter.  
36  
DS578F3  
CS8416  
1 – Higher Update Rate Phase Detector - Recovered master clock (RMCK) will have low in-band jitter, but  
increased wide-band jitter. Use this setting for the best performance when the output is connected to a delta-  
sigma digital-to-analog converter (DAC).  
TRUNC – Determines if the audio word length is set according to the incoming channel status data as de-  
coded by the AUX[3:0] bits. The resulting word length in bits is 24 minus AUX[3:0].  
Default = ‘0’  
0 – Incoming data is not truncated.  
1 – Incoming data is truncated according to the length specified in the channel status data.  
Truncation occurs before the de-emphasis filter. TRUNC has no effect on output data if de-emphasis filter  
is not used.  
Reserved – These bits may change state depending on the input audio data.  
14.3 Control1 (01h)  
7
6
5
4
3
2
1
0
SWCLK  
MUTESAO  
INT1  
INT0  
HOLD1  
HOLD0  
RMCKF  
CHS  
SWCLK - Lets OMCK determine RMCK, OSCLK, OLRCK when PLL loses lock  
Default = ‘0’  
0 - Disable automatic clock switching. RMCK runs at the VCO frequency (~750 kHz) on PLL Unlock.  
1 - Enable automatic clock switching on PLL unlock. OMCK clock input is automatically output on RMCK on  
PLL Unlock.  
MUTESAO - Mute control for the serial audio output port  
Default = ‘0’  
0 - SDOUT not muted.  
1 – SDOUT muted (set to all zeros).  
INT[1:0] - Interrupt output pin (INT) control  
Default = ‘00’  
00 - Active high; high output indicates interrupt condition has occurred.  
01 - Active low, low output indicates an interrupt condition has occurred.  
10 - Open drain, active low. Requires an external pull-up resistor on the INT pin. Thus it is not recommended  
to multiplex INT onto GPO2 in I²C Control Port Mode since an external resistor is required on GPO2 to spec-  
ify the AD2 bit of the chip address.  
11 – Reserved.  
HOLD[1:0] – Determine how received audio sample is affected when a receive error occurs  
Default = ‘00’  
00 – hold last audio sample.  
01 – replace the current audio sample with all zeros (mute).  
10- do not change the received audio sample.  
11 - reserved  
DS578F3  
37  
CS8416  
RMCKF – Recovered Master Clock Frequency  
Default = ‘0’  
0 – RMCK output frequency is 256*FS.  
1 – RMCK output frequency is 128*FS.  
CHS – Sets which channel's C data is decoded in the Receiver Channel Status register (0Ah).  
Default = ‘0’  
0 – A channel.  
1 – B channel.  
If CHS = 0 and TRUNC = 1, both channels' audio data will be truncated by the AUX[3:0] bits indicated in the  
channel A Channel Status data. If CHS = 1 and TRUNC = 1, both channels' audio data will be truncated by  
the AUX[3:0] bits indicated in the channel B Channel Status data. This will occur even if the AUX[3:0] bits  
indicated in the channel A Channel Status data are not equal to the AUX[3:0] bits indicated in the channel  
B Channel Status data.  
14.4 Control2 (02h)  
7
6
5
4
3
2
1
0
DETCI  
EMPH_CNTL2 EMPH_CNTL1 EMPH_CNTL0 GPO0SEL3  
GPO0SEL2  
GPO0SEL1  
GPO0SEL0  
DETCI – D to E status transfer inhibit  
Default = ‘0’  
0 – Allow update.  
1 – Inhibit update.  
EMPH_CNTL[2:0] – De-emphasis filter control. See Figure 14 for De-emphasis filter response.  
Default = ‘000’  
000 – If the serial audio output port is using the AES3 direct-output format, the de-emphasis filter must re-  
main off.  
001 – 32 kHz setting.  
010 – 44.1 kHz setting.  
011 – 48 kHz setting.  
100 – 50 μs/15 μs de-emphasis filter auto-select on. Coefficients (32, 44.1 or 48 kHz or no de-emphasis fil-  
ter at all) match the pre-emphasis and sample frequency indicators in the channel status bits of Channel A.  
Thus it is impossible to have de-emphasis applied to one channel but not the other. The de-emphasis filter  
is turned off if the audio data is detected to be non-audio data.  
GPO0SEL[3:0] – GPO0 Source select. See “General Purpose Outputs” on page 29.  
Default = ‘0000’  
38  
DS578F3  
CS8416  
Gain,  
dB  
T1 =  
50us  
0
T2  
=15us  
-10  
Frequency,  
KHz  
F1  
3.183  
F2  
10.61  
Figure 14. De-Emphasis Filter Response  
14.5 Control3 (03h)  
7
6
5
4
3
2
1
0
GPO1SEL3  
GPO1SEL2  
GPO1SEL1  
GPO1SEL0  
GPO2SEL3  
GPO2SEL2  
GPO2SEL1  
GPO2SEL0  
GPO1SEL[3:0] – GPO1 Source select. See “General Purpose Outputs” on page 29.  
Default = ‘0000’  
GPO2SEL[3:0] – GPO2 Source select. See “General Purpose Outputs” on page 29.  
Default = ‘0000’  
14.6 Control4 (04h)  
7
6
5
4
3
2
1
0
RUN  
RXD  
RXSEL2  
RXSEL1  
RXSEL0  
TXSEL2  
TXSEL1  
TXSEL0  
RUN - Controls the internal clocks, allowing the CS8416 to be placed in a “powered down”, low current con-  
sumption state.  
Default = ‘0’  
0 - Internal clocks are stopped. Internal state machines are reset. The fully static control port is  
operational, allowing registers to be read or changed. Power consumption is low.  
1 - Normal part operation. This bit must be written to the 1 state to allow the CS8416 to begin operation. All  
input clocks should be stable in frequency and phase when RUN is set to 1.  
RXD – RMCK Control  
Default = ‘0’  
0 -RMCK is an output, Clock is derived from input frame rate.  
1 – RMCK becomes high impedance. The output of OSCLK, OLRCK, and SDOUT are indeterminate.  
RX_SEL[2:0] – Selects RXP0 to RXP7 for input to the receiver  
Default =’000’  
000 – RXP0  
001 – RXP1, etc  
DS578F3  
39  
CS8416  
TX_SEL[2:0] – Selects RXP0 to RXP7 as the input for GPO TX source  
Default =’001’  
000 – RXP0  
001 – RXP1, etc  
14.7 Serial Audio Data Format (05h)  
7
6
5
4
3
2
1
0
SOMS  
SOSF  
SORES1  
SORES0  
SOJUST  
SODEL  
SOSPOL  
SOLRPOL  
SOMS - Master/Slave Mode Selector  
Default = ‘0’  
0 - Serial audio output port is in slave mode. OSCLK and OLRCK are inputs.  
1 - Serial audio output port is in master mode. OSCLK and OLRCK are outputs.  
SOSF - OSCLK frequency (for master mode)  
Default = ‘0’  
0 - OSCLK output frequency is 64*Fs.  
1 - OSCLK output frequency is 128*Fs.  
SORES[1:0] - Resolution of the output data on SDOUT  
Default = ‘00’  
00 - 24-bit resolution.  
01 - 20-bit resolution.  
10 - 16-bit resolution.  
11 - Direct copy of the received NRZ data from the AES3 receiver including C, U, and V bits. The time slot  
occupied by the Z bit is used to indicate the location of the block start. This setting forces the SOJUST bit  
to be “0”. When using this setting, the de-emphasis filter must be off.  
SOJUST - Justification of SDOUT data relative to OLRCK  
Default = ‘0’  
0 - Left-Justified.  
1 - Right-Justified (master mode only and SORES 11).  
SODEL - Delay of SDOUT data relative to OLRCK, for Left-Justified data formats  
(This control is only valid in Left-Justified Mode)  
Default = ‘0’  
0 - MSB of SDOUT data occurs in the first OSCLK period after the OLRCK edge.  
1 - MSB of SDOUT data occurs in the second OSCLK period after the OLRCK edge.  
SOSPOL - OSCLK clock polarity  
Default = ‘0’  
0 - SDOUT is sampled on rising edges of OSCLK.  
1 - SDOUT is sampled on falling edges of OSCLK.  
40  
DS578F3  
CS8416  
SOLRPOL - OLRCK clock polarity  
Default = ‘0’  
0 - SDOUT data is valid for the left channel when OLRCK is high.  
1 - SDOUT data is valid for the right channel when OLRCK is high.  
14.8 Receiver Error Mask (06h)  
7
6
5
4
3
2
1
0
0
QCRCM  
CCRCM  
UNLOCKM  
VM  
CONFM  
BIPM  
PARM  
The bits in this register serve as masks for the corresponding bits of the Receiver Error Register. If a mask  
bit is set to 1, the error is unmasked, meaning that its occurrence will appear in the receiver error register,  
will affect RERR, will affect the RERR interrupt, and will affect the current audio sample according to the  
status of the HOLD bit. If a mask bit is set to 0, the error is masked, meaning that its occurrence will not  
appear in the receiver error register, will not affect the RERR pin, will not affect the RERR interrupt, and will  
not affect the current audio sample. The CCRC and QCRC bits behave differently from the other bits: they  
do not affect the current audio sample even when unmasked. This register defaults to 00h.  
14.9 Interrupt Mask (07h)  
7
6
5
4
3
2
1
0
0
PCCHM  
OSLIPM  
DETCM  
CCHM  
RERRM  
QCHM  
FCHM  
The bits of this register serve as a mask for the Interrupt Status register. If a mask bit is set to 1, the error  
is unmasked, meaning that its occurrence will affect the INT pin and the status register. If a mask bit is set  
to 0, the error is masked, meaning that its occurrence will not affect the internal INT signal or the status reg-  
ister. The bit positions align with the corresponding bits in Interrupt Status register. This register defaults to  
00h.  
The INT signal may be selected to output on the GPO pins. See “General Purpose Outputs” on page 29.  
14.10 Interrupt Mode MSB (08h) and Interrupt Mode LSB(09h)  
7
0
0
6
5
4
3
2
1
0
PCCH1  
PCCH0  
OSLIP1  
OSLIP0  
DETC1  
DETC0  
CCH1  
CCH0  
RERR1  
RERR0  
QCH1  
QCH0  
FCH1  
FCH0  
The two Interrupt Mode registers form a 2-bit code for each Interrupt Status register function. There are  
three ways to set the INT pin active in accordance with the interrupt condition. In the Rising edge active  
mode, the INT pin becomes active on the arrival of the interrupt condition. In the Falling edge active mode,  
the INT pin becomes active on the removal of the interrupt condition. In Level active mode, the INT interrupt  
pin becomes active during the interrupt condition. Be aware that the active level (Active High or Low) only  
depends on the INT[1:0] bits. These registers default to 00h.  
00 - Rising edge active  
01 - Falling edge active  
10 - Level active  
11 - Reserved  
DS578F3  
41  
CS8416  
14.11 Receiver Channel Status (0Ah)  
7
6
5
4
3
2
1
0
AUX3  
AUX2  
AUX1  
AUX0  
PRO  
COPY  
ORIG  
EMPH  
The bits in this register can be associated with either channel A or B of the received data. The desired chan-  
nel is selected with the CHS bit of the Control1 register.  
AUX3:0 - Incoming auxiliary data field width, as indicated by the incoming channel status bits, decoded ac-  
cording to IEC60958 and AES3.  
0000 - Auxiliary data is not present.  
0001 - Auxiliary data is 1 bit long.  
0010 - Auxiliary data is 2 bits long.  
0011 - Auxiliary data is 3 bits long.  
0100 - Auxiliary data is 4 bits long.  
0101 - Auxiliary data is 5 bits long.  
0110 - Auxiliary data is 6 bits long.  
0111 - Auxiliary data is 7 bits long.  
1000 - Auxiliary data is 8 bits long.  
1001 - 1111 Reserved  
PRO - Channel status block format indicator  
0 - Received channel status block is in the consumer format.  
1 - Received channel status block is in the professional format.  
COPY - SCMS copyright indicator  
0 - Copyright asserted.  
1 - Copyright not asserted. If the category code is set to General in the incoming AES3 stream, copyright  
will always be indicated by COPY, even when the stream indicates no copyright.  
ORIG - SCMS generation indicator, decoded from the category code and the L bit.  
0 - Received data is 1st generation or higher.  
1 - Received data is original.  
Note: COPY and ORIG will both be set to 1 if incoming data is flagged as professional or if the receiver  
is not in use.  
EMPH – Indicates whether the input audio data has been pre-emphasized. Also indicates turning on of the  
de-emphasis filter during de-emphasis auto-select mode.  
0 – 50 μs/15 μs pre-emphasis indicated.  
1 – 50 μs/15 μs pre-emphasis not indicated.  
14.12 Format Detect Status (0Bh)  
7
6
5
4
3
2
1
0
0
PCM  
IEC61937  
DTS_LD  
DTS_CD  
Reserved  
DGTL_SIL  
96KHZ  
Note: PCM, DTS_LD, DTS_CD and IEC61937 are mutually exclusive. A ‘1’ indicated the condition  
was detected.  
PCM – Uncompressed PCM data was detected.  
IEC61937 – IEC61937 data was detected.  
DTS_LD – DTS_LD data was detected.  
42  
DS578F3  
CS8416  
DTS_CD – DTS_CD data was detected.  
Reserved – This bit may change state depending on the input audio data.  
DGTL_SIL – Digital Silence was detected: at least 2047 consecutive constant samples of the same 24-bit  
audio data on both channels.  
96KHZ – If the input sample rate is 48 kHz, outputs a “0”. Outputs a “1” if the sample rate is 88.1 kHz.  
Otherwise the output is indeterminate.  
14.13 Receiver Error (0Ch)  
7
6
5
4
3
2
1
0
0
QCRC  
CCRC  
UNLOCK  
V
CONF  
BIP  
PAR  
This register contains the AES3 receiver and PLL status bits. Unmasked bits will go high on occurrence of  
the error, and will stay high until the register is read. Reading the register resets all bits to 0, unless the error  
source is still true. Bits that are masked off in the receiver error mask register will always be 0 in this register.  
QCRC - Q-subcode data CRC error indicator. Updated on Q-subcode block boundaries  
0 - No error.  
1 - Error.  
CCRC - Channel Status Block Cyclic Redundancy Check bit. Updated on CS block boundaries, valid in Pro  
mode  
0 - No error.  
1 - Error.  
UNLOCK - PLL lock status bit. Updated on CS block boundaries.  
0 - PLL locked.  
1 - PLL out of lock.  
V - Received AES3 Validity bit status. Updated on sub-frame boundaries.  
0 - Data is valid and is normally linear coded PCM audio.  
1 - Data is invalid, or may be valid compressed audio.  
CONF - Confidence bit. Updated on sub-frame boundaries.  
0 - No error.  
1 - Confidence error. The logical OR of UNLOCK and BIP. The input data stream may be near error condi-  
tion due to jitter degradation.  
BIP - Bi-phase error bit. Updated on sub-frame boundaries.  
0 - No error.  
1 - Bi-phase error. This indicates an error in the received bi-phase coding.  
PAR - Parity bit. Updated on sub-frame boundaries.  
0 - No error.  
1 - Parity error.  
DS578F3  
43  
CS8416  
14.14 Interrupt 1 Status (0Dh)  
7
6
5
4
3
2
1
0
0
PCCH  
OSLIP  
DETC  
CCH  
RERR  
QCH  
FCH  
For all bits in this register, a “1” means the associated interrupt condition has occurred at least once since  
the register was last read. A “0” means the associated interrupt condition has NOT occurred since the last  
reading of the register. Reading the register resets all bits to 0, unless the interrupt mode is set to level and  
the interrupt source is still true. Status bits that are masked off in the associated mask register will always  
be “0” in this register.  
PCCH – PC burst preamble change.  
Indicates that the PC byte has changed from its previous value. If the IEC61937 bit in the Format Detect  
Status register goes high, it will cause a PCCH interrupt even if the PC byte hasn’t changed since the last  
time the IEC61937 bit went high.  
OSLIP - Serial audio output port data slip interrupt  
When the serial audio output port is in slave mode, and OLRCK is asynchronous to the port data source,  
this bit will go high every time a data sample is dropped or repeated. See “Slip/Repeat Behavior” on  
page 25 for more information.  
DETC - D to E C-buffer transfer interrupt.  
Indicates the completion of a D to E C-buffer transfer. See “Channel Status Buffer Management” on  
page 51.  
C_CHANGE -Indicates that the current 10 bytes of channel status is different from the previous 10 bytes.  
(5 bytes per channel)  
RERR - A receiver error has occurred.  
The Receiver Error register may be read to determine the nature of the error which caused the interrupt.  
QCH – A new block of Q-subcode is available for reading. The data must be read within 588 AES3 frames  
after the interrupt occurs to avoid corruption of the data by the next block.  
FCH – Format Change: Goes high when the PCM, IEC61937, DTS_LD, DTS_CD, or DGTL_SIL bits in the  
Format Detect Status register transition from 0 to 1. When these bits in the Format Detect Status register  
transition from 1 to 0, an interrupt will not be generated.  
14.15 Q-Channel Subcode (0Eh - 17h)  
7
6
5
4
3
2
1
0
CONTROL  
TRACK  
INDEX  
CONTROL  
TRACK  
INDEX  
CONTROL  
TRACK  
INDEX  
CONTROL  
TRACK  
INDEX  
ADDRESS  
TRACK  
INDEX  
ADDRESS  
TRACK  
INDEX  
ADDRESS  
TRACK  
INDEX  
ADDRESS  
TRACK  
INDEX  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
MINUTE  
SECOND  
FRAME  
ZERO  
ABS MINUTE ABS MINUTE ABS MINUTE ABS MINUTE ABS MINUTE ABS MINUTE ABS MINUTE ABS MINUTE  
ABS SECOND ABS SECOND ABS SECOND ABS SECOND ABS SECOND ABS SECOND ABS SECOND ABS SECOND  
ABS FRAME ABS FRAME ABS FRAME ABS FRAME ABS FRAME ABS FRAME ABS FRAME ABS FRAME  
Each byte is LSB first with respect to the 80 Q-subcode bits Q[79:0]. Thus, bit 7 of address 0Eh is Q[0] while  
bit 0 of address 0Eh is Q[7]. Similarly, bit 0 of address 17h corresponds to Q[79].  
44  
DS578F3  
CS8416  
14.16 OMCK/RMCK Ratio (18h)  
7
6
5
4
3
2
1
0
ORR7  
ORR6  
ORR5  
ORR4  
ORR3  
ORR2  
ORR1  
ORR0  
This register allows the calculation of the incoming sample rate by the host microcontroller from the equation  
ORR=Fso/Fsi. The Fso is determined by OMCK, whose frequency is assumed to be 256*Fso. ORR is rep-  
resented as an unsigned 2-bit integer and a 6-bit fractional part. The value is meaningful only after the PLL  
has reached lock. For example, if the OMCK is 12.288 MHz, Fso would be 48 kHz (48 kHz =  
12.288 MHz/256). Then, if the input sample rate is also 48 kHz, you would get 1.0 from the ORR register  
(The value from the ORR register is hexadecimal, so the actual value you will get is 40h).  
If FSO/FSI > 3 63/64, ORR will saturate at the value FFh. Also, there is no hysteresis on ORR. Therefore a  
small amount of jitter on either clock can cause the LSB ORR[0] to oscillate.  
ORR[7:6] - Integer part of the ratio (Integer value=Integer(SRR[7:6])).  
ORR[5:0] - Fractional part of the ratio (Fraction value=Integer(SRR[5:0])/64).  
14.17 Channel Status Registers (19h - 22h)  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
Channel A Status Byte 0  
Channel A Status Byte 1  
Channel A Status Byte 2  
Channel A Status Byte 3  
Channel A Status Byte 4  
Channel B Status Byte 0  
Channel B Status Byte 1  
Channel B Status Byte 2  
Channel B Status Byte 3  
Channel B Status Byte 4  
AC0[7]  
AC1[7]  
AC2[7]  
AC3[7]  
AC4[7]  
BC0[7]  
BC1[7]  
BC2[7]  
BC3[7]  
BC4[7]  
AC0[6]  
AC1[6]  
AC2[6]  
AC3[6]  
AC4[6]  
BC0[6]  
BC1[6]  
BC2[6]  
BC3[6]  
BC4[6]  
AC0[5]  
AC1[5]  
AC2[5]  
AC3[5]  
AC4[5]  
BC0[5]  
BC1[5]  
BC2[5]  
BC3[5]  
BC4[5]  
AC0[4]  
AC1[4]  
AC2[4]  
AC3[4]  
AC4[4]  
BC0[4]  
BC1[4]  
BC2[4]  
BC3[4]  
BC4[4]  
AC0[3]  
AC1[3]  
AC2[3]  
AC3[3]  
AC4[3]  
BC0[3]  
BC1[3]  
BC2[3]  
BC3[3]  
BC4[3]  
AC0[2]  
AC1[2]  
AC2[2]  
AC3[2]  
AC4[2]  
BC0[2]  
BC1[2]  
BC2[2]  
BC3[2]  
BC4[2]  
AC0[1]  
AC1[1]  
AC2[1]  
AC3[1]  
AC4[1]  
BC0[1]  
BC1[1]  
BC2[1]  
BC3[1]  
BC4[1]  
AC0[0]  
AC1[0]  
AC2[0]  
AC3[0]  
AC4[0]  
BC0[0]  
BC1[0]  
BC2[0]  
BC3[0]  
BC4[0]  
14.18 IEC61937 PC/PD Burst Preamble (23h - 26h)  
23h  
24h  
25h  
26h  
Burst Preamble PC Byte 0  
Burst Preamble PC Byte 1  
Burst Preamble PD Byte 0  
Burst Preamble PD Byte 1  
PC0[7]  
PC1[7]  
PD0[7]  
PD1[7]  
PC0[6]  
PC1[6]  
PD0[6]  
PD1[6]  
PC0[5]  
PC1[5]  
PD0[5]  
PD1[5]  
PC0[4]  
PC0[4]  
PC0[4]  
PD1[4]  
PC0[3]  
PC1[3]  
PD0[3]  
PD1[3]  
PC0[2]  
PC1[2]  
PD0[2]  
PD1[2]  
PC0[1]  
PC1[1]  
PD0[1]  
PD1[1]  
PC0[0]  
PC1[0]  
PD0[0]  
PD1[0]  
14.19 CS8416 I.D. and Version Register (7Fh)  
7
6
5
4
3
2
1
0
ID3  
ID2  
ID1  
ID0  
VER3  
VER2  
VER1  
VER0  
ID[3:0] - ID code for the CS8416. Permanently set to 0010  
VER[3:0] = 0001 (revision A)  
VER[3:0] = 0010 (revision B)  
VER[3:0] = 0011 (revision C)  
VER[3:0] = 0111 (revision D)  
VER[3:0] = 1111 (revision E)  
DS578F3  
45  
CS8416  
15.HARDWARE MODE  
The CS8416 has a Hardware Mode that allows the device to operate without a microcontroller. Hardware Mode is  
selected by connecting the 47 kΩ pull-up/down resistor on the SDOUT pin to ground. Various pins change function  
in Hardware Mode, described in Section 15.2 “Hardware Mode Function Selection” on page 46.  
Hardware Mode data flow is shown in Figure 15. Audio data is input through the AES3/SPDIF receiver, and routed  
to the serial audio output port. The decoded C and U bits are also output, clocked at both edges of OLRCK (master  
mode only, see Figure 10).  
An error in the incoming audio stream will be indicated on the NV/RERR pin. This pin can be configured in one of  
two ways. If RERR is chosen by pulling NV/RERR to VL, the previous audio sample is held and passed to the serial  
audio output port if the validity bit is high, or a parity, bi-phase, confidence or PLL lock error occurs during the current  
sample. If NVERR is chosen by pulling NV/RERR to DGND, only parity, bi-phase, confidence or PLL lock error  
cause the previous audio sample to be held.  
15.1 Serial Audio Port Formats  
In Hardware Mode, only a limited number of alternative serial audio port formats are available. Table 5 de-  
fines the equivalent Software Mode bit settings for each format.  
The start-up options, shown in Table 4, allow choice of the serial audio output port as a master or slave, and  
the serial audio port format.  
RXSEL[1:0] TXSEL[1:0]  
OMCK  
TX  
RXP0  
RXP1  
TX Passthrough  
4:2  
MUX  
RXP2  
RXP3  
OLRCK  
OSCLK  
SDOUT  
Serial  
Audio  
Output  
AES3 Rx  
&
Decoder  
RXN  
De-emphasis  
Filter  
C
U
RMCK NV/RERR 96kHz  
AUDIO  
RCBL  
Power supply pins (VA, VD, and VL), AGND, DGND, the reset pin (RST) and the PLL filter pin (FILT)  
are omitted from the diagram. Please refer to the Typical Connection Diagram for connection details.  
Figure 15. Hardware Mode Data Flow  
15.2 Hardware Mode Function Selection  
Hardware Mode and several options for Hardware Mode are selected by pulling CS8416 pins up to VL or  
down to DGND through a 47 kΩ resistor. These settings are sensed immediately after RST is released. For  
46  
DS578F3  
CS8416  
each mode, every start-up option select pin (except for TX, which has an internal pull-down) MUST have an  
external pull-up or pull-down resistor as there are no internal pull-up or pull-down resistors for these startup  
conditions (set after reset).  
Pin Name  
SDOUT  
Pull Down to DGND Function  
Hardware Mode  
Pull Up to VL Function  
Software Mode  
RCBL  
AUDIO  
C
Serial Port Slave Mode  
Serial Port Master Mode  
Serial Format Select 1 (SFSEL1)=0  
Serial Format Select 0 (SFSEL0)=0  
RMCK Frequency=256*Fs  
Serial Format Select 1 (SFSEL1)=1  
Serial Format Select 0 (SFSEL0)=1  
RMCK Frequency=128*Fs  
U
TX  
Normal Phase Detector update rate.  
Emphasis Audio Match Off  
NVERR Selected  
Higher Phase Detector update rate.  
Emphasis Audio Match On  
RERR Selected  
96KHZ  
NV/RERR  
Table 4. Hardware Mode Start-Up Pin Conditions  
15.3 Hardware Mode Equivalent Register Settings  
Listed below are the equivalent values that the registers are set to in Hardware Mode.  
Control0 Register (00h)  
FSWCLK = 0  
PDUR = Set by TX pin pull-up/down after reset.  
TRUNC = 0  
Control1 Register (01h)  
SWCLK = Set to 1 if there a transition on OMCK after reset. Otherwise set to 0.  
MUTSAO = 0  
INT[1:0] = N/A.  
HOLD[1:0] = 00  
RMCKF = Set by U pin pull-up/down after reset.  
CHS = 0  
Control2 Register (02h)  
DETCI = N/A  
EMPH_CNTL[2] = set by 96KHZ pull-up/down after reset. See Figure 14 for the de-emphasis filter re-  
sponse.  
EMPH_CNTL[1:0] = 00  
GPO0SEL[3:0] = N/A  
Control3 Register (03h)  
GPO1SEL[3:0] = N/A  
GPO2SEL[3:0] = N/A  
DS578F3  
47  
CS8416  
Control4 Register (04h)  
RUN = 1  
RXD = 0  
RX_SEL[2] = 0  
RX_SEL[1:0] = RX_SEL[1:0] pins.  
TX_SEL[2] = 0  
TX_SEL[1:0] = TX_SEL[1:0] pins.  
Serial Audio Data Format Register (05h)  
SOMS = set by RCBL pull-up/down after reset.  
bits[6:0] = Set by pull-up/down on AUDIO & C after reset. See Table 5 for bit settings.  
Serial Format Select [1:0]  
00 (Left-Justified 24-bit)  
01(I²S 24 bit)  
SOSF  
SORES[1:0] SOJUST SODEL SOSPOL SOLRPOL  
0
0
0
0
00  
00  
00  
11  
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
10 (Right-Justified 24-bit)  
11 (Direct AES3)  
Table 5. Hardware Mode Serial Audio Format Select  
Receiver Error Mask register (06h)  
QCRCM = 0  
CRCM = 0  
UNLOCKM = 1  
CONFM = 1  
BIPM = 1  
PARM = 1  
VM = set by NV/RERR pull-up/down after reset.  
Registers 07h through 7Fh do not have Hardware Mode equivalent settings.  
48  
DS578F3  
CS8416  
16.EXTERNAL AES3/SPDIF/IEC60958 RECEIVER COMPONENTS  
16.1 AES3 Receiver External Components  
The CS8416 AES3 receiver is designed to accept both the professional and consumer interfaces. The dig-  
ital audio specifications for professional use call for a balanced receiver, using XLR connectors, with  
110 Ω ± 20% impedance. The XLR connector on the receiver should have female pins with a male shell.  
Since the receiver has a very high input impedance, a 110 Ω resistor should be placed across the receiver  
terminals to match the line impedance, as shown in Figures 16 and 17. Although transformers are not re-  
quired by the AES specification, they are strongly recommended.  
If some isolation is desired without the use of transformers, a 0.01 μF capacitor should be placed in series  
with each input pin (RXP[7:0] and RXN) as shown in Figure 17. However, if a transformer is not used, high  
frequency energy could be coupled into the receiver, causing degradation in analog performance.  
Figures 16 and 17 show an optional (recommended) DC blocking capacitor (0.1 μF to 0.47 μF) in series with  
the cable input. This improves the robustness of the receiver, preventing the saturation of the transformer,  
or any DC current flow, if a DC voltage is present on the cable.  
In the case of the consumer interface, the standards call for an unbalanced circuit having a receiver imped-  
ance of 75 Ω ±5%. The connector for the consumer interface is an RCA phono socket. The receiver circuit  
for the consumer interface is shown in Figure 18. An implementation of the Input S/PDIF Multiplexer using  
the consumer interface is shown in Figure 19.  
The circuit shown in Figure 20 may be used when external RS422 receivers, optical receivers or other  
TTL/CMOS logic outputs drive the CS8416 receiver section.  
In the configuration of systems, it is important to avoid ground loops and DC current flowing down the shield  
of the cable that could result when boxes with different ground potentials are connected. Generally, it is  
good practice to ground the shield to the chassis of the transmitting unit, and connect the shield through a  
capacitor to chassis ground at the receiver. However, in some cases it is advantageous to have the ground  
of two boxes held to the same potential, and the cable shield might be depended upon to make that electrical  
connection. Generally, it is a good idea to provide the option of grounding or capacitively coupling the shield  
to the chassis.  
16.2 Isolating Transformer Requirements  
Please refer to the application note AN134: AES and SPDIF Recommended Transformers for resources on  
transformer selection.  
6
CS841  
CS8416  
RXP0  
XLR  
XLR  
* See Text  
0.01 μF  
0.01 μF  
* See Text  
RXP0  
RXN  
110 Ω  
Twisted  
Pair  
110 Ω  
Twisted  
Pair  
110 Ω  
110 Ω  
RXN  
1
1
Figure 16. Professional Input Circuit  
Figure 17. Transformerless Professional Input Circuit  
DS578F3  
49  
CS8416  
.01μF  
.01μF  
C S 8416  
R X P 7  
75 Ω  
75 Ω  
C oax  
CS8416  
RXP0  
R X P 6  
0.01 μF  
75 Ω  
C oax  
RCA Phono  
75 Ω  
.
.
.
75 Ω  
75 Ω  
.01μF  
75 Ω  
R X P 0  
75 Ω  
C oax  
Coax  
RXN  
0.01 μF  
R X N  
.01μF  
Figure 18. Consumer Input Circuit  
Figure 19. S/PDIF MUX Input Circuit  
TTL/CMOS  
Gate  
CS8416  
RXP0  
0.01 μF  
RXN  
0.01 μF  
Figure 20. TTL/CMOS Input Circuit  
50  
DS578F3  
CS8416  
17.CHANNEL STATUS BUFFER MANAGEMENT  
17.1 AES3 Channel Status (C) Bit Management  
The CS8416 contains sufficient RAM to store the first 5 bytes of C data for both A and B channels  
(5 x 2 x 8 = 80 bits). The user may read from this buffer’s RAM through the control port.  
The buffering scheme involves two buffers, named D and E, as shown in Figure 21. The MSB of each byte  
represents the first bit in the serial C data stream. For example, the MSB of byte 0 (which is at control port  
address 19h) is the consumer/professional bit for channel status block A.  
The first buffer (D) accepts incoming C data from the AES receiver. The 2nd buffer (E) accepts entire blocks  
of data from the D buffer. The E buffer is also accessible from the control port, allowing reading of the first  
five bytes of C data.  
The complete C data may be obtained through the C pin in Hardware Mode and through one of the GPO  
pins in Software Mode. The C data is serially shifted out of the CS8416 clocked by the rising and falling  
edges of OLRCK.  
17.2 Accessing the E Buffer  
The user can monitor the incoming data by reading the E buffer, which is mapped into the register space of  
the CS8416, through the control port.  
The user can configure the interrupt enable register to cause interrupts to occur whenever D to E buffer  
transfers occur. This allows determination of the allowable time periods to interact with the E buffer.  
Also provided is a D to E inhibit bit in the Control2 register (02h). This may be used whenever “long” control  
port interactions are occurring or for debugging purposes.  
A flowchart for reading the E buffer is shown in Figure 22. Since a D to E interrupt occurs just after reading,  
there is a substantial time interval until the next D to E transfer (approximately 192 frames worth of time).  
This is usually enough time to access the E data without having to inhibit the next transfer.  
17.2.1 Serial Copy Management System (SCMS)  
In Software Mode, the CS8416 allows read access to all the channel status bits. For consumer mode  
SCMS compliance, the host microcontroller needs to read and interpret the Category Code, Copy bit and  
L bit appropriately.  
In Hardware Mode, the SCMS protocol can be followed by either using the COPY and ORIG output pins,  
or by using the C bit serial output pin. These options are documented in Section 15. “Hardware Mode” on  
page 46.  
DS578F3  
51  
CS8416  
A
B
8-bits 8-bits  
Control  
Port  
Received  
Data  
Buffer  
5 words  
From  
AES3  
Receiver  
Registers  
19 words  
D
E
C Data Serial Output  
Figure 21. Channel Status Data Buffer Structure  
D to E interrupt occurs  
Optionally set D to E inhibit  
Read E data  
If set, clear D to E inhibit  
Return  
Figure 22. Flowchart for Reading the E Buffer  
52  
DS578F3  
CS8416  
18.PLL FILTER  
18.1 General  
An on-chip Phase Locked Loop (PLL) is used to recover the clock from the incoming data stream. Figure 23  
is a simplified diagram of the PLL. When the PLL is locked to an bi-phase encoded input stream, it is updat-  
ed at each preamble in the bi-phase encoded stream. This occurs at twice the sampling frequency, FS.  
There are some applications where low jitter in the recovered clock, presented on the RMCK pin, is impor-  
tant. For this reason, the PLL has been designed to have good jitter attenuation characteristics, as shown  
in Figure 25. In addition, the PLL has been designed to only use the preambles (PDUR=0) of the bi-phase  
encoded stream to provide lock update information to the PLL. This results in the PLL being immune to data  
dependent jitter affects because the preambles do not vary with the data.  
The PLL has the ability to lock onto a wide range of input sample rates with no external component changes.  
If the sample rate of the input subsequently changes, for example in a varispeed application, the PLL will  
only track up to ±12.5% from the nominal center sample rate. The nominal center sample rate is the sample  
rate that the PLL first locks onto upon application of an bi-phase encoded data stream or after enabling the  
CS8416 clocks by setting the RUN control bit. If the 12.5% sample rate limit is exceeded, the PLL will return  
to its wide lock range mode and re-acquire a new nominal center sample rate.  
INPUT  
Phase  
RMCK  
Comparator  
VCO  
and Charge Pump  
RFLT  
CRIP  
CFLT  
÷N  
Figure 23. PLL Block Diagram  
18.2 External Filter Components  
18.2.1 General  
The PLL behavior is affected by the external filter component values. Figures 5 and 6 shows the recom-  
mended configuration of the two capacitors and one resistor that comprise the PLL filter. In Table 6, the  
component values shown have a high corner frequency jitter attenuation curve, take a short time to lock,  
and offer good output jitter performance. Lock times are worst case for an F