欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • CY7C1380C-133
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • CY7C1380C-133AC图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • CY7C1380C-133AC 现货库存
  • 数量11500 
  • 厂家CYPRESS 
  • 封装QFP 
  • 批号24+ 
  • 原装有原厂证明,深圳有存货,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • CY7C1380C-133AC图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • CY7C1380C-133AC 现货库存
  • 数量3395 
  • 厂家CYPRESS 
  • 封装QFP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • CY7C1380C-133AC图
  • 深圳市西昂特科技有限公司

     该会员已使用本站13年以上
  • CY7C1380C-133AC
  • 数量6000 
  • 厂家CYPRESS 
  • 封装QFP 
  • 批号2010+ 
  • 全新原装现货特价
  • QQ:2881291855QQ:2881291855 复制
    QQ:1158574719QQ:1158574719 复制
  • 0755-82524647 QQ:2881291855QQ:1158574719
  • CY7C1380C-1330AC-100图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CY7C1380C-1330AC-100
  • 数量500 
  • 厂家 
  • 封装QFP 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • CY7C1380C-133AC图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • CY7C1380C-133AC
  • 数量5321 
  • 厂家CYPREES 
  • 封装QFP 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • CY7C1380C-133AC图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • CY7C1380C-133AC
  • 数量22304 
  • 厂家CY 
  • 封装QFP 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • CY7C1380C-133AC图
  • 集好芯城

     该会员已使用本站13年以上
  • CY7C1380C-133AC
  • 数量15488 
  • 厂家CYPRESS/赛普拉斯 
  • 封装TQFP100 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • CY7C1380C-133AC图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • CY7C1380C-133AC
  • 数量13600 
  • 厂家CYPRESS 
  • 封装原厂原封装 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • CY7C1380C-133/167AC图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • CY7C1380C-133/167AC
  • 数量
  • 厂家CYPRESS 
  • 封装面议 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • CY7C1380C-133AC图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • CY7C1380C-133AC
  • 数量9868 
  • 厂家CYPRESS【原装正品专卖★价格最低】 
  • 封装QFP 
  • 批号▊ NEW ▊ 
  • ◆★█【专注原装正品现货】★价格最低★!量大可定!欢迎惠顾!(长期高价回收全新原装正品电子元器件)
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • CY7C1380C-133图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • CY7C1380C-133
  • 数量4930 
  • 厂家CYPRESS 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • CY7C1380C-133AC图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • CY7C1380C-133AC
  • 数量5000 
  • 厂家CYPRESS 
  • 封装TQFP100 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • CY7C1380C-133AC图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • CY7C1380C-133AC
  • 数量865000 
  • 厂家CYPRESS/赛普拉斯 
  • 封装TQFP-100 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • CY7C1380C-133AC图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • CY7C1380C-133AC
  • 数量3872 
  • 厂家CYPRESS 
  • 封装QFP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • CY7C1380C-133AC图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • CY7C1380C-133AC
  • 数量3827 
  • 厂家Cypress 
  • 封装100-LQFP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • CY7C1380C-133AC图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • CY7C1380C-133AC
  • 数量99000 
  • 厂家CY 
  • 封装QFP 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • CY7C1380C-133AC图
  • 深圳市和谐世家电子有限公司

     该会员已使用本站13年以上
  • CY7C1380C-133AC
  • 数量1380 
  • 厂家Cypress Semiconductor Corp 
  • 封装100-TQFP(14x20) 
  • 批号最新批号 
  • 只做进口原装
  • QQ:1158840606QQ:1158840606 复制
  • 0755+84501032 QQ:1158840606
  • CY7C1380C-133AC图
  • 上海振基实业有限公司

     该会员已使用本站13年以上
  • CY7C1380C-133AC
  • 数量131 
  • 厂家CRYSTAL 
  • 封装QFP 
  • 批号23+ 
  • 全新原装现货/另有约30万种现货,欢迎来电!
  • QQ:330263063QQ:330263063 复制
    QQ:1985476892QQ:1985476892 复制
  • 021-59159268 QQ:330263063QQ:1985476892
  • CY7C1380C-133AC图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • CY7C1380C-133AC
  • 数量85000 
  • 厂家CYPRESS/赛普拉斯 
  • 封装TQFP-100 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • CY7C1380C-133AC图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • CY7C1380C-133AC
  • 数量1440 
  • 厂家CY 
  • 封装QFP 
  • 批号403 
  • 原装现货13661385246
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • CY7C1380C-133AC图
  • 深圳市赛科世纪电子有限公司

     该会员已使用本站11年以上
  • CY7C1380C-133AC
  • 数量81361 
  • 厂家CYPRESS 
  • 封装QFP 
  • 批号22+ 
  • 代理新到原装现货,特价,13006691066
  • QQ:124766973QQ:124766973 复制
  • 13006691066 QQ:124766973
  • CY7C1380C-133AC图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • CY7C1380C-133AC
  • 数量17 
  • 厂家CYPRESS 
  • 封装TQFP-100 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • CY7C1380C-133AC图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • CY7C1380C-133AC
  • 数量20000 
  • 厂家CYPRESS 
  • 封装TQFP-100 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • CY7C1380C-133C图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • CY7C1380C-133C
  • 数量22000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • CY7C1380C-133AC图
  • 华富芯(深圳)智能科技有限公司

     该会员已使用本站7年以上
  • CY7C1380C-133AC
  • 数量15000 
  • 厂家CYPRESS/赛普拉斯 
  • 封装TQFP-100 
  • 批号22+ 
  • 大量原装正品现货热卖,价格优势,支持实单
  • QQ:1368960024QQ:1368960024 复制
  • 0755-23482756 QQ:1368960024
  • CY7C1380C-133图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • CY7C1380C-133
  • 数量22000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • CY7C1380C-133/167AC图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • CY7C1380C-133/167AC
  • 数量22000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • CY7C1380C-1330AC-100图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • CY7C1380C-1330AC-100
  • 数量22000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • CY7C1380C-133AC图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • CY7C1380C-133AC
  • 数量22000 
  • 厂家Cypress Semiconductor Corp 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • CY7C1380C-133AC/AS7C33512PFS36A-166TQC图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • CY7C1380C-133AC/AS7C33512PFS36A-166TQC
  • 数量22000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • CY7C1380C-133AC图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • CY7C1380C-133AC
  • 数量1001 
  • 厂家CYPRESS 
  • 封装QFP-100 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97671956QQ:97671956 复制
  • 171-4729-1886(微信同号) QQ:97671956

产品型号CY7C1380C-133AC的Datasheet PDF文件预览

CY7C1380C  
CY7C1382C  
18-Mb (512K x 36/1M x 18) Pipelined SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
• Available speed grades are 250, 225, 200,166 and  
133MHz  
• Registered inputs and outputs for pipelined operation  
• 3.3V core power supply  
• 2.5V / 3.3V I/O operation  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
— 2.8 ns (for 225-MHz device)  
— 3.0 ns (for 200-MHz device)  
The CY7C1380C/CY7C1382C SRAM integrates 524,288 x 36  
and 1,048,576 x 18 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (  
), depth-expansion Chip  
CE1  
Enables (CE and  
[2]), Burst Control inputs (  
,
,
CE3  
), Write Enables (  
2
ADSC ADSP  
, and  
BWX  
), and Global Write  
and  
ADV  
BWE  
(
). Asynchronous inputs include the Output Enable (  
)
OE  
GW  
and the ZZ pin.  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor ( ) or  
— 3.4 ns (for 166-MHz device)  
— 4.2 ns (for 133-MHz device)  
ADSP  
) are active. Subsequent  
Address Strobe Controller (  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
• Provide high-performance 3-1-1-1 access rate  
User-selectable burst counter supporting Intel®  
ADV  
Pentium interleaved or linear burst sequences  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to two or four bytes wide as  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
controlled by the byte write control inputs.  
when active  
GW  
• Single Cycle Chip Deselect  
• Offered in JEDEC-standard 100-pin TQFP, 119-ball BGA  
and 165-Ball fBGA packages  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
causes all bytes to be written.  
LOW  
The CY7C1380C/CY7C1382C operates from a +3.3V core  
power supply while all outputs may operate with either a +2.5  
or +3.3V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
250 MHz  
225 MHz  
2.8  
200 MHz  
3.0  
167 MHz  
3.4  
133 MHz  
4.2  
Unit  
ns  
Maximum Access Time  
2.6  
350  
70  
Maximum Operating Current  
325  
300  
275  
245  
mA  
mA  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
70  
70  
70  
70  
Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE , CE are for TQFP and 165 fBGA package only. 119 BGA is offered only in 1 Chip Enable.  
3
2
Cypress Semiconductor Corporation  
Document #: 38-05237 Rev. *D  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised February 26, 2004  
CY7C1380C  
CY7C1382C  
1
Logic Block Diagram – CY7C1380C (512K x 36)  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
Q0  
LOGIC  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D ,DQPD  
DQ  
BYTE  
WRITE DRIVER  
D ,DQPD  
BW  
D
DQC ,DQP  
BYTE  
WRITE DRIVER  
C
DQC ,DQP  
BYTE  
WRITE REGISTER  
C
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
MEMORY  
ARRAY  
DQ s  
SENSE  
AMPS  
DQPA  
DQB ,DQP  
BYTE  
WRITE DRIVER  
B
E
DQB ,DQP  
BYTE  
WRITE REGISTER  
B
DQP  
DQP  
B
C
BW  
BW  
B
A
DQPD  
DQ  
BYTE  
WRITE DRIVER  
A ,DQPA  
DQ  
A ,DQPA  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1382C (1M x 18)  
ADDRESS  
A0, A1, A  
REGISTER  
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB,DQP  
B
DQB,DQP  
WRITE REGISTER  
B
WRITE DRIVER  
OUTPUT  
BUFFERS  
BW  
B
A
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQA,DQP  
A
E
DQA,DQP  
WRITE REGISTER  
A
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
PIPELINED  
ENABLE  
CE3  
OE  
ZZ  
SLEEP  
CONTROL  
Document #: 38-05237 Rev. *D  
Page 2 of 36  
CY7C1380C  
CY7C1382C  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
1
DQP  
B
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQP  
DQ  
DQ  
VSSQ  
VDDQ  
DQ  
DQ  
VSS  
NC  
VDD  
ZZ  
DQ  
DQ  
VDDQ  
VSSQ  
DQ  
DQ  
NC  
NC  
VSSQ  
VDDQ  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
DQB  
2
3
4
5
6
7
8
9
DQc  
VDDQ  
VSSQ  
DQB  
VDDQ  
VSSQ  
DQ  
DQ  
DQ  
DQ  
C
DQB  
DQB  
DQB  
DQB  
C
NC  
A
C
DQB  
A
C
DQB  
A
9
VSSQ  
VDDQ  
VSSQ  
VDDQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSSQ  
VDDQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DQ  
DQC  
NC  
VDD  
NC  
VSS  
DQD  
DQD  
VDDQ  
VSSQ  
C
DQB  
DQB  
A
DQB  
DQB  
A
VSS  
NC  
VDD  
ZZ  
NC  
VDD  
NC  
CY7C1382C  
(1M x 18)  
CY7C1380C  
(512K X 36)  
VSS  
DQA  
DQB  
A
DQA  
DQB  
A
VDDQ  
VSSQ  
VDDQ  
VSSQ  
DQ  
DQ  
DQ  
DQ  
D
DQA  
DQA  
DQA  
DQA  
DQ  
DQ  
DQP  
B
B
B
A
D
A
D
D
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
DQ  
DQ  
DQP  
D
DQA  
D
DQA  
NC  
NC  
D
DQP  
A
Document #: 38-05237 Rev. *D  
Page 3 of 36  
CY7C1380C  
CY7C1382C  
Pin Configurations (continued)  
119-ball BGA (1 Chip Enable with JTAG)  
CY7C1380C (512K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
VDDQ  
A
ADSP  
ADSC  
VDD  
B
C
NC  
NC  
A
A
A
A
A
A
A
A
NC  
NC  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
D
E
F
CE1  
DQC  
DQB  
VDDQ  
OE  
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
G
H
J
ADV  
GW  
VDD  
DQD  
VSS  
CLK  
NC  
VSS  
K
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
P
R
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
MODE  
VDD  
T
NC  
NC / 72M  
TMS  
A
A
A
NC / 36M  
NC  
ZZ  
U
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
CY7C1382C (512K x 18)  
2
A
1
3
A
4
5
A
6
A
7
A
B
C
D
E
F
VDDQ  
NC  
VDDQ  
NC  
ADSP  
A
A
A
A
ADSC  
VDD  
NC  
A
A
A
A
NC  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
NC  
DQA  
VDDQ  
CE1  
VDDQ  
OE  
G
H
J
NC  
DQB  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
DQB  
VDDQ  
GW  
VDD  
NC  
DQB  
VSS  
CLK  
NC  
VSS  
NC  
DQA  
K
L
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
DQA  
NC  
NC  
VDDQ  
NC  
BWA  
VSS  
M
N
P
BWE  
A1  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
A
A
MODE  
A
VDD  
NC / 36M  
TCK  
NC  
A
A
A
NC  
ZZ  
NC / 72M  
VDDQ  
U
TMS  
TDI  
TDO  
NC  
VDDQ  
Document #: 38-05237 Rev. *D  
Page 4 of 36  
CY7C1380C  
CY7C1382C  
Pin Configurations (continued)  
165-ball fBGA  
CY7C1380C (512K x 36)  
1
NC / 288M  
NC  
2
3
4
5
6
7
8
9
10  
A
11  
NC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC / 144M  
DQPB  
DQB  
OE  
VSS  
VDD  
DQPC  
DQC  
NC  
NC  
DQC  
VSS  
DQB  
DQC  
DQC  
DQC  
DQC  
VSS  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC / 72M  
TDI  
A1  
TDO  
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1382C (1M x 18)  
1
NC / 288M  
NC  
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
A
BWB  
NC  
CE  
CE1  
CE2  
BWE  
GW  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
A
NC / 144M  
DQPA  
DQA  
B
C
D
NC  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC  
NC  
NC  
DQB  
VSS  
VDD  
NC  
DQB  
DQB  
DQB  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC / 72M  
TDI  
A1  
TDO  
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05237 Rev. *D  
Page 5 of 36  
CY7C1380C  
CY7C1382C  
CY7C1380C–Pin Definitions  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Inputs used to select one of the  
A0, A1 , A  
37,36,32,  
33,34,35,  
42,43,44,45,  
46,47,48,  
49,50,81,  
82,99,100  
P4,N4,  
A2,B2,  
C2,R2,  
R6,P6,A2,  
A10,B2,  
B10,N6,P3,P4,  
P8,P9,P10,  
Input-  
Synchronous 256Kaddresslocations. Sampledattherising  
edge of the CLK if or is active  
ADSP ADSC  
LOW, and CE1, CE2, and CE3 [2]are sampled  
active. A1: A0 are fed to the two-bit counter.  
A3,B3,C3,  
T3,T4,A5,B5, P11,R3,R4,R8,  
C5,  
T5,A6,B6,C6,  
R6  
.
R9,R10,R11  
93,94,95,  
96  
L5,G5,  
G3,L3  
B5,A5,A4,  
B4  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW.  
Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
BWA,BWB  
BWC,BWD  
H4  
B7  
Input-  
Global Write Enable Input, active LOW.  
88  
GW  
Synchronous When asserted LOW on the rising edge of CLK,  
a global write is conducted (ALL bytes are  
written, regardless of the values on BWX and  
BWE).  
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW. Sam-  
BWE  
CLK  
Synchronous pled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous  
inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW,  
during a burst operation.  
98  
E4  
A3  
Input-  
Chip Enable 1 Input, active LOW. Sampled on  
CE1  
Synchronous the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device.  
ADSP is ignored if CE1 is HIGH.  
[2]  
CE2  
97  
92  
-
-
B3  
A6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled  
Synchronous on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on  
[2]  
CE3  
Synchronous the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.Not  
available for AJ package version.  
Not  
connected for BGA. Where referenced, CE3 is  
assumed active throughout this document for  
BGA.  
86  
83  
F4  
B8  
A9  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchronous LOW. Controls the direction of the I/O pins.  
When LOW, the I/O pins behave as outputs.  
When deasserted HIGH, I/O pins are tri-stated,  
and act as input data pins. OE is masked during  
the first clock of a read cycle when emerging  
from a deselected state.  
G4  
Input-  
Advance Input signal, sampled on the rising  
ADV  
Synchronous edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst  
cycle.  
Document #: 38-05237 Rev. *D  
Page 6 of 36  
CY7C1380C  
CY7C1382C  
CY7C1380C–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Strobe from Processor, sampled  
84  
A4  
B9  
Input-  
ADSP  
Synchronous on therisingedgeof CLK, activeLOW. When  
asserted LOW, addresses presented to the  
device are captured in the address registers.  
A1: A0 are also loaded into the burst counter.  
When ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when  
CE1 is deasserted HIGH.  
B4  
T7  
A8  
Input-  
AddressStrobefromController, sampledon  
85  
64  
ADSC  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the  
device are captured in the address registers.  
A1: A0 are also loaded into the burst counter.  
When ADSP and ADSC are both asserted, only  
ADSP is recognized.  
ZZ  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When  
Asynchronous asserted HIGH places the device in a  
non-time-critical “sleep” condition with data  
integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has an  
internal pull-down.  
52,53,56,  
57,58,59,  
62,63,68,  
69,72,73,  
74,75,78,  
79,2,3,6,7,8,9,  
12,13,18,19,22  
,
K6,L6,  
M6,N6,  
K7,L7,  
N7,P7,  
E6,F6,  
G6,H6,  
D7,E7,  
G7,H7,  
D1,E1,  
G1,H1,  
E2,F2,  
G2,H2,  
K1,L1,  
N1,P1,  
K2,L2,  
M2,N2,  
P6,D6,  
D2,P2  
M11,L11,  
K11,J11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they  
DQs, DQPs  
Synchronous feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs,  
they deliver the data contained in the memory  
location specified by the addresses presented  
J10,K10,  
L10,M10,  
D10,E10,  
F10,G10,  
D11,E11,  
F11,G11,  
D1,E1,F1,  
G1,D2,E2,F2,  
G2,J1,  
during the previous  
clock rise of the read cycle.  
The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQs and DQPX are  
placed in a tri-state condition.  
23,24,25,  
28,29,51,  
80,1,30  
K1,L1,M1,  
J2,K2,L2,  
M2,N11,  
C11,C1,N1  
VDD  
15,41,65,  
91  
J2,C4,J4,R4, D4,D8,E4,E8, Power Supply Power supply inputs to the core of the de-  
J6  
F4,F8,  
G4,G8,H4,H8,  
J4,J8,  
vice.  
K4,K8,L4,  
L8,M4,M8  
VSS  
17,40,67,  
90  
D3,E3,  
F3,H3,  
K3,M3,  
N3,P3,  
D5,E5,  
F5,H5,  
K5,M5,  
N5,P5  
C4,C5,C6,C7,  
C8,D5,D6,D7,  
E5,E6,E7,F5,  
F6,F7,G5,G6,  
G7,H2,H5,H6,  
H7,J5,J6,J7,  
K5,K6,K7,  
Ground  
Ground for the core of the device.  
L5,L6,L7,  
M5,M6,M7,N4,  
N8  
Document #: 38-05237 Rev. *D  
Page 7 of 36  
CY7C1380C  
CY7C1382C  
CY7C1380C–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
VSSQ  
5,10,21,26,55,  
60,71,  
-
-
I/O Ground Ground for the I/O circuitry.  
76  
VDDQ  
4,11,20,27,54, A1,F1,J1,M1, C3,C9,D3,D9,  
I/O Power  
Supply  
Power supply for the I/O circuitry.  
61,70,  
77  
U1,  
A7,F7,J7,M7,  
U7  
E3,E9,F3,F9,G  
3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,N3,  
N9  
MODE  
31  
R3  
R1  
Input-  
Static  
Selects Burst Order. When tied to GND  
selectslinearburstsequence. WhentiedtoVDD  
or left floating selects interleaved burst  
sequence. This is a strap pin and should remain  
static during device operation. Mode Pin has an  
internal pull-up.  
TDO  
TDI  
-
-
-
-
U5  
U3  
U2  
P7  
P5  
R5  
JTAG serial Serial data-out to the JTAG circuit. Delivers  
output data on the negative edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin should be  
disconnected. This pin is not available onTQFP  
packages.  
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be discon-  
nected or connected to VDD. This pin is not  
available on TQFP packages.  
TMS  
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be discon-  
nected or connected to VDD. This pin is not  
available on TQFP packages.  
TCK  
NC  
U4  
R7  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG  
feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on  
TQFP packages.  
14,16,66,  
39,38  
B1,C1,  
A11,B1,C2,C1  
-
No Connects. Not internally connected to the  
die  
R1,T1,T2,J3, 0,H1,H3,H9,  
D4, H10,  
L4,J5,R5,6T, N2,N5,N7,N10  
6U,  
B7,C7,  
R7  
,P1,A1,B11,P2  
,R2,N6  
Document #: 38-05237 Rev. *D  
Page 8 of 36  
CY7C1380C  
CY7C1382C  
CY7C1382C:Pin Definitions  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Inputs used to select one of the 512K  
A0, A1 , A  
37,36,32,  
33,34,35,  
42,43,44,  
45,46,47,  
48,49,50,  
80,81,82,  
99,100  
P4,N4,  
A2,B2,  
C2,R2,  
T2,A3,  
B3,C3,  
T3,A5,  
B5,C5,  
T5,A6,  
B6,C6,  
R6,T6  
R6,P6,A2,  
A10,A11,  
B2,B10,P3,P4,  
N6,P8,P9,  
P10,P11,  
R3,R4,R8,R9,  
R10,  
Input-  
Synchronous address locations. Sampled at the rising edge of  
the CLK if or is active LOW, and CE ,  
ADSP ADSC  
CE2, and CE3 are sampled active. A1: A0 are fed  
to the two-bit counter.  
1
.
R11  
93,94  
88  
G3,L5  
B5,A4  
B7  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified  
BWA,BWB  
GW  
with BWE to conduct byte writes to the SRAM.  
.
Sampled on the rising edge of CLK  
H4  
Input-  
Global Write Enable Input, active LOW. When  
Synchronous asserted LOW on the rising edge of CLK, a global  
write is conducted (ALL bytes are written,  
regardless of the values on BWX and BWE).  
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW. Sampled  
BWE  
CLK  
Synchronous on the rising edge of CLK. This signal must be  
asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous  
inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a  
burst operation.  
98  
E4  
A3  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the  
CE1  
Synchronous rising edge of CLK. Used in conjunction with CE2  
and CE3 to select/deselect the device. ADSP is  
ignored if CE1 is HIGH.  
[2]  
CE2  
97  
92  
-
-
B3  
A6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on  
Synchronous the rising edge of CLK. Used in conjunction with  
CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the  
[2]  
CE3  
Synchronous rising edge of CLK. Used in conjunction with CE1  
andCE2 toselect/deselectthedevice. Notavailable  
for AJ package version.  
Not connected for BGA.  
Where referenced, CE3 is assumed active  
throughout this document for BGA.  
86  
83  
F4  
B8  
A9  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchronous LOW. Controls the direction of the I/O pins. When  
LOW, the I/O pins behave as outputs. When  
deasserted HIGH, I/O pins are tri-stated, and act as  
input data pins. OE is masked during the first clock  
of a read cycle when emerging from a deselected  
state.  
G4  
Input-  
Advance Input signal, sampled on the rising  
ADV  
Synchronous edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst  
cycle.  
Document #: 38-05237 Rev. *D  
Page 9 of 36  
CY7C1380C  
CY7C1382C  
CY7C1382C:Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Strobe from Processor, sampled on  
84  
A4  
B9  
Input-  
ADSP  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device  
are captured in the address registers. A1: A0 are  
also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ASDP is ignored when CE1 is deasserted HIGH.  
P4  
T7  
A8  
Input-  
AddressStrobefromController, sampledonthe  
85  
64  
ADSC  
Synchronous rising edge of CLK, active LOW. When asserted  
LOW, addresses presented to the device are  
captured in the address registers. A1: A0 are also  
loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ZZ  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When asserted  
Asynchronous HIGH places the device in a non-time-critical  
“sleep” condition with data integrity preserved. For  
normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull-down.  
58,59,62,  
63,68,69,  
72,73,8,9,  
12,13,18,  
19,22,23,  
74,24  
P7,K7,  
G7,E7,  
F6,H6,L6,N6,  
D1,  
J10,K10,  
L10,M10,  
D11,E11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed  
DQs,  
DQPs  
Synchronous into an on-chip data register that is triggered by the  
rising edge of CLK. As outputs, they deliver the data  
contained in the memory location specified by the  
F11,G11,J1,K1  
,L1,M1,D2,E2,  
F2,  
H1,L1,  
N1,E2,  
G2,K2,  
M2,D6,  
P2  
addresses presented during the previous  
clock rise  
of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the  
pins behave as outputs. When HIGH, DQs and  
DQPX are placed in a tri-state condition.  
G2,C11,N1  
VDD  
15,41,65,  
91  
C4,J2,J4,J6, D4,D8,E4,E8, Power Supply Power supply inputs to the core of the device.  
R4  
F4,F8,  
G4,G8,H4,  
H8,J4,J8,  
K4,K8,L4,  
L8,M4,M8  
VSS  
17,40,67,  
90  
D3,D5,  
H2,C4,C5,C6,  
Ground  
Ground for the core of the device.  
E5,E3,F3,F5, C7,C8,D5,D6,  
G5,  
H3,H5,  
K3,K5,L3,M3,  
M5,  
D7,E5,E6,E7,  
F5,F6,F7,  
G5,G6,G7,  
H5,H6,H7,J5,J  
6,J7,  
K5,K6,K7,  
L5,L6,L7,  
M5,M6,M7,N4,  
N8  
N3,N5,  
P3,P5  
VSSQ  
5,10,21,26,55,  
60,71,  
-
-
I/O Ground Ground for the I/O circuitry.  
76  
Document #: 38-05237 Rev. *D  
Page 10 of 36  
CY7C1380C  
CY7C1382C  
CY7C1382C:Pin Definitions (continued)  
Name  
VDDQ  
TQFP  
BGA  
fBGA  
I/O  
Description  
4,11,20,27,54, A1,A7,F1,F7, C3,C9,D3,D9, I/O Power Sup- Power supply for the I/O circuitry.  
61,70,  
77  
J1,J7,M1,M7,  
U1,U7  
E3,E9,  
F3,F9,G3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,N3,  
N9  
ply  
MODE  
TDO  
TDI  
31  
R3  
U5  
U3  
R1  
P7  
P5  
Input-  
Static  
Selects Burst Order. When tied to GND selects  
linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is  
a strap pin and should remain static during device  
operation. Mode Pin has an internal pull-up.  
-
JTAG serial Serial data-out to the JTAG circuit. Delivers data  
output on the negative edge of TCK. If the JTAG feature is  
Synchronous not being utilized, this pin should be left uncon-  
nected. This pin is not available on TQFP  
packages.  
-
JTAG serial Serial data-In to the JTAGcircuit. Sampled on the  
input  
Synchronous utilized, this pin can be left floating or connected to  
DD through a pull up resistor. This pin is not avail-  
rising edge of TCK. If the JTAG feature is not being  
V
able on TQFP packages.  
TMS  
TCK  
NC  
-
-
U2  
U4  
R5  
R7  
JTAG serial Serial data-In to the JTAGcircuit. Sampled on the  
input  
rising edge of TCK. If the JTAG feature is not being  
Synchronous utilized, this pin can be disconnected or connected  
to VDD. This pin is not available on TQFP packages.  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG  
feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on TQFP  
packages.  
1,2,3,6,7,  
14,16,25,  
28,29,30,  
38,39,  
51,52,53,  
56,57,66,  
75,78,79,  
95,96  
B1,B7,  
C1,C7,  
D2,D4,  
D7,E1,  
E6,H2,  
F2,G1,  
G6,H7,  
J3,J5,K1,  
A5,B1,B4,  
C1,C2,C10,D1  
,D10,  
E1,E10,F1,  
F10,G1,  
G10,H1,H3,H9  
,H10,J2,J11,  
K2,  
-
No Connects. Not internally connected to the die.  
K6,L4,L2,L7, K11,L2,L1,M2,  
M6, M11,  
N2,L7,P1,P6, N2,N10,N5,N7  
R1,  
R5,R7,  
T1,T4,U6  
N11,P1,A1,  
B11,  
P2,R2  
Document #: 38-05237 Rev. *D  
Page 11 of 36  
CY7C1380C  
CY7C1382C  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 3.0ns  
(200-MHz device).  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The Write signals (GW, BWE, and BWX) and  
ADV inputs are ignored during this first cycle.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the Write operation is controlled by BWE and BWX  
signals. The CY7C1380C provides Byte Write capability that  
is described in the Write Cycle Descriptions table. Asserting  
the Byte Write Enable input (BWE) with the selected Byte  
Write (BWX) input, will selectively write to only the desired  
bytes. Bytes not selected during a Byte Write operation will  
remain unaltered. A synchronous self-timed Write mechanism  
has been provided to simplify the Write operations.  
The CY7C1380C supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Because the CY7C1380C is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQs inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deserted HIGH, (3) CE1, CE2, CE3 are all asserted active, and  
(4) the appropriate combination of the Write inputs (GW, BWE,  
and BWX) are asserted active to conduct a Write to the desired  
byte(s). ADSC-triggered Write accesses require a single clock  
cycle to complete. The address presented to A is loaded into  
the address register and the address advancement logic while  
being delivered to the memory array. The ADV input is ignored  
during this cycle. If a global Write is conducted, the data  
presented to the DQs is written into the corresponding address  
location in the memory core. If a Byte Write is conducted, only  
the selected bytes are written. Bytes not selected during a  
Byte Write operation will remain unaltered. A synchronous  
self-timed Write mechanism has been provided to simplify the  
Write operations.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deserted HIGH. ADSP is ignored if  
CE1 is HIGH. The address presented to the address inputs (A)  
is stored into the address advancement logic and the Address  
Register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 3.0 ns (200-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always tri-stated during the first cycle of the access. After the  
first cycle of the access, the outputs are controlled by the OE  
signal. Consecutive single Read cycles are supported. Once  
the SRAM is deselected at clock rise by the chip select and  
either ADSP or ADSC signals, its output will tri-state immedi-  
ately.  
Because the CY7C1380C is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQs inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Burst Sequences  
The CY7C1380C provides a two-bit wraparound counter, fed  
by A1: A0, that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
Document #: 38-05237 Rev. *D  
Page 12 of 36  
CY7C1380C  
CY7C1382C  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
the  
“sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
.
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
60mA  
2tCYC  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2V  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to snooze current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit snooze current  
ns  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
None  
CE2  
X
CE3  
WRITE  
CLK  
DQ  
CE1  
H
L
ZZ ADSP ADSC ADV  
OE  
X
X
X
X
X
X
L
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Snooze Mode,Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
None  
L
X
L
None  
L
L
H
H
X
L
None  
L
X
L
None  
X
L
X
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
H
H
H
H
H
X
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
X
X
H
X
X
X
H
H
H
Q
Next  
X
L
H
L
Next  
X
L
Q
Document #: 38-05237 Rev. *D  
Page 13 of 36  
CY7C1380C  
CY7C1382C  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
Next  
CE2  
X
CE3  
X
WRITE  
CLK  
DQ  
CE1  
ZZ ADSP ADSC ADV  
OE  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle,Suspend Burst  
H
L
L
L
L
L
L
L
L
L
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
L
L
H
H
L-H Tri-State  
Next  
X
H
X
X
H
H
X
H
X
X
L
L
X
X
L
L-H  
L-H  
L-H  
D
D
Q
Next  
X
X
L
Current  
Current  
Current  
Current  
Current  
Current  
X
X
H
H
H
H
H
H
H
H
H
H
L
X
X
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
Q
X
X
H
X
X
X
X
L-H  
L-H  
D
D
WRITE Cycle,Suspend Burst  
X
X
L
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals , BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
6. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .  
1
2
3
1
2
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the  
or with the assertion of  
. As a result,  
ADSC  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
is a  
OE  
OE  
ADSP  
don't care for the remainder of the write cycle  
8.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when  
is  
OE  
OE  
.
is active (LOW)  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
Truth Table for Read/Write[5]  
Function (CY7C1380C)  
Read  
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
GW  
H
BWE  
H
X
H
L
Read  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
Write Byte A – ( DQA and DQPA )  
Write Byte B – ( DQB and DQPB )  
Write Bytes B, A  
H
L
L
Write Byte C – ( DQC and DQPC )  
Write Bytes C, A  
H
H
L
H
L
L
Write Bytes C, B  
L
H
L
Write Bytes C, B, A  
Write Byte D – ( DQD and DQPD )  
Write Bytes D, A  
L
L
H
H
H
H
L
H
H
L
H
L
L
Write Bytes D, B  
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
H
L
L
L
L
Write All Bytes  
X
X
X
X
Truth Table for Read/Write[5]  
Function (CY7C1382C)  
Read  
BWB  
X
BWA  
GW  
H
BWE  
H
L
L
L
L
L
X
X
H
L
Read  
H
H
H
H
H
L
H
Write Byte A – ( DQA and DQPA )  
Write Byte B – ( DQB and DQPB )  
Write Bytes B, A  
H
L
H
L
L
Write All Bytes  
L
L
Write All Bytes  
X
X
Document #: 38-05237 Rev. *D  
Page 14 of 36  
CY7C1380C  
CY7C1382C  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1380C incorporates a serial boundary scan test  
access port (TAP). This port operates in accordance with IEEE  
Standard 1149.1-1990 but does not have the set of functions  
required for full 1149.1 compliance. These functions from the  
IEEE specification are excluded because their inclusion  
places an added delay in the critical speed path of the SRAM.  
Note that the TAP controller functions in a manner that does  
not conflict with the operation of other devices using 1149.1  
fully compliant TAPs. The TAP operates using  
JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure . TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1380C contains a TAP controller, instruction  
register, boundary scan register, bypass register, and ID  
register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
S
election  
TDI  
TDO  
Circuitr  
y
0
0
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Test Clock (TCK)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
Document #: 38-05237 Rev. *D  
Page 15 of 36  
CY7C1380C  
CY7C1382C  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The SRAM has a 75-bit-long  
register.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
Identification (ID) Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus  
hold time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Document #: 38-05237 Rev. *D  
Page 16 of 36  
CY7C1380C  
CY7C1382C  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
BYPASS  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the operating Range[9, 10]  
Parameter  
Symbol  
Min  
Max  
Units  
Clock  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
Output Times  
tTCYC  
tTF  
100  
ns  
MHz  
ns  
10  
20  
tTH  
40  
40  
tTL  
ns  
TCK Clock LOW to TDO Valid  
tTDOV  
tTDOX  
ns  
ns  
TCK Clock LOW to TDO Invalid  
Setup Times  
0
TMS Set-Up to TCK Clock Rise  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
Hold Times  
tTMSS  
tTDIS  
tCS  
10  
10  
10  
ns  
ns  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
tTMSH  
tTDIH  
tCH  
10  
10  
10  
ns  
ns  
ns  
Capture Hold after Clock Rise  
Notes:  
t
t
9. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns.  
R
F
Document #: 38-05237 Rev. *D  
Page 17 of 36  
CY7C1380C  
CY7C1382C  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ........ ........................................VSS to 3.3V  
Input rise and fall times...................... ..............................1ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels...............................................VSS to 2.5V  
Input rise and fall time ......................................................1ns  
Input timing reference levels................... ......................1.25V  
Output reference levels .................. ..............................1.25V  
Test load termination supply voltage .................... ........1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; Vdd = 3.3V ±0.165V unless otherwise noted)[11]  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
MIN  
2.4  
2.0  
2.9  
2.1  
MAX  
UNITS  
V
V
V
V
V
V
V
V
V
V
V
V
µA  
VOH1  
Output HIGH Voltage IOH = -4.0 mA,VDDQ = 3.3V  
IOH = -1.0 mA,VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = -100 µA  
V
DDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
0.4  
0.4  
Output LOW Voltage IOL = 8.0 mA  
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
0.2  
0.2  
2.0  
1.7  
-0.3  
-0.3  
-5  
VDD + 0.3  
VDD + 0.3  
0.8  
VDDQ = 3.3V  
VIL  
Input LOW Voltage  
VDDQ = 2.5V  
0.7  
5
IX  
Input Load Current  
GND < VIN < VDDQ  
Note:  
11. All voltages referenced to VSS (GND).  
Document #: 38-05237 Rev. *D  
Page 18 of 36  
CY7C1380C  
CY7C1382C  
Identification Register Definitions  
CY7C1380C  
(512KX36)  
CY7C1382C  
(1MX18)  
DESCRIPTION  
INSTRUCTION FIELD  
010  
0100  
1010  
Revision Number (31:29)  
Device Depth (28:24)  
Describes the version number.  
01010  
Reserved for Internal Use  
000000  
100101  
00000110100  
1
000000  
010101  
00000110100  
1
Device Width (23:18)  
Defines memory type and architecture  
Defines width and density  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
REGISTER NAME  
BIT SIZE(X36)  
BIT SIZE(X18)  
3
3
Instruction  
1
1
Bypass  
32  
72  
32  
72  
ID  
Boundary Scan Order  
Identification Codes  
INSTRUCTION  
CODE  
DESCRIPTION  
000  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
011  
100  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect  
SRAM operations.  
Document #: 38-05237 Rev. *D  
Page 19 of 36  
CY7C1380C  
CY7C1382C  
119-Ball BGA Boundary Scan Order  
CY7C1380C (512K x 36)  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
B2  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C6  
A6  
D6  
D7  
E6  
G6  
H7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
2
P4  
3
N4  
4
R6  
5
T5  
6
T3  
7
R2  
8
R3  
9
P2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
P1  
N2  
L2  
K1  
N1  
M2  
L1  
K2  
Not Bonded (Preset to 1)  
H1  
G2  
E2  
N6  
P7  
K6  
L7  
D1  
H2  
G1  
F2  
M6  
N7  
P6  
B5  
B3  
C5  
C3  
C2  
A2  
T4  
B6  
E1  
D2  
A5  
A3  
E4  
Internal  
L3  
G3  
G5  
L5  
Internal  
Document #: 38-05237 Rev. *D  
Page 20 of 36  
CY7C1380C  
CY7C1382C  
119-Ball BGA Boundary Scan Order  
CY7C1382C (1M x 18)  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
B2  
K4  
2
P4  
H4  
3
M4  
N4  
4
F4  
R6  
5
B4  
T5  
6
A4  
T3  
7
G4  
R2  
8
C6  
R3  
9
A6  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
T6  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
P2  
D6  
N1  
E7  
M2  
F6  
L1  
G7  
K2  
H6  
Not Bonded (Preset to 1)  
T7  
H1  
K7  
G2  
L6  
E2  
N6  
D1  
P7  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A5  
B5  
B3  
C5  
C3  
C2  
A2  
T2  
B6  
A3  
E4  
Internal  
Not Bonded (Preset to 0)  
Internal  
G3  
L5  
Internal  
Document #: 38-05237 Rev. *D  
Page 21 of 36  
CY7C1380C  
CY7C1382C  
165-Ball fBGA Boundary Scan Order  
CY7C1380C (512K x 36)  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
B6  
B7  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
N6  
R6  
P6  
R4  
R3  
P4  
P3  
R1  
N1  
L2  
2
3
A7  
4
B8  
5
A8  
6
B9  
7
A9  
8
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
R9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
K2  
J2  
M2  
M1  
L1  
K1  
J1  
Internal  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
A2  
B2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
R8  
P10  
P9  
P8  
P11  
Document #: 38-05237 Rev. *D  
Page 22 of 36  
CY7C1380C  
CY7C1382C  
165-Ball fBGA Boundary Scan Order  
CY7C1382C (1M x 18)  
BIT#  
BALL ID  
BIT#  
BALL ID  
0
B6  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
N6  
1
B7  
R6  
2
A7  
P6  
3
B8  
R4  
4
A8  
R3  
5
B9  
P4  
6
A9  
P3  
7
B10  
R1  
8
A10  
Not Bonded (Preset to 0)  
9
A11  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
N1  
C11  
M1  
D11  
L1  
E11  
K1  
F11  
J1  
G11  
Internal  
H11  
G2  
J10  
F2  
K10  
E2  
L10  
D2  
M10  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A2  
R11  
R10  
R9  
B2  
A3  
B3  
R8  
Not Bonded (Preset to 0)  
P10  
P9  
Not Bonded (Preset to 0)  
A4  
B5  
A6  
P8  
P11  
Document #: 38-05237 Rev. *D  
Page 23 of 36  
CY7C1380C  
CY7C1382C  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V  
Ambient  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Industrial  
-40°C to +85°C  
Electrical Characteristics Over the Operating Range[12, 13]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
DDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
V
V
2.0  
V
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
0.4  
0.4  
V
V
Input HIGH Voltage[12] VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
V
V
Input LOW Voltage[12]  
–0.3  
–0.3  
–5  
V
V
0.7  
V
Input Load Current ex- GND VI VDDQ  
cept ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
5
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
All speeds  
350  
325  
300  
275  
245  
120  
110  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
85  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
VDD = Max, Device Deselected,  
VIN 0.3V or VIN > VDDQ – 0.3V,  
70  
Document #: 38-05237 Rev. *D  
Page 24 of 36  
CY7C1380C  
CY7C1382C  
Electrical Characteristics Over the Operating Range[12, 13] (continued)  
Parameter  
Description  
Automatic CE  
Power-down  
Test Conditions  
Min.  
Max.  
105  
100  
95  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
ISB3  
VDD = Max, Device Deselected, or 4.0-ns cycle, 250 MHz  
VIN 0.3V or VIN > VDDQ – 0.3V  
4.4-ns cycle, 225 MHz  
Current—CMOS Inputs f = fMAX = 1/tCYC  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
All speeds  
85  
80  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
80  
Shaded areas contain advance information.  
Notes:  
12. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
< V  
DD\  
13. TPower-up: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
DD  
IH  
DD  
DDQ  
Thermal Resistance[14]  
TQFP  
Package  
BGA  
Package  
fBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
31  
45  
46  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
impedence, per EIA / JESD51.  
Capacitance[14]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
DD = 3.3V.  
DDQ = 2.5V  
5
5
5
8
8
8
9
9
9
V
V
CCLK  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CI/O  
pF  
Notes:  
14. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05237 Rev. *D  
Page 25 of 36  
CY7C1380C  
CY7C1382C  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 38-05237 Rev. *D  
Page 26 of 36  
CY7C1380C  
CY7C1382C  
Switching Characteristics Over the Operating Range[19, 20]  
250 MHz  
225 MHz  
200 MHz  
167 MHz  
133 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
Description  
VDD(Typical) to the first Access[15]  
Min. Max  
Min. Max Min. Max Unit  
1
1
1
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
4.4  
2.0  
2.0  
5
6
7.5  
2.5  
2.5  
ns  
ns  
ns  
tCH  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[16, 17, 18]  
2.6  
1.0  
2.8  
1.0  
3.0  
1.3  
3.4  
4.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.3  
1.3  
1.3  
1.3  
tCLZ  
1.0  
1.0  
1.3  
tCHZ  
Clock to High-Z[16, 17, 18]  
2.6  
2.8  
3.0  
3.4  
3.4  
3.4  
4.2  
tOEV  
2.6  
2.8  
3.0  
OE LOW to Output Valid  
LOW to Output Low-Z[16, 17, 18]  
tOELZ  
0
0
0
0
0
OE  
OE HIGH to Output High-Z[16, 17, 18]  
Address Set-up Before CLK Rise  
tOEHZ  
Setup Times  
tAS  
2.6  
2.8  
3.0  
3.4  
4.0  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
tADS  
,
ADSC ADSP Set-up Before CLK  
Rise  
tADVS  
tWES  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ADV Set-up Before CLK Rise  
Set-up Before CLK  
GW, BWE, BWX  
Rise  
tDS  
Data Input Set-up Before CLK Rise  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
tCES  
Chip Enable Set-Up Before CLK Rise 1.2  
Hold Times  
tAH  
Address Hold After CLK Rise  
Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
,
ADSP ADSC  
tADVH  
tWEH  
tDH  
ADV Hold After CLK Rise  
,
,
GW BWE BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
tCEH  
Chip Enable Hold After CLK Rise  
Shaded areas contain advance information.  
Notes:  
15. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V ( minimum) initially before a read or write operation  
DD  
POWER  
can be initiated.  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
17. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
18. This parameter is sampled and not 100% tested.  
19. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
20. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05237 Rev. *D  
Page 27 of 36  
CY7C1380C  
CY7C1382C  
Switching Waveforms  
Read Cycle Timing[21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
22.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05237 Rev. *D  
Page 28 of 36  
CY7C1380C  
CY7C1382C  
Switching Waveforms (continued)  
Write Cycle Timing[21, 22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Document #: 38-05237 Rev. *D  
Page 29 of 36  
CY7C1380C  
CY7C1382C  
Switching Waveforms (continued)  
Read/Write Cycle Timing[21, 23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE,  
t
t
WEH  
WES  
BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-t<