欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • DAC8554IPWR图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • DAC8554IPWR 现货库存
  • 数量92000 
  • 厂家TI/德州仪器 
  • 封装TSSOP16 
  • 批号24+ 
  • 原装现货假一罚十!可含税长期供货
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • DAC8554IPWR图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • DAC8554IPWR 现货库存
  • 数量2000 
  • 厂家TI 
  • 封装TSSOP16 
  • 批号20+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • DAC8554IPWR图
  • 集好芯城

     该会员已使用本站13年以上
  • DAC8554IPWR 现货库存
  • 数量13374 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • DAC8554IPW图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • DAC8554IPW 现货库存
  • 数量32560 
  • 厂家TI 
  • 封装TSSOP-16 
  • 批号2024+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • DAC8554IPWR图
  • 深圳市楷兴电子科技有限公司

     该会员已使用本站7年以上
  • DAC8554IPWR 现货库存
  • 数量89700 
  • 厂家TI 
  • 封装TSSOP16 
  • 批号21+ 
  • 全新进口原装现货,代理渠道假一赔十
  • QQ:2881475151QQ:2881475151 复制
  • 0755-83016042 QQ:2881475151
  • DAC8554IPWR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • DAC8554IPWR 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装TSSOP16 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • DAC8554IPW图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • DAC8554IPW 现货库存
  • 数量90 
  • 厂家TI 
  • 封装TSSOP (PW) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • DAC8554IPWR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • DAC8554IPWR 现货库存
  • 数量8000 
  • 厂家TI(德州仪器) 
  • 封装N/A 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • DAC8554IPWR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • DAC8554IPWR 现货热卖
  • 数量2000 
  • 厂家TI/德州仪器 
  • 封装TSSOP16 
  • 批号2021+ 
  • 低价力挺实单
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • DAC8554IPWR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • DAC8554IPWR 现货热卖
  • 数量5000 
  • 厂家TI 
  • 封装TSSOP16 
  • 批号23+ 
  • 只做原装正品
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • DAC8554IPW图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • DAC8554IPW 优势库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价(上海,北京,深圳,青岛均可交货)
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • DAC8554IPWR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • DAC8554IPWR
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-16 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • DAC8554IPW图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • DAC8554IPW
  • 数量5280 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-16 
  • 批号23+ 
  • ▉原装正品▉力挺实单可含税可拆样
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • DAC8554IPW图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • DAC8554IPW
  • 数量63904 
  • 厂家TI 
  • 封装TSSOP 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • DAC8554IPWRG4图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • DAC8554IPWRG4
  • 数量34278 
  • 厂家TI 
  • 封装TSSOP-16 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • DAC8554IPW图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • DAC8554IPW
  • 数量2368 
  • 厂家TI-德州仪器 
  • 封装TSSOP-16 
  • 批号▉▉:2年内 
  • ▉▉¥96.2元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • DAC8554IPWRG4图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • DAC8554IPWRG4
  • 数量6600 
  • 厂家TI/德州仪器 
  • 封装TSSOP-16 
  • 批号20+ 
  • 原装现货,特价出售。
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • DAC8554IPW图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • DAC8554IPW
  • 数量3094 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • DAC8554IPW图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • DAC8554IPW
  • 数量5600 
  • 厂家TI 
  • 封装TSSOP-16 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • DAC8554IPW图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • DAC8554IPW
  • 数量23000 
  • 厂家TI 
  • 封装16-TSSOP 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • DAC8554IPWR图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • DAC8554IPWR
  • 数量92000 
  • 厂家TI/德州仪器 
  • 封装TSSOP16 
  • 批号24+ 
  • 原装现货假一罚十!可含税长期供货
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • DAC8554IPW图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • DAC8554IPW
  • 数量200 
  • 厂家TI 
  • 封装TSSOP-16 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • DAC8554IPW图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • DAC8554IPW
  • 数量5800 
  • 厂家TI 
  • 封装TSSOP16 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • DAC8554IPW图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • DAC8554IPW
  • 数量85600 
  • 厂家TI 
  • 封装TSSOP 
  • 批号NEW 
  • ★原装★现货可售样品★长期供货★
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • DAC8554IPWG4图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • DAC8554IPWG4
  • 数量5000 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • DAC8554IPW图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • DAC8554IPW
  • 数量3290 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • DAC8554IPWR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • DAC8554IPWR
  • 数量2000 
  • 厂家TI/德州仪器 
  • 封装TSSOP16 
  • 批号2021+ 
  • 低价力挺实单
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • DAC8554IPW图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • DAC8554IPW
  • 数量23600 
  • 厂家TI 
  • 封装SSOP 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • DAC8554IPW图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • DAC8554IPW
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装16-TSSOP(0.173,4.40mm 宽) 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • DAC8554IPW图
  • 集好芯城

     该会员已使用本站13年以上
  • DAC8554IPW
  • 数量18629 
  • 厂家TI/德州仪器 
  • 封装TSSOP-16 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • DAC8554IPW图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • DAC8554IPW
  • 数量18310 
  • 厂家TI 
  • 封装TSSOP-16 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • DAC8554IPW图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • DAC8554IPW
  • 数量12000 
  • 厂家TI 
  • 封装TSSOP-16 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • DAC8554IPWR图
  • 深圳市晨豪科技有限公司

     该会员已使用本站12年以上
  • DAC8554IPWR
  • 数量89630 
  • 厂家TI/德州仪器 
  • 封装TSSOP-16 
  • 批号23+ 
  • 当天发货全新原装现货
  • QQ:1743149803QQ:1743149803 复制
    QQ:1852346906QQ:1852346906 复制
  • 0755-82732291 QQ:1743149803QQ:1852346906
  • DAC8554IPW图
  • 深圳市金嘉锐电子有限公司

     该会员已使用本站14年以上
  • DAC8554IPW
  • 数量28620 
  • 厂家TI 
  • 封装16-TSSOP 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:2643490444QQ:2643490444 复制
  • 0755-22929859 QQ:2643490444
  • DAC8554IPWR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • DAC8554IPWR
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装TSSOP 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • DAC8554IPW图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • DAC8554IPW
  • 数量24652 
  • 厂家TI 
  • 封装TSSOP 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788

产品型号DAC8554IPW的概述

DAC8554IPW 概述 DAC8554IPW是一款高精度数模转换器(DAC),它隶属于Texas Instruments公司生产的一系列DAC产品。这款芯片具有四通道的输出能力,并提供16位的分辨率,是现代电子系统中常用的数据转换组件。DAC8554IPW通常应用于工业自动化、医疗设备、仪器仪表以及音频和视频处理等多个领域。该芯片以其优越的精度、高速的转换速率和丰富的接口配置,深受设计工程师的青睐。 DAC8554IPW的最大特点是其低功耗和较高的输出驱动能力,特别适合需要长时间待机和高效能的应用场景。进入理解DAC8554的细节之前,有必要仔细研究其技术参数及应用场景,以便在实际设计中加以利用。 DAC8554IPW的详细参数 DAC8554IPW在技术参数方面表现出色,以下为其主要参数: - 分辨率: 16位 - 通道数: 4通道 - 输入电压范围: 0V至VREF(通常可以是...

产品型号DAC8554IPW的Datasheet PDF文件预览

B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
DAC8554  
SLAS431AJUNE 2005REVISED AUGUST 2005  
16-BIT, QUAD CHANNEL, ULTRALOW GLITCH, VOLTAGE OUTPUT  
DIGITAL-TO-ANALOG CONVERTER  
FEATURES  
DESCRIPTION  
Relative Accuracy: 12 LSB (Max)  
The DAC8554 is a 16-bit, quad channel, voltage  
output, digital-to-analog converter (DAC), offering  
Glitch Energy: 0.15 nV-s  
low-power operation and  
a flexible serial host  
Power Supply: +2.7 V to +5.5 V  
MicroPower Operation: 850 µA at 5 V  
16-Bit Monotonic Over Temperature  
Settling Time: 10 µs to ±0.003% FSR  
Ultra-Low AC Crosstalk: –100 dB Typ  
Power-On Reset to Zero-Scale  
interface. It offers monotonicity, good linearity, and  
exceptionally low glitch. Each on-chip precision out-  
put amplifier allows rail-to-rail output swing to be  
achieved over the supply range of 2.7 V to 5.5 V. The  
device supports a standard 3-wire serial interface  
capable of operating with input data clock frequencies  
up to 50 MHz for IOVDD = 5 V.  
On-Chip Output Buffer Amplifier With  
Rail-to-Rail Operation  
The DAC8554 requires an external reference voltage  
to set the output range of each DAC channel. Also  
incorporated into the device is a power-on reset  
circuit which ensures that the DAC outputs power up  
at zero-scale and remain there until a valid write  
takes place. The DAC8554 provides a per channel  
power-down feature, accessed over the serial  
interface, that reduces the current consumption to  
200 nA per channel at 5 V.  
Double Buffered Input Architecture  
Simultaneous or Sequential Output Update  
and Power-Down  
16-Channel Broadcast Capability  
Schmitt-Triggered Inputs  
SPI Compatible Serial Interface: Up to 50 MHz  
1.8 V to 5.5 V Logic Compatibility  
Available in a TSSOP-16 Package  
The low-power consumption of this device in normal  
operation makes it ideally suited to portable battery-  
operated equipment and other low-power appli-  
cations. The power consumption is 4.25 mW at 5 V,  
reducing to 4 µW in power-down mode.  
APPLICATIONS  
Portable Instrumentation  
Closed-Loop Servo-Control  
Process Control  
Data Acquisition Systems  
Programmable Attenuation  
PC Peripherals  
The DAC8554 is available in a TSSOP-16 package  
with a specified operating temperature range of  
–40°C to 105°C.  
V
ref  
H
AV  
IOV  
DD  
DD  
Data  
DAC  
DAC A  
DAC D  
V
V
V
V
A
OUT  
Buffer A  
Register A  
B
C
D
OUT  
OUT  
OUT  
Data  
Buffer D  
DAC  
Register D  
18  
Buffer  
Control  
Register  
Control  
SYNC  
SCLK  
24-Bit  
Serial-to-  
Parallel Shift  
Register  
Power-Down  
Control Logic  
8
D
IN  
Resistor  
Network  
A0  
A1  
LDAC ENABLE  
V L  
ref  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI, QSPI are trademarks of Motorola.  
Microwire is a trademark of National Semiconductor.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005, Texas Instruments Incorporated  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated  
circuits be handled with appropriate precautions. Failure to observe proper handling and installation  
procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision  
integrated circuits may be more susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications. This device is rated at 1500 V HBM and 1000  
V CDM.  
PACKAGING/ORDERING INFORMATION  
PACKAGE  
LEAD  
PACKAGE  
DESIGNATOR(1)  
SPECIFICATION  
TEMPERATURE RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
DAC8554IPW  
Tube, 90  
DAC8554  
TSSOP-16  
PW  
–40°C TO 105°C  
D8554  
DAC8554IPWR  
Tape and Reel, 2000  
(1) For the most current specifications and package information, refer to our web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
UNIT  
AVDD to GND  
–0.3 V to 6 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–40°C to 105°C  
–65°C to 150°C  
150°C  
Digital input voltage to GND  
VO(A) to VO(D) to GND  
Operating temperature range  
Storage temperature range  
Junction temperature range (TJ max)  
Power dissipation  
(TJmax – TA)/θJA  
118°C/W  
θJA Thermal impedance  
θJC Thermal impedance  
29°C/W  
Vapor phase (60 s)  
Lead temperature, soldering  
Infrared (15 s)  
215°C  
220°C  
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE(1)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16  
Bits  
Relative accuracy  
Measured by line passing through codes 485 and  
64741  
±4  
±12  
LSB  
Differential nonlinearity  
Zero-scale error  
16-bit Monotonic  
±0.25  
±1  
LSB  
mV  
Measured by line passing through codes 485 and  
64741  
±2  
±12  
Zero-scale error drift  
Full-scale error  
±5  
µV/°C  
Measured by line passing through codes 485 and  
64741, AVDD = 5 V, Vref = 4.99 V  
±0.3  
±0.5  
% of FSR  
Gain error  
Measured by line passing through codes 485 and  
64741, AVDD = 5 V  
±0.05  
±0.15  
% of FSR  
Gain temperature coefficient  
±1  
8
ppm of FSR/°C  
mV  
Power Supply Rejection Ratio  
(PSRR)  
RL = 2 k, CL = 200 pF  
0.75  
mV/V  
(1) Linearity calculated using a reduced code range of 485 to 64741; output unloaded.  
2
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
OUTPUT CHARACTERISTICS(2)  
Output voltage range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0
Vref  
H
V
Output voltage settling time  
To ±0.003% FSR, 0200H to FD00H, RL = 2 k, 0 pF  
8
10  
µs  
< CL < 200 pF  
RL = 2 k, CL = 500 pF  
12  
1.8  
µs  
V/µs  
pF  
Slew rate  
RL = ∞  
470  
Capacitive load stability  
RL = 2 kΩ  
1000  
0.15  
0.15  
0.25  
pF  
Code change glitch impulse  
Digital feedthrough  
DC crosstalk  
1 LSB change around major carry  
nV-s  
LSB  
Full-scale swing on adjacent channel. AVDD = 5 V,  
Vref = 4.096 V  
AC crosstalk  
1 kHz sine wave  
–100  
1
dB  
DC output impedance  
At mid-point input  
AVDD = 5 V  
50  
20  
2.5  
5
Short-circuit current  
Power-up time  
mA  
µs  
AVDD = 3 V  
Coming out of power-down mode AVDD = 5 V  
Coming out of power-down mode AVDD = 3 V  
AC PERFORMANCE  
SNR (1st 19 harmonics removed)  
THD  
95  
-85  
87  
BW = 20 kHz, AVDD = 5 V, FOUT = 1 kHz  
dB  
SFDR  
SINAD  
84  
REFERENCE INPUT  
Vref(H) Voltage  
Vref(L) Voltage  
Vref(L) < Vref(H) , AVDD - (Vref(H) + Vref(L)) /2 > 1.2 V  
Vref(L) < Vref(H) , AVDD - (Vref(H) + Vref(L)) /2 > 1.2 V  
Vref(L) = GND, Vref(H) = AVDD = 5 V  
Vref(L) = GND, Vref(H) = AVDD = 3 V  
Vref(L) < Vref(H)  
0
0
AVDD  
AVDD/2  
250  
V
V
180  
120  
31  
µA  
µA  
kΩ  
Reference input current  
200  
Reference input impedance  
(3)  
LOGIC INPUTS  
0.3 ×  
I0VDD  
2.7 V IOVDD5.5 V  
1.8 V IOVDD2.7 V  
2.7 IOVDD5.5 V  
1.8 IOVDD < 2.7 V  
VI(L), logic input LOW voltage  
VI(H), logic input HIGH voltage  
V
0.1 ×  
I0VDD  
0.7 ×  
I0VDD  
V
0.95 ×  
I0VDD  
Pin capacitance  
POWER REQUIREMENTS  
AVDD  
3
pF  
2.7  
1.8  
5.5  
5.5  
V
IOVDD  
AIDD (normal mode)  
Input code = 32768, reference current included, no  
load  
(2) Ensured by design and characterization, not production tested.  
(3) Ensured by design and characterization, not production tested.  
3
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX  
20  
UNIT  
IOIDD  
µA  
AVDD = 3.6 V to 5.5 V  
AVDD = 2.7 V to 3.6 V  
AIDD (all power-down modes)  
AVDD = 3.6 V to 5.5 V  
AVDD = 2.7 V to 3.6 V  
POWER EFFICIENCY  
IOUT/IDD  
VIH = IOVDD and VIL = GND  
0.65  
0.6  
1.0  
mA  
µA  
0.96  
VIH = IOVDD and VIL = GND  
IL = 2 mA, AVDD = 5 V  
0.2  
2
2
0.05  
89%  
TEMPERATURE RANGE  
Specified performance  
–40  
105  
°C  
PIN CONFIGURATION  
1
2
3
4
5
6
7
8
VOUT  
VOUT  
VREF  
AVDD  
VREF  
GND  
A
16 LDAC  
15  
14  
13  
12  
B
ENABLE  
A1  
H
A0  
DAC8554  
L
IOVDD  
11 DIN  
VOUT  
C
D
10 SCLK  
VOUT  
9
SYNC  
PIN DESCRIPTIONS  
PIN  
1
NAME  
DESCRIPTION  
VOUT  
VOUT  
A
B
Analog output voltage from DAC A.  
Analog output voltage from DAC B.  
Positive reference voltage input.  
Power supply input, 2.7 V to 5.5 V.  
Negative reference voltage input.  
2
3
Vref  
AVDD  
Vref  
GND  
H
4
5
L
6
Ground reference point for all circuitry on the part.  
Analog output voltage DAC C.  
7
VOUT  
VOUT  
C
8
D
Analog output voltage DAC D.  
Level-triggered control input (active LOW). This is the frame synchronization signal for the input data. When  
SYNC goes LOW, it enables the input shift register and data is transferred in on the falling edges of the  
following clocks. The DAC is updated following the 24th clock (unless SYNC is taken HIGH before this edge  
in which case the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the  
DAC8554).  
9
SYNC  
10  
11  
SCLK  
DIN  
Serial clock input. Data can be transferred at rates up to 50 MHz.  
Serial data input. Data is clocked into the 24-bit input shift register on each falling edge of the serial clock  
input.  
12  
13  
14  
15  
IOVDD  
A0  
Digital input-output power supply  
Address 0 — sets device address, see Table 2  
Address 1 — sets device address, see Table 2  
Active LOW, ENABLE LOW connects the SPI interface to the serial port.  
A1  
ENABLE  
4
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
PIN DESCRIPTIONS (continued)  
PIN  
16  
NAME  
DESCRIPTION  
LDAC  
Load DACs, rising edge triggered, loads all DAC registers.  
TIMING REQUIREMENTS(1)(2)  
AVDD = 2.7 V to 5.5 V, all specifications –40°C to 105°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
IOVDD = AVDD = 2.7 V to 3.6 V  
40  
ns  
20  
(3)  
t 1  
t 2  
t 3  
t 4  
t 5  
t 6  
t 7  
SCLK cycle time  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 3.6 V  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 3.6 V  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 3.6 V  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 3.6 V  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 3.6 V  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 3.6 V  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 3.6 V  
IOVDD = AVDD = 3.6 V to 5.5 V  
IOVDD = AVDD = 2.7 V to 5.5 V  
20  
ns  
10  
SCLK HIGH time  
20  
ns  
10  
SCLK LOW time  
0
SYNC falling edge to SCLK rising edge setup time  
Data setup time  
ns  
0
5
ns  
5
4.5  
Data hold time  
ns  
4.5  
0
24th SCLK falling edge to SYNC rising edge  
ns  
0
40  
ns  
20  
t 8  
t 9  
Minimum SYNC HIGH time  
24th SCLK falling edge to SYNC falling edge  
130  
ns  
(1) All input signals are specified with tR = tF = 3 ns (10% to 90% of AVDD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See Serial Write Operation timing diagram.  
(3) Maximum SCLK frequency is 50 MHz at IOVDD = AVDD = 3.6 V to 5.5 V and 25 MHz at IOVDD = AVDD = 2.7 V to 3.6 V.  
SERIAL WRITE OPERATION  
t1  
t9  
SCLK  
1
24  
t2  
t8  
t3  
t7  
t4  
SYNC  
t6  
t5  
DB23  
DB0  
DB23  
DIN  
5
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS  
At TA = 25°C, unless otherwise noted  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR  
vs  
LINEARITY ERROR  
vs  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
8
6
8
6
AV  
= 5 V, V = 4.99 V  
ref  
Channel A  
DD  
AV  
= 5 V, V = 4.99 V  
ref  
Channel B  
DD  
4
2
4
2
0
0
−2  
−4  
−6  
−8  
−2  
−4  
−6  
−8  
1
0.5  
0
1
0.5  
0
−0.5  
−1  
−0.5  
−1  
8192  
0
0
0
16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192  
16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 1.  
Figure 2.  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR  
vs  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR  
vs  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
8
6
4
2
0
−2  
−4  
−6  
−8  
8
6
4
2
0
−2  
−4  
−6  
−8  
AV  
= 5 V,  
V
ref  
= 4.99 V  
Channel C  
DD  
AV  
= 5 V, V = 4.99 V  
ref  
Channel D  
DD  
1
1
0.5  
0
0.5  
0
−0.5  
−1  
−0.5  
−1  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR  
vs  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR  
vs  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
8
6
4
2
0
−2  
−4  
8
6
4
2
0
−2  
−4  
−6  
−8  
AV  
= 2.7 V,  
V
ref  
= 2.69 V  
Channel B  
Channel A  
AV  
= 2.7 V,  
V
ref  
= 2.69 V  
DD  
DD  
−6  
−8  
1
0.5  
0
1
0.5  
0
−0.5  
−1  
−0.5  
−1  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 5.  
Figure 6.  
6
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, unless otherwise noted  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR  
vs  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR  
vs  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
8
6
4
2
8
Channel C  
Channel D  
AV  
= 2.7 V, V = 2.69 V  
ref  
AV  
= 2.7 V, V = 2.69 V  
DD ref  
6
4
2
DD  
0
0
−2  
−4  
−6  
−8  
−2  
−4  
−6  
−8  
1
0.5  
0
1
0.5  
0
−0.5  
−1  
−0.5  
−1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 7.  
Figure 8.  
ZERO-SCALE ERROR  
vs  
ZERO-SCALE ERROR  
vs  
TEMPERATURE  
TEMPERATURE  
5
5
AV = 2.7 V, V = 2.69 V  
DD ref  
AV  
= 5 V, V = 4.99 V  
ref  
DD  
CH C  
CH C  
2.5  
2.5  
0
CH A  
CH A  
CH B  
0
−2.5  
−5  
CH D  
CH D  
CH B  
−2.5  
−5  
−40  
0
40  
80  
120  
−40  
0
40  
80  
120  
T − Temperature − °C  
A
T
A
Temperature − °C  
Figure 9.  
Figure 10.  
FULL-SCALE ERROR  
vs  
FULL-SCALE ERROR  
vs  
TEMPERATURE  
TEMPERATURE  
0
0
−5  
AV  
= 5 V, V = 4.99 V  
ref  
AV  
= 2.7 V, V = 2.69 V  
ref  
DD  
DD  
−5  
−10  
−15  
CH C  
CH A  
−10  
−15  
−20  
−25  
CH D  
CH C  
CH B  
CH A  
CH B  
CH D  
−20  
−25  
−40  
0
40  
80  
120  
−40  
0
40  
80  
120  
T
A
Temperature − °C  
T
A
Temperature − °C  
Figure 11.  
Figure 12.  
7
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, unless otherwise noted  
SINK CURRENT CAPABILITY (ALL CHANNELS)  
SOURCE CURRENT CAPABILITY (ALL CHANNELS)  
0.150  
6
V
AV −10 mV  
DD  
ref =  
DAC Loaded With FFFF  
V
= AV −10 mV  
DD  
ref  
DAC Loaded With 0000  
H
H
0.125  
0.100  
0.075  
0.050  
0.025  
0
V
= 5.5 V  
DD  
5.6  
5.2  
4.8  
4.4  
4
V = 5.5 V  
DD  
V
= 2.7 V  
DD  
0
2
4
I
6
8
10  
0
2
4
I
6
8
10  
(mA)  
(mA)  
SINK  
SIOURCE  
Figure 13.  
Figure 14.  
SOURCE CURRENT CAPABILITY (ALL CHANNELS)  
SUPPLY CURRENT  
vs  
DIGITAL INPUT CODE  
3
1200  
V
AV −10 mV  
DD  
ref =  
DAC Loaded With FFFF  
Reference Current Included  
H
1000  
800  
600  
400  
200  
0
2.7  
2.4  
2.1  
1.8  
1.5  
AV  
V
= 5.5 V  
DD = ref  
AV  
= 2.7 V  
DD  
AV  
V
= 2.7 V  
DD = ref  
0
2
4
I
6
(mA)  
8
10  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
SIOURCE  
Figure 15.  
Figure 16.  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
1200  
1000  
800  
900  
850  
800  
750  
700  
650  
600  
Reference Current Included  
V
AV  
All DACs Powered,  
DD  
ref =  
Reference Current Included, No Load  
AV  
V
= 5.5 V  
DD = ref  
AV  
V
= 2.7 V  
DD = ref  
600  
400  
200  
0
2.7  
3.05  
3.4  
3.75  
4.1  
V (V)  
DD  
4.45  
4.8  
5.15  
5.5  
−40  
0
40  
80  
120  
T
A
Temperature − °C  
Figure 17.  
Figure 18.  
8
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, unless otherwise noted  
SUPPLY CURRENT  
vs  
LOGIC INPUT VOLTAGE  
SUPPLY CURRENT  
vs  
LOGIC INPUT VOLTAGE  
2000  
800  
600  
400  
200  
0
T
= 25°C, SYNC Input (All Other Inputs = GND  
A
T
A
= 25°C, SYNC Input (All Other Inputs = GND  
CHA Powered Up; All Other Channels in Powerdown  
Reference Current Included  
CHA Powered Up; All Other Channels in Powerdown  
Reference Current Included  
1600  
1200  
800  
400  
0
IOV  
DD  
=
AV  
= V = 5 V  
ref  
DD  
IOV  
DD  
=
AV  
= V = 2.7 V  
ref  
DD  
0
0.5  
1
1.5  
(V)  
2
2.5  
0
1
2
3
4
5
V
(V)  
LOGIC  
V
LOGIC  
Figure 19.  
HISTOGRAM OF CURRENT CONSUMPTION  
Figure 20.  
HISTOGRAM OF CURRENT CONSUMPTION  
1500  
1500  
1000  
500  
0
AV  
V
= 5 V  
AV  
V
= 2.7 V  
DD = ref  
Reference Current Included  
DD = ref  
Reference Current Included  
1000  
500  
0
600 625 650 675 700 725 750 775 800 825 850 875  
725 750 775 800 825 850 875 900 925 950 975  
(µA)  
I
I
(µA)  
DD  
DD  
Figure 21.  
Figure 22.  
POWER SPECTRAL DENSITY  
TOTAL HARMONIC DISTORTION  
vs  
OUTPUT FREQUENCY  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
AV  
V
= 5 V,  
−10  
AV  
= V = 5 V,  
ref  
DD  
= 4.096,  
DD  
−1 dB FSR Digital Input, F = 1 MSPS  
s
Measurement Bandwidth = 20 kHz  
ref  
f
= 1 MSPS,  
= 1 kHz,  
clk  
−30  
−50  
F
out  
THD = 79 dB,  
SNR = 96 dB  
THD  
−70  
2nd Harmonic  
−90  
3rd Harmonic  
110  
−130  
0
5000  
10000  
15000  
20000  
0
1
2
3
4
5
Output Tone (kHz)  
Frequency − Hz  
Figure 23.  
Figure 24.  
9
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, unless otherwise noted  
FULL-SCALE SETTLING TIME: 5 V RISING EDGE  
FULL-SCALE SETTLING TIME: 5 V FALLING EDGE  
Trigger Pulse  
5 V/div  
Trigger Pulse  
5 V/div  
AV  
ref  
= 5 V,  
DD  
= 4.096 V,  
AV  
= 5 V,  
DD  
V = 4.096 V,  
ref  
V
From Code: 0000  
To Code: FFFF  
From Code: FFFF  
To Code: 0000  
Falling  
Edge  
1 V/div  
Rising  
Edge  
1 V/div  
Zoomed Falling Edge  
1 mV/div  
Zoomed Rising Edge  
1 mV/div  
Time (2 µs/div)  
Time (2 µs/div)  
Figure 25.  
Figure 26.  
HALF-SCALE SETTLING TIME: 5 V FALLING EDGE  
HALF-SCALE SETTLING TIME: 5 V RISING EDGE  
Trigger Pulse  
5 V/div  
Trigger Pulse  
5 V/div  
Falling  
Edge  
1 V/div  
AV  
ref  
= 5 V,  
DD  
= 4.096 V,  
V
AV  
V
= 5 V,  
From Code: CFFF  
To Code: 4000  
DD  
= 4.096 V,  
ref  
From Code: 4000  
To Code: CFFF  
Rising  
Edge  
1 V/div  
Zoomed Rising Edge  
1 mV/div  
Zoomed Falling Edge  
1 mV/div  
Time (2 µs/div)  
Time (2 µs/div)  
Figure 27.  
Figure 28.  
FULL-SCALE SETTLING TIME: 2.7 V RISING EDGE  
FULL-SCALE SETTLING TIME: 2.7 V FALLING EDGE  
Trigger Pulse  
2.7 V/div  
Trigger Pulse  
2.7 V/div  
Rising  
AV  
V
= 2.7 V,  
AV  
V
= 2.7 V,  
DD  
= 2.5 V,  
DD  
= 2.5 V,  
Edge  
ref  
ref  
0.5 V/div  
From Code: FFFF  
To Code: 0000  
From Code: 0000  
To Code: FFFF  
Zoomed Falling Edge  
1 mV/div  
Falling  
Edge  
0.5 V/div  
Zoomed Rising Edge  
1 mV/div  
Time (2 µs/div)  
Time (2 µs/div)  
Figure 29.  
Figure 30.  
10  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, unless otherwise noted  
HALF-SCALE SETTLING TIME: 2.7 V RISING EDGE  
HALF-SCALE SETTLING TIME: 2.7 V FALLING EDGE  
Trigger Pulse  
2.7 V/div  
Trigger Pulse  
2.7 V/div  
AV  
ref  
= 2.7 V,  
DD  
= 2.5 V,  
V
V
= 2.7 V  
= 2.5 V  
DD  
V
From Code: CFFF  
To Code: 4000  
REF  
From code; 4000  
To code: CFFF  
Falling  
Edge  
0.5 V/div  
Rising  
Edge  
0.5 V/div  
Zoomed Rising Edge  
1 mV / div  
Zoomed Falling Edge  
1 mV/div  
Time (2 µs/div)  
Time − 2 ms/div  
Figure 31.  
Figure 32.  
GLITCH ENERGY: 5 V, 1 LSB STEP, RISING EDGE  
GLITCH ENERGY: 5 V, 1 LSB STEP, FALLING EDGE  
AV  
ref  
= 5 V,  
DD  
= 4.096 V  
V
From Code: 8000  
To Code: 7FFF  
Glitch: 0.16 nV-s  
Measured Worst Case  
AV  
= 5 V,  
DD  
= 4.096 V  
V
ref  
From Code: 7FFF  
To Code: 8000  
Glitch: 0.08 nV-s  
Time 400 ns/div  
Time 400 ns/div  
Figure 33.  
Figure 34.  
GLITCH ENERGY: 5 V, 16 LSB STEP, RISING EDGE  
GLITCH ENERGY: 5 V, 16 LSB STEP, FALLING EDGE  
AV  
ref  
= 5 V,  
DD  
= 4.096 V  
V
From Code: 8010  
To Code: 8000  
Glitch: 0.08 nV-s  
AV  
ref  
= 5 V,  
DD  
= 4.096 V  
V
From Code: 8000  
To Code: 8010  
Glitch: 0.04 nV-s  
Time 400 ns/div  
Time 400 ns/div  
Figure 35.  
Figure 36.  
11  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, unless otherwise noted  
GLITCH ENERGY: 5 V, 256 LSB STEP, RISING EDGE  
GLITCH ENERGY: 5 V, 256 LSB STEP, FALLING EDGE  
AV  
ref  
= 5 V,  
DD  
= 4.096 V  
V
From Code: 80FF  
To Code: 8000  
Glitch: Not Detected  
Theoretical Worst Case  
AV  
ref  
= 5 V,  
DD  
= 4.096 V  
V
From Code: 8000  
To Code: 80FF  
Glitch: Not Detected  
Theoretical Worst Case  
Time 400 ns/div  
Time 400 ns/div  
Figure 37.  
Figure 38.  
GLITCH ENERGY:; 2.7 V, 1 LSB STEP, RISING EDGE  
GLITCH ENERGY: 2.7 V, 1 LSB STEP, FALLING EDGE  
AV  
V
= 2,7 V,  
DD  
= 2.5 V  
AV  
V
= 2.7 V,  
DD  
= 2.5 V  
ref  
From Code: 7FFF  
To Code: 8000  
ref  
From Code: 8000  
To Code: 7FFF  
Glitch: 0.08 nV-s  
Glitch: 0.16 nV-s  
Measured Worst Case  
Time 400 ns/div  
Time 400 ns/div  
Figure 39.  
Figure 40.  
GLITCH ENERGY: 2.7 V, 16 LSB STEP, RISING EDGE  
GLITCH ENERGY: 2.7 V, 16 LSB STEP, FALLING EDGE  
AV  
ref  
= 2.7 V,  
DD  
= 2.5 V  
V
From Code: 8010  
To Code: 8000  
Glitch: 0.12 nV-s  
AV  
ref  
= 2.7 V,  
DD  
= 2.5 V  
V
From Code: 8000  
To Code: 8010  
Glitch: 0.04 nV-s  
Time 400 ns/div  
Time 400 ns/div  
Figure 41.  
Figure 42.  
12  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, unless otherwise noted  
GLITCH ENERGY: 2.7 V, 16 LSB STEP, RISING EDGE  
GLITCH ENERGY: 2.7 V, 16 LSB STEP, FALLING EDGE  
AV  
ref  
= 2.7 V,  
DD  
= 2.5 V  
V
From Code: 80FF  
To Code: 8000  
Glitch: Not Detected  
Theoretical Worst Case  
AV  
V
= 2.7 V,  
DD  
= 2.5 V  
ref  
From Code: 8000  
To Code: 80FF  
Glitch: Not Detected  
Theoretical Worst Case  
Time 400 ns/div  
Time 400 ns/div  
Figure 43.  
Figure 44.  
OUTPUT NOISE DENSITY  
SIGNAL-TO-NOISE RATIO  
vs  
OUTPUT FREQUENCY  
98  
96  
94  
92  
90  
88  
86  
84  
350  
300  
250  
200  
150  
100  
AV  
= V = 5 V,  
ref  
DD  
AV  
= 5 V,  
= 4.096 V,  
DD  
−1 dB FSR Digital Inputs, F = 1 MSPS  
s
V
ref  
Measurement Bandwidth = 20 kHz  
Code = 7FFF  
No Load  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
100  
1000  
10000  
Frequency − Hz  
100000  
Output Tone (kHz)  
Figure 45.  
Figure 46.  
13  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
THEORY OF OPERATION  
VREF  
H
DAC SECTION  
The architecture of each channel of the DAC8554  
consists of a resistor-string DAC followed by an  
output buffer amplifier. Figure 47 shows a simplified  
block diagram of the DAC architecture.  
RDIVIDER  
VREF  
2
R
R
62  
To Output  
Amplifier  
(2x Gain)  
Figure 47. DAC8554 Architecture  
The input coding for each device is unipolar straight  
binary, so the ideal output voltage is given by:  
D
IN  
L ) ƪVREF  
Lƫ   
REF  
V
X + 2   V  
H * V  
R
R
OUT  
REF  
65536  
where DIN = decimal equivalent of the binary code  
that is loaded to the DAC register; it can range from 0  
to 65535.  
RESISTOR STRING  
The resistor string section is shown in Figure 48. It is  
simply a divide-by-2 resistor followed by a string of  
resistors. The code loaded into the DAC register  
determines at which node on the string the voltage is  
tapped off. This voltage is then applied to the output  
amplifier by closing one of the switches connecting  
the string to the amplifier.  
VREF  
L
Figure 48. Resistor String  
The write sequence begins by bringing the SYNC line  
LOW. Data from the DIN line is clocked into the 24-bit  
shift register on each falling edge of SCLK. The serial  
clock frequency can be as high as 50 MHz, making  
the DAC8554 compatible with high-speed DSPs. On  
the 24th falling edge of the serial clock, the last data  
bit is clocked into the shift register and the shift  
register gets locked. Further clocking does not  
change the shift register data. Once 24 bits are  
locked into the shift register, the 8 MSBs are used as  
control bits and the 16 LSBs are used as data. After  
receiving the 24th falling clock edge, DAC8554 de-  
codes the 8 control bits and 16 data bits to perform  
the required function, without waiting for a SYNC  
rising edge. A new SPI sequence starts at the next  
falling edge of SYNC. A rising edge of SYNC before  
the 24-bit sequence is complete resets the SPI  
interface; no data transfer occurs.  
OUTPUT AMPLIFIER  
Each output buffer amplifier is capable of generating  
rail-to-rail voltages on its output which approaches an  
output range of 0 V to AVDD (gain and offset errors  
must be taken into account). Each buffer is capable  
of driving a load of 2 kin parallel with 1000 pF to  
GND. The source and sink capabilities of the output  
amplifier can be seen in the typical characteristics.  
SERIAL INTERFACE  
The DAC8554 uses a 3-wire serial interface ( SYNC,  
SCLK, and DIN), which is compatible with SPI™,  
QSPI™, and Microwire™ interface standards, as well  
as most DSPs. See the serial write operation timing  
diagram for an example of a typical write sequence.  
After the 24th falling edge of SCLK is received, the  
SYNC line may be kept LOW or brought HIGH. In  
either case, the minimum delay time from the 24th  
falling SCLK edge to the next falling SYNC edge  
must be met in order to properly begin the next cycle.  
14  
 
 
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
To assure the lowest power consumption of the  
device, care should be taken that the levels are as  
close to each rail as possible. (Refer to the Typical  
Characteristics section for the Supply Current vs  
Logic Input Voltage transfer characteristic curve.  
Care bit which does not affect the operation of the  
DAC8554 and can be 1 or 0. The DAC channel select  
bits (DB18, DB17) control the destination of the data  
(or power-down command) from DAC A through DAC  
D. The final control bit, PD0 (DB16), selects the  
power-down mode of the DAC8554 channels.  
IOVDD AND VOLTAGE TRANSLATORS  
The DAC8554 also supports a number of different  
load commands. The load commands include broad-  
cast commands to address all the DAC8554s on an  
SPI bus. The load commands can be summarized as  
follows:  
The IOVDD pin powers the digital input structures of  
the DAC8554. For single-supply operation, it can be  
tied to AVDD. For dual-supply operation, the IOVDD pin  
provides interface flexibility with various CMOS logic  
families and it should be connected to the logic  
supply of the system. Analog circuits and internal  
logic of the DAC8554 use AVDD as the supply  
voltage. The external logic high inputs get translated  
to AVDD by level shifters. These level shifters use the  
IOVDD voltage as a reference to shift the incoming  
logic HIGH levels to AVDD. IOVDD is ensured to  
operate from 2.7 V to 5.5 V regardless of the AVDD  
voltage, which ensures compatibility with various logic  
families. Although specified down to 2.7 V, IOVDD will  
operate at as low as 1.8 V with degraded timing and  
temperature performance. For lowest power con-  
sumption, logic VIH levels should be as close as  
possible to IOVDD, and logic VIL levels should be as  
close as possible to GND voltages  
DB21 = 0 and DB20 = 0: Single-channel store. The  
temporary register (data buffer) corresponding to a  
DAC selected by DB18 and DB17 is updated with the  
contents of SR data (or power-down).  
DB21 = 0 and DB20 = 1: Single-channel update. The  
temporary register and DAC register corresponding to  
a DAC selected by DB18 and DB17 are updated with  
the contents of SR data (or power-down).  
DB21 = 1 and DB20 = 0: Simultaneous update. A  
channel selected by DB18 and DB17 gets updated  
with the SR data, and simultaneously, all the other  
channels get updated with previous stored data (or  
power-down) from temporary registers.  
DB21 = 1 and DB20 = 1: Broadcast update. All the  
DAC8554s on the SPI bus respond, regardless of  
address matching. If DB18 = 0, then SR data gets  
ignored, all channels from all DAC8554s get updated  
with previously stored data (or power-down). If DB18  
= 1, then SR data (or power-down) updates all  
channels of all DAC8554s in the system. This broad-  
cast update feature allows the simultaneous update  
of up to 16 channels.  
INPUT SHIFT REGISTER  
The input shift register (SR) of the DAC8554 is 24  
bits wide, as shown in Figure 49, and is made up of 8  
control bits (DB23–DB16) and 16 data bits  
(DB15–DB0). The first two control bits (DB23 and  
DB22) are the address match bits. The DAC8554  
offers additional hardware-enabled addressing capa-  
bility allowing a single host to talk to up to four  
DAC8554s through a single SPI bus without any glue  
logic, enabling up to 16-channel operation. The state  
of DB23 should match the state of pin A1; similarly,  
the state of DB22 should match the state of pin A0. If  
there is no match, the control command and the data  
(DB21...DB0) are ignored by the DAC8554. That is, if  
there is no match, the DAC8554 is not addressed.  
Address matching can be overridden by the broad-  
cast update, as will be explained.  
Power-down/data selection is as follows:  
DB16 is a power-down flag. If this flag is set, then  
DB15 and DB14 select one of the four power-down  
modes of the device as described in Table 1. If DB16  
= 1, DB15 and DB14 no longer represent the two  
MSBs of data, they represent a power-down condition  
described in Table 1. Similar to data, power-down  
conditions can be stored at the temporary registers of  
each DAC. It is possible to update DACs simul-  
taneously either with data, power-down, or a combi-  
nation of both.  
LD1 (DB21) and LD0 (DB20) control the updating of  
each analog output with the specified 16-bit data  
value or power-down command. Bit DB19 is a Don't  
Refer to Table 2 for more information.  
15  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
Table 1. DAC8554 Power-Down Modes  
PD0 (DB16)  
PD1 (DB15)  
PD2 (DB14)  
OPERATING MODE  
1
1
1
1
0
0
1
1
0
1
0
1
Output high impedance  
Output typically 1 kto GND  
Output typically 100 kto GND  
Output high impedance  
SYNC INTERRUPT  
POWER-ON RESET  
In a normal write sequence, the SYNC line is kept  
LOW for at least 24 falling edges of SCLK and the  
addressed DAC register is updated on the 24th falling  
edge. However, if SYNC is brought HIGH before the  
24th falling edge, it acts as an interrupt to the write  
sequence; the shift register is reset and the write  
sequence is discarded. Neither an update of the data  
buffer contents, DAC register contents, nor a change  
in the operating mode occurs (see Figure 50).  
The DAC8554 contains a power-on reset circuit that  
controls the output voltage during power-up. On  
power-up, the DAC registers are filled with zeros and  
the output voltages are set to zero-scale; they remain  
there until a valid write sequence and load command  
is made to the respective DAC channel. This is useful  
in applications where it is important to know the state  
of the output of each DAC while the device is in the  
process of powering up. No device pin should be  
brought high before power is applied to the device.  
DB23  
DB12  
A1  
DB11  
D11  
A0  
LD1  
D9  
LD0  
D8  
X
DAC Select 1  
D6  
DAC Select 0  
PD0  
D15  
D14  
D2  
D13  
D1  
D12  
DB0  
D0  
D10  
D7  
D5  
D4  
D3  
Figure 49. DAC8554 Data Input Register Format  
Table 2. Control Matrix  
DB23  
A1  
DB22  
A0  
DB21  
DB20  
LD 0  
DB19  
DB18  
DB17  
DB16  
PD0  
DB15  
MSB  
DB14  
DB13-DB0  
DESCRIPTION  
LD 1  
Don't  
Care  
DAC Sel 1  
DAC Sel 0  
MSB-1  
MSB-2...LSB  
(Address Select)  
0/1 0/1  
See Below  
This address selects 1 of 4 possible devices on a  
single SPI data bus based on each device's address  
pin(s) state.  
A0 and A1 should  
correspond to the  
package address  
set via pins 13  
and 14.  
0
0
0
0
0
0
0
0
0
0
X
X
X
X
X
0
0
1
1
0
1
0
1
0
0
0
0
1
Data  
Write to buffer A with data  
Write to buffer B with data  
Write to buffer C with data  
Write to buffer D with data  
Data  
Data  
Data  
(00, 01, 10, or 11)  
See Table 1  
0
0
Write to buffer (selected by DB17 and DB18) with  
power-down command  
0
0
1
1
1
0
X
X
X
(00, 01, 10, or 11)  
(00, 01, 10, or 11)  
(00, 01, 10, or 11)  
0
1
0
Data  
Data  
Write to buffer with data and load DAC (selected by  
DB17 and DB18)  
See Table 1  
See Table 1  
Write to buffer with power-down command and load  
DAC (selected by DB17 and DB18)  
Write to buffer with data (selected by DB17 and DB18)  
and then load all DACs simultaneously from their  
corresponding buffers.  
1
1
0
1
X
X
(00, 01, 10, or 11)  
1
0
Write to buffer with power-down command (selected by  
DB17 and DB18) and then load all DACs simul-  
taneously from their corresponding buffers.  
Broadcast Modes  
X
X
0
X
X
X
Simultaneously update all channels of all DAC8554  
devices in the system with data stored in each chan-  
nels temporary register.  
X
X
X
X
1
1
1
1
X
X
1
1
X
X
0
1
Data  
Write to all devices and load all DACs with SR data  
See Table 1  
0
Write to all devices and load all DACs with power-down  
command in SR.  
16  
 
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
24th Falling  
Edge  
24th Falling  
Edge  
SCLK  
SYNC  
1
2
1
2
Invalid Write-Sync Interrupt:  
Valid Write-Buffer/DAC Update:  
SYNC HIGH Before 24th Falling Edge  
SYNC HIGH After 24th Falling Edge  
D
DB23 DB22  
DB0  
DB23 DB22  
DB1 DB0  
IN  
Figure 50. Interrupt and Valid SYNC Timing  
Individual channels can separately be powered down,  
POWER-DOWN MODES  
reducing the total power consumption. When all  
channels are powered down, the DAC8554 power  
consumption drops below 2 µA. There is no power  
-up command. When a channel is updated with data,  
it automatically exits power-down. All channels exit  
power-down simultaneously after a broadcast data  
update. The time to exit power-down is approximately  
5 µs. See Table 1 and Table 2 for power-down  
operation details.  
The DAC8554 utilizes four modes of operation. These  
modes are accessed by setting three bits (PD2, PD1,  
and PD0) in the shift register and performing a Load  
action to the DACs. The DAC8554 offers a very  
flexible power-down interface based on channel  
register operation. A channel consists of a single  
16-bit DAC with power-down circuitry, a temporary  
storage register (TR), and a DAC register (DR). TR  
and DR are both 18-bit wide. Two MSBs represent  
power-down condition and 16 LSBs represent data  
for TR and DR. By adding bits 17 and 18 to TR and  
DR, a power-down condition can be temporarily  
stored and used just like data. Internal circuits ensure  
that DB15 and DB14 get transferred to TR17and  
TR16 (DR17 and DR16), when DB16 = 1.  
Resistor  
String DAC  
Amplifier  
VOUTX  
Power-down  
Circuitry  
Resistor  
Network  
The DAC8554 treats the power-down condition like  
data and all the operational modes are still valid for  
power-down. It is possible to broadcast a power-down  
condition to all the DAC8554s in a system, or it is  
possible to simultaneously power-down a channel  
while updating data on other channels.  
Figure 51. Output Stage During Power-Down  
(High-Impedance)  
DB16, DB15, and DB14 = 100 (or 111) represent a  
power-down condition with Hi-Z output impedance for  
a selected channel. 101 represents a power-down  
condition with 1k output impedance and 110 rep-  
resents a power-down condition with 100k output  
impedance.  
17  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
OPERATION EXAMPLES  
Example 1: Write to data buffer A; through buffer D; load DAC A through DAC D simultaneously  
1st — Write to data buffer A:  
A1  
0
A0  
0
LD1  
0
LD0  
0
DC  
X
DAC Sel 1  
0
DAC Sel 0  
0
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
2nd — Write to data buffer B:  
A1  
0
A0  
0
LD1  
0
LD0  
0
DC  
X
DAC Sel 1  
0
DAC Sel 0  
1
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
3rd — Write to data buffer C:  
A1  
0
A0  
0
LD1  
0
LD0  
0
DC  
X
DAC Sel 1  
1
DAC Sel 0  
0
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
4th — Write to data buffer D and simultaneously update all DACs:  
A1  
0
A0  
0
LD1  
1
LD0  
0
DC  
X
DAC Sel 1  
1
DAC Sel 0  
1
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
The DAC A, DAC B, DAC C, and DAC D analog outputs simultaneously settle to the specified values upon  
completion of the 4th write sequence. (The DAC voltages update simultaneously after the 24th SCLK falling edge  
of the 4th write cycle).  
Example 2: Load New Data to DAC A through DAC D sequentially  
1st — Write to data buffer A and load DAC A: DAC A output settles to specified value upon completion:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
0
DAC Sel 0  
0
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
2nd — Write to data buffer B and load DAC B: DAC B output settles to specified value upon completion:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
0
DAC Sel 0  
1
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
3rd — Write to data buffer C and load DAC C: DAC C output settles to specified value upon completion:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
1
DAC Sel 0  
0
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
4th — Write to data buffer D and load DAC D: DAC D output settles to specified value upon completion:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
1
DAC Sel 0  
1
PD0  
0
DB15  
D15  
DB1  
D1  
DB0  
D0  
After completion of each write cycle, DAC analog output settles to the voltage specified.  
Example 3: Power-down DAC A and DAC B to 1 kand Power-down DAC C and DAC D to 100 kΩ  
simultaneously  
Write power-down command to data buffer A: DAC A to 1 k.  
A1  
0
A0  
0
LD1  
0
LD0  
0
DC  
X
DAC Sel 1  
0
DAC Sel 0  
0
PD0  
1
DB15  
0
DB14  
1
DB13  
X
Write power-down command to data buffer B: DAC B to 1 k.  
A1  
0
A0  
0
LD1  
0
LD0  
0
DC  
X
DAC Sel 1  
0
DAC Sel 0  
1
PD0  
1
DB15  
0
DB14  
1
DB13  
X
Write power-down command to data buffer C: DAC C to 1 k.  
A1  
0
A0  
0
LD1  
0
LD0  
0
DC  
X
DAC Sel 1  
1
DAC Sel 0  
0
PD0  
1
DB15  
1
DB14  
0
DB13  
X
18  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
Write power-down command to data buffer D: DAC D to 100 kand simultaneously update all DACs.  
A1  
0
A0  
0
LD1  
1
LD0  
0
DC  
X
DAC Sel 1  
1
DAC Sel 0  
1
PD0  
1
DB15  
1
DB14  
0
DB13  
X
The DAC A, DAC B, DAC C, and DAC D analog outputs simultaneously power-down to each respective specified  
mode upon completion of the 4th write sequence.  
Example 4: Power-Down DAC A Through DAC D to High-Impedance Sequentially:  
Write power-down command to data buffer A and load DAC A: DAC A output = Hi-Z:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
0
DAC Sel 0  
0
PD0  
1
DB15  
1
DB14  
1
DB13  
X
Write power-down command to data buffer B and load DAC B: DAC B output = Hi-Z:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
0
DAC Sel 0  
1
PD0  
1
DB15  
1
DB14  
1
DB13  
x
Write power-down command to data buffer C and load DAC C: DAC C output = Hi-Z:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
1
DAC Sel 0  
0
PD0  
1
DB15  
1
DB14  
1
DB13  
X
Write power-down command to data buffer D and load DAC D: DAC D output = Hi-Z:  
A1  
0
A0  
0
LD1  
0
LD0  
1
DC  
X
DAC Sel 1  
1
DAC Sel 0  
1
PD0  
1
DB15  
1
DB14  
1
DB13  
X
The DAC A, DAC B, DAC C, and DAC D analog  
outputs sequentially power-down to high-impedance  
upon completion of the 1st, 2nd, 3rd, and 4th write  
sequences, respectively.  
ENABLE PIN  
For normal operation, the enable pin must be tied to  
a logic low. If the enable pin is tied high, the  
DAC8554 stops listening to the serial port. This can  
be useful for applications that share the same serial  
port.  
LDAC FUNCTIONALITY  
The DAC8554 offers both a software and hardware  
simultaneous update function. The DAC8554  
double-buffered architecture has been designed so  
that new data can be entered for each DAC without  
disturbing the analog outputs. The software simul-  
taneous update capability is controlled by the load 1  
(LD1) and load 0 (LD0) control bits. By setting load 1  
equal to 1 all of the DAC registers will be updated on  
the falling edge of the 24th clock signal. When the  
new data has been entered into the device, all of the  
DAC outputs can be updated simultaneously and  
synchronously with the clock.  
MICROPROCESSOR INTERFACING  
DAC8554 TO 8051 Interface  
See Figure 52 for a serial interface between the  
DAC8554 and a typical 8051-type micro controller.  
The setup for the interface is as follows: TXD of the  
8051 drives SCLK of the DAC8554, while RXD drives  
the serial data line of the device. The SYNC signal is  
derived from a bit-programmable pin on the port of  
the 8051. In this case, port line P3.3 is used. When  
data is to be transmitted to the DAC8554, P3.3 is  
taken LOW. The 8051 transmits data in 8-bit bytes;  
thus only eight falling clock edges occur in the  
transmit cycle. To load data to the DAC, P3.3 is left  
LOW after the first eight bits are transmitted, then a  
second and third write cycle is initiated to transmit the  
remaining data. P3.3 is taken HIGH following the  
completion of the third write cycle. The 8051 outputs  
the serial data in a format which presents the LSB  
first, while the DAC8554 requires its data with the  
MSB as the first bit received. The 8051 transmit  
routine must therefore take this into account, and  
mirror the data as needed.  
DAC8554 data updates are synchronized with the  
falling edge of the 24th SCLK cycle, which follows a  
falling edge of SYNC. For such synchronous updates,  
the LDAC pin is not required and it must be connec-  
ted to GND permanently. The LDAC pin is used as a  
positive edge triggered timing signal for asynchro-  
nous DAC updates. Data buffers of all channels must  
be loaded with desired data before LDAC is triggered.  
After a low-to-high LDAC transition, all DACs are  
simultaneously updated with the contents of their  
corresponding data buffers. If the content of a data  
buffer is not changed by the serial interface, the  
corresponding DAC output will remain unchanged  
after the LDAC trigger.  
19  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
causes data appearing on the MOSI output to be  
valid on the falling edge of SCLK. When data is being  
transmitted to the DAC, the SYNC line is held LOW  
(PC7). Serial data from the 68HC11 is transmitted in  
8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle. (Data is transmitted  
MSB first.) In order to load data to the DAC8554,  
PC7 is left LOW after the first eight bits are trans-  
ferred, then a second and third serial write operation  
is performed to the DAC. PC7 is taken HIGH at the  
end of this procedure.  
80C51/80L51(1)  
P3.3  
DAC8554  
SYNC  
TXD  
RXD  
SCLK  
DIN  
(1) Additional pins omitted for clarity.  
Figure 52. DAC8554 to 80C51/80L51 Interface  
DAC8554 to Microwire Interface  
DAC8554 to TMS320 DSP Interface  
Figure 53 shows an interface between the DAC8554  
and any Microwire compatible device. Serial data is  
shifted out on the falling edge of the serial clock and  
is clocked into the DAC8554 on the rising edge of the  
CK signal.  
Figure 55 shows the connections between the  
DAC8554 and a TMS320 Digital Signal Processor  
(DSP).  
A Single DSP can control up to four  
DAC8554s without any interface logic.  
DAC8554  
AVDD  
Positive Supply  
MicrowireTM  
DAC8554  
SYNC  
SCLK  
DIN  
CS  
SK  
SO  
0.1  
F
10 F  
TMS320 DSP  
FSX  
SYNC  
VOUT  
VOUT  
VREF  
A
Output A  
Output D  
(1) Additional pins omitted for clarity.  
DX  
DIN  
D
H
Microwire is a registered trademark of National Semiconductor.  
CLKX  
SCLK  
Reference  
Input  
Figure 53. DAC8554 to Microwire Interface  
VREFL  
0.1  
F
1 F to 10 F  
GND  
DAC8554 to 68HC11 Interface  
Figure 54 shows a serial interface between the  
DAC8554 and the 68HC11 micro controller. SCK of  
the 68HC11 drives the SCLK of the DAC8554, while  
the MOSI output drives the serial data line of the  
DAC. The SYNC signal is derived from a port line  
(PC7), similar to the 8051 diagram.  
Figure 55. DAC8554 to TMS320 DSP  
68HC11(1)  
DAC8554  
PC7  
SYNC  
SCLK  
DIN  
SCK  
MOSI  
(1) Additional pins omitted for clarity.  
Figure 54. DAC8554 to 68HC11 Interface  
The 68HC11 should be configured so that its CPOL  
bit is 0 and its CPHA bit is 1. This configuration  
20  
 
 
 
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
APPLICATION INFORMATION  
CURRENT CONSUMPTION  
OUTPUT VOLTAGE STABILITY  
The DAC8554 consumes a maximum of 250 µA at  
AVDD = 5 V and 240 µA at AVDD = 3 V for each active  
channel, including reference current consumption.  
Additional current consumption can occur at the  
digital inputs if VIH << IOVDD. For most efficient power  
operation, CMOS logic levels are recommended at  
the digital inputs to the DAC.  
The DAC8554 exhibits excellent temperature stability  
of 5 ppm/°C typical output voltage drift over the  
specified temperature range of the device. This en-  
ables the output voltage of each channel to stay  
within a ±25 µV window for a ±1°C ambient tempera-  
ture change.  
Good power-supply rejection ratio (PSRR) perform-  
ance reduces supply noise present on AVDD from  
appearing at the outputs to well below 10 µV-s.  
Combined with good dc noise performance and true  
16-bit differential linearity, the DAC8554 becomes a  
perfect choice for closed-loop control applications.  
In power-down mode, typical current consumption is  
200 nA per channel. A delay time of 10 ms to 20 ms  
after a power-down command is issued to the DAC is  
typically sufficient for the power-down current to drop  
below 10 µA.  
DRIVING RESISTIVE AND CAPACITIVE  
LOADS  
SETTLING TIME AND OUTPUT GLITCH PER-  
FORMANCE  
The DAC8554 output stage is capable of driving  
loads of up to 1000 pF while remaining stable. Within  
the offset and gain error margins, the DAC8554 can  
operate rail-to-rail when driving a capacitive load.  
Resistive loads of 2 kcan be driven by the  
DAC8554 while achieving good load regulation.  
When the outputs of the DAC are driven to the  
positive rail under resistive loading, the PMOS tran-  
sistor of each Class-AB output stage can enter into  
the linear region. When this occurs, the added IR  
voltage drop deteriorates the linearity performance of  
the DAC. This only occurs within approximately the  
top 100 mV of the DAC's output voltage character-  
istic. Under resistive loading conditions, good linearity  
is preserved as long as the output voltage is at least  
100 mV below the AVDD voltage.  
DAC8554 settles to ±0.003% of its full-scale range  
within 10 µs, driving a 200 pF 2 Kload. For good  
settling performance the outputs should not approach  
the top and bottom rails. Small signal settling time is  
under 1 µs, enabling data update rates exceeding 1  
MSPS for small code changes.  
Many applications are sensitive to undesired transient  
signals such as glitch. DAC8554 has a proprietary,  
ultra-low glitch architecture addressing such appli-  
cations. Code-to-code glitches rarely exceed millivolt  
and they last under 0.3 µs. Typical glitch energy is an  
outstanding 0.15 nV-s. Theoretical worst cast glitch  
should occur during a 256 LSB step, but it is so low, it  
cannot be detected.  
DIFFERENTIAL AND INTERGRAL  
NONLINEARITY  
CROSSTALK AND AC PERFORMANCE  
DAC8554 uses precision thin film resistors to achieve  
monotonicity and good linearity. Typical linearity error  
is ±4 LSBs; ±0.3 mV error for a 5 V range. Differential  
linearity is typically ±0.25 LSBs, ±19 µV error for a  
consecutive code change.  
The DAC8554 architecture uses separate resistor  
strings for each DAC channel in order to achieve  
ultra-low crosstalk performance. DC crosstalk seen at  
one channel during a full-scale change on the  
neighboring channel is typically less than 0.5LSBs.  
The AC crosstalk measured (for a full-scale, 1 kHz  
sine wave output generated at one channel, and  
measured at the remaining output channel) is typi-  
cally under –100 dB.  
USING THE REF02 AS A POWER SUPPLY  
FOR THE DAC8554  
Due to the extremely low supply current required by  
the DAC8554, a possible configuration is to use a  
REF02 +5 V precision voltage reference to supply the  
required voltage to the DAC8554s supply input as  
well as the reference input, as shown in Figure 56.  
This is especially useful if the power supply is quite  
noisy or if the system supply voltages are at some  
value other than 5 V. The REF02 will output a steady  
supply voltage for the DAC8554. If the REF02 is  
In addition, the DAC8554 can achieve typical AC  
performance of 96 dB signal-to-noise ratio (SNR) and  
85 dB total harmonic distortion (THD), making the  
DAC8554 a solid choice for applications requiring  
high SNR at output frequencies at or below 10 kHz.  
21  
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
used, the current it needs to supply to the DAC8554  
is 0.85 mA typical for AVDD = 5 V. When a DAC  
output is loaded, the REF02 also needs to supply the  
current to the load. The total typical current required  
(with a 5 kload on a given DAC output) is:  
0.85 mA + (5V/5 k) = 1.085 mA  
DAC8554  
-
Figure 57. Bipolar Operation With the DAC8554  
LAYOUT  
A precision analog component requires careful layout,  
adequate bypassing, and clean, well-regulated power  
supplies.  
DAC8554  
The DAC8554 offers single-supply operation, and it  
will often be used in close proximity with digital logic,  
micro controllers, microprocessors, and digital signal  
processors. The more digital logic present in the  
design and the higher the switching speed, the more  
difficult it will be to keep digital noise from appearing  
at the output.  
Figure 56. REF02 as a Power Supply to the  
DAC8554  
BIPOLAR OPERATION USING THE DAC8554  
Due to the single ground pin of the DAC8554, all  
return currents, including digital and analog return  
currents for the DAC, must flow through a single  
point. Ideally, GND would be connected directly to an  
analog ground plane. This plane would be separate  
from the ground connection for the digital  
components until they were connected at the  
power-entry point of the system.  
The DAC8554 has been designed for single-supply  
operation, but a bipolar output range is also possible  
using the circuit in Figure 57. The circuit shown will  
give an output voltage range of ±Vref. Rail-to-rail  
operation at the amplifier output is achievable using  
an amplifier such as the OPA703, as shown in  
REFFigure 57.  
The power applied to AVDD should be well regulated  
and low noise. Switching power supplies and DC/DC  
converters will often have high-frequency glitches or  
spikes riding on the output voltage. In addition, digital  
components can create similar high-frequency spikes  
as their internal logic switches states. This noise can  
easily couple into the DAC output voltage through  
various paths between the power connections and  
analog output.  
The output voltage for any input code can be calcu-  
lated as follows:  
D
65536  
R1 ) R2  
R2  
R1  
X + ƪVref  
ƫ
V
 
 
* V  
 
OUT  
ref  
R1  
where D represents the input code in decimal  
(0–65535).  
With Vref = 5 V, R1 = R2 = 10 k.  
10   D  
As with the GND connection, AVDD should be con-  
nected to a positive power-supply plane or trace that  
is separate from the connection for digital logic until  
they are connected at the power-entry point. In  
addition, a 1 µF to 10 µF capacitor in parallel with a  
0.1 µF bypass capacitor is strongly recommended. In  
some situations, additional bypassing may be re-  
quired, such as a 100 µF electrolytic capacitor or  
even a Pi filter made up of inductors and capacitors –  
all designed to essentially low-pass filter the supply,  
removing the high-frequency noise.  
X * + ƪ)5 V  
V
OUT  
65536  
This is an output voltage range of ±5 V with 0000H  
corresponding to a –5 V output and FFFFH corre-  
sponding to a 5 V output. Similarly, using Vref = 2.5 V  
a ± 2.5 V output voltage range can be achieved.  
22  
 
DAC8554  
www.ti.com  
SLAS431AJUNE 2005REVISED AUGUST 2005  
Up to four DAC8554 devices can be used on a single  
SPI bus without any glue logic to create a high  
channel count solution. Special attention is required  
to avoid digital signal integrity problems when using  
multiple DAC8554s on the same SPI bus. Signal  
integrity of SYNC, SCLK, and DIN lines will not be an  
issue as long as the rise times of these digital signals  
are longer than six times the propagation delay  
between any two DAC8554 devices. Propagation  
speed is approximately six inches/ns on standard  
PCBs. Therefore, if the digital signal rise time is 1 ns,  
the distance between any two DAC8554s have to be  
further apart on the PCB, the signal rise times should  
be reduced by placing series resistors at the drivers  
for SYNC, SCLK, and DIN lines. If the largest distance  
between any two DAC8554s must to be six inches,  
the rise time should be reduced to 6 ns with an RC  
network formed by the series resistor at the digital  
driver and the total trace and input capacitance on  
the PCB.  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Sep-2005  
PACKAGING INFORMATION  
Orderable Device  
DAC8554IPW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
16  
16  
16  
16  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DAC8554IPWG4  
DAC8554IPWR  
DAC8554IPWRG4  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  
配单直通车
DAC8554IPW产品参数
型号:DAC8554IPW
Brand Name:Texas Instruments
是否无铅:不含铅
是否Rohs认证:符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
零件包装代码:TSSOP
包装说明:TSSOP-16
针数:16
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:1.08
Samacsys Confidence:3
Samacsys Status:Released
Samacsys PartID:4140
Samacsys Pin Count:16
Samacsys Part Category:Integrated Circuit
Samacsys Package Category:Small Outline Packages
Samacsys Footprint Name:PW (R-PDSO-G16)
Samacsys Released Date:2015-04-16 09:48:08
Is Samacsys:N
最大模拟输出电压:5.5 V
最小模拟输出电压:
转换器类型:D/A CONVERTER
输入位码:BINARY
输入格式:SERIAL
JESD-30 代码:R-PDSO-G16
JESD-609代码:e4
长度:5 mm
最大线性误差 (EL):0.0183%
湿度敏感等级:1
位数:16
功能数量:1
端子数量:16
最高工作温度:105 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP
封装等效代码:TSSOP16,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):260
电源:3/5 V
认证状态:Not Qualified
采样速率:0.2 MHz
座面最大高度:1.2 mm
最大稳定时间:10 µs
标称安定时间 (tstl):10 µs
子类别:Other Converters
最大压摆率:1.6 mA
标称供电电压:3 V
表面贴装:YES
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:4.4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!