欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • DRV594VFPR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • DRV594VFPR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装HLQFP-32 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • DRV594VFPR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • DRV594VFPR 现货库存
  • 数量6000 
  • 厂家TI 
  • 封装HLQFP 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • DRV594VFPR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • DRV594VFPR 现货库存
  • 数量9000 
  • 厂家TI 
  • 封装原厂原装封 
  • 批号2021+ 
  • 原装现货
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • DRV594VFPR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • DRV594VFPR 现货库存
  • 数量1000 
  • 厂家TI 
  • 封装HLQFP (VFP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • DRV594VFPR图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • DRV594VFPR 优势库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价(上海,北京,深圳,青岛均可交货)
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • DRV594VFPR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • DRV594VFPR
  • 数量65000 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • DRV594VFPR图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • DRV594VFPR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装HLQFP 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • DRV594VFPR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • DRV594VFPR
  • 数量5680 
  • 厂家TI 
  • 封装HLQFP 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • DRV594VFPR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • DRV594VFPR
  • 数量5680 
  • 厂家TI 
  • 封装HLQFP 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • DRV594VFPR图
  • 毅创腾(集团)有限公司

     该会员已使用本站16年以上
  • DRV594VFPR
  • 数量2500 
  • 厂家TI/德州仪器 
  • 封装QFP32 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507168QQ:2355507168 复制
  • 86-755-83210801 QQ:2355507165QQ:2355507168
  • DRV594VFPR图
  • 现代芯城(深圳)科技有限公司

     该会员已使用本站15年以上
  • DRV594VFPR
  • 数量76000 
  • 厂家一级代理 
  • 封装一级代理 
  • 批号一级代理 
  • 一级代理正品采购
  • QQ:3007226851QQ:3007226851 复制
    QQ:3007226849QQ:3007226849 复制
  • 0755-82542579 QQ:3007226851QQ:3007226849
  • DRV594VFPR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • DRV594VFPR
  • 数量3872 
  • 厂家TI 
  • 封装32-LQFP 裸露焊盘 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • DRV594VFPR图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • DRV594VFPR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装32-HLQFP(7x7) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • DRV594VFPR图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • DRV594VFPR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装32-HLQFP(7x7) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • DRV594VFPR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • DRV594VFPR
  • 数量26800 
  • 厂家TI/德州仪器 
  • 封装QFP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • DRV594VFPR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • DRV594VFPR
  • 数量400 
  • 厂家TI 
  • 封装QFP 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • DRV594VFPR图
  • 集好芯城

     该会员已使用本站13年以上
  • DRV594VFPR
  • 数量23540 
  • 厂家TI 
  • 封装HLQFP (VFP) 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • DRV594VFPR图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • DRV594VFPR
  • 数量3500 
  • 厂家TI 
  • 封装HLQFP 32 
  • 批号2017+ 
  • 特价出售,全新原装,部分无铅
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • DRV594VFPR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • DRV594VFPR
  • 数量53888 
  • 厂家TI 
  • 封装HLQFP 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • DRV594VFPR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • DRV594VFPR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装HLQFP-32 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • DRV594VFPR图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • DRV594VFPR
  • 数量7500 
  • 厂家TI/德州仪器 
  • 封装QFP32 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • DRV594VFPR图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • DRV594VFPR
  • 数量12000 
  • 厂家TI 
  • 封装HLQFP EP 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • DRV594VFPR图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • DRV594VFPR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装32-HLQFP(7x7) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • DRV594VFPR图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • DRV594VFPR
  • 数量8460 
  • 厂家TI 
  • 封装QFP 
  • 批号NEW 
  • 【优势库存】实力全新原装现货热卖
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • DRV594VFPR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • DRV594VFPR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装QFP 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • DRV594VFPR图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • DRV594VFPR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装32-HLQFP(7x7) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • DRV594VFPR图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • DRV594VFPR
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装32-LQFP 裸露焊盘 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • DRV594VFPR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • DRV594VFPR
  • 数量5000 
  • 厂家TI 
  • 封装QFP 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • DRV594VFPR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • DRV594VFPR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • DRV594VFPR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • DRV594VFPR
  • 数量6000 
  • 厂家TI 
  • 封装HLQFP 
  • 批号2021+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 755-83950019 QQ:3003818780QQ:3003819484
  • DRV594VFPR图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • DRV594VFPR
  • 数量2368 
  • 厂家TI-德州仪器 
  • 封装QFP-32 
  • 批号▉▉:2年内 
  • ▉▉¥232元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • DRV594VFPR图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • DRV594VFPR
  • 数量25055 
  • 厂家TI/德州仪器 
  • 封装HLQFP-32 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • DRV594VFPR图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • DRV594VFPR
  • 数量22500 
  • 厂家TI(德州仪器) 
  • 封装DRV595DAP 
  • 批号2年内 
  • 原厂渠道 正品保障 长期供应
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • DRV594VFPR图
  • 深圳市水星电子有限公司

     该会员已使用本站4年以上
  • DRV594VFPR
  • 数量17361 
  • 厂家TI 
  • 封装32-LQFP 
  • 批号23+ 
  • 确保原装正品,终端可支持一站式BOM配单
  • QQ:2881703403QQ:2881703403 复制
  • 0755-89585609 QQ:2881703403
  • DRV594VFPR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • DRV594VFPR
  • 数量24652 
  • 厂家BB 
  • 封装HLQFP-32 
  • 批号2020+ 
  • 优势库存全新原装现货特价热卖
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • DRV594VFPR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • DRV594VFPR
  • 数量3200 
  • 厂家TI 
  • 封装QFP 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • DRV594VFPR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • DRV594VFPR
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • DRV594VFPR图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • DRV594VFPR
  • 数量
  • 厂家TI 
  • 封装HLQFP 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872153 QQ:1484215649QQ:729272152
  • DRV594VFPR图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • DRV594VFPR
  • 数量120 
  • 厂家TI 
  • 封装HLQFP 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056

产品型号DRV594VFPR的概述

芯片DRV594VFPR的概述 DRV594VFPR是一款由德州仪器(Texas Instruments)公司推出的高效能音频放大器,该芯片专为音频应用设计,能够提供高输出功率和低失真性能。主要应用于便携式音频设备、音响系统及其他音频信号处理的设备中,DRV594VFPR在电能效率和音质之间提供了优异的平衡,使其成为现代音频设计中的重要组件。 DRV594VFPR的详细参数 DRV594VFPR的主要技术参数如下: - 工作电压范围:2.5V至5.5V - 输出功率:最大输出功率可达2.5W(负载为8Ω 时) - 总谐波失真(THD):典型值为0.1% - 频率响应:20Hz至20kHz,带宽满足高保真音频需求 - 增益:固定增益设置,用于简单的设计与集成 - 待机电流:小于1μA,便于电池供电设备的应用 - 热保护特性:内置热保护,提供额外的安全性 以上参数指向DRV594VFPR适...

产品型号DRV594VFPR的Datasheet PDF文件预览

DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
±3−A HIGH−EFFICIENCY PWM POWER DRIVER  
FEATURES  
DESCRIPTION  
The DRV593 and DRV594 are high-efficiency,  
high-current power amplifiers ideal for driving a wide  
variety of thermoelectric cooler elements in systems  
powered from 2.8 V to 5.5 V. The operation of the device  
requires only one inductor and capacitor for the output  
filter, saving significant printed-circuit board area.  
Pulse-width modulation (PWM) operation and low output  
stage on-resistance significantly decrease power  
dissipation in the amplifier.  
D
Operation Reduces Output Filter Size and  
Cost by 50% Compared to DRV591  
D
D
D
D
D
±3-A Maximum Output Current  
Low Supply Voltage Operation: 2.8 V to 5.5 V  
High Efficiency Generates Less Heat  
Overcurrent and Thermal Protection  
Fault Indicators for Overcurrent, Thermal and  
Undervoltage Conditions  
The DRV593 and DRV594 are internally protected against  
thermal and current overloads. Logic-level fault indicators  
signal when the junction temperature has reached  
approximately 115°C to allow for system-level shutdown  
before the amplifier’s internal thermal shutdown circuitry  
activates. The fault indicators also signal when an  
overcurrent event has occurred. If the overcurrent circuitry  
is tripped, the devices automatically reset (see application  
information section for more details).  
D
D
D
D
Two Selectable Switching Frequencies  
Internal or External Clock Sync  
PWM Scheme Optimized for EMI  
9×9 mm PowerPADQuad Flatpack Package  
APPLICATIONS  
The PWM switching frequency may be set to 500 kHz or  
100 kHz depending on system requirements. To eliminate  
external components, the gain is fixed at 2.3 V/V for the  
DRV593. For the DRV594, the gain is fixed at 14.5 V/V.  
D
D
Thermoelectric Cooler (TEC) Driver  
Laser Diode Biasing  
V
DD  
1 µF  
10 µF  
10 µH  
1 µF  
To TEC or Laser  
PWM  
AVDD  
Diode Anode  
AGND (Connect to PowerPAD)  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
H/C  
120 kΩ  
ROSC  
COSC  
220 pF  
DC Control  
Voltage  
DRV593  
DRV594  
AREF  
1 µF  
IN+  
10 µF  
1 kΩ  
1 kΩ  
IN-  
SHUTDOWN  
Shutdown Control  
FAULT1  
FAULT0  
To TEC or Laser  
Diode Cathode  
1 µF  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date. Products  
conform to specifications per the terms of Texas Instruments standard warranty.  
Production processing does not necessarily include testing of all parameters.  
Copyright 2002, Texas Instruments Incorporated  
 
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
ORDERING INFORMATION  
handledwith appropriate precautions. Failure to observe  
proper handling and installation procedures can cause damage.  
PowerPAD QUAD FLATPACK  
(VFP)  
T
A
(1)  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
DRV593VFP  
-40°C to 85°C  
(1)  
DRV594VFP  
(1)  
This package is available taped and reeled. To order this  
packaging option, add an R suffix to the part number (e.g.,  
DRV593VFPR or DRV594VFPR).  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
DRV593, DRV594  
Supply voltage, AVDD, PVDD  
-0.3 V to 5.5 V  
Input voltage, V  
-0.3 V to V + 0.3 V  
I
DD  
Output current, I (FAULT0, FAULT1)  
1 mA  
See Dissipation Rating Table  
-40°C to 85°C  
O
Continuous total power dissipation  
Operating free-air temperature range, T  
A
Operating junction temperature range, T  
-40°C to 150°C  
J
Storage temperature range, T  
-65°C to 165°C  
stg  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
MIN MAX UNIT  
Supply voltage, AVDD PVDD  
2.8  
2
5.5  
V
V
,
High-level input voltage, V  
FREQ, INT/EXT, SHUTDOWN, COSC  
FREQ, INT/EXT, SHUTDOWN, COSC  
IH  
Low-level input voltage, V  
0.8  
85  
V
IL  
Operating free-air temperature, T  
- 40  
°C  
A
PACKAGE DISSIPATION RATINGS  
(1)  
Θ
JA  
Θ
JC  
T = 25°C  
A
PACKAGE  
(°C/W)  
(°C/W)  
POWER RATING  
VFP  
29.4  
1.2  
4.1 W  
(1)  
This data was taken using 2 oz trace and copper pad that is  
soldered directly to a JEDEC standard 4-layer 3 in × 3 in PCB.  
2
 
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
= 0 A  
MIN  
TYP  
MAX  
100  
1
UNIT  
mV  
µA  
|V  
|
Output offset voltage (measured differentially)  
High-level input current  
V = V /2,  
I
O
14  
OO  
I
DD  
|I  
|
IH  
V
DD  
V
DD  
= 5.5V,  
V = V  
I DD  
|I |  
IL  
Low-level input current  
= 5.5V,  
V = 0 V  
I
1
µA  
Vn  
Integrated output noise voltage  
f = <1 Hz to 10 kHz  
40  
µV  
V
V
= 5 V  
1.2  
1.2  
3.8  
2.1  
DD  
DD  
V
Common-mode voltage range  
V
ICM  
v
= 3.3 V  
DRV593  
DRV594  
2.1  
2.3  
14.5  
60  
2.6  
V/V  
V/V  
kHz  
A
Closed-loop voltage gain  
Full power bandwidth  
13.7  
15.3  
I
I
= ±1 A, r  
= ±3 A, r  
= 65 m,  
V = 5 V  
DD  
4.87  
4.61  
60  
O
ds(on)  
V
Voltage output (measured differentially)  
V
O
= 65 m, V = 5 V  
O
ds(on)  
DD  
High side  
Low side  
High side  
Low side  
25  
25  
25  
25  
95  
95  
V
= 5 V, I = 4 A,  
O
DD  
mΩ  
T = 25°C  
65  
A
r
Drain-source on-state resistance  
Maximum continuous current output  
DS(on)  
80  
140  
140  
V
= 3.3 V, I = 4 A,  
O
DD  
mΩ  
A
T = 25°C  
90  
A
3
Status flag output pins (FAULT0, FAULT1)  
Fault active (open drain output)  
Sinking 200 µA  
0.1  
V
For 500 kHz operation  
For 100 kHz operation  
225  
45  
250  
50  
4
300  
55  
12  
8
External clock frequency range  
Quiescent current  
kHz  
mA  
V
DD  
V
DD  
V
DD  
= 5 V, No load or filter  
= 3.3 V, No load or filter  
I
I
q
2.5  
40  
2
Quiescent current in shutdown mode  
Output resistance in shutdown  
Power-on threshold  
= 5 V, SHUTDOWN = 0.8 V  
0
1
80  
µA  
kΩ  
V
q(SD)  
SHUTDOWN = 0.8 V  
1.7  
1.6  
2.8  
2.6  
Power-off threshold  
V
Thermal trip point  
FAULT0 active  
Power off  
115  
150  
100  
°C  
°C  
kΩ  
Thermal shutdown  
Z
I
Input impedance (IN+, IN-)  
3
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
PIN ASSIGNMENTS  
VFP PACKAGE  
(TOP VIEW)  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
AVDD  
AGND  
ROSC  
PWM  
24  
23  
PGND  
22 PGND  
21  
20  
19  
18  
17  
COSC  
AREF  
PGND  
PGND  
PGND  
PGND  
H/C  
PowerPAD  
IN+  
IN-  
SHUTDOWN  
9 10 11 12 13 14 15 16  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AGND  
NO.  
2
Analog ground  
AREF  
AVDD  
COSC  
5
1
4
O
I
Connect 1 µF capacitor to ground for AREF voltage filtering  
Analog power supply  
I
Connect capacitor to ground to set oscillation frequency (220 pF for 500 kHz, 1 nF for 100 kHz) when the internal  
oscillator is selected; connect clock signal when an external oscillator is used  
FAULT0  
FAULT1  
10  
9
O
O
Fault flag 0, low when active open drain output (see application information)  
Fault flag 1, low when active open drain output (see application information)  
Selects 500 kHz switching frequency when a TTL logic low is applied to this terminal; selects 100 kHz switching  
frequency when a TTL logic high is applied  
FREQ  
IN-  
32  
7
I
I
I
I
Negative differential input  
Positive differential input  
IN+  
6
INT/EXT  
31  
Selects the internal oscillator when a TTL logic high is applied to this terminal; selects the use of an external oscil-  
lator when a TTL logic low is applied to this terminal  
H/C  
14, 15,  
16, 17  
O
O
Direction control output for heat and cool modes (4 pins)  
PWM output for voltage magnitude (4 pins)  
High-current ground (6 pins)  
PWM  
PGND  
24, 25,  
26, 27  
18, 19,  
20, 21,  
22, 23  
PVDD  
11, 12,  
13, 28,  
29, 30  
I
High-current power supply (6 pins)  
ROSC  
3
I
I
Connect 120-kresistor to AGND to set oscillation frequency (either 500 kHz or 100 kHz). Not needed if an  
external clock is used.  
SHUTDOWN  
8
Places the amplifier in shutdown mode when a TTL logic low is applied to this terminal; places the amplifier  
in normal operation when a TTL logic high is applied  
4
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AGND  
AVDD  
2.3 × R (DRV593)  
PVDD  
H/C  
+
_
14.5 x R (DRV594)  
Gate  
Drive  
R
R
IN-  
_
_
+
+
_
+
PGND  
PVDD  
_
+
IN+  
+
_
PWM  
Gate  
2.3 × R (DRV593)  
14.5 x R (DRV594)  
Drive  
PGND  
SHUTDOWN  
INT/EXT  
Start-Up  
Protection  
Logic  
OC  
Detect  
TTL  
Biases  
and  
References  
Input  
Ramp  
Generator  
Buffer  
FREQ  
COSC  
ROSC  
AREF  
Thermal  
VDDok  
FAULT0  
FAULT1  
5
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
FIGURE  
Efficiency  
vs Load resistance  
vs Supply voltage  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
vs Frequency  
2, 3  
4
5
r
Drain-source on-state resistance  
DS(on)  
6
I
q
Supply current  
7
PSRR  
Power supply rejection ratio  
Closed loop response  
8, 9  
12, 13  
14  
vs Output voltage  
I
Maximum output current  
Input offset voltage  
O
vs Ambient temperature  
Common-mode input voltage  
15  
V
16, 17  
IO  
TEST SETUP FOR GRAPHS  
The LC output filter used in Figures 2, 3, 8, and 9 is shown below.  
L1  
PWM  
C1  
R
L
H/C  
L1 = 10 µH (part number: CDRH104R, manufacturer: Sumida)  
C1 = 10 µF (part number: ECJ-4YB1C106K, manufacturer: Panasonic)  
Figure 1. LC Output Filter  
6
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
TYPICAL CHARACTERISTICS  
EFFICIENCY  
vs  
EFFICIENCY  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
P
= 2 W  
O
P
= 1 W  
O
P
= 0.5 W  
P
O
= 1 W  
O
P
= 0.5 W  
O
P
O
= 0.25 W  
V
f
= 3.3 V  
= 500 kHz  
V
= 5 V  
= 500 kHz  
DD  
DD  
f
S
S
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
R
L
- Load Resistance - Ω  
R
L
- Load Resistance - Ω  
Figure 2  
Figure 3  
DRAIN-SOURCE ON-STATE RESISTANCE  
DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
300  
250  
300  
V
I
= 5 V  
= 1 A  
I
= 1 A  
DD  
O
T = 25°C  
O
A
VFP Package  
250  
200  
150  
Total  
200  
150  
100  
Total  
Low Side  
High Side  
Low Side  
High Side  
100  
50  
0
50  
0
-40  
-15  
10  
35  
60  
85  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
T
A
- Free-Air Temperature - °C  
V
DD  
- Supply Voltage - V  
Figure 4  
Figure 5  
7
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
TYPICAL CHARACTERISTICS  
DRAIN-SOURCE ON-STATE RESISTANCE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
300  
250  
200  
150  
100  
10  
9
V
I
= 3.3 V  
= 1 A  
DD  
No Load  
O
VFP Package  
8
Total  
7
6
5
Low Side  
4
3
High Side  
2
50  
0
1
0
-40  
-15  
10  
35  
60  
85  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
T
A
- Free-Air Temperature - °C  
V
DD  
- Supply Voltage - V  
Figure 6  
Figure 7  
POWER SUPPLY REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
V
= 5 V  
= 500 kHz  
DD  
V
= 3.3 V  
DD  
f
S
f = 500 kHz  
S
R = 1 Ω  
L
R = 1 Ω  
L
V
ripple  
= 100 mV  
pp  
V
= 100 mV  
ripple pp  
-70  
-80  
-70  
-80  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 8  
Figure 9  
8
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
TYPICAL CHARACTERISTICS  
DRV594  
DRV593  
CLOSED LOOP RESPONSE  
CLOSED LOOP RESPONSE  
4
10  
16  
14  
12  
10  
10  
Gain  
0
Phase  
Gain  
0
-10  
-20  
3
2
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Phase  
-30  
-40  
-50  
-60  
8
6
4
2
0
1
0
V
= 5 V  
DD  
V
= 5 V  
DD  
No Load  
-70  
-80  
No Load  
10  
100  
1 k  
10 k  
100 k  
10  
100  
1k  
10k  
100k  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 10  
Figure 11  
DRV593  
DRV594  
CLOSED LOOP RESPONSE  
CLOSED LOOP RESPONSE  
10  
4
16  
14  
12  
10  
8
10  
Gain  
0
0
Phase  
-10  
-20  
3
2
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Phase  
Gain  
-30  
-40  
-50  
6
1
0
4
-60  
-70  
-80  
V
= 3.3 V  
DD  
V
= 3.3 V  
DD  
2
No Load  
No Load  
0
10  
100  
1 k  
10 k  
100 k  
10  
100  
1k  
10k  
100k  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 12  
Figure 13  
9
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
TYPICAL CHARACTERISTICS  
MAXIMUM OUTPUT CURRENT  
MAXIMUM OUTPUT CURRENT  
vs  
vs  
OUTPUT VOLTAGE  
AMBIENT TEMPERATURE  
3.5  
3
3.5  
3
T = 100°C  
J
2.5  
2
T = 85°C  
2.5  
2
J
T = 125°C  
J
1.5  
1
1.5  
1
V
= 5 V  
0.5  
0
DD  
0.5  
0
T = 25°C  
A
T 125°C  
J
VFP Package  
VFP Package  
0
1
2
3
4
5
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80  
V
O
- Output Voltage - V  
T
A
- Ambient Temperature - °C  
Figure 14  
Figure 15  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
10  
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
V
= 5 V  
V
= 3.3 V  
DD  
DD  
No Load  
No Load  
8
7
6
5
4
3
2
1
0
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6 3.8  
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1  
V
IC  
- Common-Mode Input Voltage - V  
V
IC  
- Common-Mode Input Voltage - V  
Figure 16  
Figure 17  
10  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
APPLICATION INFORMATION  
PULSE-WIDTH MODULATION SCHEME FOR DRV593 AND DRV594  
The pulse-width modulation scheme implemented in the DRV593 and DRV594 eliminates one-half of the full output  
filter previously required for PWM drivers. The DRV593 and DRV594 require only one inductor and capacitor for the  
output filter. The H/C outputs determine the direction of the current and do not switch back and forth. The PWM outputs  
switch to produce a voltage across the load that is proportional to the input control voltage.  
COOLING MODE  
Figure 18 shows the DRV593 and DRV594 in cooling mode. The H/C outputs (pins 14-17) are at ground and the  
PWM outputs (pins 24-27) create a voltage across the load that is proportional to the input voltage.  
The differential voltage across the load is determined using equation (1) and the duty cycle using equation (2). The  
differential voltage is defined as the voltage measured after the filter on the PWM output relative to the H/C output.  
V
+ D   V  
Load  
DD  
(1)  
ǒ
A V  
v
IN–Ǔ  
–V  
IN)  
V
D +  
DD  
(2)  
where  
D
duty cycle of the PWM signal  
Av  
Gain of DRV593/594 (DRV593: 2.3 V/V, DRV594: 14.5 V/V)  
Positive input terminal of the DRV593/594  
Negative input terminal of the DRV593/594  
Power supply voltage  
VIN+  
VIN-  
VDD  
For example, a 50% duty cycle, shown in Figure 18, results in 2.5 V across the load for VDD = 5 V.  
VDD  
PWM  
0
VDD  
H/C  
0
VDD  
VDD/2  
Load  
Voltage  
0
Figure 18. Cooling Mode  
11  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
HEATING MODE  
Figure 19 shows the DRV593 and DRV594 in heating mode. The H/C output is at VDD and the PWM output is  
proportional to the voltage across the load.  
The differential voltage across the load is determined using equation (3). The variables are the same as used  
previously for equations (1) and (2).  
V
+ –(1–D)   V  
Load  
DD  
(3)  
For example, a 50% duty cycle, shown in Figure 19, results in -2.5 V across the load for VDD = 5 V. The differential  
voltage across the load is defined as the voltage measured after the filter on the PWM output relative to the H/C output.  
VDD  
PWM  
0
VDD  
H/C  
0
Load  
0
Voltage  
-VDD/2  
-VDD  
Figure 19. Heating Mode  
12  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
HEAT/COOL TRANSITION  
As the device transitions from cooling to heating, the duty cycle of the PWM outputs decrease to a small value and  
the H/C outputs remains at ground. When the device transitions to heating mode, the H/C outputs change from zero  
volts to VDD and the PWM outputs change to a high duty cycle. The direction of the current flow is reversed, but a  
low voltage is maintained across the load. The duty cycle decreases as the part is put further into heating mode to  
drive more current through the load. Figure 20 illustrates the transition from cooling to heating.  
ZERO-CROSSING REGION  
When the differential output voltage is near zero, the control logic in the DRV593 and DRV594 causes the outputs  
to change between heating and cooling modes. There are two possible states for the PWM and H/C outputs to obtain  
zero volts differentially: both outputs can be at VDD or both outputs can be at ground. Therefore, random noise causes  
the outputs to change between the two states when the two input voltages are equal. The outputs switch from zero  
to VDD, although not at a fixed frequency rate. Some of the pulses may be wider than others, but the two outputs  
(PWM and H/C) track each other to provide zero differential voltage. These uneven pulse widths can increase the  
switching noise during the zero-crossing condition.  
To avoid this phenomenon, hysteresis should be implemented in the control loop to prevent the device from operating  
within this region. Although planning for operation during the zero-crossing is important, the normal operating points  
for the DRV593 and DRV594 are outside of this region. For laser temperature/wavelength regulation, the zero volts  
output condition is only a concern when the laser temperature or wavelength, relative to the ambient temperature,  
requires no heating or cooling from the TEC element.  
VDD  
IN +  
IN -  
0
VDD  
PWM  
0
VDD  
H/C  
0
Figure 20. Transition From Cooling to Heating  
13  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
V
DD  
1 µF  
10 µF  
10 µH  
1 µF  
To TEC or Laser  
Diode Anode  
AVDD  
PWM  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
H/C  
AGND (Connect to PowerPAD)  
120 kΩ  
ROSC  
COSC  
220 pF  
DC Control  
Voltage  
DRV593  
DRV594  
AREF  
1 µF  
IN+  
1 kΩ  
1 kΩ  
10 µF  
IN-  
SHUTDOWN  
Shutdown Control  
FAULT1  
FAULT0  
To TEC or Laser  
Diode Cathode  
1 µF  
Figure 21. Typical Application Circuit  
OUTPUT FILTER CONSIDERATIONS  
TEC element manufacturers provide electrical specifications for maximum dc current and maximum output  
voltage for each particular element. The maximum ripple current, however, is typically only recommended to  
be less than 10% with no reference to the frequency components of the current. The maximum temperature  
differential across the element, which decreases as ripple current increases, may be calculated with the  
following equation:  
(4)  
1
DT +  
  DT  
max  
2
ǒ
Ǔ
1 ) N  
where  
T = actual temperature differential  
T = maximum temperature differential (specified by manufacturer)  
max  
N = ratio of ripple current to dc current  
According to this relationship, a 10% ripple current reduces the maximum temperature differential by 1%. An  
LC network may be used to filter the current flowing to the TEC to reduce the amount of ripple and, more  
importantly, protect the rest of the system from any electromagnetic interference (EMI).  
FILTER COMPONENT SELECTION  
The LC filter, which may be designed from two different perspectives, both described below, helps estimate the  
overall performance of the system. The filter should be designed for the worst-case conditions during operation,  
which is typically when the differential output is at 50% duty cycle. The following section serves as a starting  
point for the design, and any calculations should be confirmed with a prototype circuit in the lab.  
Any filter should always be placed as close as possible to the DRV593 and DRV594 to reduce EMI.  
L
PWM  
C
R
TEC  
H/C  
Figure 22. LC Output Filter  
14  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
LC FILTER IN THE FREQUENCY DOMAIN  
The transfer function for a second-order low-pass filter (Figures 17 and 18) is shown in equation (5):  
1
(5)  
H
(jw) +  
LP  
2
jw  
w
ǒ Ǔ  
w
1
Q
)
) 1  
w
0
0
1
w
+
0
Ǹ
LC  
Q + quality factor  
w + DRV593 or DRV594 switching frequency  
For the DRV593 and DRV594, the differential output switching frequency is typically selected to be 500 kHz.  
The resonant frequency for the filter is typically chosen to be at least one order of magnitude lower than the  
switching frequency. equation (5) may then be simplified to give the following magnitude equation (6). These  
equations assume the use of the filter in Figure 22.  
(6)  
f
s
ŤHLPŤdB  
+ –40 log ǒ Ǔ  
Ǹ
f
o
1
f
+
o
2p LC  
f + 500 kHz (DRV593 or DRV594 switching frequency)  
s
If L=10 µH and C=10 µF, the cutoff frequency is 15.9 kHz, which corresponds to –60 dB of attenuation at the  
500 kHz switching frequency. For VDD = 5 V, the amount of ripple voltage at the TEC element is approximately  
5 mV.  
The average TEC element has a resistance of 1.5 , so the ripple current through the TEC is approximately  
3.4 mA. At the 3-A maximum output current of the DRV593 and DRV594, this 5.4 mA corresponds to 0.11%  
ripple current, causing less than 0.0001% reduction of the maximum temperature differential of the TEC  
element (see equation 4).  
LC FILTER IN THE TIME DOMAIN  
The ripple current of an inductor may be calculated using equation (7):  
(7)  
ǒV –V ǓDT  
s
O
TEC  
L
DI  
+
L
D + duty cycle (0.5 worst case)  
T + 1ńf + 1ń500 kHz  
s
s
For V = 5 V, V  
= 2.5 V, and L = 10 µH, the inductor ripple current is 250 mA. To calculate how much of that  
O
TEC  
ripple current flows through the TEC element, however, the properties of the filter capacitor must be considered.  
For relatively small capacitors (less than 22 µF) with very low equivalent series resistance (ESR, less than  
10 m), such as ceramic capacitors, the following equation (8) may be used to estimate the ripple voltage on  
the capacitor due to the change in charge:  
2
(8)  
f
2
o
p
ǒ
Ǔ
1–D ǒ Ǔ VTEC  
DV  
+
C
2
f
s
D + duty cycle  
f + 500 kHz  
s
1
f
+
o
Ǹ
2p LC  
15  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
For L = 10 µH and C = 10 µF, the cutoff frequency, f , is 15.9 kHz. For worst case duty cycle of 0.5 and  
o
V
=2.5 V, the ripple voltage on the capacitors is 6.2 mV. The ripple current may be calculated by dividing the  
TEC  
ripple voltage by the TEC resistance of 1.5 , resulting in a ripple current through the TEC element of 4.1 mA.  
Note that this is similar to the value calculated using the frequency domain approach.  
For larger capacitors (greater than 22 µF) with relatively high ESR (greater than 100 m), such as electrolytic  
capacitors, the ESR dominates over the charging/discharging of the capacitor. The following simple  
equation (9) may be used to estimate the ripple voltage:  
(9)  
DV + DI   R  
L
C
ESR  
DI + inductor ripple current  
L
R
+ filter capacitor ESR  
ESR  
For a 100 µF electrolytic capacitor, an ESR of 0.1 is common. If the 10 µH inductor is used, delivering 250 mA  
of ripple current to the capacitor (as calculated above), then the ripple voltage is 25 mV. This is over ten times  
that of the 10 µF ceramic capacitor, as ceramic capacitors typically have negligible ESR.  
SWITCHING FREQUENCY CONFIGURATION: OSCILLATOR COMPONENTS ROSC AND COSC  
AND FREQ OPERATION  
The onboard ramp generator requires an external resistor and capacitor to set the oscillation frequency. The  
frequency may be either 500 kHz or 100 kHz by selecting the proper capacitor value and by holding the FREQ  
pin either low (500 kHz) or high (100 kHz). Table 1 shows the values required and FREQ pin configuration for  
each switching frequency.  
Table 1. Frequency Configuration Options  
SWITCHING FREQUENCY  
500 kHz  
R
C
FREQ  
OSC  
OSC  
120 kΩ  
120 kΩ  
220 pF  
1 nF  
LOW (GND)  
HIGH (VDD)  
100 kHz  
For proper operation, the resistor R  
should have 1% tolerance while capacitor C  
should be a ceramic  
OSC  
OSC  
type with 10% tolerance. Both components should be grounded to AGND, which should be connected to PGND  
at a single point, typically where power and ground are physically connected to the printed-circuit board.  
EXTERNAL CLOCKING OPERATION  
To synchronize the switching to an external clock signal, pull the INT/EXT terminal low, and drive the clock signal  
into the COSC terminal. This clock signal must be from 10% to 90% duty cycle and meet the voltage  
requirements specified in the electrical specifications table. Since the DRV593 and DRV594 include an internal  
frequency doubler, the external clock signal must be approximately 250 kHz. Deviations from the 250 kHz clock  
frequency are allowed and are specified in the electrical characteristic table. The resistor connected from ROSC  
to ground may be omitted from the circuit in this mode of operation—the source is disconnected internally.  
INPUT CONFIGURATION: DIFFERENTIAL AND SINGLE-ENDED  
If a differential input is used, it should be biased around the midrail of the DRV593 or DRV594 and must not  
exceed the common-mode input range of the input stage (see the operating characteristics at the beginning  
of the data sheet).  
The most common configuration employs a single-ended input. The unused input should be tied to V /2, which  
DD  
may be simply accomplished with a resistive voltage divider. For the best performance, the resistor values  
chosen should be at least 100 times lower than the input resistance of the DRV593 or DRV594. This prevents  
the bias voltage at the unused input from shifting when the signal input is applied. A small ceramic capacitor  
should also be placed from the input to ground to filter noise and keep the voltage stable. An op amp configured  
as a buffer may also be used to set the voltage at the unused input.  
16  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
FIXED INTERNAL GAIN  
The differential output voltage may be calculated using equation (10):  
(10)  
vǒV  
IN–Ǔ  
V
+ V  
–V  
OUT) OUT–  
+ A  
–V  
IN)  
O
A is the voltage gain, which is fixed internally at 2.3 V/V for DRV593 and 14.5 V/V for DRV594. The maximum  
V
and minimum ratings are provided in the electrical specification table at the beginning of the data sheet.  
POWER SUPPLY DECOUPLING  
To reduce the effects of high-frequency transients or spikes, a small ceramic capacitor, typically 0.1 µF to 1 µF,  
should be placed as close to each set of PVDD pins of the DRV593 and DRV594 as possible. For bulk  
decoupling, a 10 µF to 100 µF tantalum or aluminum electrolytic capacitor should be placed relatively close to  
the DRV593 and DRV594.  
AREF CAPACITOR  
The AREF terminal is the output of an internal mid-rail voltage regulator used for the onboard oscillator and ramp  
generator. The regulator may not be used to provide power to any additional circuitry. A 1 µF ceramic capacitor  
must be connected from AREF to AGND for stability (see oscillator components above for AGND connection  
information).  
SHUTDOWN OPERATION  
The DRV593 and DRV594 include a shutdown mode that disables the outputs and places the device in a low  
supply current state. The SHUTDOWN pin may be controlled with a TTL logic signal. When SHUTDOWN is  
held high, the device operates normally. When SHUTDOWN is held low, the device is placed in shutdown. The  
SHUTDOWN pin must not be left floating. If the shutdown feature is unused, the pin may be connected to VDD.  
FAULT REPORTING  
The DRV593 and DRV594 include circuitry to sense three faults:  
D Overcurrent  
D Undervoltage  
D Overtemperature  
These three fault conditions are decoded via the FAULT1 and FAULT0 terminals. Internally, these are  
open-drain outputs, so an external pullup resistor of 5 kor greater is required.  
Table 2. Fault Indicators  
FAULT1  
FAULT0  
0
1
0
1
0
0
1
1
Overcurrent  
Undervoltage  
Overtemperature  
Normal operation  
The overcurrent fault is reported when the output current exceeds four amps. As soon as the condition is  
sensed, the overcurrent fault is set and the outputs go into a high-impedance state for approximately 3 µs to  
5 µs (500 kHz operation). After 3 µs to 5 µs, the outputs are re-enabled. If the overcurrent condition has ended,  
the fault is cleared and the device resumes normal operation. If the overcurrent condition still exists, the above  
sequence repeats.  
The undervoltage fault is reported when the operating voltage is reduced below 2.8 V. This fault is not latched,  
so as soon as the power supply recovers, the fault is cleared and normal operation resumes. During the  
undervoltage condition, the outputs go into a high-impedance state to prevent overdissipation due to increased  
r
.
DS(on)  
17  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
The overtemperature fault is reported when the junction temperature exceeds 115°C. The device continues  
operating normally until the junction temperature reaches 150°C, at which point the IC is disabled to prevent  
permanent damage from occurring. The system’s controller must reduce the power demanded from the  
DRV593 or DRV594 once the overtemperature flag is set, or else the device switches off when it reaches 150°C.  
This fault is not latched; once the junction temperature drops below 115°C, the fault is cleared, and normal  
operation resumes.  
POWER DISSIPATION AND MAXIMUM AMBIENT TEMPERATURE  
Though the DRV593 and DRV594 are much more efficient than traditional linear solutions, the power drop  
across the on-resistance of the output transistors does generate some heat in the package, which may be  
calculated as shown in equation (11):  
+ ǒIOUTǓ2  
(11)  
P
  r  
DISS  
DS(on), total  
For example, at the maximum output current of 3 A through a total on-resistance of 130 m(at T = 25°C),  
J
the power dissipated in the package is 1.17 W.  
Calculate the maximum ambient temperature using equation (12):  
(12)  
* ǒθ  
JA  
DISSǓ  
T
+ T  
  P  
A
J
PRINTED-CIRCUIT BOARD (PCB) LAYOUT CONSIDERATIONS  
Since the DRV593 and DRV594 are high-current switching devices, a few guidelines for the layout of the  
printed-circuit board (PCB) must be considered:  
1. Grounding. Analog ground (AGND) and power ground (PGND) must be kept separated, ideally back to  
where the power supply physically connects to the PCB, minimally back to the bulk decoupling capacitor  
(10 µF ceramic minimum). Furthermore, the PowerPAD ground connection should be made to AGND, not  
PGND. Ground planes are not recommended for AGND or PGND, traces should be used to route the  
currents. Wide traces (100 mils) should be used for PGND while narrow traces (15 mils) should be used  
for AGND.  
2. Power supply decoupling. A small 0.1 µF to 1 µF ceramic capacitor should be placed as close to each  
set of PVDD pins as possible, connecting from PVDD to PGND. A 0.1 µF to 1 µF ceramic capacitor should  
also be placed close to the AVDD pin, connecting from AVDD to AGND. A bulk decoupling capacitor of at  
least 10 µF, preferably ceramic, should be placed close to the DRV593 or DRV594, from PVDD to PGND.  
If power supply lines are long, additional decoupling may be required.  
3. Power and output traces. The power and output traces should be sized to handle the desired maximum  
output current. The output traces should be kept as short as possible to reduce EMI, i.e., the output filter  
should be placed as close to the DRV593 or DRV594 outputs as possible.  
4. PowerPAD. The DRV593 and DRV594 in the Quad Flatpack package use TI’s PowerPAD technology to  
enhance the thermal performance. The PowerPAD is physically connected to the substrate of the DRV593  
and DRV594 silicon, which is connected to AGND. The PowerPAD ground connection should therefore be  
kept separate from PGND as described above. The pad underneath the AGND pin may be connected  
underneath the device to the PowerPAD ground connection for ease of routing. For additional information  
on PowerPAD PCB layout, refer to the PowerPAD Thermally Enhanced Package application note,  
SLMA002.  
5. Thermal performance. For proper thermal performance, the PowerPAD must be soldered down to a  
thermal land, as described in the PowerPAD Thermally Enhanced Package application note, SLMA002.  
In addition, at high current levels (greater than 2 A) or high ambient temperatures (greater than 25°C), an  
internal plane may be used for heat sinking. The vias under the PowerPAD should make a solid connection,  
and the plane should not be tied to ground except through the PowerPAD connection, as described above.  
18  
DRV593  
DRV594  
www.ti.com  
SLOS401A - SEPTEMBER 2002 REVISED - OCTOBER 2002  
MECHANICAL DATA  
VFP (S-PQFP-G32)  
PowerPADPLASTIC QUAD FLATPACK  
0,45  
M
0,22  
0,80  
0,30  
24  
17  
25  
16  
Thermal Pad  
(See Note D)  
32  
9
0,13 NOM  
1
8
5,60 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°-7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4200791/A04/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MS-026  
PowerPAD is a trademark of Texas Instruments.  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
DRV593VFP  
DRV593VFPR  
DRV594VFP  
DRV594VFPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HLQFP  
HLQFP  
HLQFP  
HLQFP  
VFP  
32  
32  
32  
32  
250  
1000  
250  
None  
None  
None  
None  
CU NIPDAU Level-1-235C-UNLIM  
CU NIPDAU Level-1-235C-UNLIM  
CU NIPDAU Level-1-235C-UNLIM  
CU NIPDAU Level-1-235C-UNLIM  
VFP  
VFP  
VFP  
1000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  
配单直通车
DRV594VFPR产品参数
型号:DRV594VFPR
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:QFP
包装说明:HLQFP, QFP32,.35SQ,32
针数:32
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:0.82
内置保护:OVER CURRENT; THERMAL; UNDER VOLTAGE
驱动器位数:1
输入特性:DIFFERENTIAL
接口集成电路类型:HB BASED PERIPHERAL DRIVER WITH PWM
JESD-30 代码:S-PQFP-G32
JESD-609代码:e4
长度:7 mm
湿度敏感等级:2
功能数量:1
端子数量:32
最高工作温度:85 °C
最低工作温度:-40 °C
输出电流流向:SOURCE AND SINK
最大输出电流:3 A
封装主体材料:PLASTIC/EPOXY
封装代码:HLQFP
封装等效代码:QFP32,.35SQ,32
封装形状:SQUARE
封装形式:FLATPACK, HEAT SINK/SLUG, LOW PROFILE
峰值回流温度(摄氏度):260
电源:3/5 V
认证状态:Not Qualified
座面最大高度:1.6 mm
子类别:Peripheral Drivers
最大供电电压:5.5 V
最小供电电压:2.8 V
标称供电电压:3.3 V
表面贴装:YES
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.8 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!