欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • DS1820图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • DS1820 现货库存
  • 数量12500 
  • 厂家MAX 
  • 封装 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • DS1820图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • DS1820 现货库存
  • 数量69850 
  • 厂家MAXIM 
  • 封装TO-92 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • DS1820图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • DS1820 现货库存
  • 数量26980 
  • 厂家MAXIM 
  • 封装TO-92 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • DS1820S+图
  • 上海振基实业有限公司

     该会员已使用本站13年以上
  • DS1820S+ 现货库存
  • 数量2651 
  • 厂家DALLAS 
  • 封装SOP-8 
  • 批号23+ 
  • 全新原装现货/另有约30万种现货,欢迎来电!
  • QQ:330263063QQ:330263063 复制
    QQ:1985476892QQ:1985476892 复制
  • 021-59159268 QQ:330263063QQ:1985476892
  • DS1820图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • DS1820
  • 数量2015 
  • 厂家DALLAS 
  • 封装SOP/DIP 
  • 批号19889 
  • ★一级代理原装现货,特价热卖!★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • DS1820图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • DS1820
  • 数量1000 
  • 厂家DALLAS 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • DS1820+图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • DS1820+
  • 数量57950 
  • 厂家MAXIM/美信 
  • 封装SSOP16 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • DS1820图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • DS1820
  • 数量9000000 
  • 厂家MAXIM 
  • 封装SOP 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • DS1820图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • DS1820
  • 数量5500 
  • 厂家DALLAS 
  • 封装SOP8 
  • 批号06+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • DS1820图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • DS1820
  • 数量41004 
  • 厂家DALLAS 
  • 封装TO92L 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • DS1820STR图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • DS1820STR
  • 数量7250 
  • 厂家DALLAS 
  • 封装SSOP16 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • DS1820图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • DS1820
  • 数量3850 
  • 厂家Dallas (达拉斯) 
  • 封装原装原封REEL 
  • 批号23+ 
  • ▉原装现货▉可含税可订货
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • DS1820图
  • 北京顺科电子科技有限公司

     该会员已使用本站8年以上
  • DS1820
  • 数量5500 
  • 厂家DALLAS 
  • 封装SOP-8 
  • 批号21+ 
  • 进口品牌//国产品牌代理商18911556207
  • QQ:729566152QQ:729566152 复制
    QQ:1138731127QQ:1138731127 复制
  • 18911556207 QQ:729566152QQ:1138731127
  • DS1820图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • DS1820
  • 数量69850 
  • 厂家MAXIM 
  • 封装TO-92 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • DS1820Z图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • DS1820Z
  • 数量500 
  • 厂家DALLAS 
  • 封装SOP-8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • DS1820图
  • 深圳市双微电子科技有限公司

     该会员已使用本站10年以上
  • DS1820
  • 数量1873 
  • 厂家DALLAS 
  • 封装SSOP16 
  • 批号20+ 
  • 询货请加QQ 全新原装 现货库存
  • QQ:1965209269QQ:1965209269 复制
    QQ:1079402399QQ:1079402399 复制
  • 15889219681 QQ:1965209269QQ:1079402399
  • DS1820图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • DS1820
  • 数量7900 
  • 厂家DALLAS 
  • 封装SOP 
  • 批号2020+ 
  • 一级代理 原装现货供应
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • DS1820图
  • 深圳市三得电子有限公司

     该会员已使用本站15年以上
  • DS1820
  • 数量50000 
  • 厂家DLLAS 
  • 封装TO92 
  • 批号2024 
  • 深圳原装现货库存,欢迎咨询合作
  • QQ:414322027QQ:414322027 复制
    QQ:565106636QQ:565106636 复制
  • 15026993318 QQ:414322027QQ:565106636
  • DS1820图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • DS1820
  • 数量7050 
  • 厂家 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • DS1820S图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • DS1820S
  • 数量7417 
  • 厂家MAX 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • DS1820S+图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • DS1820S+
  • 数量18800 
  • 厂家MAXIM-美信 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥10一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • DS1820+图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • DS1820+
  • 数量8560 
  • 厂家DALLAS 
  • 封装TO92/3P 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • DS1820图
  • 深圳市聚利源实业有限公司

     该会员已使用本站1年以上
  • DS1820
  • 数量7483 
  • 厂家DALLAS SEMICONDUCTOR 
  • 封装TO-92 
  • 批号0345+ 
  • 正常交货,只做原装,市场周边可送上门
  • QQ:2881504303QQ:2881504303 复制
  • 0755-33037976 QQ:2881504303
  • DS1820图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • DS1820
  • 数量5800 
  • 厂家DALLS 
  • 封装TO-92 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • DS1820+图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • DS1820+
  • 数量24 
  • 厂家MAXIM 
  • 封装SOP8 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • DS1820图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • DS1820
  • 数量12850 
  • 厂家DALLAS 
  • 封装SOP8 
  • 批号NEW 
  • 绝对进口原装现货,市场价格最低!!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • DS1820图
  • 深圳市芳益电子科技有限公司

     该会员已使用本站10年以上
  • DS1820
  • 数量117 
  • 厂家DALLAS 
  • 封装SOP8 
  • 批号2023+ 
  • 原装现货库存 量多价优 欢迎加Q详谈 诚信经营
  • QQ:498361569QQ:498361569 复制
    QQ:389337416QQ:389337416 复制
  • 0755-13631573466 QQ:498361569QQ:389337416
  • DS1820图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • DS1820
  • 数量10000 
  • 厂家Maxim(美信) 
  • 封装TO-226-3,TO-92-3 标准主体(!--TO-226AA) 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • DS1820图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • DS1820
  • 数量14577 
  • 厂家DALLAS 
  • 封装 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872153 QQ:1484215649QQ:729272152
  • DS1820S图
  • 深圳市晨豪科技有限公司

     该会员已使用本站12年以上
  • DS1820S
  • 数量89630 
  • 厂家DALLAS 
  • 封装SOP-8 
  • 批号23+ 
  • 当天发货全新原装现货
  • QQ:1743149803QQ:1743149803 复制
    QQ:1852346906QQ:1852346906 复制
  • 0755-82732291 QQ:1743149803QQ:1852346906

产品型号DS1820的概述

芯片DS1820的概述 DS1820是一种高精度的数字温度传感器,广泛应用于温度监测、环境控制和自动化系统中。该传感器由德州仪器(Texas Instruments)开发,具备1-Wire接口,允许多个DS1820传感器通过单一数据线进行通信,从而降低系统成本与复杂性。DS1820的工作温度范围为-55°C至+125°C,精度可达到±0.5°C,这使其在许多精确温度测量的场合中成为理想选择。 芯片DS1820的详细参数 DS1820的主要参数包括: - 工作电压:3.0V至5.5V - 电流消耗:一般工作时为1.5 mA,待机模式下为750 μA - 温度测量范围:-55°C至+125°C - 温度分辨率:9位至12位可选择 - 输出方式:数字化的温度数据 - 1-Wire接口:支持多点连接 - 传输速率:可达16.3 kbits/s DS1820还具备强大的数据存储能力,可以保存多次...

产品型号DS1820的Datasheet PDF文件预览

DS1820  
DS1820  
1–WireTM Digital Thermometer  
FEATURES  
PIN ASSIGNMENT  
TM  
Unique 1–Wire interface requires only one port pin  
for communication  
DALLAS  
DS1820  
1
2
3
Multidropcapabilitysimplifiesdistributedtemperature  
sensing applications  
BOTTOM VIEW  
Requires no external components  
Can be powered from data line  
Zero standby power required  
1
2 3  
NC  
NC  
NC  
NC  
NC  
NC  
VDD  
DQ  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
Measures temperatures from –55°C to +125°C in  
0.5°C increments. Fahrenheit equivalent is –67°F to  
+257°F in 0.9°F increments  
Temperature is read as a 9–bit digital value.  
DS1820  
DS1820S  
Converts temperature to digital word in 200 ms (typ.)  
PR35 PACKAGE  
See Mech. Drawings  
Section  
16–PIN SSOP  
See Mech. Drawings  
Section  
User–definable, nonvolatile temperature alarm set-  
tings  
PIN DESCRIPTION  
Alarm search command identifies and addresses  
devices whose temperature is outside of pro-  
grammed limits (temperature alarm condition)  
GND  
Ground  
Data In/Out  
Optional V  
DQ  
V
DD  
DD  
Applications include thermostatic controls, industrial  
systems, consumer products, thermometers, or any  
thermally sensitive system  
NC  
No Connect  
DESCRIPTION  
The DS1820 Digital Thermometer provides 9–bit tem-  
perature readings which indicate the temperature of the  
device.  
Because each DS1820 contains a unique silicon serial  
number, multiple DS1820s can exist on the same  
1–Wire bus. This allows for placing temperature sen-  
sors in many different places. Applications where this  
feature is useful include HVAC environmental controls,  
sensing temperatures inside buildings, equipment or  
machinery, and in process monitoring and control.  
Information is sent to/from the DS1820 over a 1–Wire  
interface, sothatonlyonewire(andground)needstobe  
connected from a central microprocessor to a DS1820.  
Power for reading, writing, and performing temperature  
conversions can be derived from the data line itself with  
no need for an external power source.  
030598 1/27  
DS1820  
DETAILED PIN DESCRIPTION  
PIN  
16–PIN SSOP  
PIN  
PR35  
SYMBOL  
GND  
DESCRIPTION  
9
8
1
2
Ground.  
DQ  
Data Input/Output pin. For 1–Wire operation: Open drain. (See  
“Parasite Power” section.)  
7
3
V
DD  
Optional V pin. See “Parasite Power” section for details of  
connection.  
DD  
DS1820S (16–pin SSOP): All pins not specified in this table are not to be connected.  
a specific device if many are present on the 1–Wire line  
OVERVIEW  
The block diagram of Figure 1 shows the major compo-  
nents of the DS1820. The DS1820 has three main data  
components: 1) 64–bit lasered ROM, 2) temperature  
sensor, and 3) nonvolatile temperature alarm triggers  
TH and TL. The device derives its power from the  
1–Wire communication line by storing energy on an  
internalcapacitor during periods of time when the signal  
line is high and continues to operate off this power  
source during the low times of the 1–Wire line until it  
returnshigh to replenish the parasite (capacitor) supply.  
As an alternative, the DS1820 may also be powered  
from an external 5 volts supply.  
as well as indicate to the Bus Master how many and  
what types of devices are present. After a ROM function  
sequencehasbeensuccessfullyexecuted, thememory  
and control functions are accessible and the master  
may then provide any one of the six memory and control  
function commands.  
One control function command instructs the DS1820 to  
perform a temperature measurement. The result of this  
measurement will be placed in the DS1820’s scratch-  
pad memory, and may be read by issuing a memory  
function command which reads the contents of the  
scratchpad memory. The temperature alarm triggers  
TH and TL consist of one byte EEPROM each. If the  
alarm search command is not applied to the DS1820,  
these registers may be used as general purpose user  
memory. Writing TH and TL is done using a memory  
function command. Read access to these registers is  
through the scratchpad. All data is read and written  
least significant bit first.  
CommunicationtotheDS1820isviaa1–Wireport.With  
the 1–Wire port, the memory and control functions will  
not be available before the ROM function protocol has  
been established. The master must first provide one of  
five ROM function commands: 1) Read ROM, 2) Match  
ROM, 3) Search ROM, 4) Skip ROM, or 5) Alarm  
Search. These commands operate on the 64–bit  
lasered ROM portion of each device and can single out  
DS1820 BLOCK DIAGRAM Figure 1  
MEMORY AND  
CONTROL LOGIC  
64–BIT ROM  
AND  
DQ  
1–WIRE PORT  
TEMPERATURE SENSOR  
SCRATCHPAD  
INTERNAL V  
DD  
HIGH TEMPERATURE  
TRIGGER, TH  
LOW TEMPERATURE  
TRIGGER, TL  
POWER  
SUPPLY  
SENSE  
8–BIT CRC  
GENERATOR  
V
DD  
030598 2/27  
DS1820  
V
DD  
pin, as shown in Figure 3. The advantage to this is  
PARASITE POWER  
The block diagram (Figure 1) shows the parasite pow-  
eredcircuitry. Thiscircuitrystealspowerwheneverthe  
thatthestrongpull–upisnotrequiredontheI/Oline, and  
the bus master need not be tied up holding that line high  
during temperature conversions. This allows other data  
traffic on the 1–Wire bus during the conversion time. In  
addition,anynumberofDS1820’s may beplacedonthe  
1–Wire bus, and if they all use external power, they may  
all simultaneously perform temperature conversions by  
issuing the Skip ROM command and then issuing the  
Convert T command. Note that as long as the external  
power supply is active, the GND pin may not be floating.  
I/O or V pins are high. I/O will provide sufficientpower  
DD  
as long as the specified timing and voltage require-  
ments are met (see the section titled “1–Wire Bus Sys-  
tem”). The advantages of parasite power are two–fold:  
1) by parasiting off this pin, no local power source is  
needed for remote sensing of temperature, and 2) the  
ROM may be read in absence of normal power.  
In order for the DS1820 to be able to perform accurate  
temperature conversions, sufficient power must be pro-  
videdovertheI/Olinewhenatemperatureconversionis  
taking place. Since the operating current of the DS1820  
is up to 1 mA, the I/O line will not have sufficient drive  
due to the 5K pull–up resistor. This problem is particu-  
larly acute if several DS1820’s are on the same I/O and  
attempting to convert simultaneously.  
The use of parasite power is not recommended above  
100°C, since it may not be able to sustain communica-  
tions given the higher leakage currents the DS1820  
exhibits at these temperatures. For applications in  
which such temperatures are likely, it is strongly recom-  
mended that V be applied to the DS1820.  
DD  
For situations where the bus master does not know  
whether the DS1820’s on the bus are parasite powered  
Thereare two ways to assure that the DS1820 has suffi-  
cient supply current during its active conversion cycle.  
The first is to provide a strong pull–up on the I/O line  
or supplied with external V , a provision is made in the  
DD  
DS1820 to signal the power supply scheme used. The  
bus master can determine if any DS1820’s are on the  
bus which require the strong pull–up by sending a Skip  
ROM protocol, then issuing the read power supply com-  
mand. After this command is issued, the master then  
issues read time slots. The DS1820 will send back “0”  
on the 1–Wire bus if it is parasite powered; it will send  
2
whenever temperature conversions or copies to the E  
memory are taking place. This may be accomplished by  
using a MOSFET to pull the I/O line directly to the power  
supply as shown in Figure 2. The I/O line must be  
switched over to the strong pull–up within 10 µs maxi-  
mum after issuing any protocol that involves copying to  
2
the E memory or initiates temperature conversions.  
back a “1” if it is powered from the V pin. If the master  
DD  
When using the parasite power mode, the V pin must  
be tied to ground.  
receives a “0”, it knows that it must supply the strong  
pull–up on the I/O line during temperature conversions.  
See “Memory Command Functions” section for more  
detail on this command protocol.  
DD  
Another method of supplying current to the DS1820 is  
through the use of an external power supply tied to the  
STRONG PULL–UP FOR SUPPLYING DS1820 DURING TEMPERATURE CONVERSION Figure 2  
+5V  
DS1820  
+5V  
GND  
V
DD  
4.7K  
µP  
I/O  
030598 3/27  
DS1820  
USING VDD TO SUPPLY TEMPERATURE CONVERSION CURRENT Figure 3  
TO OTHER 1–WIRE  
DEVICES  
DS1820  
+5V  
4.7K  
V
DD  
EXTERNAL +5V SUPPLY  
I/O  
µP  
provided in a 16–bit, sign–extended two’s complement  
reading. Table 1 describes the exact relationship of out-  
put data to measured temperature. The data is trans-  
mitted serially over the 1–Wire interface. The DS1820  
can measure temperature over the range of –55°C to  
+125°C in 0.5°C increments. For Fahrenheit usage, a  
lookup table or conversion factor must be used.  
OPERATION – MEASURING TEMPERATURE  
The DS1820 measures temperature through the use of  
an on–board proprietary temperature measurement  
technique. A block diagram of the temperature mea-  
surement circuitry is shown in Figure 4.  
The DS1820 measures temperature by counting the  
number of clock cycles that an oscillator with a low tem-  
perature coefficient goes through during a gate period  
determined by a high temperature coefficient oscillator.  
The counter is preset with a base count that corre-  
sponds to –55°C. If the counter reaches zero before the  
gate period is over, the temperature register, which is  
also preset to the –55°C value, is incremented, indicat-  
ing that the temperature is higher than –55°C.  
Note that temperature is represented in the DS1820 in  
1
terms of a / °C LSB, yielding thefollowing9–bitformat:  
2
MSB  
1
LSB  
0
1
1
0
0
1
1
1
=
–25°C  
The most significant (sign) bit is duplicated into all of the  
bits in the upper MSB of the two–byte temperature reg-  
ister in memory. This “sign–extension” yields the 16–bit  
temperature readings as shown in Table 1.  
At the same time, the counter is then preset with a value  
determined by the slope accumulator circuitry. This cir-  
cuitry is needed to compensate for the parabolic behav-  
ior of the oscillators over temperature. The counter is  
then clocked again until it reaches zero. If the gate  
period is still not finished, then this process repeats.  
Higher resolutions may be obtained by the following  
procedure. First, read the temperature, and truncate  
the0.5°C bit (the LSB) from the read value. This value is  
TEMP_READ. The value left in the counter may then be  
read. This value is the count remaining  
(COUNT_REMAIN) after the gate period has ceased.  
The last value needed is the number of counts per  
degree C (COUNT_PER_C) at that temperature. The  
actual temperature may be then be calculated by the  
user using the following:  
The slope accumulator is used to compensate for the  
non–linearbehavior of the oscillators over temperature,  
yielding a high resolution temperature measurement.  
This is done by changing the number of counts neces-  
sary for the counter to go through for each incremental  
degreein temperature. To obtain the desired resolution,  
therefore, both the value of the counter and the number  
of counts per degree C (the value of the slope accumu-  
lator) at a given temperature must be known.  
(COUNT_PER_C – COUNT_REMAIN)  
)
TEMPERATURE = TEMP_READ – 0.25  
COUNT_PER_C  
Internally, this calculation is done inside the DS1820 to  
provide 0.5°C resolution. The temperature reading is  
030598 4/27  
DS1820  
TEMPERATURE MEASURING CIRCUITRY Figure 4  
SLOPE ACCUMULATOR  
PRESET  
COMPARE  
SET/CLEAR  
LSB  
PRESET  
LOW TEMPERATURE  
COUNTER  
COEFFICIENT OSCILLATOR  
INC  
=0  
TEMPERATURE REGISTER  
HIGH TEMPERATURE  
COUNTER  
COEFFICIENT OSCILLATOR  
STOP  
=0  
TEMPERATURE/DATA RELATIONSHIPS Table 1  
DIGITAL OUTPUT  
DIGITAL OUTPUT  
(Hex)  
TEMPERATURE  
(Binary)  
+125°C  
00000000 11111010  
00000000 00110010  
00000000 00000001  
00000000 00000000  
11111111 11111111  
11111111 11001110  
11111111 10010010  
00FA  
0032h  
0001h  
0000h  
FFFFh  
FFCEh  
FF92h  
+25°C  
1
+
°C  
/2  
+0°C  
1
– / °C  
2
–25°C  
–55°C  
This flag is updated with every temperature measure-  
ment. As long as the alarm flag is set, the DS1820 will  
respond to the alarm search command. This allows  
many DS1820s to be connected in parallel doing simul-  
taneoustemperaturemeasurements. Ifsomewherethe  
temperature exceeds the limits, the alarming device(s)  
canbeidentifiedandreadimmediatelywithouthavingto  
read non–alarming devices.  
OPERATION – ALARM SIGNALING  
After the DS1820 has performed a temperature conver-  
sion, the temperature value is compared to the trigger  
values stored in TH and TL. Since these registers are  
8–bit only, the 0.5°C bit is ignored for comparison. The  
most significant bit of TH or TL directly corresponds to  
the sign bit of the 16–bit temperature register. If the  
result of a temperature measurement is higher than TH  
or lower than TL, an alarm flag inside the device is set.  
030598 5/27  
DS1820  
videsthisvaluetothebusmastertovalidatethetransfer  
ofdatabytes. IneachcasewhereaCRCisusedfordata  
transfer validation, the bus master must calculate a  
CRC value using the polynomial function given above  
and compare the calculated value to either the 8–bit  
CRC value stored in the 64–bit ROM portion of the  
DS1820 (for ROM reads) or the 8–bit CRC value com-  
puted within the DS1820 (which is read as a ninth byte  
when the scratchpad is read). The comparison of CRC  
values and decision to continue with an operation are  
determined entirely by the bus master. There is no cir-  
cuitry inside the DS1820 that prevents a command  
sequencefromproceedingiftheCRCstoredinorcalcu-  
lated by the DS1820 does not match the value gener-  
ated by the bus master.  
64–BIT LASERED ROM  
Each DS1820 contains a unique ROM code that is  
64–bits long. The first eight bits are a 1–Wire family  
code (DS1820 code is 10h). The next 48 bits are a  
unique serial number. The last eight bits are a CRC of  
the first 56 bits. (See Figure 5.) The 64–bit ROM and  
ROM Function Control section allow the DS1820 to  
operateas a1–Wiredeviceandfollowthe1–Wireproto-  
col detailed in the section “1–Wire Bus System”. The  
functionsrequired to control sections of the DS1820 are  
notaccessible until the ROM function protocol has been  
satisfied. This protocol is described in the ROM function  
protocol flowchart (Figure 6). The 1–Wire bus master  
must first provide one of five ROM function commands:  
1) Read ROM, 2) Match ROM, 3) Search ROM, 4) Skip  
ROM, or 5) Alarm Search. After a ROM functions  
sequence has been successfully executed, the func-  
tions specific to the DS1820 are accessible and the bus  
mastermaythenprovideandoneofthesixmemoryand  
control function commands.  
The 1–Wire CRC can be generated using a polynomial  
generator consisting of a shift register and XOR gates  
as shown in Figure 7. Additional information about the  
Dallas 1–Wire Cyclic Redundancy Check is available in  
Application Note 27 entitled “Understanding and Using  
Cyclic Redundancy Checks with Dallas Semiconductor  
Touch Memory Products”.  
CRC GENERATION  
TheDS1820 has an 8–bit CRC stored in the mostsignif-  
icant byte of the 64–bit ROM. The bus master can com-  
pute a CRC value from the first 56–bits of the 64–bit  
ROM and compare it to the value stored within the  
DS1820 to determine if the ROM data has been  
received error–free by the bus master. The equivalent  
polynomial function of this CRC is:  
The shift register bits are initialized to zero. Then start-  
ingwiththeleastsignificantbitofthefamilycode, onebit  
at a time is shifted in. After the 8th bit of the family code  
has been entered, then the serial number is entered.  
After the 48th bit of the serial number has been entered,  
the shift register contains the CRC value. Shifting in the  
eight bits of CRC should return the shift register to all  
zeros.  
8
5
4
CRC = X + X + X + 1  
The DS1820 also generates an 8–bit CRC value using  
the same polynomial function shown above and pro-  
64–BIT LASERED ROM Figure 5  
8–BIT CRC CODE  
48–BIT SERIAL NUMBER  
LSB MSB  
8–BIT FAMILY CODE (10h)  
LSB MSB  
MSB  
LSB  
030598 6/27  
DS1820  
ROM FUNCTIONS FLOW CHART Figure 6  
MASTER T  
X
RESET PULSE  
DS1820 T  
X
PRESENCE  
PULSE  
MASTER T ROM  
X
FUNCTION COMMAND  
33h  
READ ROM  
COMMAND  
55h  
MATCH ROM  
COMMAND  
F0h  
SEARCH ROM  
COMMAND  
CCh  
SKIP ROM  
COMMAND  
N
N
N
ECh  
N
N
ALARM SEARCH  
COMMAND  
Y
Y
Y
Y
Y
ALARM  
CONDITION  
?
N
DS1820 T FAMILY  
X
MASTER T BIT 0  
X
CODE  
1 BYTE  
Y
DS1820 T BIT 0  
X
DS1820 T BIT 0  
X
MASTER T BIT 0  
X
N
N
DS1820 T  
X
SERIAL NUMBER  
6 BYTES  
BIT 0  
MATCH?  
BIT 0  
MATCH?  
Y
Y
DS1820 T BIT 1  
X
DS1820 T  
X
CRC BYTE  
DS1820 T BIT 1  
X
MASTER T BIT 1  
X
MASTER T BIT 1  
X
N
N
BIT 1  
BIT 1  
MATCH?  
MATCH?  
Y
Y
DS1820 T BIT 63  
X
MASTER T BIT 63  
X
DS1820 T BIT 63  
X
MASTER T BIT 63  
X
N
N
BIT 63  
BIT 63  
MATCH?  
MATCH?  
Y
Y
MASTER T MEMORY OR CONTROL  
X
FUNCTION COMMAND  
030598 7/27  
DS1820  
1–WIRE CRC CODE Figure 7  
INPUT  
XOR  
XOR  
XOR  
(MSB)  
(LSB)  
information. The third and fourth bytes are volatile  
copies of TH and TL and are refreshed with every pow-  
er–on reset. The next two bytes are not used; upon  
reading back, however, they will appear as all logic 1’s.  
Theseventhandeighthbytesarecountregisters, which  
may be used in obtaining higher temperature resolution  
(see “Operation–measuring Temperature” section).  
MEMORY  
The DS1820’s memory is organized as shown in  
Figure 8. The memory consists of a scratchpad RAM  
anda nonvolatile, electrically erasable (E ) RAM, which  
stores the high and low temperature triggers TH and TL.  
The scratchpad helps insure data integrity when com-  
municating over the 1–Wire bus. Data is first written to  
the scratchpad where it can be read back. After the data  
has been verified, a copy scratchpad command will  
2
There is a ninth byte which may be read with a Read  
Scratchpad command. This byte contains a cyclic  
redundancycheck (CRC) byte which is the CRC over all  
of the eight previous bytes. This CRC is implemented in  
thefashiondescribedinthesectiontitledCRCGenera-  
tion”.  
2
transfer the data to the nonvolatile (E ) RAM. This pro-  
cess insures data integrity when modifying the memory.  
The scratchpad is organized as eight bytes of memory.  
The first two bytes contain the measured temperature  
DS1820 MEMORY MAP Figure 8  
2
E RAM  
SCRATCHPAD  
BYTE  
TEMPERATURE LSB  
TEMPERATURE MSB  
TH/USER BYTE 1  
TL/USER BYTE 2  
RESERVED  
0
1
2
3
4
5
6
7
TH/USER BYTE 1  
TL/USER BYTE 2  
RESERVED  
COUNT REMAIN  
COUNT PER °C  
CRC  
8
030598 8/27  
DS1820  
at the appropriate time. To facilitate this, each device  
attached to the 1–Wire bus must have open drain or  
3–state outputs. The 1–Wire port of the DS1820 (I/O  
pin) is open drain with an internal circuit equivalent to  
that shown in Figure 9. A multidrop bus consists of a  
1–Wire bus with multiple slaves attached. The 1–Wire  
bus requires a pullup resistor of approximately 5K.  
1–WIRE BUS SYSTEM  
The1–Wirebusisasystemwhichhasasinglebusmas-  
ter and one or more slaves. The DS1820 behaves as a  
slave. The discussion of this bus system is broken down  
into three topics: hardware configuration, transaction  
sequence, and 1–Wire signaling (signal types and tim-  
ing).  
HARDWARE CONFIGURATION  
The 1–Wire bus has only a single line by definition; it is  
important that each device on the bus be able to drive it  
HARDWARE CONFIGURATION Figure 9  
+5V  
BUS MASTER  
4.7K  
DS1820 1–WIRE PORT  
R
X
R
X
5 µA  
Typ.  
T
X
1OO OHM  
MOSFET  
T
X
R
T
= RECEIVE  
= TRANSMIT  
X
X
Theidlestateforthe1–Wirebusishigh.Ifforanyreason  
a transaction needs to be suspended, the bus MUST be  
leftintheidlestateifthetransactionistoresume. Infinite  
recovery time can occur between bits so long as the  
1–Wire bus is in the inactive (high) state during the re-  
covery period. If this does not occur and the bus is left  
low for more than 480 µs, all components on the bus will  
be reset.  
INITIALIZATION  
All transactions on the 1–Wire bus begin with an initial-  
ization sequence. The initialization sequence consists  
of a reset pulse transmitted by the bus master followed  
by presence pulse(s) transmitted by the slave(s).  
The presence pulse lets the bus master know that the  
DS1820 is on the bus and is ready to operate. For more  
details, see the “1–Wire Signaling” section.  
TRANSACTION SEQUENCE  
The protocol for accessing the DS1820 via the 1–Wire  
port is as follows:  
ROM FUNCTION COMMANDS  
Once the bus master has detected a presence, it can  
issue one of the five ROM function commands. All ROM  
function commands are 8–bits long. A list of these com-  
mands follows (refer to flowchart in Figure 6):  
Initialization  
ROM Function Command  
Memory Function Command  
Transaction/Data  
030598 9/27  
DS1820  
conversion should be done to validate any alarm condi-  
tions.  
Read ROM [33h]  
This command allows the bus master to read the  
DS1820’s 8–bit family code, unique 48–bit serial num-  
ber, and 8–bit CRC. This command can only be used if  
there is a single DS1820 on the bus. If more than one  
slave is present on the bus, a data collision will occur  
when all slaves try to transmit at the same time (open  
drain will produce a wired AND result).  
Example of a ROM Search  
The ROM search process is the repetition of a simple  
3–step routine: read a bit, read the complement of the  
bit, then write the desired value of that bit. The bus mas-  
ter performs this simple, 3–step routine on each bit of  
the ROM. After one complete pass, the bus master  
knows the contents of the ROM in one device. The  
remainingnumber of devices and their ROM codes may  
be identified by additional passes.  
Match ROM [55h]  
The match ROM command, followed by a 64–bit ROM  
sequence, allows the bus master to address a specific  
DS1820 on a multidrop bus. Only the DS1820 that  
exactly matches the 64–bit ROM sequence will respond  
to the following memory function command. All slaves  
that do not match the 64–bit ROM sequence will wait for  
a reset pulse. This command can be used with a single  
or multiple devices on the bus.  
The following example of the ROM search process  
assumes four different devices are connected to the  
same 1–Wire bus. The ROM data of the four devices is  
as shown:  
ROM1  
ROM2  
ROM3  
ROM4  
00110101...  
10101010...  
11110101...  
00010001...  
Skip ROM [CCh]  
This command can save time in a single drop bus sys-  
tem by allowing the bus master to access the memory  
functions without providing the 64–bit ROM code. If  
more than one slave is present on the bus and a read  
command is issued following the Skip ROM command,  
data collision will occur on the bus as multiple slaves  
transmit simultaneously (open drain pulldowns will pro-  
duce a wired AND result).  
The search process is as follows:  
1. Thebusmasterbeginstheinitializationsequenceby  
issuing a reset pulse. The slave devices respond by  
issuing simultaneous presence pulses.  
2. The bus master will then issue the Search ROM  
command on the 1–Wire bus.  
3. The bus master reads a bit from the 1–Wire bus.  
Each device will respond by placing the value of the  
first bit of their respective ROM data onto the 1–Wire  
bus. ROM1 and ROM4 will place a 0 onto the  
1–Wire bus, i.e., pull it low. ROM2 and ROM3 will  
place a 1 onto the 1–Wire bus by allowing the line to  
stay high. The result is the logical AND of all devices  
on the line, therefore the bus master sees a 0. The  
bus master reads another bit. Since the Search  
ROM data command is being executed, all of the  
devices on the 1–Wire bus respond to this second  
readbyplacingthecomplementofthefirstbitoftheir  
respective ROM data onto the 1–Wire bus. ROM1  
and ROM4 will place a 1 onto the 1–Wire, allowing  
the line to stay high. ROM2 and ROM3 will place a  
0 onto the 1–Wire, thus it will be pulled low. The bus  
masteragainobservesa0forthecomplementofthe  
first ROM data bit. The bus master has determined  
that there are some devices on the 1–Wire bus that  
have a 0 in the first position and others that have a 1.  
Search ROM [F0h]  
When a system is initially brought up, the bus master  
might not know the number of devices on the 1–Wire  
bus or their 64–bit ROM codes. The search ROM com-  
mandallows the bus master to use a process ofelimina-  
tiontoidentifythe64–bitROMcodesofallslavedevices  
on the bus.  
Alarm Search [ECh]  
The flowchart of this command is identical to the Search  
ROM command. However, the DS1820 will respond to  
this command only if an alarm condition has been  
encountered at the last temperature measurement. An  
alarm condition is defined as a temperature higher than  
THorlowerthanTL. Thealarmconditionremainssetas  
long as the DS1820 is powered up, or until another tem-  
perature measurement reveals a non–alarming value.  
For alarming, the trigger values stored in EEPROM are  
taken into account. If an alarm condition exists and the  
TH or TL settings are changed, another temperature  
030598 10/27  
DS1820  
The data obtained from the two reads of the 3–step  
routine have the following interpretations:  
15.The bus master executes two read time slots and  
receives two zeros.  
16.The bus master writes a 0–bit. This decouples  
ROM3, and leaving only ROM2.  
00 There are still devices attached which have  
conflicting bits in this position.  
17.ThebusmasterreadstheremainderoftheROMbits  
for ROM2 and communicates to the underlying logic  
if desired. This completes the third ROM search  
pass, in which another of the ROMs was found.  
01 All devices still coupled have a 0–bit in this  
bit position.  
10 All devices still coupled have a 1–bit in this  
bit position.  
18.Thebus master starts a new ROM search by repeat-  
ing steps 13 through 15.  
11 Therearenodevicesattachedtothe1–Wire  
bus.  
19.The bus master writes a 1–bit. This decouples  
ROM2, leaving only ROM3.  
4. The bus master writes a 0. This deselects ROM2  
and ROM3 for the remainder of this search pass,  
leaving only ROM1 and ROM4 connected to the  
1–Wire bus.  
20.ThebusmasterreadstheremainderoftheROMbits  
for ROM3 and communicates to the underlying logic  
if desired. This completes the fourth ROM search  
pass, in which another of the ROMs was found.  
5. The bus master performs two more reads and  
receives a 0–bit followed by a 1–bit. This indicates  
that all devices still coupled to the bus have 0’s as  
their second ROM data bit.  
Note the following:  
ThebusmasterlearnstheuniqueIDnumber(ROMdata  
pattern) of one 1–Wire device on each ROM Search  
operation. The time required to derive the part’s unique  
ROM code is:  
6. The bus master then writes a 0 to keep both ROM1  
and ROM4 coupled.  
7. The bus master executes two reads and receives  
two 0–bits. This indicates that both 1–bits and 0–bits  
exist as the third bit of the ROM data of the attached  
devices.  
960 µs + (8 + 3 x 64) 61 µs = 13.16 ms  
Thebusmasteristhereforecapableofidentifying75dif-  
ferent 1–Wire devices per second.  
8. Thebusmasterwritesa0–bit. ThisdeselectsROM1  
leaving ROM4 as the only device still connected.  
9. ThebusmasterreadstheremainderoftheROMbits  
for ROM4 and continues to access the part if  
desired. This completes the first pass and uniquely  
identifies one part on the 1–Wire bus.  
I/O SIGNALING  
The DS1820 requires strict protocols to insure data  
integrity. The protocol consists of several types of  
signaling on one line: reset pulse, presence pulse, write  
0, write 1, read 0, and read 1. All of these signals, with  
the exception of the presence pulse, are initiated by the  
bus master.  
10.The bus master starts a new ROM search sequence  
by repeating steps 1 through 7.  
11. The bus master writes a 1–bit. This decouples  
ROM4, leaving only ROM1 still coupled.  
The initialization sequence required to begin any com-  
munication with the DS1820 is shown in Figure 11. A  
reset pulse followed by a presence pulse indicates the  
DS1820 is ready to send or receive data given the cor-  
rect ROM command and memory function command.  
12.ThebusmasterreadstheremainderoftheROMbits  
for ROM1 and communicates to the underlying logic  
if desired. This completes the second ROM search  
pass, in which another of the ROMs was found.  
13.Thebus master starts a new ROM search by repeat-  
ing steps 1 through 3.  
The bus master transmits (TX) a reset pulse (a low sig-  
nal for a minimum of 480 µs). The bus master then  
releases the line and goes into a receive mode (RX).  
The 1–Wire bus is pulled to a high state via the 5K  
pull–up resistor . After detecting the rising edge on the  
14.The bus master writes a 1–bit. This deselects  
ROM1 and ROM4 for the remainder of this search  
pass, leaving only ROM2 and ROM3 coupled to the  
system.  
030598 11/27  
DS1820  
I/O pin, the DS1820 waits 15–60 µs and then transmits  
the presence pulse (a low signal for 60–240 µs).  
Write Scratchpad [4Eh]  
This command writes to the scratchpad of the DS1820,  
starting at address 2. The next two bytes written will be  
saved in scratchpad memory, at address locations 2  
and 3. Writing may be terminated at any point by issuing  
a reset.  
MEMORY COMMAND FUNCTIONS  
The following command protocols are summarized in  
Table 2, and by the flowchart of Figure 10.  
030598 12/27  
DS1820  
MEMORY FUNCTIONS FLOW CHART Figure 10  
MASTER T MEMORY  
X
OR CONTROL COMMAND  
4Eh  
WRITE  
SCRATCHPAD  
?
BEh  
READ  
SCRATCHPAD  
?
N
N
Y
Y
DS1820 SETS ADDRESS  
COUNTER TO 2  
DS1820 SETS ADDRESS  
COUNTER TO 0  
MASTER T DATA BYTE  
X
TO SCRATCHPAD  
MASTER R DATA  
X
FROM SCRATCHPAD  
Y
Y
Y
Y
MASTER  
MASTER  
T
RESET  
?
T
RESET  
?
X
X
N
N
ADDRESS  
ADDRESS  
=3  
?
=7  
?
N
N
DS1820 INCREMENTS  
ADDRESS  
DS1820 INCREMENTS  
ADDRESS  
MASTER R 8–BIT  
X
CRC OF DATA  
N
MASTER  
T
RESET  
?
X
Y
Y
MASTER  
T
RESET  
?
X
N
MASTER R “1s”  
X
DS1820 T  
X
PRESENCE PULSE  
030598 13/27  
DS1820  
MEMORY FUNCTIONS FLOW CHART Figure 10 (cont’d)  
48h  
COPY  
44h  
CONVERT  
N
N
SCRATCHPAD  
?
TEMPERATURE  
?
Y
Y
N
Y
N
Y
PARASITE  
POWER  
?
PARASITE  
POWER  
?
MASTER ENABLES  
STRONG PULL–UP  
MASTER ENABLES  
STRONG PULLUP FOR  
10 ms  
DS1820 CONVERTS  
TEMPERATURE  
MASTER DISABLES  
STRONG PULLUP  
MASTER DISABLES  
STRONG PULL–UP  
DS1820 BEGINS  
CONVERSION  
Y
Y
MASTER T  
RESET  
?
MASTER T  
RESET  
?
X
X
N
N
DEVICE BUSY  
CONVERTING  
TEMPERATURE  
?
NONVOLATILE  
MEMORY  
BUSY  
N
Y
N
Y
?
MASTER  
“1”s  
MASTER  
MASTER  
“1”s  
MASTER  
“0”s  
R
R
“0”s  
R
R
X
X
X
X
030598 14/27  
DS1820  
MEMORY FUNCTIONS FLOW CHART Figure 10 (cont’d)  
B8h  
B4h  
READ  
POWER SUPPLY  
?
N
N
RECALL  
2
E
?
Y
Y
DS1820 RECALLS  
2
FROM E PROM  
Y
Y
MASTER  
MASTER  
T
RESET  
?
T
RESET  
?
X
X
N
N
PARASITE  
POWERED  
?
MASTER  
N
Y
DEVICE  
BUSY CONVERTING  
TEMPERATURE  
?
N
Y
T
RESET  
?
X
Y
MASTER  
MASTER  
“0”s  
R
“1”s  
R
X
X
MASTER  
MASTER  
“0”s  
R
“1”s  
R
X
X
030598 15/27  
DS1820  
INITIALIZATION PROCEDURE “RESET AND PRESENCE PULSES” Figure 11  
Master T “reset pulse”  
X
480 µs minimum  
960 µs maximum  
Master R  
480 µs minimum  
X
DS1820  
waits  
15 - 60 µs  
DS1820 T  
“presence pulse”  
60 - 240 µs  
X
V
CC  
1–WIRE  
BUS  
GND  
LINE TYPE LEGEND:  
Bus master active low  
DS1820 active low  
Both bus master and  
DS1820 active low  
Resistor pull–up  
DS1820 COMMAND SET Table 2  
1–WIRE BUS  
AFTER ISSUING  
PROTOCOL  
INSTRUCTION  
DESCRIPTION  
PROTOCOL  
NOTES  
TEMPERATURE CONVERSION COMMANDS  
Convert T  
Initiates temperature conversion.  
44h  
<read temperature  
busy status>  
1
MEMORY COMMANDS  
Read Scratchpad  
Write Scratchpad  
Reads bytes from scratchpad and  
reads CRC byte.  
BEh  
<read data up to 9  
bytes>  
Writes bytes into scratchpad at  
addresses 2 and 3 (TH and TL  
temperature triggers).  
4Eh  
<write data into 2  
bytes at addr. 2 and  
addr. 3>  
Copy Scratchpad  
Copies scratchpad into nonvolatile  
memory (addresses 2 and 3 only).  
48h  
B8h  
<read copy status>  
2
2
Recall E  
Recalls values stored in nonvolatile  
memory into scratchpad (tempera-  
ture triggers).  
<read temperature  
busy status>  
Read Power Supply  
Signals the mode of DS1820  
power supply to the master.  
B4h  
<read supply status>  
NOTES:  
1. Temperature conversion takes up to 500 ms. After receiving the Convert T protocol, if the part does not  
receive power from the V pin, the I/O line for the DS1820 must be held high for at least 500 ms to provide  
DD  
power during the conversion process. As such, no other activity may take place on the 1–Wire bus for at least  
this period after a Convert T command has been issued.  
2. After receiving the Copy Scratchpad protocol, if the part does not receive power from the V pin, the I/O line  
DD  
for the DS1820 must be held high for at least 10 ms to provide power during the copy process. As such, no  
other activity may take place on the 1–Wire bus for at least this period after a Copy Scratchpad command has  
been issued.  
030598 16/27  
DS1820  
Read Scratchpad [BEh]  
READ/WRITE TIME SLOTS  
This command reads the contents of the scratchpad.  
Reading will commence at byte 0, and will continue  
through the scratchpad until the 9th (byte–8, CRC) byte  
isread. Ifnotalllocationsaretoberead, themastermay  
issue a reset to terminate reading at any time.  
DS1820 data is read and written through the use of time  
slots to manipulate bits and a command word to specify  
the transaction.  
Write Time Slots  
A write time slot is initiated when the host pulls the data  
line from a high logic level to a low logic level. There are  
two types of write time slots: Write One time slots and  
Write Zero time slots. All write time slots must be a mini-  
mum of 60 µs in duration with a minimum of a one µs  
recovery time between individual write cycles.  
Copy Scratchpad [48h]  
2
This command copies the scratchpad into the E  
memory of the DS1820, storing the temperature trigger  
bytes in nonvolatile memory. If the bus master issues  
read time slots following this command, the DS1820 will  
output “0” on the bus as long as it is busy copying the  
2
TheDS1820 samples the I/O line in a window of 15µs to  
60µsaftertheI/Olinefalls. Ifthelineishigh, aWriteOne  
occurs. If the line is low, a Write Zero occurs (see  
Figure 12).  
scratchpad to E ; it will return a “1” when the copy pro-  
cess is complete. If parasite powered, the bus master  
hastoenableastrongpull–upforatleast10msimmedi-  
ately after issuing this command.  
For the host to generate a Write One time slot, the data  
linemustbepulledtoalogiclowlevelandthenreleased,  
allowing the data line to pull up to a high level within  
15 µs after the start of the write time slot.  
Convert T [44h]  
This command begins a temperature conversion. No  
furtherdataisrequired.Thetemperatureconversionwill  
be performed and then the DS1820 will remain idle. If  
thebusmasterissuesreadtimeslotsfollowingthiscom-  
mand, the DS1820 will output “0” on the bus as long as it  
is busy making a temperature conversion; it will return a  
“1whenthetemperatureconversioniscomplete. Ifpar-  
asite powered, the bus master has to enable a strong  
pullup for 500 ms immediately after issuing this com-  
mand.  
For the host to generate a Write Zero time slot, the data  
linemustbepulledtoalogiclowlevelandremainlowfor  
60 µs.  
Read Time Slots  
The host generates read time slots when data is to be  
read from the DS1820. A read time slot is initiated when  
the host pulls the data line from a logic high level to logic  
low level. The data line must remain at a low logic level  
foraminimumofoneµs;outputdatafromtheDS1820is  
valid for 15 µs after the falling edge of the read time slot.  
The host therefore must stop driving the I/O pin low in  
ordertoreaditsstate15 µsfromthestartofthereadslot  
(see Figure 12). By the end of the read time slot, the I/O  
pinwillpullbackhighviatheexternalpull–upresistor.All  
read time slots must be a minimum of 60 µs in duration  
with a minimum of a one µs recovery time between indi-  
vidual read slots.  
Recall E2 [B8h]  
This command recalls the temperature trigger values  
2
storedinE tothescratchpad.Thisrecalloperationhap-  
pens automatically upon power–up to the DS1820 as  
well, so valid data is available in the scratchpad as soon  
as the device has power applied. With every read data  
time slot issued after this command has been sent, the  
device will output its temperature converter busy flag  
“0”=busy, “1”=ready.  
Read Power Supply [B4h]  
With every read data time slot issued after this com-  
mand has been sent to the DS1820, the device will sig-  
nal its power mode: “0”=parasite power, “1”=external  
power supply provided.  
Figure 13 shows that the sum of T , T , and  
INIT  
RC  
T
must be less than 15 µs. Figure 14 shows that  
SAMPLE  
system timing margin is maximized by keeping T  
INIT  
andT as small as possibleandbylocatingthemaster  
RC  
sample time towards the end of the 15 µs period.  
030598 17/27  
DS1820  
READ/WRITE TIMING DIAGRAM Figure 12  
MASTER WRITE “0” SLOT  
MASTER WRITE “1” SLOT  
1 µs< t  
<∞  
REC  
60 µs<T “0”<120 µs  
X
V
CC  
1–WIRE  
BUS  
GND  
>1 µs  
DS1820 SAMPLES  
TYP  
DS1820 SAMPLES  
TYP  
MIN  
MAX  
MIN  
MAX  
15 µs  
15 µs  
30 µs  
15 µs  
15 µs  
30 µs  
1 µs< t  
<∞  
REC  
MASTER READ “0” SLOT  
MASTER READ “1” SLOT  
V
CC  
1–WIRE  
BUS  
GND  
>1 µs  
MASTER SAMPLES  
MASTER SAMPLES  
15 µs  
15 µs  
30 µs  
15 µs  
LINE TYPE LEGEND:  
Bus master active low  
DS1820 active low  
Both bus master and  
DS1820 active low  
Resistor pull–up  
030598 18/27  
DS1820  
DETAILED MASTER READ “1” TIMING Figure 13  
V
CC  
V
OF MASTER  
IH  
1–WIRE  
BUS  
GND  
T
>1 µS  
T
RC  
INIT  
MASTER SAMPLES  
15 µs  
RECOMMENDED MASTER READ “1” TIMING Figure 14  
V
CC  
V
OF MASTER  
IH  
1–WIRE  
BUS  
GND  
MASTER  
SAMPLES  
T
=
T
=
RC  
INIT  
SMALL  
SMALL  
15 µs  
LINE TYPE LEGEND:  
Bus master active low  
DS1820 active low  
Both bus master and  
DS1820 active low  
Resistor pull–up  
030598 19/27  
DS1820  
Semiconductor “Application Note Book”, via our web-  
site at http://www.dalsemi.com/, or through our faxback  
service at (214) 450–0441.  
Related Application Notes  
The following Application Notes can be applied to the  
DS1820. These notes can be obtained from the Dallas  
Application Note 27: “Understanding and Using Cyclic Redundancy Checks with Dallas Semiconductor Touch  
Memory Product”  
Application Note 55: “Extending the Contact Range of Touch Memories”  
Application Note 74: “Reading and Writing Touch Memories via Serial Interfaces”  
Application Note 104: “Minimalist Temperature Control Demo”  
Application Note 105: “High Resolution Temperature Measurement with Dallas Direct–to–Direct Temperature Sen-  
sors”  
Application Note 106: “Complex MicroLANs”  
Application Note 108: “MicroLAN – In the Long Run”  
Sample 1–Wire subroutines that can be used in conjunction with AN74 can be downloaded from the website or our  
Anonymous FTP Site.  
030598 20/27  
DS1820  
MEMORY FUNCTION EXAMPLE Table 3  
Example: Bus Master initiates temperature conversion, then reads temperature (parasite power assumed).  
MASTER MODE  
DATA (LSB FIRST)  
Reset  
COMMENTS  
Reset pulse (480–960 µs).  
TX  
RX  
TX  
TX  
TX  
TX  
Presence  
Presence pulse.  
55h  
Issue “Match ROM” command.  
Issue address for DS1820.  
Issue “Convert T” command.  
<64–bit ROM code>  
44h  
<I/O LINE HIGH>  
I/O line is held high for at least 500 ms by bus master to  
allow conversion to complete.  
TX  
RX  
TX  
TX  
TX  
RX  
Reset  
Presence  
Reset pulse.  
Presence pulse.  
55h  
Issue “Match ROM” command.  
Issue address for DS1820.  
Issue “Read Scratchpad” command.  
<64–bit ROM code>  
BEh  
<9 data bytes>  
Read entire scratchpad plus CRC; the master now recal-  
culates the CRC of the eight data bytes received from the  
scratchpad, compares the CRC calculated and the CRC  
read. If they match, the master continues; if not, this read  
operation is repeated.  
TX  
RX  
Reset  
Reset Pulse.  
Presence  
Presence pulse, done.  
030598 21/27  
DS1820  
MEMORY FUNCTION EXAMPLE Table 4  
Example: Bus Master writes memory (parasite power and only one DS1820 assumed).  
MASTER MODE  
DATA (LSB FIRST)  
Reset  
COMMENTS  
TX  
RX  
TX  
TX  
TX  
TX  
RX  
TX  
TX  
RX  
Reset pulse.  
Presence  
CCh  
Presence pulse.  
Skip ROM command.  
4Eh  
Write Scratchpad command.  
Writes two bytes to scratchpad (TH and TL).  
Reset pulse.  
<2 data bytes>  
Reset  
Presence  
CCh  
Presence pulse.  
Skip ROM command.  
BEh  
Read Scratchpad command.  
<9 data bytes>  
Read entire scratchpad plus CRC. The master now recal-  
culates the CRC of the eight data bytes received from the  
scratchpad, compares the CRC and the two other bytes  
read back from the scratchpad. If data match, the master  
continues; if not, repeat the sequence.  
TX  
RX  
TX  
TX  
Reset  
Presence  
CCh  
Reset pulse.  
Presence pulse.  
Skip ROM command.  
48h  
Copy Scratchpad command; after issuing this command,  
the master must wait 6 ms for copy operation to complete.  
TX  
RX  
Reset  
Reset pulse.  
Presence  
Presence pulse, done.  
030598 22/27  
DS1820  
MEMORY FUNCTION EXAMPLE Table 5  
Example: Temperature conversion and interpolation (external power supply and only one DS1820 assumed).  
MASTER MODE  
DATA (LSB FIRST)  
Reset  
COMMENTS  
TX  
TR  
TX  
TX  
RX  
Reset pulse.  
Presence  
CCh  
Presence pulse.  
Skip ROM command.  
Convert T command.  
44h  
<1 data byte>  
Read busy flag eight times. The master continues reading  
one byte (or bit) after another until the data is FFh (all  
bits 1).  
TX  
RX  
TX  
TX  
RX  
Reset  
Presence  
CCh  
Reset pulse.  
Presence pulse.  
Skip ROM command.  
Read Scratchpad command.  
BEh  
<9 data bytes>  
Read entire scratchpad plus CRC. The master now recal-  
culates the CRC of the eight data bytes received from the  
scratchpad and compares both CRCs. If the CRCs match,  
the data is valid. The master saves the temperature value  
and stores the contents of the count register and count  
per °C register as COUNT_REMAIN and COUNT_PER_C,  
respectively.  
TX  
RX  
Reset  
Presence  
Reset pulse.  
Presence pulse, done.  
CPU calculates temperature as described in the data sheet  
for higher resolution.  
030598 23/27  
DS1820  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on Any Pin Relative to Ground  
Operating Temperature  
Storage Temperature  
Soldering Temperature  
–0.5V to +7.0V  
–55°C to +125°C  
–55°C to +125°C  
260°C for 10 seconds  
* This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods of time may affect reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
CONDITION  
I/O Functions  
1
MIN  
TYP  
MAX  
UNITS NOTES  
Supply Voltage  
V
DD  
2.8  
5.0  
5.5  
1, 2  
± / °C Accurate  
4.3  
5.5  
V
2
Temperature  
Conversions  
Data Pin  
Logic 1  
Logic 0  
I/O  
–0.5  
2.0  
+5.5  
V
V
V
2
V
IH  
V
+0.3  
CC  
2, 3  
2, 4  
V
IL  
–0.3  
+0.8  
DC ELECTRICAL CHARACTERISTICS  
(–55°C to +125°C; VDD=3.6V to 5.5V)  
PARAMETER  
SYMBOL  
CONDITION  
MIN  
TYP  
MAX  
UNITS NOTES  
1
± /  
2
°C  
Thermometer Error  
t
–0°C to +70°C  
ERR  
–55°C to 0°C  
and +70°C to  
+125°C  
See Typical Curve  
1, 9, 10  
Input Logic High  
Input Logic Low  
Sink Current  
V
2.2  
5.5  
V
V
2, 3  
2, 4  
2
IH  
V
–0.3  
–4.0  
+0.8  
IL  
L
I
V =0.4V  
I/O  
mA  
nA  
Standby Current  
Active Current  
Input Load Current  
I
Q
200  
1
350  
1.5  
8
I
mA  
µA  
5, 6  
7
DD  
I
L
5
030598 24/27  
DS1820  
AC ELECTRICAL CHARACTERISTICS:  
(–55°C to +125°C; VDD=3.6V to 5.5V)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
500  
UNITS  
ms  
µs  
NOTES  
Temperature Conversion Time  
Time Slot  
t
200  
CONV  
t
60  
1
120  
SLOT  
Recovery Time  
t
µs  
REC  
LOW0  
LOW1  
Write 0 Low Time  
Write 1 Low Time  
Read Data Valid  
Reset Time High  
Reset Time Low  
Presence Detect High  
Presence Detect Low  
Capacitance  
r
60  
1
120  
15  
µs  
t
µs  
t
15  
µs  
RDV  
t
480  
480  
15  
µs  
RSTH  
t
4800  
60  
µs  
RSTL  
t
µs  
PDHIGH  
t
60  
240  
25  
µs  
PDLOW  
C
pF  
IN/OUT  
NOTES:  
1. Temperature conversion will work with ±2°C accuracy down to V = 3.4 volts.  
DD  
2. All voltages are referenced to ground.  
3. Logic one voltages are specified at a source current of 1 mA.  
4. Logic zero voltages are specified at a sink current of 4 mA.  
5. I specified with V at 5.0 volts.  
DD  
CC  
2
2
6. Active current refers to either temperature conversion or writing to the E memory. Writing to E memory con-  
sumes approximately 200 µA for up to 10 ms.  
7. Input load is to ground.  
8. Standby current specified up to 70°C. Standby current typically is 5 µA at 125°C.  
9. See Typical Curve for specification limits outside the 0°C to 70°C range. Thermometer error reflects sensor accu-  
racy as tested during calibration.  
10.Typical accuracy curve valid for 4.3V V 5.5V.  
DD  
1–WIRE WRITE ONE TIME SLOT  
t
SLOT  
START OF NEXT CYCLE  
t
REC  
t
LOW1  
030598 25/27  
DS1820  
1–WIRE WRITE ZERO TIME SLOT  
START OF NEXT CYCLE  
t
SLOT  
t
REC  
t
LOW0  
1–WIRE READ ZERO TIME SLOT  
t
START OF NEXT CYCLE  
SLOT  
t
REC  
t
RDV  
1–WIRE RESET PULSE  
RESET PULSE FROM HOST  
t
t
RSTH  
RSTL  
1–WIRE PRESENCE DETECT  
PRESENCE DETECT  
t
PDHIGH  
t
PDLOW  
030598 26/27  
DS1820  
TYPICAL PERFORMANCE CURVE  
DS1820 DIGITAL TERMOMETER AND THERMOSTAT  
TEMPERATURE READING ERROR  
5
4
3
2
1
UPPER LIMIT  
SPECIFICATION  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TYPICAL  
ERROR  
LOWER LIMIT  
SPECIFICATION  
–1  
–2  
–3  
TEMPERATURE (deg. C)  
030598 27/27  
配单直通车
DS1820产品参数
型号:DS1820
是否Rohs认证: 不符合
生命周期:Obsolete
Reach Compliance Code:unknown
风险等级:5.52
最大精度(摄氏度):2 Cel
外壳:PLASTIC
JESD-609代码:e0
安装特点:THROUGH HOLE MOUNT
位数:9
端子数量:3
最大工作电流:1 mA
最高工作温度:125 °C
最低工作温度:-55 °C
输出接口类型:1-WIRE INTERFACE
封装主体材料:PLASTIC/EPOXY
封装等效代码:SIP3,.1,50
封装形状/形式:ROUND
电源:5 V
传感器/换能器类型:TEMPERATURE SENSOR,SWITCH/DIGITAL OUTPUT,SERIAL
子类别:Other Sensors
最大供电电压:5.5 V
最小供电电压:2.8 V
表面贴装:NO
端子面层:Tin/Lead (Sn/Pb)
端接类型:SOLDER
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!