欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • EL1508CMZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • EL1508CMZ
  • 数量65000 
  • 厂家INTERSIL 
  • 封装20-SOP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • EL1508CMZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • EL1508CMZ
  • 数量98500 
  • 厂家EL 
  • 封装SOP-20 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • EL1508CMZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • EL1508CMZ
  • 数量4500 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • EL1508CMZ图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • EL1508CMZ
  • 数量5555 
  • 厂家INTERSIL 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • EL1508CMZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • EL1508CMZ
  • 数量68000 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • EL1508CMZ图
  • 集好芯城

     该会员已使用本站13年以上
  • EL1508CMZ
  • 数量16179 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • EL1508CMZ图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • EL1508CMZ
  • 数量5845 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • EL1508CMZ-T13图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • EL1508CMZ-T13
  • 数量1500 
  • 厂家INTERSIL 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • EL1508CMZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • EL1508CMZ
  • 数量4500 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • EL1508CMZ图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • EL1508CMZ
  • 数量660000 
  • 厂家ELANTEC 
  • 封装SOIC-20 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • EL1508CMZ图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • EL1508CMZ
  • 数量10000 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • EL1508CMZ图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • EL1508CMZ
  • 数量24757 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • EL1508CMZ图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • EL1508CMZ
  • 数量12112 
  • 厂家INTERSIL 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • EL1508CMZ图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • EL1508CMZ
  • 数量68000 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • EL1508CMZ图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • EL1508CMZ
  • 数量9000 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号2021+ 
  • 港瑞电子是实报/实单可以来谈价
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • EL1508CMZ图
  • 深圳市顺鑫诚电子科技有限公司

     该会员已使用本站14年以上
  • EL1508CMZ
  • 数量5000 
  • 厂家INTELRSIL 
  • 封装N/A 
  • 批号18+ 
  • 保证原装正品,欢迎来电咨询
  • QQ:1533095505QQ:1533095505 复制
    QQ:449551876QQ:449551876 复制
  • 0755-29486608 QQ:1533095505QQ:449551876
  • EL1508CMZ图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • EL1508CMZ
  • 数量20000 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • EL1508CMZ图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • EL1508CMZ
  • 数量7800 
  • 厂家INTERSIL 
  • 封装SOP-20 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • EL1508CMZ图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • EL1508CMZ
  • 数量25000 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • EL1508CMZ-T13图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • EL1508CMZ-T13
  • 数量25000 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • EL1508CMZ图
  • 深圳市中福国际管理有限公司

     该会员已使用本站1年以上
  • EL1508CMZ
  • 数量21000 
  • 厂家Renesas Electronics America Inc 
  • 封装20-SOIC(0.295,7.50mm 宽) 
  • 批号22+ 
  • 大量现货库存,2小时内发货
  • QQ:1664127491QQ:1664127491 复制
    QQ:2115067904QQ:2115067904 复制
  • 0755-82571134 QQ:1664127491QQ:2115067904
  • EL1508CMZ图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • EL1508CMZ
  • 数量9800 
  • 厂家ELANTEC 
  • 封装SMD 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805
  • EL1508CMZ-T13图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • EL1508CMZ-T13
  • 数量1001 
  • 厂家INTERSIL 
  • 封装SOP-20 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97671959QQ:97671959 复制
  • 171-4729-9698(微信同号) QQ:97671959
  • EL1508CMZ图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • EL1508CMZ
  • 数量1001 
  • 厂家INTERSIL 
  • 封装SOP-20 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号EL1508CMZ的概述

EL1508CMZ芯片概述 EL1508CMZ是一款由美国信号技术公司(Elantec)研发的高频放大器,其主要用途在于视觉信号处理、音频信号放大以及高频信号转换等领域。此芯片在多种电子设备中得到广泛应用,尤其是在图像处理、视频信号传输以及音频处理系统中,其性能优越、稳定性高,使其成为设计师和工程师的理想选择。 在设计EL1508CMZ时,工程师考虑到了信号的完整性和系统的响应速度,这使得该芯片具有低失真、高带宽以及出色的电源抑制比(PSRR)。此外,其在增益和频率响应上表现优异,能够满足现代电子产品对信号处理的各种需求。 EL1508CMZ详细参数 EL1508CMZ的主要技术参数包括: - 增益带宽产品(GBW): 100 MHz - 输入失调电压: 1 mV(典型值) - 输入阻抗: 300 kΩ - 输出驱动能力: 可驱动100 Ω负载 - 供电电压范围: ±2 V至±6 V ...

产品型号EL1508CMZ的Datasheet PDF文件预览

EL1508  
®
Data Sheet  
March 26, 2007  
FN7014.5  
Differential DSL Line Driver  
Features  
The EL1508 is designed for driving full rate ADSL signals in  
both CO and CPE applications at very low power dissipation.  
The high drive capability of 450mA makes this driver ideal  
for both CAP and DMT designs. It contains two wideband,  
high-voltage, current mode feedback amplifiers with a  
number of power dissipation reduction features.  
• 450mA output drive capability  
• 43.6V differential output drive into 100Ω  
P-P  
nd rd  
• 2 /3 harmonics of -85dBc/-75dBc  
• MTPR of -70dB  
• Operates down to 3mA per amplifier supply current  
• Power control features  
These drivers achieve an MTPR distortion measurement of  
better than 70dB, while consuming typically 6mA of total  
supply current. This supply current can be set using a  
• Pin-compatible with EL1503  
resistor on the I  
pin. Two other pins (C and C ) can  
ADJ  
0 1  
• Pb-free plus anneal available (RoHS compliant)  
also be used to adjust supply current to one of four pre-set  
modes (full-I , 2/3-I , 1/3-I , and full power-down). The  
S
S
S
Applications  
EL1508 operates on ±5V to ±12V supplies and retains its  
bandwidth and linearity over the complete supply range.  
• ADSL line driver  
• HDSL line driver  
The device is supplied in a thermally-enhanced 20 Ld SOIC  
(0.300”), a thermally-enhanced 16 Ld SOIC (0.150”), and the  
small footprint (4x5mm) 24 Ld QFN packages. The EL1508  
is specified for operation over the full -40°C to +85°C  
temperature range.  
• Video distribution amplifier  
• Video twisted-pair line driver  
Pinouts  
EL1508  
EL1508  
EL1508  
[20 LD SOIC (0.300”)]  
[16 LD SOIC (0.150”)]  
(24 LD QFN)  
TOP VIEW  
TOP VIEW  
TOP VIEW  
VIN-A  
VOUTA  
VS-  
1
2
3
4
5
6
7
8
9
20 VIN-B  
VIN-A  
VOUTA  
VS-  
1
2
3
4
5
6
7
8
16 VIN-B  
19 VOUTB  
18 VS+  
15 VOUTB  
14 VS+  
NC 1  
NC 2  
VS- 3  
NC 4  
NC 5  
NC 6  
GND 7  
19 NC  
18 NC  
17 VS+  
16 NC  
15 NC  
14 NC  
13 GND  
A
B
+
-
+
-
-
+
-
+
GND*  
GND*  
GND*  
GND*  
VIN+A  
C1  
17 GND*  
16 GND*  
15 GND*  
14 GND*  
13 VIN+B  
12 IADJ  
11 NC  
GND*  
GND*  
VIN+A  
C1  
13 GND*  
12 GND*  
11 VIN+B  
10 IADJ  
THERMAL  
PAD  
POWER  
CONTROL  
LOGIC  
C0  
9 NC  
POWER  
CONTROL  
LOGIC  
C0 10  
*GND PINS ARE HEAT SPREADERS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2001-2005, 2007. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL1508  
Ordering Information  
PART NUMBER  
PART MARKING  
EL1508CS  
EL1508CS  
EL1508CS  
EL1508CSZ  
EL1508CSZ  
EL1508CSZ  
EL1508CM  
EL1508CM  
EL1508CMZ  
EL1508CMZ  
1508CL  
TAPE & REEL  
PACKAGE  
16 Ld SOIC (0.150”)  
PKG. DWG. #  
MDP0027  
EL1508CS  
-
7”  
13”  
-
EL1508CS-T7  
16 Ld SOIC (0.150”)  
16 Ld SOIC (0.150”)  
16 Ld SOIC (0.150”) (Pb-Free)  
16 Ld SOIC (0.150”) (Pb-Free)  
16 Ld SOIC (0.150”) (Pb-Free)  
20 Ld SOIC (0.300”)  
20 Ld SOIC (0.300”)  
20 Ld SOIC (0.300”) (Pb-Free)  
20 Ld SOIC (0.300”) (Pb-Free)  
24 Ld QFN  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
EL1508CS-T13  
EL1508CSZ (See Note)  
EL1508CSZ-T7 (See Note)  
EL1508CSZ-T13 (See Note)  
EL1508CM  
7”  
13”  
-
EL1508CM-T13  
13”  
-
EL1508CMZ (See Note)  
EL1508CMZ-T13 (See Note)  
EL1508CL  
13”  
-
EL1508CL-T7  
1508CL  
7”  
13”  
-
24 Ld QFN  
EL1508CL-T13  
1508CL  
24 Ld QFN  
EL1508CLZ (See Note)  
EL1508CLZ-T7 (See Note)  
EL1508CLZ-T13 (See Note)  
1508CLZ  
24 Ld QFN (Pb-Free)  
24 Ld QFN (Pb-Free)  
24 Ld QFN (Pb-Free)  
1508CLZ  
7”  
13”  
1508CLZ  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7014.5  
March 26, 2007  
2
EL1508  
Absolute Maximum Ratings (T = 25°C)  
A
V + to V - Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . -0.3V to 28V  
Current into any Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8mA  
Output Current from Driver (Static) . . . . . . . . . . . . . . . . . . . . 100mA  
Operating Temperature Range . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-60°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . .-40°C to +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
V + Voltage to Ground . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 28V  
S
V - Voltage to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . -28V to 0.3V  
S
Driver V + Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V - to V +  
IN  
S
S
C , C Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V  
0
1
I
Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 4V  
ADJ  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at  
the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
PARAMETER  
V
= ±12V, R = 2.2kΩ, R = 65Ω, I = C = C = 0V, T = 25°C. Amplifiers tested separately.  
ADJL 0 1 A  
S
F
L
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CHARACTERISTICS  
I + (Full I )  
Positive Supply Current per Amplifier  
Negative Supply Current per Amplifier  
Positive Supply Current per Amplifier  
Negative Supply Current per Amplifier  
Positive Supply Current per Amplifier  
Negative Supply Current per Amplifier  
Positive Supply Current per Amplifier  
All outputs at 0V, C = C = 0V  
10  
-9.5  
7
14.5  
-13.5  
10  
18  
-17.5  
12.5  
-12  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
S
S
0
1
I - (Full I )  
All outputs at 0V, C = C = 0V  
0 1  
S
S
I + (2/3 I )  
All outputs at 0V, C = 5V, C = 0V  
0 1  
S
S
I - (2/3 I )  
All outputs at 0V, C = 5V, C = 0V  
-6  
-9  
S
S
0
1
I + (1/3 I )  
All outputs at 0V, C = 0V, C = 5V  
3.75  
-2.75  
3
5.25  
-4.25  
3.75  
S
S
0
1
I - (1/3 I )  
All outputs at 0V, C = 0V, C = 5V  
-6  
S
S
0
1
I + (6.8k)  
All outputs at 0V, C = C = 0V,  
4.5  
S
0
1
R
= 6.8k  
ADJ  
I - (6.8k)  
Negative Supply Current per Amplifier  
All outputs at 0V, C = C = 0V,  
-3.75  
-2.9  
-2.25  
mA  
S
0
1
R
= 6.8k  
ADJ  
I + (Power-down) Positive Supply Current per Amplifier  
All outputs at 0V, C = C = 5V  
0.75  
0
1.2  
-0.25  
1
2
mA  
mA  
mA  
S
0
1
I - (Power-down)  
Negative Supply Current per Amplifier  
GND Supply Current per Amplifier  
All outputs at 0V, C = C = 5V  
-2  
S
0
1
I
All outputs at 0V  
GND  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Mismatch  
V
-10  
-5  
1
0
10  
5
mV  
mV  
µA  
OS  
ΔV  
V
OS  
I +  
OS  
Non-Inverting Input Bias Current  
Inverting Input Bias Current  
-15  
-50  
-25  
1.1  
15  
50  
25  
5
B
I -  
µA  
B
ΔI -  
I - Mismatch  
B
0
µA  
B
R
e
Transimpedance  
2.9  
3.5  
13  
MΩ  
OL  
Input Noise Voltage  
-Input Noise Current  
Input High Voltage  
Input Low Voltage  
nV/ Hz  
N
i
pA/ Hz  
N
V
V
C
C
C
C
C
and C inputs  
2.25  
V
IH  
IL  
0
0
1
0
0
1
and C inputs  
1
0.8  
6
V
I
I
I
Input High Current for C  
Input High Current for C  
= 5V  
= 5V  
1
2
1
µA  
µA  
µA  
IH1  
IH0  
IL  
1
0
0.5  
-1  
3
Input Low Current for C or C  
0
= 0V, C = 0V  
1
1
1
FN7014.5  
March 26, 2007  
3
EL1508  
Electrical Specifications  
PARAMETER  
V
= ±12V, R = 2.2kΩ, R = 65Ω, I  
ADJL  
= C = C = 0V, T = 25°C. Amplifiers tested separately. (Continued)  
S
F
L
0
1
A
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT CHARACTERISTICS  
V
Loaded Output Swing  
R
R
= 100Ω  
±10.6  
±9.8  
±10.8  
±10.2  
450  
±11.5  
±10.6  
V
V
OUT  
L
= 25Ω  
= 5, R = 10Ω, f = 100kHz,  
L
I
I
Linear Output Current  
Output Current  
A
mA  
OL  
V
L
THD = -60dBc  
V
= 1V, R = 1Ω  
1
A
OUT  
OUT  
L
DYNAMIC PERFORMANCE  
BW  
-3 dB Bandwidth  
A
= +5  
80  
MHz  
dBc  
dBc  
dBc  
dBc  
dBc  
V
HD2  
2nd Harmonic Distortion  
f
f
f
f
= 1MHz, R = 100Ω, V  
= 2V  
-90  
-80  
-90  
-75  
-70  
C
L
OUT  
OUT  
P-P  
P-P  
= 1MHz, R = 25Ω, V  
= 2V  
C
C
C
L
OUT  
P-P  
HD3  
3rd Harmonic Distortion  
= 1MHz, R = 100Ω, V  
= 2V  
= 2V  
L
= 1MHz, R = 25Ω, V  
L
OUT  
= 100Ω,  
P-P  
MTPR  
SR  
Multi-Tone Power Ratio  
Slewrate  
26kHz to 1.1MHz, R  
LINE  
P
= 20.4dBM  
LINE  
V
from -8V to +8V measured at ±4V  
450  
600  
800  
V/µs  
OUT  
FN7014.5  
March 26, 2007  
4
EL1508  
Pin Descriptions  
16 Ld SOIC 20 Ld SOIC  
(0.150")  
(0.300")  
24 Ld QFN  
PIN NAME  
FUNCTION  
CIRCUIT  
1
1
23  
VIN-A  
Channel A Inverting Input  
CIRCUIT 1  
2
3
2
24  
3
VOUTA  
VS-  
Channel A Output  
(Reference Circuit 1)  
3
4, 5, 6, 7  
8
Negative Supply  
4, 5  
6
7
GND  
Ground Connection  
Channel A Non-inverting Input  
8
VIN+A  
V +  
S
V -  
S
CIRCUIT 2  
7
9
9
C1  
Current Control Bit 1  
V +  
S
6.7V  
CIRCUIT 3  
(Reference Circuit 3)  
8
9
10  
11  
10  
C0  
Current Control Bit 2  
Not Connected  
1, 2, 4, 5, 6, 14,  
NC  
15, 16, 18, 19, 22  
10  
12  
11  
IADJ  
Supply Current Control Pin  
V +  
S
I
ADJ  
GND  
CIRCUIT 4  
11  
12, 13  
14  
13  
12  
13  
17  
20  
21  
VIN+B  
GND  
Channel B Non-inverting Input  
Ground Connection  
(Reference Circuit 2)  
14, 15, 16, 17  
18  
19  
20  
VS+  
Positive Supply  
15  
VOUTB  
VIN-B  
Channel B Output  
(Reference Circuit 1)  
(Reference Circuit 1)  
16  
Channel B Inverting Input  
FN7014.5  
March 26, 2007  
5
EL1508  
Typical Performance Curves  
24  
18  
A =10  
A =5  
V
S
L
V
R =2kΩ  
R =1.5kΩ  
F
F
R =3kΩ  
F
R =2kΩ  
V =±12V  
V =±12V  
F
S
R =100Ω  
22  
20  
18  
16  
16 R =100Ω  
L
ADJ  
R =2.5kΩ  
R
=0Ω  
F
R =2.5kΩ  
F
14  
12  
10  
R =4kΩ  
F
R =3kΩ  
F
R =3.5kΩ  
F
14  
100K  
8
1M  
10M  
FREQUENCY (Hz)  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 1. DIFFERENTIAL FREQUENCY RESPONSE vs R  
(1/3 POWER MODE)  
FIGURE 2. DIFFERENTIAL FREQUENCY RESPONSE  
(1/3 POWER MODE)  
F
F
F
24  
18  
A =10  
V
A =5  
V
V =±12V  
V =±12V  
S
S
R =100Ω  
R =100Ω  
22  
20  
18  
16  
14  
L
ADJ  
16  
14  
12  
10  
8
L
R
=0Ω  
R =2kΩ  
R =1.5kΩ  
R =4kΩ  
F
F
F
R =2kΩ  
F
R =3.5kΩ  
F
R =2.5kΩ  
F
R =3kΩ  
F
R =3kΩ  
F
R =2.5kΩ  
F
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. DIFFERENTIAL FREQUENCY RESPONSE vs R  
(2/3 POWER MODE)  
FIGURE 4. DIFFERENTIAL FREQUENCY RESPONSE  
(2/3 POWER MODE)  
24  
18  
A =5  
V
A =10  
V
V =±12V  
V =±12V  
S
S
R =100Ω  
R =100Ω  
22  
20  
18  
16  
14  
16  
14  
12  
10  
8
L
L
ADJ  
R
=0Ω  
R =1.5kΩ  
F
R =4kΩ  
F
R =2kΩ  
F
R =2kΩ  
R =3kΩ  
F
F
R =2.5kΩ  
F
R =2.5kΩ  
F
R =3.5kΩ  
F
R =3kΩ  
F
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. DIFFERENTIAL FREQUENCY RESPONSE vs R  
(FULL POWER MODE)  
FIGURE 6. DIFFERENTIAL FREQUENCY RESPONSE  
(FULL POWER MODE)  
FN7014.5  
March 26, 2007  
6
EL1508  
Typical Performance Curves (Continued)  
26  
26  
22  
18  
14  
10  
6
V =±12V  
S
V =±12V  
S
R
=3kΩ  
R
A =5  
R =83Ω  
R
=3kΩ  
FB  
FB  
V
L
100pF  
68pF  
A =5  
V
22  
18  
14  
10  
6
R =83Ω  
150pF  
100pF  
62pF  
L
SET  
R
=0Ω  
=0Ω  
SET  
50pF  
22pF  
0pF  
39pF  
22pF  
0pF  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 7. EL1508CM SINGLE-ENDED CONFIGURATION  
FIGURE 8. EL1508CM SINGLE-ENDED CONFIGURATION  
FREQUENCY RESPONSE vs C  
(1/3 POWER MODE)  
FREQUENCY RESPONSE vs C  
(1/3 POWER MODE)  
L
L
26  
22  
18  
14  
10  
6
6
5
4
3
2
1
0
V =±12V  
V =±12V  
S
S
R
=3kΩ  
R
=3kΩ  
FB  
V
L
FB  
A =10  
R =100Ω  
A =5  
V
150pF  
100pF  
62pF  
R =83Ω  
L
SET  
R
=0Ω  
39pF  
22pF  
5pF  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
5
6
7
8
9
10  
TOTAL I (mA)  
S
FIGURE 9. EL1508CM SINGLE-ENDED CONFIGURATION  
FREQUENCY RESPONSE vs C  
FIGURE 10. PEAKING vs I +  
S
L
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
V =±12V  
V =±7.5V  
S
S
R
=3kΩ  
R
=3kΩ  
FB  
V
L
FB  
A =10  
R =100Ω  
A =10  
V
R =100Ω  
L
0
2
4
6
8
10  
5
7
9
11  
13  
15  
R
(kΩ)  
I
(mA)  
ADJ  
SUPPLY  
FIGURE 11. PEAKING vs R  
FIGURE 12. PEAKING vs I +  
S
ADJ  
FN7014.5  
March 26, 2007  
7
EL1508  
Typical Performance Curves (Continued)  
0
-20  
40  
30  
20  
10  
0
-40  
A to B  
-60  
B to A  
-80  
-100  
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 13. OUTPUT IMPEDANCE  
FIGURE 14. CHANNEL SEPARATION  
1.4  
100  
V =±12V  
S
R
A =2  
R
=3kΩ  
FB  
V
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
=0Ω  
SET  
DIFF GAIN  
CURRENT NOISE  
VOLTAGE NOISE  
10  
DIFF PHASE  
1
10  
100  
1K  
10K  
100K  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FREQUENCY (Hz)  
NUMBER of 150Ω RESISTOR LOADS  
FIGURE 15. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
FIGURE 16. DIFFERENTIAL GAIN/PHASE, F =3.58MHz  
O
(2/3 POWER MODE)  
0.30  
0.08  
V =±12V  
V =±12V  
S
S
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
R
A =2  
R
=3kΩ  
R
=3kΩ  
FB  
V
FB  
DIFF PHASE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
A =2  
V
DIFF GAIN  
=0Ω  
R
=0Ω  
SET  
SET  
DIFF GAIN  
DIFF PHASE  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
1
2
3
4
5
NUMBER of 150Ω RESISTOR LOADS  
NUMBER of 150Ω RESISTOR LOADS  
FIGURE 17. DIFFERENTIAL GAIN/PHASE, F =3.58MHz  
O
FIGURE 18. DIFFERENTIAL GAIN/PHASE, F =3.58MHz  
O
(2/3 POWER MODE)  
(FULL POWER MODE)  
FN7014.5  
March 26, 2007  
8
EL1508  
Typical Performance Curves - 24 Ld QFN Package  
FREQ=1MHz  
0
-20  
FREQ=1MHz  
-10  
V =±5V  
V =±12V  
S
S
R
=0  
R
=0  
SET  
SET  
R =100Ω  
R =100Ω  
L
L
GAIN=10  
-30  
-50  
-70  
-90  
GAIN=10  
-40  
HD3  
HD3  
-60  
HD2  
HD2  
-80  
-100  
0
1
2
3
4
5
6
7
8
9
0
5
10  
V
15  
20  
20  
20  
25  
25  
25  
V
(V)  
(V)  
OUTP-P  
OUTP-P  
FIGURE 19. HARMONIC DISTORTION TEST  
(1/3 POWER MODE)  
FIGURE 20. HARMONIC DISTORTION TEST  
(1/3 POWER MODE)  
0
0
FREQ=1MHz  
FREQ=1MHz  
-10  
V =±5V  
V =±12V  
S
S
R
=0  
R
=0  
SET  
L
-20  
-40  
SET  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R =100Ω  
R =100Ω  
GAIN=10  
HD3  
L
GAIN=10  
HD3  
HD2  
-60  
HD2  
7
-80  
-100  
0
1
2
3
4
5
6
8
9
0
5
10  
15  
V
(V)  
V
(V)  
OUTP-P  
OUTp-p  
FIGURE 21. HARMONIC DISTORTION TEST  
(2/3 POWER MODE)  
FIGURE 22. HARMONIC DISTORTION TEST  
(2/3 POWER MODE)  
0
0
FREQ=1MHz  
FREQ=1MHz  
-10  
V =±5V  
V =±12V  
S
S
R
=0  
R
=0  
SET  
L
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-40  
SET  
R =100Ω  
R =100Ω  
GAIN=10  
L
HD3  
GAIN=10  
HD3  
HD2  
-60  
-80  
HD2  
6
-100  
0
1
2
3
4
5
7
8
9
0
5
10  
15  
V
(V)  
V
(V)  
OUTP-P  
OUTp-p  
FIGURE 23. HARMONIC DISTORTION TEST  
(FULL POWER MODE)  
FIGURE 24. HARMONIC DISTORTION TEST  
(FULL POWER MODE)  
FN7014.5  
March 26, 2007  
9
EL1508  
Typical Performance Curves - 20 Ld SOIC (0.300") Package  
0
FREQ=1MHz  
V =±12V  
FREQ=1MHz  
V =±5V  
-10  
-30  
-50  
-70  
-90  
S
S
R
=0  
SET  
L
R
=0  
SET  
L
R =100Ω  
GAIN=10  
-20  
-40  
-60  
-80  
R =100Ω  
GAIN=10  
HD 2  
HD2  
3
HD 3  
20  
HD3  
0
5
10  
V
15  
(V)  
25  
0
1
2
4
5
6
7
8
9
V
(V)  
OUTP-P  
OUTP-P  
FIGURE 25. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE (1/3 POWER MODE)  
FIGURE 26. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE (1/3 POWER MODE)  
FREQ=1MHz  
FREQ=1MHz  
-10  
-10  
-30  
-50  
-70  
-90  
V =±12V  
V =±5V  
S
S
R
=0  
R
=0  
SET  
SET  
R =100Ω  
R =100Ω  
L
L
GAIN=10  
GAIN=10  
-30  
-50  
-70  
-90  
HD 2  
HD2  
3
HD 3  
HD3  
5
0
1
2
4
6
7
8
9
0
5
10  
15  
(V)  
20  
25  
V
(V)  
V
OUTP-P  
OUTP-P  
FIGURE 27. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE (2/3 POWER MODE)  
FIGURE 28. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE (2/3 POWER MODE)  
0
FREQ=1MHz  
FREQ=1MHz  
-10  
-30  
-50  
-70  
-90  
V =±12V  
V =±5V  
S
S
R =0  
R
=0  
SET  
-20  
-40  
SET  
R =100Ω  
R =100Ω  
L
L
GAIN=10  
GAIN=10  
HD 2  
HD 3  
-60  
HD2  
-80  
HD3  
4
-100  
0
5
10  
V
15  
(V)  
20  
25  
0
1
2
3
5
6
7
8
V
(V)  
OUTP-P  
OUTP-P  
FIGURE 29. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE (FULL POWER MODE)  
FIGURE 30. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE (FULL POWER MODE)  
FN7014.5  
March 26, 2007  
10  
EL1508  
Typical Performance Curves  
FREQ=1MHz  
V =±5V  
FREQ=1MHz  
-10  
-30  
-50  
-70  
-90  
V =±5V  
-10  
-30  
-50  
-70  
S
S
R
=6.81kΩ  
R
=6.81kΩ  
SET  
L
SET  
R =100Ω  
GAIN=10  
R =100Ω  
L
GAIN=10  
HD3  
HD 3  
HD 2  
2
HD2  
7
0
1
3
4
5
6
7
8
9
0
1
2
3
4
5
6
8
9
V
(V)  
V
(V)  
OUTP-P  
OUTP-P  
FIGURE 31. EL1508CM HARMONIC DISTORTION vs  
DIFFERENTIAL OUTPUT VOLTAGE  
(FULL POWER MODE)  
FIGURE 32. EL1508CL HARMONIC DISTORTION TEST  
(FULL POWER MODE)  
0
0
FREQ=1MHz  
FREQ=1MHz  
V =±12V  
V =±12V  
S
S
R
=6.81kΩ  
R
=6.81kΩ  
-20  
-40  
SET  
SET  
-20  
-40  
-60  
-80  
R =100Ω  
R =100Ω  
L
L
HD3  
GAIN=10  
GAIN=10  
HD 2  
-60  
HD2  
-80  
HD 3  
20  
-100  
0
5
10  
15  
(V)  
25  
0
5
10  
15  
20  
25  
V
V
(V)  
OUTP-P  
OUTP-P  
FIGURE 33. EL1508CM HARMONIC DISTORTION vs  
DIFFERENTIAL OUTPUT VOLTAGE  
(FULL POWER MODE)  
FIGURE 34. EL1508CL HARMONIC DISTORTION TEST  
(FULL POWER MODE)  
V
OUT  
V
OUT  
C , C  
0
1
C , C  
0
1
2V/DIV  
2V/DIV  
40ns/DIV  
40ns/DIV  
FIGURE 35. DISABLE TIME  
FIGURE 36. ENABLE TIME  
FN7014.5  
March 26, 2007  
11  
EL1508  
Typical Performance Curves (Continued)  
21.6  
21.4  
21.2  
25  
21  
17  
13  
9
V =±12V  
S
R
=10  
FB  
V
A =10  
R =100Ω  
L
21.0  
FREQ=100kHz  
V =±12V  
20.8  
S
R
=0  
SET  
A =10  
V
20.6  
5
50  
70  
90  
110  
130  
150  
170  
190  
0
2
4
6
8
10  
DIFFERENTIAL LOAD RESISTANCE (Ω)  
R
(kΩ)  
ADJ  
FIGURE 37. LOAD RESISTANCE vs OUTPUT VOLTAGE  
(ALL POWER MODES)  
FIGURE 38. I + vs R  
(FULL POWER MODE)  
ADJ  
S
30  
4.5  
4.0  
+
-
25  
20  
15  
10  
5
θ
= 30°C/W  
JA  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+
-
θ
= 43°C/W  
= 53°C/W  
JA  
θ
JA  
+
-
θ
= 80°C/W  
JA  
0
0
2
4
6
8
10  
12  
-40  
-20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
FIGURE 39. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 40. POWER DISSIPATION vs AMBIENT  
TEMPERATURE for VARIOUS MOUNTED θ  
s
JA  
(See Thermal Resistance Curve on page 15)  
USING ELANTEC EL1503CS DEMO BOARD, 2”X2”  
(4-LAYER). DEMO BOARD WITH HEATSINK VIA  
INTERNAL GROUND PLANE  
USING JEDEC JESD51-3 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY. (4-LAYER) TEST BOARD, QFN  
EXPOSED DIEPAD SOLDERED TO PCB PER JESD51-5  
4
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3
3.378W  
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 41. 16 LD SOIC POWER DISSIPATION and THERMAL  
RESISTANCE  
FIGURE 42. 24 LD QFN POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7014.5  
March 26, 2007  
12  
EL1508  
the average output current, I , or 1/2 I , whichever is the  
Applications Information  
O
Q
lowest. We’ll call this term I .  
X
The EL1508 consists of two high-power line driver amplifiers  
that can be connected for full duplex differential line  
transmission. The amplifiers are designed to be used with  
signals up to 4MHz and produce low distortion levels. The  
EL1508 has been optimized as a line driver for ADSL CO  
application. The driver output stage has been sized to  
provide full ADSL CO power level of 20dBM onto the  
telephone lines. Realizing that the actual peak output  
voltages and currents vary with the line transformer turns  
ratio, the EL1508 is designed to support 450mA of output  
current which exceeds the level required for 1:2 transformer  
ratio. A typical ADSL interface circuit is shown in Figure 43  
below. Each amplifier has identical positive gain  
Therefore, we can determine a quiescent current with the  
equation:  
P
= V × (I 21 )  
S S X  
Dquiescent  
where:  
V is the supply voltage (V + to V -)  
S
S
S
I
I
is the operating supply current (I + - I -) / 2  
S S  
S
is the lesser of I or 1/2 I  
X
O
Q
The dissipation in the output stage has two main  
contributors. Firstly, we have the average voltage drop  
across the output transistor and secondly, the average  
output current. For minimal power dissipation, the user  
should select the supply voltage and the line transformer  
ratio accordingly. The supply voltage should be kept as low  
as possible, while the transformer ratio should be selected  
so that the peak voltage required from the EL1508 is close to  
the maximum available output swing. There is a trade off,  
however, with the selection of transformer ratio. As the ratio  
is increased, the receive signal available to the receivers is  
reduced.  
connections, and optimum common-mode rejection occurs.  
Further, DC input errors are duplicated and create common-  
mode rather than differential line errors.  
DRIVER  
INPUT+  
R
LINE +  
OUT  
+
-
R
R
F
F
2R  
Z
LINE  
G
R
OUT  
-
DRIVER  
INPUT-  
+
LINE -  
Once the user has selected the transformer ratio, the  
dissipation in the output stages can be selected with the  
following equation:  
R
F
R
R
IN  
-
RECEIVE  
OUT +  
V
S
+
V  
-------  
P
= 2 × I  
×
Dtransistors  
O
O
RECEIVE  
2
AMPLIFIERS  
+
-
F
R
where:  
R
R
IN  
RECEIVE  
OUT -  
V is the supply voltage (V + to V -)  
S
S
S
V
is the average output voltage per channel  
FIGURE 43. TYPICAL LINE INTERFACE CONNECTION  
O
I
is the average output current per channel  
O
Input Connections  
The overall power dissipation (P  
) is obtained by adding  
DISS  
The EL1508 amplifiers are somewhat sensitive to source  
impedance. In particular, they do not like being driven by  
inductive sources. More than 100nH of source impedance  
can cause ringing or even oscillations. This inductance is  
equivalent to about 4” of unshielded wiring, or 6” of  
unterminated transmission line. Normal high-frequency  
construction obviates any such problem.  
P
and P .  
Dtransistor  
Dquiescent  
Estimating Line Driver Power Dissipation in ADSL  
CO Applications  
Figure 44 on the following page shows a typical ADSL CO  
line driver implementation. The average line power  
requirement for the ADSL CO application is 20dBM  
(100mW) into a 100Ω line. The average line voltage is  
Power Supplies and Dissipation  
3.16V  
. The ADSL DMT peak to average ratio (crest  
RMS  
Due to the high power drive capability of the EL1508, much  
attention needs to be paid to power dissipation. The power  
that needs to be dissipated in the EL1508 has two main  
contributors. The first is the quiescent current dissipation.  
The second is the dissipation of the output stage.  
factor) of 5.3 implies peak voltage of 16.7V into the line.  
Using a differential drive configuration and transformer  
coupling with standard back termination, a transformer ratio  
of 1:1 is selected. With 1:1 transformer ratio, the impedance  
across the driver side of the transformer is 100Ω, the  
The quiescent power in the EL1508 is not constant with  
varying outputs. In reality, 50% of the total quiescent supply  
current needed to power each driver is converted in to output  
current. Therefore, in the equation below we should subtract  
average voltage is 3.16V  
and the average current is  
RMA  
31.6mA. The power dissipated in the EL1508 is a  
FN7014.5  
March 26, 2007  
13  
EL1508  
combination of the quiescent power and the output stage  
power when driving the line:  
PCB Layout Considerations for QFN and SOIC  
Packages  
The EL1508 die is packaged in three different thermally-  
efficient packages: a 20 Ld SOIC (0.300”), a 16 Ld SOIC  
(0.150”), and a 24 Ld QFN. The 16 Ld SOIC has the same  
external dimensions as a standard 0.150” width SOIC  
package, but has the center four leads (two per side)  
internally-fused for heat transfer purposes. Both packages  
can use PCB surface metal vias areas and internal ground  
planes, to spread heat away from the package. The larger  
the PCB area the lower the junction temperature of the  
device will be. In XDSL applications, multiple layer circuit  
boards with internal ground plane are generally used. 13 mil  
vias are recommended to connect the metal area under the  
device with the internal ground plane. Examples of the PCB  
layouts are shown in the figures below that result in thermal  
Pd = P  
+ P  
output-stage  
quiescent  
Pd = V × I + (V 2 × V  
) × I  
OUT-RMS  
S
Q
S
OUT-RMS  
In the full power mode and with 6.8k R  
registers, the  
ADJ  
EL1508 consumes typically 7mA quiescent current and still  
able to maintain very low distortion. The distortion results are  
shown in typical performance section of the data sheet.  
When driving a load, a large portion (about 50%) of the  
quiescent current becomes output load current:  
Pd = 12 × (7mA × 50%) + (12V 3.16) × 31.6mA × 2  
where:  
resistance θ of 37°C/W for the QFN package and 47°C/W  
JA  
Pd = 598mW  
for the SOIC package. The thermal resistance is obtained  
with the EL1508CL and CS demo boards. The demo board  
is a 4-layer board built with 2oz. copper and has a dimension  
The θ requirement needs to be calculated. This is done  
using the equation:  
JA  
2
of 4in . Note, the user must follow the thermal layout  
T
T  
AMB  
JUNCT  
--------------------------------------------  
Θ
=
guideline to achieve these results. In addition to lower  
thermal resistance, the QFN package exhibits much lower  
2nd harmonic distortion.  
JA  
P
DISS  
where:  
A separate Application Note for the QFN package and layout  
recommendations is also available.  
T
is the maximum die temperature (150°C)  
JUNCT  
T
is the maximum ambient temperature (85°C)  
is the dissipation calculated above  
AMB  
P
DISS  
θ
is the junction to ambient thermal resistance for the  
JA  
package when mounted on the PCB  
150 85  
598mW  
----------------------  
= 108°C/W  
Θ
=
JA  
V +  
R
T
S
T +  
X
+
-
10  
0.22µF  
V -  
S
TXFR 1:1  
R
F
FROM  
AFE  
3k  
100  
2R  
G
TOP (24 LD QFN)  
1.5kΩ  
T -  
V +  
R
T
S
+
-
X
10  
V -  
0.22µF  
S
R
F
3k  
FIGURE 44. TYPICAL ADSL CO LINE DRIVER  
IMPLEMENTATION  
INTERNAL GROUND PLANE (24 LD QFN)  
FN7014.5  
March 26, 2007  
14  
EL1508  
55  
50  
Note: 2OZ COPPER USED  
TOP FOIL ONLY-WITH SOLDER MASK  
2
TOP FOIL-WITH 0.45in  
BOTTOM FOIL WITH MANY  
FEEDTHROUGHS  
45  
40  
35  
TOP FOIL ONLY-NO SOLDER MASK  
30  
0
2
4
6
8
10  
2
AREA OF CIRCUIT BOARD HEAT SINK (in )  
TOP (16 Ld SO)  
FIGURE 45. THERMAL RESISTANCE of 20 LD SO (0.300")  
EL1508 vs BOARD COPPER AREA  
Power Control Function  
The EL1508 contains two forms of power control operation.  
Two digital inputs, C and C , can be used to control the  
0
1
supply current of the EL1508 drive amplifiers. As the supply  
current is reduced, the EL1508 will start to exhibit slightly  
higher levels of distortion and the frequency response will be  
limited. The 4 power modes of the EL1508 are set up as  
shown in the following table:  
TABLE 1. POWER MODES OF THE EL1508  
C
C
OPERATION  
I full power mode  
S
1
0
INTERNAL GROUND PLANE (16 Ld SO)  
0
0
0
1
1
1
0
1
2/3 I power mode  
S
1/3 I power mode  
S
EL1508CM PCB Layout Considerations  
The 20 Ld SOIC (0.300") Power Package is designed so that  
heat may be conducted away from the device in an efficient  
manner. To disperse this heat, the center four leads on either  
side of the package are internally fused to the mounting  
platform of the die. Heat flows through the leads into the  
circuit board copper, then spreads and convects to air. Thus,  
the ground plane on the component side of the board  
becomes the heatsink. This has proven to be a very effective  
technique, but several aspects of board layout should be  
noted. First, the heat should not be shunted to internal  
copper layers of the board nor backside foil, since the  
feedthroughs and fiberglass of the board are not very  
thermally conductive. To obtain the best thermal resistance  
Power-down  
Another method for controlling the power consumption of the  
EL1508 is to connect a resistor from the I pin to ground.  
When the I  
current per channel is as per the specifications table on page  
2. When a resistor is inserted, the supply current is scaled  
according to the “R  
Curves section.  
ADJ  
pin is grounded (the normal state), the supply  
ADJ  
vs I ” graphs in the Performance  
S
SET  
Both methods of power control can be used simultaneously.  
In this case, positive and negative supply currents (per amp)  
are given by the equations below:  
of the mounted part, θ , the topside copper ground plane  
12.4mA  
JA  
------------------------------------------------------  
I + = 0.9mA +  
× (2/3C + 1/3C )  
1 0  
S
(1 + R  
÷ 1574Ω)  
should have as much area as possible and be as thick as  
practical. If possible, the solder mask should be cut away  
from the EL1508 to improve thermal resistance. Finally,  
metal heatsinks can be placed against the board close to the  
part to draw heat toward the chassis. The graph below  
SET  
12.4mA  
------------------------------------------------------  
I - =  
× (2/3C + 1/3C )  
1 0  
S
(1 + R  
÷ 1574Ω)  
SET  
Output Loading  
shows various θ s for the 20 Ld SOIC mounted on different  
JA  
While the drive amplifiers can output in excess of 500mA  
transiently, the internal metallization is not designed to carry  
more than 100mA of steady DC current and there is no  
copper foil areas.  
FN7014.5  
March 26, 2007  
15  
EL1508  
current-limit mechanism. This allows safely driving rms  
sinusoidal currents of 2 x 100mA, or 200mA. This current is  
more than that required to drive line impedances to large  
output levels, but output short circuits cannot be tolerated.  
The series output resistor will usually limit currents to safe  
values in the event of line shorts. Driving lines with no series  
resistor is a serious hazard.  
Single Supply Operation  
The EL1508 can also be powered from a single supply  
voltage. When operating in this mode, the GND pins can still  
be connected directly to GND. To calculate power  
dissipation, the equations in the previous section should be  
used, with V equal to half the supply rail.  
S
Feedback Resistor Value  
The amplifiers are sensitive to capacitive loading. More than  
25pF will cause peaking of the frequency response. The  
same is true of badly terminated lines connected without a  
series matching resistor.  
The bandwidth and peaking of the amplifiers varies with  
supply voltage somewhat and with gain settings. The  
feedback resistor values can be adjusted to produce an  
optimal frequency response. Here is a series of resistor  
values that produce an optimal driver frequency response  
(1dB peaking) for different supply voltages and gains:  
Output AC Coupling  
When in power-down mode, several volts of differential  
voltage may appear across the line driver outputs. If DC  
current path exists between the two outputs, large DC  
current can flow from the positive supply rail to the negative  
supply rail through the outputs. To avoid DC current flow, the  
most effective solution is to place DC blocking capacitors in  
series at the outputs, as shown by the 0.22µF capacitors in  
Figure 44.  
TABLE 2. OPTIMUM DRIVER FEEDBACK RESISTOR FOR  
VARIOUS GAINS AND SUPPLY VOLTAGES  
DRIVER VOLTAGE GAIN  
SUPPLY  
VOLTAGE  
2.5  
5
10  
3k  
3k  
±5V  
3.5k  
3.5k  
3.25k  
3.25k  
±12V  
Power Supplies  
The power supplies should be well bypassed close to the  
EL1508. A 2.2µF tantalum capacitor and a 0.1µF ceramic  
capacitor for each supply works well. Since the load currents  
are differential, they should not travel through the board  
copper and set up ground loops that can return to amplifier  
inputs. Due to the class AB output stage design, these  
currents have heavy harmonic content. If the ground  
terminal of the positive and negative bypass capacitors are  
connected to each other directly and then returned to circuit  
ground, no such ground loops will occur. This scheme is  
employed in the layout of the EL1508 demonstration board,  
and documentation can be obtained from the factory.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7014.5  
March 26, 2007  
16  
EL1508  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7014.5  
March 26, 2007  
17  
EL1508  
QFN (Quad Flat No-Lead) Package Family  
MDP0046  
QFN (QUAD FLAT NO-LEAD) PACKAGE FAMILY  
(COMPLIANT TO JEDEC MO-220)  
A
MILLIMETERS  
D
B
SYMBOL QFN44 QFN3  
QFN32  
TOLERANCE  
±0.10  
NOTES  
A
A1  
b
0.90  
0.02  
0.25  
0.20  
7.00  
5.10  
7.00  
5.10  
0.50  
0.55  
44  
0.90 0.90  
0.90  
0.02  
0.22  
0.20  
5.00  
-
-
0.02 0.02  
0.25 0.23  
0.20 0.20  
5.00 8.00  
+0.03/-0.02  
±0.02  
1
2
3
PIN #1  
I.D. MARK  
-
c
Reference  
Basic  
-
E
D
-
D2  
E
3.80 5.80 3.60/2.48  
7.00 8.00 6.00  
5.80 5.80 4.60/3.40  
Reference  
Basic  
8
-
2X  
0.075 C  
E2  
e
Reference  
Basic  
8
-
0.50 0.80  
0.40 0.53  
0.50  
0.50  
32  
2X  
0.075 C  
L
±0.05  
-
TOP VIEW  
N
38  
7
32  
8
Reference  
Reference  
Reference  
4
6
5
ND  
NE  
11  
7
11  
12  
8
9
0.10 M C A B  
b
L
MILLIMETERS  
SYMBOL QFN28 QFN2 QFN20  
PIN #1 I.D.  
TOLER-  
ANCE NOTES  
3
QFN16  
0.90  
1
2
3
A
0.90  
0.02  
0.90 0.90  
0.90  
0.02  
±0.10  
-
-
A1  
0.02 0.02  
0.02  
+0.03/  
-0.02  
(E2)  
b
c
0.25  
0.20  
4.00  
2.65  
5.00  
3.65  
0.50  
0.40  
28  
0.25 0.30  
0.20 0.20  
4.00 5.00  
2.80 3.70  
5.00 5.00  
3.80 3.70  
0.50 0.65  
0.40 0.40  
0.25  
0.20  
4.00  
2.70  
4.00  
2.70  
0.50  
0.40  
20  
0.33  
±0.02  
-
-
0.20 Reference  
4.00 Basic  
2.40 Reference  
4.00 Basic  
2.40 Reference  
5
NE  
D
-
D2  
E
-
-
7
(D2)  
E2  
e
-
BOTTOM VIEW  
0.65  
0.60  
16  
Basic  
-
L
±0.05  
-
0.10 C  
e
N
24  
5
20  
5
Reference  
Reference  
Reference  
4
6
5
C
ND  
NE  
6
5
4
SEATING  
PLANE  
8
7
5
5
4
Rev 11 2/07  
0.08 C  
NOTES:  
SEE DETAIL "X"  
N LEADS  
& EXPOSED PAD  
1. Dimensioning and tolerancing per ASME Y14.5M-1994.  
2. Tiebar view shown is a non-functional feature.  
SIDE VIEW  
3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.  
4. N is the total number of terminals on the device.  
(c)  
2
5. NE is the number of terminals on the “E” side of the package  
(or Y-direction).  
A
C
6. ND is the number of terminals on the “D” side of the package  
(or X-direction). ND = (N/2)-NE.  
(L)  
A1  
7. Inward end of terminal may be square or circular in shape with radius  
(b/2) as shown.  
N LEADS  
DETAIL X  
8. If two values are listed, multiple exposed pad options are available.  
Refer to device-specific datasheet.  
FN7014.5  
March 26, 2007  
18  
配单直通车
EL1508CMZ产品参数
型号:EL1508CMZ
是否Rohs认证: 符合
生命周期:Obsolete
IHS 制造商:INTERSIL CORP
零件包装代码:SOIC
包装说明:0.300 INCH, ROHS COMPLIANT, MS-013, SO-20
针数:20
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.59
Is Samacsys:N
差分输出:NO
驱动器位数:2
高电平输入电流最大值:0.000006 A
输入特性:DIFFERENTIAL
接口集成电路类型:LINE DRIVER
接口标准:GENERAL PURPOSE
JESD-30 代码:R-PDSO-G20
JESD-609代码:e3
长度:12.8 mm
湿度敏感等级:3
标称负供电电压:-12 V
功能数量:2
端子数量:20
最高工作温度:85 °C
最低工作温度:-40 °C
最小输出摆幅:19.6 V
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP20,.4
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
电源:+-12 V
认证状态:Not Qualified
最大接收延迟:
座面最大高度:2.65 mm
子类别:Line Driver or Receivers
最大供电电压:12 V
最小供电电压:5 V
标称供电电压:12 V
表面贴装:YES
温度等级:INDUSTRIAL
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:7.5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!