欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • EN5394QI图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • EN5394QI 现货库存
  • 数量36 
  • 厂家ALTERA 
  • 封装68-QFN 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • EN5394QI图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • EN5394QI 现货库存
  • 数量6980 
  • 厂家INTEL 
  • 封装QFN-68 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • EN5394QI图
  • 集好芯城

     该会员已使用本站13年以上
  • EN5394QI 现货库存
  • 数量29607 
  • 厂家INTEL(英特尔) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • EN5394QI图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • EN5394QI 现货库存
  • 数量18000 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号22+ 
  • 假一罚十,原盒原包装公司现货
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • EN5394QI图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • EN5394QI 现货库存
  • 数量8000 
  • 厂家INTEL(英特尔) 
  • 封装 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • EN5394QI图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • EN5394QI
  • 数量5470 
  • 厂家ALTERA/阿尔特拉 
  • 封装QFN68 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • EN5394QI图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • EN5394QI
  • 数量1520 
  • 厂家ALTERA 
  • 封装电源模块 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:169元
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805
  • EN5394QI图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • EN5394QI
  • 数量36 
  • 厂家ALTERA 
  • 封装68-QFN 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • EN5394QI图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • EN5394QI
  • 数量2317 
  • 厂家ALTERA/阿尔特拉 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • EN5394QI图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • EN5394QI
  • 数量5000 
  • 厂家Enpirion 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • EN5394QI IC图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • EN5394QI IC
  • 数量13500 
  • 厂家ENPIRIO 
  • 封装QFN 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • EN5394QI图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • EN5394QI
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • EN5394QI图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • EN5394QI
  • 数量68000 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • EN5394QIK图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • EN5394QIK
  • 数量155 
  • 厂家Enpirion 
  • 封装 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • EN5394QI图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • EN5394QI
  • 数量20000 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • EN5394QI图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • EN5394QI
  • 数量30000 
  • 厂家ENPIRIO 
  • 封装QFN 
  • 批号23+ 
  • 原装现货,假一赔十.
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • EN5394QI图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • EN5394QI
  • 数量85000 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • EN5394QI图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • EN5394QI
  • 数量30000 
  • 厂家TI 
  • 封装QFN20 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • EN5394QI图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • EN5394QI
  • 数量7800 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • EN5394QI图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • EN5394QI
  • 数量6980 
  • 厂家INTEL 
  • 封装QFN-68 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • EN5394QI图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • EN5394QI
  • 数量12000 
  • 厂家Enpirion 
  • 封装QFN-68 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • EN5394QI图
  • 现代芯城(深圳)科技有限公司

     该会员已使用本站15年以上
  • EN5394QI
  • 数量72000 
  • 厂家一级代理 
  • 封装一级代理 
  • 批号一级代理 
  • 一级代理正品采购
  • QQ:3007226851QQ:3007226851 复制
    QQ:3007226849QQ:3007226849 复制
  • 0755-82542579 QQ:3007226851QQ:3007226849
  • EN5394QI图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • EN5394QI
  • 数量69800 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • EN5394QI图
  • 集好芯城

     该会员已使用本站13年以上
  • EN5394QI
  • 数量12605 
  • 厂家ENPIRIO 
  • 封装QFN 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • EN5394QI图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • EN5394QI
  • 数量5000 
  • 厂家ALTERA/阿尔特拉 
  • 封装QFN 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • EN5394QI图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • EN5394QI
  • 数量9000 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号2021+ 
  • 港瑞电子是实报/实单可以来谈价
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • EN5394QI图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • EN5394QI
  • 数量3280 
  • 厂家ALTERA 
  • 封装车规-电源模块 
  • 批号▉▉:2年内 
  • ▉▉¥82一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • EN5394QI图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • EN5394QI
  • 数量1647 
  • 厂家ALTERA 
  • 封装QFN 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • EN5394QI图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • EN5394QI
  • 数量3323 
  • 厂家Enpirion 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • EN5394QI图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • EN5394QI
  • 数量2368 
  • 厂家INTEL 
  • 封装QFN-68 
  • 批号▉▉:2年内 
  • ▉▉¥127元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • EN5394QI图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • EN5394QI
  • 数量3210 
  • 厂家ALTERA(阿尔特拉) 
  • 封装原装原封REEL 
  • 批号23+ 
  • ▉原厂渠道▉支持实单
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • EN5394QI图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • EN5394QI
  • 数量32222 
  • 厂家INTEL/英特尔 
  • 封装QFN 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • EN5394QI图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • EN5394QI
  • 数量8800 
  • 厂家ALTERA/阿尔特拉 
  • 封装QFN 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132

产品型号EN5394QI的概述

芯片EN5394QI的概述 EN5394QI是一款广泛应用于电源管理和电压调节的高效能芯片,属于一系列集成电路(IC)中的一种。这款芯片主要用于为电子设备提供稳定的电源,尤其是在对电压精度和效率要求较高的场合。EN5394QI集成了多种功能,例如电源转换、过压保护和低功耗设计,适合在移动设备、工业应用及消费电子产品中使用。 芯片EN5394QI的详细参数 EN5394QI在电源管理上表现出色,拥有如下关键参数: - 输入电压范围:芯片可以在3.0V到20V的输入电压范围内工作,能够适应多种电源情况。 - 输出电压范围:支持调节输出电压,一般在1.0V到15V之间,具体需要根据应用进行配置。 - 最大输出电流:EN5394QI可以提供高达1A的输出电流,适合驱动中等功率的设备。 - 效率:在典型负载条件下,其转换效率可达到90%以上,显示出优异的电源管理能力。 - 静态功耗:静态功耗低至...

产品型号EN5394QI的Datasheet PDF文件预览

EN5394QI  
Feature Rich 9A Voltage Mode  
Synchronous Buck PWM DC-DC Converter  
with Integrated Inductor  
RoHS Compliant - Halogen Free  
Typical Application Circuit  
Description  
The EN5394QI is a Power Supply on a Chip  
(PwrSoC) DC to DC converter with integrated  
inductor, PWM controller, MOSFETS, and  
compensation providing the smallest possible  
solution size in a 68 pin QFN module. The  
switching frequency can be synchronized to an  
external clock or other EN5394QIs with the  
added capability of phasing multiple EN5394QIs  
as desired. Other features include precision  
ENABLE threshold, pre-bias monotonic start-up,  
margining, and parallel operation.  
VIN  
PVIN  
VOUT  
VOUT  
2x47μF  
47μF  
AVIN  
ENABLE  
PGND  
VFB  
SS  
OCP_ADJ  
15nF  
PGND  
AGND  
Figure 1: Typical Application Schematic  
EN5394QI is specifically designed to meet the  
precise voltage and fast transient requirements  
of present and future high-performance  
applications such as set-top boxes/HD DVRs,  
LAN/SAN adapter cards, audio/video equipment,  
optical networking, multi-function printers, test  
and measurement, embedded computing,  
Features  
Integrated Inductor, MOSFETS, Controller in  
a 8 x 11 x 1.85mm package  
Wide input voltage range of 2.375V to 6.6V.  
> 30W continuous output power.  
High efficiency, up to 93%.  
storage,  
and  
servers.  
Advanced  
circuit  
techniques, ultra high switching frequency, and  
very advanced, high-density, integrated circuit  
and proprietary inductor technology deliver high-  
quality, ultra compact, non-isolated DC-DC  
conversion. Operating this converter requires  
very few external components.  
Output voltage margining  
Monotonic output voltage ramp during start-  
up with pre-biased loads.  
Precision Enable pin for accurate sequencing  
of power converters and Power OK signal.  
Programmable soft-start time.  
Soft Shutdown.  
The Enpirion integrated inductor solution  
significantly helps to reduce noise. The complete  
power converter solution enhances productivity  
by offering greatly simplified board design, layout  
and manufacturing requirements.  
4 MHz operating frequency with ability to  
synchronize to an external system clock or  
other EN5394’s.  
Programmable phase delays between  
synchronized units to allow reduction of  
input ripple.  
Master/slave configuration for paralleling  
multiple EN5394’s for greater power output.  
Under Voltage Lockout, Over-current, Short  
Circuit, and Thermal Protection  
All Enpirion products are RoHS compliant and  
lead-free manufacturing environment compatible.  
RoHS compliant, MSL level 3, 260C reflow.  
©Enpirion 2009 all rights reserved, E&OE  
1
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Applications  
Point of load regulation for low-power  
processors, network processors, DSPs,  
FPGAs, and ASICs  
Applications requiring monotonic start-up with  
pre-bias  
Low voltage, distributed power architectures  
with 2.5V, 3.3V or 5V, 6V rails  
Ripple voltage sensitive applications  
Noise sensitive applications  
Computing, broadband, networking,  
LAN/WAN, optical, test & measurement  
A/V, high density cards, storage, DSL, STB,  
DVR, DTV, Industrial PC  
Beat frequency sensitive applications  
Ordering Information  
Temp Rating  
Part Number  
EN5394QI-T  
EN5394QI-E  
(°C)  
-40 to +85  
Package  
68-pin QFN T&R  
QFN Evaluation Board  
Pin Configuration  
Figure 2: Pinout Diagram (Top View). All perimeter pins must be soldered to PCB.  
©Enpirion 2009 all rights reserved, E&OE  
2
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Pin Descriptions  
PIN  
1-4,  
NAME  
FUNCTION  
Input/Output power ground. Connect these pins to the ground electrode of the input  
27-33,  
64-68  
PGND  
and output filter capacitors. See VOUT and PVIN descriptions for more details.  
Regulated converter output. Connect to the load, and place output filter capacitor(s)  
between these pins and PGND pins 1-4 and 64-68.  
5-13  
VOUT  
NC  
NO CONNECT: These pins must be soldered to PCB but not be electrically connected  
to each other or to any external signal, voltage, or ground. These pins may be  
connected internally. Failure to follow this guideline may result in device damage.  
NO CONNECT: These pins are internally connected to the common switching node of  
the internal MOSFETs. They must be soldered to PCB but not be electrically  
connected to any external signal, ground, or voltage. Failure to follow this guideline  
may result in device damage.  
14-24,  
44-47  
25-26  
NC(SW)  
Input power supply. Connect to input power supply, place input filter capacitor(s)  
between these pins and PGND pins 27-33.  
34-43  
48  
PVIN  
Clock Output. Depending on the mode, either a clock signal or the PWM signal is  
output on this pin. These signals are delayed by a time that is related to the resistor  
connected between S_DELAY and AGND. Leave this pin floating if not needed.  
Clock Input. Depending on the mode, this pin accepts either an input clock to  
synchronize the internal switching frequency or the S_OUT signal from another  
EN5394QI. Leave this pin floating if it is not used.  
S_OUT  
49  
S_IN  
This is a Ternary Input. Floating the pin disables parallel operation. A low level  
configures the device as Master and a High level configures the device as a slave.  
This is the Enable Pre-Bias Input. When this pin is pulled high, the Device will support  
monotonic start-up under a pre-biased load. There is a 150kΩ pull-down on this pin.  
This is the Device Enable pin. A high level enables the device while a low level  
disables the device.  
Input power supply for the controller. Needs to be connected to VIN at a quiet point.  
Power OK is an open drain transistor for power system state indication. POK is a  
logic high when VOUT is with -10% to +20% of VOUT nominal. Being an open drain  
output allows several devices to be wired to logically AND the function. Size pull-up  
resistor to limit current to 4mA when POK is low.  
50  
51  
M/S  
EN_PB  
52  
53  
ENABLE  
AVIN  
54  
POK  
55  
56  
AGND  
VFB  
Ground return for the controller. Needs to be connected to a quiet ground.  
External Feedback input. The feedback loop is closed through this pin. A voltage  
divider at VOUT is used to set the output voltage. The mid-point of the divider is  
connected to VFB. The control loop regulates to make the VFB node voltage 0.6V.  
Optional Error Amplifier output. Allows for customization of the control loop.  
57  
58  
EAOUT  
OCP_ADJ This pin should be pulled to GND for proper operation of the OCP circuit.  
A soft-start capacitor is connected between this pin to AGND. The value of the  
capacitor controls the soft-start interval and startup time.  
A resistor is connected between this pin and AGND. The value of the resistor controls  
the delay in S_OUT. This pin can be left floating if the S_OUT function is not used.  
59  
60  
SS  
S_DELAY  
These are 2 ternary input pins. Each pin can be a logical Lo, Logical Hi or Float  
MAR1,  
MAR2  
condition. 7 of the 9 states are used to modulate the output voltage by 0%, ±2.5%,  
±5% or ±10%. The 8th state is used to by-pass the delay in S_OUT. See Functional  
Description section.  
61-62  
63  
VSENSE This pin senses VOUT when the device is placed in the Back-feed (or Pre-bias) mode.  
Device thermal pads to be connected to the system gnd plane. See Layout  
Recommendations section.  
69, 70  
PGND  
©Enpirion 2009 all rights reserved, E&OE  
3
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Absolute Maximum Ratings  
CAUTION: Absolute Maximum ratings are stress ratings only. Functional operation beyond  
recommended operating conditions is not implied. Stress beyond absolute maximum ratings may  
cause permanent damage to the device. Exposure to absolute maximum rated conditions for  
extended periods may affect device reliability.  
PARAMETER  
SYMBOL  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-65  
MAX  
7.0  
VIN + 0.3  
2.7  
UNITS  
Voltages on PVIN, AVIN, VOUT  
VIN  
V
V
V
Voltages on VSENSE, ENABLE, EN_PB, POK,  
Voltages on VFB, EAOUT, SS, S_IN, S_OUT, OCP_ADJ  
Voltages on MAR1, MAR2, M/S  
3.6  
150  
150  
260  
V
Storage Temperature Range  
TSTG  
TJ-ABS MAX  
°C  
°C  
°C  
V
Maximum Operating Junction Temperature  
Reflow Temp, 10 Sec, MSL3 JEDEC J-STD-020A  
ESD Rating (based on Human Body Model)  
2000  
Recommended Operating Conditions  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNITS  
Input Voltage Range  
VIN  
VOUT  
ILOAD  
TA  
2.375  
0.60  
0
6.6  
V
V
A
°C  
°C  
Output Voltage Range  
VIN – VDO  
Output Current  
9
Operating Ambient Temperature  
Operating Junction Temperature  
-40  
-40  
+85  
+125  
TJ  
VDO (drop-out voltage) is defined as (ILOAD x Dropout Resistance). Please see Electrical Characteristics table.  
Thermal Characteristics  
PARAMETER  
Thermal Resistance: Junction to Ambient (0 LFM)††  
Thermal Resistance: Junction to Case  
Thermal Shutdown Trip Point  
SYMBOL  
θJA  
TYP  
16  
1
+150  
20  
UNITS  
°C/W  
°C/W  
°C  
θJC  
TSD  
TSDH  
Thermal Shutdown Trip Point Hysteresis  
°C  
†† Based on a four-layer board and proper thermal design in line with JEDEC EIJ/JESD 51 Standards.  
©Enpirion 2009 all rights reserved, E&OE  
4
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Electrical Characteristics  
NOTE: VIN=5.5V over operating temperature range unless otherwise noted.  
Typical values are at TA = 25°C.  
PARAMETER  
Input Voltage  
SYMBOL  
VIN  
COMMENTS  
MIN  
2.375  
TYP  
MAX UNITS  
6.6  
V
Under Voltage Lock out  
threshold  
VUVLOR  
VUVLOF  
VIN Increasing  
VIN Decreasing  
2.2  
2.1  
V
Shut-Down Supply  
Current  
IS  
ENABLE=0V  
250  
μA  
V
2.375V VIN 6.6V,  
Feedback Pin Voltage  
VFB  
IFB  
0.588  
-5  
0.600  
0.612  
5
I
LOAD = 1A; TA = 25°C  
Feedback Pin Input Leakage  
Current1  
nA  
Line Regulation  
Load Regulation  
Temperature Regulation  
2.375V VIN 6.6V  
0A ILOAD 6A  
ΔVOUT_TEMP -40°C TEMP 85°C  
Measured from when VIN VUVLOR  
0.035  
0.04  
0.001  
%/V  
%/A  
%/°C  
ΔVOUT_LINE  
ΔVOUT_LOAD  
CSS x  
TRISE  
& ENABLE pin crosses logic high  
threshold. (4.7nF CSS 100nF)  
4.7nF CSS 100nF  
VOUT Rise Time  
65kΩ  
Rise Time Accuracy1  
Output Dropout  
Voltage1  
-25  
9
+25  
%
ΔTRISE  
mV  
mΩ  
VDO  
RDO  
VINMIN – VOUT at Full Load  
Input to Output Resistance  
360  
40  
720  
80  
Resistance1  
Maximum Continuous  
Output Current2  
Current Limit Threshold  
ENABLE pin:  
IOUT_MAX_CONT  
IOCP  
A
A
OCP_ADJ pulled low  
2.375V VIN 6.6V  
14  
Disable Threshold  
Enable Threshold  
VDISABLE  
VENABLE  
ENABLE pin logic low  
1.0  
1.30  
V
ENABLE pin logic high  
Time for device to re-enable after  
a falling edge on ENABLE pin  
1.10  
tENLO  
ENABLE Lock-out time  
2
ms  
ENABLE Pin Input  
Current  
IENABLE  
FSWITCH  
FPLL_LOCK  
VIN = 5.5V  
50  
4
μA  
Switching Frequency  
External S_IN Clock  
Frequency Lock Range  
S_IN Threshold – Low  
S_IN Threshold – High  
S_OUT Threshold – Low  
S_OUT Threshold – High  
S_IN Duty Cycle for  
External Synchronization1  
S_IN Duty Cycle for  
Parallel Operation1  
Free Running frequency  
Frequency Range of S_IN  
Input Clock  
S_IN Clock low level  
S_IN Clock high level  
S_OUT Clock low level  
S_OUT Clock high level  
MHz  
MHz  
3.6  
1.8  
4.4  
VS_IN_LO  
VS_IN_HI  
VS_OUT_LO  
VS_OUT_HI  
0.8  
2.5  
0.5  
V
V
V
V
1.8  
20  
SYDC_SYNC M/S Pin Float or Low  
80  
90  
%
%
SYDC_PWM M/S Pin High  
10  
20  
ns  
°
Delay in ns / kΩ  
2
3
Phase Delay vs. S_Delay  
Resistor value  
ΦDEL  
Delay in phase angle / kΩ -  
@ 4MHz switching frequency  
Phase delay programmable via  
resistor connected from S_Delay  
to AGND.  
Phase Delay between  
S_IN and S_OUT1  
150  
ns  
ΦDEL  
©Enpirion 2009 all rights reserved, E&OE  
5
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Phase Delay between  
S_IN and S_OUT1  
Delay By-Pass Mode  
(MAR1 floating, MAR2 high)  
10  
20  
ns  
ΦDEL  
Phase Delay Accuracy1  
-20  
20  
%
%
Allowable Pre-Bias as a fraction  
of programmed output voltage  
(subject to a minimum of 300mV)  
Allowable non monotonicity  
Pre-Bias Level  
VPB  
85  
Non-Monotonicity  
VPB_NM  
POKLT  
50  
92  
90  
120  
115  
mV  
%
POK Lower Threshold as  
VOUT rising  
VOUT falling  
VOUT rising  
VOUT falling  
3
a percent of VOUT  
POK Upper Threshold as  
POKUT  
%
3
a percent of VOUT  
POK Falling Edge  
60  
µs  
Deglitch Delay4  
POK Output Low Voltage  
POK Output High Voltage  
Ternary Pin Logic Low5  
VPOKL  
VPOKH  
VT-Low  
With 4mA current sink into POK  
2.375V VIN 6.6V  
Tie pin to GND  
0.4  
VIN  
V
V
V
0
see Input  
Current  
below  
Pull up to VIN through an external  
resistor REXT – see Figure 5.  
Ternary Pin Logic High5  
VT-High  
VIN = 2.375V, REXT = 3.32kΩ  
VIN = 3.3V, REXT = 15kΩ  
VIN = 5.0V, REXT = 24.9kΩ  
VIN = 6.6V, REXT = 49.9kΩ  
50  
70  
100  
85  
Ternary Pin Input Current  
(see Figure 5)5  
ITERN  
μA  
Binary Input Logic Low  
Threshold6  
VB-Low  
VB-High  
0.8  
Binary Input Logic High  
1.8  
Threshold6  
NOTES:  
1. Parameter guaranteed by design.  
2. Maximum output current may need to be de-rated, based on operating condition, to meet TJ requirements.  
3. POK threshold when VOUT is rising is nominally 92%. This threshold is 90% when VOUT is falling. After crossing the  
90% level, there is a 256 clock cycle (~50us) delay before POK is de-asserted. The 90%, 92%, 115%, and 120%  
levels are nominal values. Expect these thresholds to vary by ±3%.  
4. On the falling edge of VOUT below 90% of programmed value, POK response is delayed for the duration of the  
deglitch delay time. Any VOUT glitch shorter than the deglitch time is ignored.  
5. M/S, MAR1, and MAR2 are ternary. Ternary pins have three logic levels: high, float, and low. These pins are only  
meant to be strapped to VIN through an external resistor, strapped to GND, or left floating. Their state cannot be  
changed while the device is on.  
6. Binary input pins are EN_PB and OCP_ADJ.  
©Enpirion 2009 all rights reserved, E&OE  
6
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Typical Performance Characteristics  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
VIN = 3.3V  
VIN = 5V  
50  
40  
30  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
Load (Amps)  
Load (Amps)  
Efficiency VIN = 3.3V  
VOUT (From top to bottom) = 2.5, 1.8, 1.2, 1.0V  
Efficiency VIN = 5.0V  
VOUT (From top to bottom) = 3.3, 2.5, 1.8, 1.2, 1.0V  
20 MHz BW limit  
500 MHz BW  
Output Ripple: VIN = 3.3V, VOUT = 1.2V, Iout = 9A  
Output Ripple: VIN = 3.3V, VOUT = 1.2V, Iout = 9A  
CIN = 2 x 22μF/1206, COUT = 2 x 47μF/1206  
CIN = 2 x 22μF/1206, COUT = 2 x 47μF/1206  
20 MHz BW limit  
500 MHz BW  
Output Ripple: VIN = 5.0V, VOUT = 1.2V, Iout = 9A  
Output Ripple: VIN = 5.0V, VOUT = 1.2V, Iout = 9A  
CIN = 2 x 22μF/1206, COUT = 2 x 47μF/1206  
CIN = 2 x 22μF/1206, COUT = 2 x 47μF/1206  
©Enpirion 2009 all rights reserved, E&OE  
7
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Load Transient: VIN = 5.0V, VOUT = 1.2V  
Ch.1: VOUT, Ch.4: ILOAD 09A (slew rate 10A/µS)  
CIN 50μF, COUT 100μF  
Load Transient: VIN = 3.3V, VOUT = 1.2V  
Ch.1: VOUT, Ch.4: ILOAD 09A (slew rate 10A/µS)  
CIN 50μF, COUT 100μF  
RA = 150kΩ, CA = 33pF (see Figure 4)  
RA = 100kΩ, CA = 56pF (see Figure 4)  
Power Up/Down at No Load: VIN/VOUT = 5.0V/1.2V,  
15nF soft-start capacitor,  
Power Up/Down into 0.2Ω load: VIN/VOUT = 5.0V/1.2V,  
15nF soft-start capacitor,  
Ch.1: ENABLE, Ch.2: VOUT, Ch.3; POK  
Ch.1: ENABLE, Ch.2: VOUT, Ch.3; POK  
Delay vs. S_Delay Resistance  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
S_Delar R (kohm)  
ENABLE Lockout Operation  
Ch.1: ENABLE, Ch2: VOUT  
Delay vs. S_Delay Resistance  
©Enpirion 2009 all rights reserved, E&OE  
8
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Block Diagram  
Figure 3: System block diagram.  
Functional Description  
type III, voltage-mode, and the device uses a  
low-noise PWM topology. Up to 9A of continuous  
output current can be drawn from this converter.  
The 4MHz operating frequency enables the use  
of small-size input and output capacitors.  
Synchronous Buck Converter  
The EN5394QI is a synchronous, programmable  
power supply with integrated power MOSFET  
switches and integrated inductor. The nominal  
input voltage range is 2.375-6.6V. The output  
voltage is programmed using an external resistor  
divider network. The feedback control loop is a  
The power supply has the following protection  
features:  
©Enpirion 2009 all rights reserved, E&OE  
9
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Over-current protection with hiccup mode.  
Short Circuit protection.  
Thermal shutdown with hysteresis.  
Under-voltage lockout circuit to disable the  
converter output when the input voltage is  
less than approximately 2.2V  
Master / Slave Parallel Operation  
Multiple EN5394QI devices may be connected in  
parallel in a Master/Slave configuration to handle  
load currents greater than device maximum  
rating. The device is set in Master mode by  
pulling the ternary M/S pin low or in Slave mode  
by pulling M/S pin high to VIN through an external  
resistor. When this pin is in Float state, parallel  
operation is not possible. In master mode, the  
internal PWM signal is output on the S_OUT pin.  
This PWM signal from the Master can be fed to  
one or more Slave devices at its S_IN input. The  
Slave device acts like an extension of the power  
FETs in the Master. As a practical matter,  
Enable Operation  
The ENABLE pin provides a means to start  
normal operation or to shut down the device. A  
logic high will enable the converter into normal  
operation. When the ENABLE pin is asserted  
(high) the device will undergo a normal soft start.  
A logic low will disable the converter. A logic low  
will power down the device in a controlled  
manner and the device is subsequently shut  
down. The device will remain shut-down for the  
duration of the ENABLE lockout time (see  
Electrical Characteristics Table). If the ENABLE  
signal is re-asserted during this time, the device  
will power up with a normal soft-start at the end  
of the ENABLE lockout time.  
paralleling more than 4 devices may be very  
difficult from the view point of maintaining very  
low impedance in VIN and VOUT lines.  
The table below summarizes the different  
configurations for the S_IN and S_OUT pins  
depending on the condition of the M/S pin:  
When M/S  
pin is:  
High (Slave) Low (Master) Float  
The Enable threshold is a precision Analog  
voltage rather than a digital logic threshold.  
Precision threshold along with choice of soft-start  
capacitor helps to accurately sequence multiple  
power supplies in a system.  
S_IN input S_OUT from External Sync input if  
should be: Master  
needed (NC for internal  
clock)  
S_OUT is  
equal to  
Same duty  
cycle as  
Same duty  
cycle as  
S_IN or  
internal  
(subject to S_IN  
S_DELAY):  
internal PWM clock  
Frequency Synchronization  
The switching frequency of the DC/DC converter  
can be phase-locked to an external clock source  
to move unwanted beat frequencies out of band.  
To avail this feature, the ternary input M/S pin  
should be floating or pulled low. The internal  
switching clock of the DC/DC converter can then  
be phase locked to a clock signal applied to S_IN  
pin. An activity detector recognizes the presence  
of an external clock signal and automatically  
phase-locks the internal oscillator to this external  
clock. Phase-lock will occur as long as the input  
clock frequency is within ±10% of the free  
running frequency (see Electrical Characteristics  
table). When no clock signal is present, the  
device reverts to the free running frequency of  
the internal oscillator. The external clock input  
may be swept between 3.6 MHz and 4.4 MHz at  
repetition rates of up to 10 kHz in order to reduce  
EMI frequency components.  
Please contact Enpirion Applications support for  
more information on Master / Slave operation.  
Phase Delay  
In all cases, S_OUT can be delayed with respect  
to internal switching clock or the clock applied to  
S_IN. Multiple EN5394QI devices on a system  
board may be daisy chained to reduce or  
eliminate input ripple as well as avoiding beat  
frequency components. The EN5394QIs can all  
be phase locked by feeding S_OUT of one  
device into S_IN of the next device in a daisy  
chain. All the switchers now run at a common  
frequency. The delay is controlled by the value of  
a resistor connected between S_DELAY and  
AGND pins. The magnitude of this delay as a  
function of S_DELAY resistor is shown in the  
Electrical Characteristics table. See Figures 6  
and 7 for an example of using phase delay.  
©Enpirion 2009 all rights reserved, E&OE  
10  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
During a soft-start cycle, when the soft-start  
capacitor voltage reaches 0.60V, the output has  
reached its programmed regulation range. Note  
that the soft-start current source will continue to  
charge the SS capacitor beyond 0.6V. During  
normal operation, the soft-start capacitor will  
charge to a final value of ~1.5V.  
Margining  
Using MAR1 and MAR2 pins, the nominal output  
voltage can be increased / decreased by 2.5, 5  
or 10% for system compliance, reliability or other  
tests. The POK threshold voltages scale with the  
margined output voltages. The following table  
provides the possible combinations:  
Soft-Shutdown Operation  
MAR1  
Float  
Low  
High  
Low  
High  
Low  
High  
Float  
Float  
MAR2  
Float  
Low  
Output Modulation  
When the Enable signal is de-asserted, the soft-  
start capacitor is discharged in a controlled  
manner. Thus the output voltage ramps down  
gradually. The internal circuits are kept active for  
the duration of soft-shutdown, thereafter they are  
deactivated.  
0%  
-2.5%  
+2.5%  
-5%  
+5%  
Low  
High  
High  
Float  
Float  
High  
Low  
-10%  
+10%  
0%, Delay Bypass  
Reserved  
Pre-Bias Operation  
When EN_PB is asserted, the device will support  
a monotonic output voltage ramp if the output  
capacitor is charged to a pre-bias level.  
Note: Low means tie to GND. High means tie to VIN  
as shown in Figure 5.  
Proprietary circuit ensures the output voltage  
ramps monotonically from pre-bias voltage to the  
programmed output voltage. Monotonic start-up  
is guaranteed by design for pre-bias voltages  
between 20% and 85% of the programmed  
output voltage. This feature is not supported  
when ENABLE is tied to VIN.  
As shown above, when MAR1 is floating, and  
MAR2 is high, the device enters the delay  
bypass mode. In this mode, the delay from the  
internal clock or S_IN to S_OUT is almost  
eliminated (see Electrical Characteristics table).  
Soft-Start Operation  
The SS pin in conjunction with a small external  
capacitor between this pin and AGND provides  
the soft start function to limit the in-rush current  
during start-up. During start-up of the converter  
the reference voltage to the error amplifier is  
gradually increased to its final level as an internal  
current source of typically 10uA charges the soft  
start capacitor. The typical soft-start time for the  
output to reach regulation voltage, from when  
AVIN > VUVLO and ENABLE crosses its logic high  
threshold, is given by:  
POK Operation  
The POK signal indicates if the output voltage is  
within a specified range. The POK signal is  
asserted when the rising output voltage crosses  
92% (nominal) of the programmed output  
voltage. POK is de-asserted ~50us (256 clock  
cycles) after the falling output voltage crosses  
90% (nominal) of the programmed voltage. POK  
is also de-asserted if the output voltage exceeds  
120% of the programmed output. If the feedback  
loop is broken, POK will remain de-asserted  
(output < 92% of programmed value), and the  
output voltage will equal the input voltage. If  
however, there is a short across the PFET, and  
the feedback is in place, POK will be de-asserted  
as an over voltage condition. The power NFET is  
also turned on, resulting in a large input supply  
current. This in turn is expected to trip the OCP  
of the EN5394QI input power supply.  
TSS = (CSS * 65K) ± 25%  
where the soft-start time TSS is in seconds and  
the soft-start capacitance CSS is in Farads.  
Typically, around 15nF is recommended. The  
soft-start capacitor should be between 4.7nF and  
100nF. A proper choice of SS capacitance can  
be used advantageously for power supply  
sequencing using the precision Enable threshold.  
POK is an open drain output. It requires an  
external pull up. Multiple EN5394QI’s POK pins  
©Enpirion 2009 all rights reserved, E&OE  
11  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
may be connected to a single pull up. The open device has cycle-by-cycle current limiting. Tie  
drain NFET is designed to sink up to 4mA. The OCP_ADJ pin to GND for proper OCP operation.  
pull-up resistor value should be chosen  
Thermal Overload Protection  
accordingly for when POK is logic low.  
Thermal shutdown will disable operation when  
the Junction temperature exceeds approximately  
150ºC. Once the junction temperature drops by  
approximately 20ºC, the converter will re-start  
with a normal soft-start.  
Input Under-Voltage Lock-Out (UVLO)  
When the input voltage is below a required  
voltage level (VUVLO) for normal operation, the  
converter switching is inhibited. The lock-out  
threshold has hysteresis to prevent chatter.  
UVLO is implemented to ensure that operation  
does not begin before there is adequate voltage  
to properly bias all internal circuitry.  
Compensation  
The EN5394 uses of a type III compensation  
network. Most of this network is integrated.  
However a phase lead capacitor is required in  
parallel with upper resistor of the external divider  
Over-Current Protection (OCP)  
The current limit and short-circuit protection is network (see Figure 4). This network results in a  
achieved by sensing the current flowing through wide loop bandwidth and excellent load transient  
a sense P-FET. When the sensed current performance. It is optimized for approximately  
exceeds the current limit, both NFET and PFET 100μF of output filter capacitance at the voltage  
switches are turned off. If the over-current sensing point. Additional decoupling capacitance  
condition is removed, the over-current protection may be placed beyond the voltage sensing point  
circuit will re-enable the PWM operation. If the outside the control loop. Voltage-mode operation  
over-current condition persists, the circuit will provides high noise immunity at light load.  
continue to protect the device.  
Further, voltage-mode control provides superior  
impedance matching to ICs processed in sub  
90nm technologies.  
The OCP trip point is nominally set to 150% of  
maximum rated load. In the event the OCP circuit  
trips, the device enters a hiccup mode. The In exceptional cases modifications to the  
device is disabled for ~10msec and restarted compensation may be required. The EN5394QI  
with a normal soft-start. This cycle can continue provides the capability to modify the control loop  
indefinitely as long as the over current condition response to allow for customization for specific  
persists. During soft-start at power up or fault applications. For more information, contact  
recovery, the hiccup mode is disabled and the Enpirion Applications Engineering support.  
Application Information  
Output Voltage Programming  
RA = 30,000×Vin (value in Ω)  
The EN5394 output voltage is determined by the  
5.6×106  
voltage presented at the VFB pin. This voltage is  
set by way of a resistor divider between VOUT and  
AGND with the midpoint going to VFB. A phase  
lead capacitor CA is also required for stabilizing  
CA =  
(CA /RA in F/Ω)  
RA  
Round CA down to closest  
standard value lower than  
calculated value.  
the loop. Figure  
4
shows the required  
components and the equations to calculate their  
values. Please note the equations below are  
written to optimize the control loop as a function  
of input voltage.  
V
is 0.6V  
VFB × RA  
FB  
RB =  
(VOUT V ) nominal  
FB  
Figure 4: Output voltage resistor divider and phase-  
lead capacitor calculation. The equations need to be  
followed in the order written above.  
©Enpirion 2009 all rights reserved, E&OE  
12  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Z = ESR + ESL.  
Input Capacitor Selection  
Placing multiple capacitors in parallel reduces  
the impedance and hence will result in lower  
ripple voltage.  
The EN5394QI requires between 30-40uF of  
input capacitance. Low ESR ceramic capacitors  
are required with X5R or X7R dielectric  
formulation. Y5V or equivalent dielectric  
formulations must not be used as these lose  
capacitance with frequency, temperature and  
bias voltage.  
1
1
1
1
=
+
+... +  
ZTotal Z1 Z2  
Zn  
Typical ripple versus capacitor arrangement is  
given below:  
In some applications, lower value ceramic  
capacitors may be needed in parallel with the  
larger capacitors in order to provide high  
frequency decoupling.  
Typical Output Ripple (mVp-p)  
Output Capacitor  
(as measured on EN5394QI  
Configuration  
Evaluation Board)†  
Recommended Input Capacitors  
2x47uF  
20mV  
12mV  
2x47uF + 1x10uF  
Description  
MFG  
Murata  
P/N  
20 MHz bandwidth limit  
10uF, 10V, 10%  
GRM31CR71A106KA01L  
X7R, 1206  
Taiyo Yuden LMK316B7106KL-T  
Murata GRM31CR61A226ME19L  
Taiyo Yuden LMK316BJ226ML-T  
Murata GRM31CR60J476ME19L  
Taiyo Yuden JMK212BJ476ML-T  
(3-4 capacitors needed)  
22uF, 10V, 20%  
X5R, 1206  
(2 capacitors needed)  
47uF, 6.3V, 20%  
X5R, 1206  
Ternary Pin Inputs  
The three ternary pins MAR1, MAR2, and M/S  
have three possible states. In the Low state, the  
pins are to be tied to GND. In the floating state,  
nothing is to be connected to the pins. In the  
High state, they are to be tied to VIN through an  
external resistor REXT in order to limit the input  
current to the pin (see Figure 5). The Electrical  
Characteristics table lists, as a function of VIN,  
some recommended values for REXT, and the  
resulting input currents.  
(1 capacitor needed)  
Output Capacitor Selection  
The EN5394 has been optimized for use with  
about 100µF of output filter capacitance.  
Additional capacitance may be placed beyond  
the voltage sensing point outside the control  
loop. For the output filter, low ESR X5R or X7R  
ceramic capacitors are required. Y5V or  
equivalent dielectric formulations must not be  
used as these lose capacitance with frequency,  
temperature and bias voltage.  
Frequency Sync & Phase Delay  
The EN5394 can be synchronized to an external  
clock source or to another EN5394 in order to  
eliminate unwanted beat frequencies.  
Furthermore, two or more synchronized  
EN5394’s can have a programmable phase  
delay with respect to each other to minimize input  
voltage ripple and noise. An example of  
synchronizing three EN5394’s with approximately  
equal phase delay between them is shown in  
Figures 6 and 7. The lowest allowable value for  
the S_DELAY resistor is 10kΩ.  
Recommended Output Capacitors  
Description  
47uF, 6.3V, 20%  
X5R, 1206  
(2 capacitors needed)  
10uF, 6.3V, 10%  
X5R, 0805  
MFG  
Murata  
P/N  
GRM31CR60J476ME19L  
Taiyo Yuden  
Murata  
JMK212BJ476ML-T  
GRM21BR60J106KE19L  
(Optional 1 capacitor in  
parallel with 2x47uF)  
Taiyo Yuden  
JMK212BJ106KG-T  
Output ripple voltage is primarily determined by  
the aggregate output capacitor impedance. At Power-Up Sequencing  
the 4MHz switching frequency, the capacitor  
During power-up, ENABLE should not be  
impedance, denoted as Z, is comprised mainly of  
effective series resistance, ESR, and effective  
series inductance, ESL:  
asserted before PVIN, and PVIN should not be  
asserted before AVIN. Tying all three pins  
together meets these requirements.  
©Enpirion 2009 all rights reserved, E&OE  
13  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
2.5V  
R1  
100k  
To Gates  
Rext  
250  
VIN  
D1  
R2  
100k  
Vf ~ 2V  
Figure 5: Equivalent circuit of a ternary pin  
(MAR1, MAR2, or M/S) input buffer. To get a  
logic High on a ternary input, pull the pin to VIN  
through an external resistor REXT. See Electrical  
Characteristics table for some recommended  
REXT values as a function of VIN and the resulting  
input currents.  
R3  
3k  
AGND  
IC Package  
VIN  
X1  
X1_1  
X1_2  
EXT_CLK  
S_IN  
S_OUT  
S_IN  
S_OUT  
VOUT  
S_IN  
S_OUT  
VOUT  
OUT1  
OUT2  
OUT3  
VOUT  
R4  
C1  
R6  
C2  
R8  
C3  
VFB  
VFB  
VFB  
EN5364  
R1  
EN5364  
EN5364  
R5  
R2  
R7  
R3  
R9  
GND  
Figure 6: Example of synchronizing multiple EN5394QIs in a daisy chain with phase delay.  
VDRAIN- 1  
Delay ~ 140°  
VDRAIN- 2  
VDRAIN- 3  
Delay ~ 120°  
Figure 7: Example of a possible way to synchronize and use delays advantageously to minimize input ripple.  
R1 ~ 39kΩ, R2 ~ 33kΩ. (Refer to Figure 6 for R1 and R2.) R3 does not matter in this case.  
©Enpirion 2009 all rights reserved, E&OE  
14  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Layout Recommendations  
RA and RB are voltage  
programming resistors.  
CA is used for loop  
compensation.  
CSS is the soft-start  
capacitor.  
AGND via is also a test point.  
Test point added for EAOUT.  
CIN can also be 2x22µF for  
improved noise/EMI.  
Figure 8: Critical Components and Layer 1 Copper for Minimum Footprint  
Figure 8 above shows critical components and  
layer 1 traces of the recommended EN5394  
layout for minimum footprint with ENABLE tied  
to VIN. Alternate ENABLE configurations, and  
other small signal pins need to be connected  
and routed according to specific customer  
application. Please see the Gerber files on the  
Enpirion website www.enpirion.com for exact  
dimensions and other layers.  
thermal pads underneath the component must  
be connected to the system ground plane  
through as many vias as possible. The drill  
diameter of the vias should be 0.33mm, and  
the vias must have at least 1 oz. copper plating  
on the inside wall, making the finished hole  
size around 0.20-0.26mm. Do not use thermal  
reliefs or spokes to connect the vias to the  
ground plane. This connection provides the  
path for heat dissipation from the converter.  
Please see figures: 8, 11, and 12.  
Recommendation 1: Input and output filter  
capacitors should be placed on the same side  
of the PCB, and as close to the EN5394QI  
package as possible. They should be  
connected to the device with very short and  
wide traces. Do not use thermal reliefs or  
spokes when connecting the capacitor pads to  
the respective nodes. The +V and GND traces  
between the capacitors and the EN5394QI  
should be as close to each other as possible  
so that the gap between the two nodes is  
minimized, even under the capacitors.  
Recommendation 4: Multiple small vias (the  
same size as the thermal vias discussed in  
recommendation 3) should be used to connect  
ground terminal of the input capacitor and  
output capacitors to the system ground plane.  
It is preferred to put these vias along the edge  
of the GND copper closest to the +V copper.  
These vias connect the input/output filter  
capacitors to the GND plane, and help reduce  
parasitic inductances in the input and output  
current loops.  
Recommendation 2: The system ground  
plane referred to in recommendations 2 and 3  
should be the first layer immediately below the  
surface layer. This ground plane should be  
continuous and un-interrupted below the  
converter and the input/output capacitors.  
Recommendation 5: AVIN is the power supply  
for the small-signal control circuits. It should be  
connected to the input voltage at a quiet point.  
In Figure 8 this connection is made at the input  
capacitor.  
Recommendation 3: The large and small  
Recommendation 6: The layer 1 metal under  
©Enpirion 2009 all rights reserved, E&OE  
15  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
the device must not be more than shown in  
Figure 8. See the section regarding exposed  
metal on bottom of package. As with any  
switch-mode DC/DC converter, try not to run  
sensitive signal or control lines underneath the  
converter package on other layers.  
capacitor. Keep the sense trace short in order  
to avoid noise coupling into the node.  
Recommendation 8: Keep RA, CA, and RB  
close to the VFB pin (see Figures 4 and 8).  
The VFB pin is a high-impedance, sensitive  
node. Keep the trace to this pin as short as  
possible. Whenever possible, connect RB  
directly to the AGND pin instead of going  
through the GND plane.  
Recommendation 7: The VOUT sense point  
should be just after the last output filter  
Thermal Considerations  
The Enpirion EN5394QI DC-DC converter is  
packaged in an 11 x 8 x 1.85mm 68-pin QFN  
package. The QFN package is constructed  
with copper lead frames that have exposed  
thermal pads. The recommended maximum  
junction temperature for continuous operation  
is 125°C. Continuous operation above 125°C  
will reduce long-term reliability. The device has  
a thermal overload protection circuit designed  
to shut it off at an approximate junction  
temperature value of 150°C.  
follows:  
TJ = TC + (PD)(θJC)  
The device case temperature, TC, is the  
temperature at the center of the larger exposed  
thermal pad at the bottom of the package.  
The device junction-to-ambient and junction-to-  
case thermal resistances, θJA and θJC, are  
shown in the Thermal Characteristics table.  
The θJC is a function of the device and the 68-  
pin QFN package design. The θJA is a function  
of θJC and the user’s system design  
The silicon is mounted on a copper thermal  
pad that is exposed at the bottom of the  
package. There is an additional thermal pad in  
the corner of the package which provides  
another path for heat flow out from the  
package. The thermal resistance from the  
silicon to the exposed thermal pads is very low.  
In order to take advantage of this low  
resistance, the exposed thermal pads on the  
package should be soldered directly on to a  
copper ground pad on layer 1 of the PCB. The  
PCB then acts as a heat sink. In order for the  
PCB to be an effective heat sink, the device  
thermal pads should be coupled to copper  
ground planes using multiple vias (refer to  
Layout Recommendations section).  
parameters  
that  
include  
the  
thermal  
effectiveness of the customer PCB and airflow.  
The θJA value shown in the Thermal  
Characteristics table is for free convection with  
the device heat sunk (through the thermal  
pads) to a copper plated four-layer PC board  
with a full ground and a full power plane  
following JEDEC EIJ/JESD 51 Standards. The  
θJA can be reduced with the use of forced air  
convection. Because of the strong dependence  
on the thermal effectiveness of the PCB and  
the system design, the actual θJA value will be  
a function of the specific application.  
When operating on a board with the θJA of the  
thermal characteristics table, some thermal  
derating is needed to operate all the way up to  
maximum output current.  
The junction temperature, TJ, is calculated from  
the ambient temperature, TA, the device power  
dissipation, PD, and the device junction-to-  
ambient thermal resistance, θJA in °C/W:  
Figures 9 and 10 show, for a given input  
voltage, the maximum output current curves as  
a function of ambient temperature and output  
voltage. These curves in figures have been  
plotted assuming a maximum 125 °C limitation  
on the junction temperature at a specific θJA for  
the PCB.  
TJ = TA + (PD)(θJA)  
The junction temperature, TJ, can also be  
expressed in terms of the device case  
temperature, TC, and the device junction-to-  
case thermal resistance, θJC in °C/W, as  
©Enpirion 2009 all rights reserved, E&OE  
16  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Current Derating Curves, EN5394QI, Vin = 5V  
8x11mm QFN, Tjmax = 125°C, Θ-ja = 16°C/W, No Airflow  
Current Derating Curves, EN5394QI, Vin = 3.3V  
8x11mm QFN, Tjmax = 125°C, Θ-ja = 16°C/W, No Airflow  
9
8
7
6
5
9
8
7
6
5
55.0  
65.0  
75.0  
85.0  
55.0  
65.0  
Ambient Temp, °C  
Vout = 1.8V  
75.0  
85.0  
Ambient Temp, °C  
Vout = 1.0V  
Vout = 1.8V  
Vout = 2.5V  
Vout=3.3V  
Vout = 1.0V  
Vout = 2.5V  
Figure 10: Maximum IOUT Curves at VIN = 5.0V  
Figure 9: Maximum IOUT Curves at VIN = 3.3V  
Design Considerations for Lead-Frame Based Modules  
Exposed Metal on Bottom of Package  
Lead-frames offer many advantages in thermal performance, in reduced electrical lead resistance,  
and in overall foot print. However, they do require some special considerations.  
In the assembly process lead frame construction requires that, for mechanical support, some of the  
lead-frame cantilevers be exposed at the point where wire-bond or internal passives are attached.  
This results in several small pads being exposed on the package bottom, as shown in Figure 11.  
Only the two thermal pads and the perimeter pads are to be mechanically or electrically connected to  
the PC board. The PCB top layer under the EN5394QI should be clear of any metal (copper pours,  
traces, or vias) except for the two thermal pads. The “grayed-out” area in Figure 11 represents the  
area that should be clear of any metal on the top layer of the PCB. Any layer 1 metal under the  
grayed-out area runs the risk of undesirable shorted connections even if it is covered by soldermask.  
One exposed pad in the grayed-out area can have VIN metal under it as noted in Figure 11.  
Figure 12 demonstrates the recommended PCB footprint for the EN5394QI. Figure 13 shows the  
package dimensions.  
VIN copper covered by  
soldermask acceptable  
under this exposed pad.  
Figure 11: Lead-Frame exposed metal. Grey  
area highlights exposed metal that is not to  
be mechanically or electrically connected to  
the PCB.  
©Enpirion 2009 all rights reserved, E&OE  
17  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
PCB Footprint and Package Dimensions  
Figure 12: Recommended footprint for PCB layout.  
Figure 13. Package dimensions.  
©Enpirion 2009 all rights reserved, E&OE  
18  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
EN5394QI  
Contact Information  
Enpirion, Inc.  
Perryville III  
53 Frontage Road, Suite 210  
Hampton, NJ 08827  
USA  
Phone: +1-908-894-6000  
Fax: +1-908-894-6090  
www.enpirion.com  
Enpirion reserves the right to make changes in circuit design and/or specifications at any time without notice. Information furnished by Enpirion is  
believed to be accurate and reliable. Enpirion assumes no responsibility for its use or for infringement of patents or other third party rights, which may  
result from its use. Enpirion products are not authorized for use in nuclear control systems, as critical components in life support systems or equipment  
used in hazardous environment without the express written authority from Enpirion.  
©Enpirion 2009 all rights reserved, E&OE  
19  
www.enpirion.com  
03738  
8/21/2009  
Rev:B  
配单直通车
EN5394QI产品参数
型号:EN5394QI
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Transferred
IHS 制造商:ALTERA CORP
包装说明:HQCCN,
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.73
其他特性:OPERATES IN ADJUSTABLE MODE FROM 0.6V TO 5.88V
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:6.6 V
最小输入电压:2.375 V
标称输入电压:5.5 V
JESD-30 代码:R-XQCC-N70
JESD-609代码:e3
长度:11 mm
湿度敏感等级:3
功能数量:1
端子数量:70
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:UNSPECIFIED
封装代码:HQCCN
封装形状:RECTANGULAR
封装形式:CHIP CARRIER, HEAT SINK/SLUG
峰值回流温度(摄氏度):260
座面最大高度:1.9 mm
表面贴装:YES
切换器配置:BUCK
最大切换频率:4400 kHz
温度等级:INDUSTRIAL
端子面层:MATTE TIN
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:10
宽度:8 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!