欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • EN6360QI图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • EN6360QI 现货库存
  • 数量15 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • EN6360QI图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • EN6360QI 现货库存
  • 数量6851 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • EN6360QI图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • EN6360QI 现货库存
  • 数量15899 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号21+ 
  • ■正纳电子专业元器件代理
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • EN6360QI图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • EN6360QI 现货库存
  • 数量18500 
  • 厂家ALTERA(阿尔特拉) 
  • 封装 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • EN6360QIALTERA图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • EN6360QIALTERA 现货库存
  • 数量2600 
  • 厂家ALTERA/阿尔特拉 
  • 封装 
  • 批号21+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • EN6360QI图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • EN6360QI 现货库存
  • 数量22500 
  • 厂家ALTERA(阿尔特拉) 
  • 封装 
  • 批号1年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • EN6360QI图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • EN6360QI 现货库存
  • 数量15 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • EN6360QI图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • EN6360QI 现货库存
  • 数量9561 
  • 厂家ALTERA 
  • 封装QFN-68 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • EN6360QI图
  • 集好芯城

     该会员已使用本站13年以上
  • EN6360QI 现货库存
  • 数量2510 
  • 厂家ALTERA(阿尔特拉) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • EN6360QI图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • EN6360QI 现货库存
  • 数量20000 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号22+ 
  • ALTERA代理旗下专业分销!原装正品!
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • EN6360QI图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • EN6360QI 现货库存
  • 数量8360 
  • 厂家ENPIRIO 
  • 封装QFN 
  • 批号24+ 
  • 325
  • QQ:3007947169QQ:3007947169 复制
    QQ:3007947210QQ:3007947210 复制
  • 755-83950895 QQ:3007947169QQ:3007947210
  • EN6360QI图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • EN6360QI 现货库存
  • 数量8360 
  • 厂家ENPIRIO 
  • 封装QFN 
  • 批号24+ 
  • 假一罚万!进口全新原装
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 0755-83950895 QQ:3003818780QQ:3003819484
  • EN6360QI图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • EN6360QI 现货库存
  • 数量250 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号21+ 
  • 一定原装正品
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • EN6360QI图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • EN6360QI 现货库存
  • 数量35600 
  • 厂家ENPIRION 
  • 封装QFN-68 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • EN6360QI图
  • 深圳市凌创微科技有限公司

     该会员已使用本站12年以上
  • EN6360QI 现货库存
  • 数量4954 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号20+ 
  • (凌创微)只售原装正品 十年荣誉经销商
  • QQ:2853886684QQ:2853886684 复制
  • 0755-83206906(只做原装) QQ:2853886684
  • EN6360QI图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • EN6360QI
  • 数量335 
  • 厂家ALTERA 
  • 封装电源模块 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:174元
  • QQ:97671959QQ:97671959 复制
  • 171-4729-9698(微信同号) QQ:97671959
  • EN6360QI图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • EN6360QI
  • 数量5437 
  • 厂家ALTERA(阿尔特拉) 
  • 封装N/A 
  • 批号22+ 
  • 只做原装】
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • EN6360QI图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • EN6360QI
  • 数量7548 
  • 厂家ALTERA/阿尔特拉 
  • 封装QFN68 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • EN6360QI图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • EN6360QI
  • 数量15 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • EN6360QI图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • EN6360QI
  • 数量3977 
  • 厂家ENPIRION 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • EN6360QI图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • EN6360QI
  • 数量5000 
  • 厂家Enpirion 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • EN6360QI 工控元件图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • EN6360QI 工控元件
  • 数量25000 
  • 厂家ALTERA/阿尔特拉 
  • 封装BGA 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • EN6360QI图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • EN6360QI
  • 数量5369 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • EN6360QI图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • EN6360QI
  • 数量15899 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号21+ 
  • ■正纳电子专业元器件代理
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • EN6360QI图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • EN6360QI
  • 数量58326 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • EN6360QI-E图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • EN6360QI-E
  • 数量100 
  • 厂家ENPIRION INC. 
  • 封装N/A 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • EN6360QI图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • EN6360QI
  • 数量5600 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • EN6360QI图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • EN6360QI
  • 数量6000 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号16+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • EN6360QI图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • EN6360QI
  • 数量20000 
  • 厂家ALTERA 
  • 封装QFN68 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • EN6360QI图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • EN6360QI
  • 数量12500 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号23+ 
  • 全新原装现货,假一赔十
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • EN6360QI图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • EN6360QI
  • 数量85000 
  • 厂家ENPIRION 
  • 封装QFN68 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • EN6360QI图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • EN6360QI
  • 数量30000 
  • 厂家TI 
  • 封装MSOP8 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • EN6360QI图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • EN6360QI
  • 数量10000 
  • 厂家ALTERA 
  • 封装QFN-68 
  • 批号22+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • EN6360QI图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • EN6360QI
  • 数量30000 
  • 厂家ALTERA(阿尔特拉) 
  • 封装 
  • 批号2年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • EN6360QI图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • EN6360QI
  • 数量7800 
  • 厂家ENPIRION 
  • 封装QFN 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871

产品型号EN6360QI的概述

芯片EN6360QI的概述 EN6360QI是一款高性能的DC-DC数模转换器,主要设计用于高功率应用场合。它通过集成电路的方式,提供了多种功能,包括高效率、低静态功耗及良好的负载调节能力。此款芯片在现代电子设备中扮演着至关重要的角色,尤其是在要求较高的功率密度和体积限制的情况下,例如智能手机、便携设备、以及各类通信设备。 此芯片采用了一种高集成度的设计理念,能够支持多种输出电压和电流的配置,广泛应用于通信基站、服务器电源管理系统、以及工业自动化设备中。EN6360QI为工业级别的电子产品提供稳定的电源解决方案,同时拥有较强的抗干扰能力和热稳定性。 芯片EN6360QI的详细参数 在分析EN6360QI的性能参数时,我们需要关注几个关键指标。首先是输入电压范围,EN6360QI通常支持4.5V至60V的输入电压,适应瞬时过压及缺陷的系统情况。其次,它的输出电压可调范围为0.8V至15V...

产品型号EN6360QI的Datasheet PDF文件预览

EN6360QI  
8A Synchronous Highly Integrated DC-DC  
PowerSoC  
Description  
Features  
High Efficiency (Up to 96%)  
The EN6360QI is a Power System on a Chip  
(PowerSoC) DC to DC converter with an integrated  
Excellent Ripple and EMI Performance  
Up to 8A Continuous Operating Current  
Input Voltage Range (2.5V to 6.6V)  
inductor,  
PWM  
controller,  
MOSFETs  
and  
compensation to provide the smallest solution size in  
an 8x11x3mm 68 pin QFN module. It offers high  
efficiency, excellent line and load regulation over  
temperature and up to the full 8A load range. The  
EN6360QI is specifically designed to meet the  
precise voltage and fast transient requirements of  
high-performance, low-power processor, DSP, FPGA,  
memory boards and system level applications in  
distributed power architecture. The EN6360QI  
features switching frequency synchronization with an  
external clock or other EN6360QIs for parallel  
operation. Other features include precision enable  
threshold, pre-bias monotonic start-up, and  
programmable soft-start. The device’s advanced  
circuit techniques, ultra high switching frequency, and  
proprietary integrated inductor technology deliver  
high-quality, ultra compact, non-isolated DC-DC  
conversion.  
Frequency Synchronization (Clock or Primary)  
2% VOUT Accuracy (Over Line/Load/Temperature)  
Optimized Total Solution Size (190mm2)  
Precision Enable Threshold for Sequencing  
Programmable Soft-Start  
Master/Slave Configuration for Parallel Operation  
Thermal Shutdown, Over-Current, Short Circuit,  
and Under-Voltage Protection  
RoHS Compliant, MSL Level 3, 260°C Reflow  
Applications  
Point of Load Regulation for Low-Power, ASICs  
Multi-Core and Communication Processors, DSPs,  
FPGAs and Distributed Power Architectures  
The Enpirion integrated inductor solution significantly  
helps to reduce noise. The complete power converter  
solution enhances productivity by offering greatly  
simplified board design, layout and manufacturing  
requirements. All Enpirion products are RoHS  
Blade Servers, RAID Storage and LAN/SAN  
Adapter Cards, Wireless Base Stations, Industrial  
Automation, Test and Measurement, Embedded  
Computing, and Printers  
compliant and lead-free manufacturing environment High Efficiency 12V Intermediate Bus Architectures  
compatible.  
Beat Frequency/Noise Sensitive Applications  
Efficiency vs. Output Current  
VOUT  
VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVIN  
VOUT  
VFB  
RA  
CA  
ENABLE  
2x  
F
1206  
EN6360QI  
2x  
22 F  
1206  
Actual Solution Size  
190mm2  
AVIN  
SS  
R1  
CONDITIONS  
VIN = 5.0V  
15nF  
PGND  
VOUT = 3.3V  
VOUT = 1.2V  
PGND  
RB  
FQADJ  
AGND  
RFQADJ  
0
1
2
3
4
5
6
7
8
OUTPUT CURRENT(A)  
Figure 1. Simplified Applications Circuit  
Figure 2. Highest Efficiency in Smallest Solution Size  
www.enpirion.com  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Ordering Information  
Part Number  
EN6360QI  
EN6360QI-E  
Package Markings  
EN6360QI  
EN6360QI  
Temp Rating (°C)  
-40 to +85  
Package Description  
68-pin (8mm x 11mm x 3mm) QFN T&R  
QFN Evaluation Board  
Packing and Marking Information: http://www.enpirion.com/resource-center-packing-and-marking-information.htm  
Pin Assignments (Top View)  
48  
S_IN  
BGND  
VDDB  
NC  
1
2
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
KEEP OUT  
47  
46  
45  
3
4
69  
PGND  
44 NC  
43  
5
6
PVIN  
KEEP OUT  
42  
41  
40  
39  
38  
37  
36  
35  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
7
8
9
10  
11  
12  
13  
14  
Figure 3: Pin Out Diagram (Top View)  
NOTE A: NC pins are not to be electrically connected to each other or to any external signal, ground, or voltage.  
However, they must be soldered to the PCB. Failure to follow this guideline may result in part malfunction or damage.  
NOTE B: Shaded area highlights exposed metal below the package that is not to be mechanically or electrically  
connected to the PCB. Refer to Figure 11 for details.  
NOTE C: White ‘dot’ on top left is pin 1 indicator on top of the device package.  
Pin Description  
PIN  
NAME  
FUNCTION  
1-15, 25,  
44-45,  
59, 64-68  
NO CONNECT: These pins must be soldered to PCB but not electrically connected to each  
other or to any external signal, voltage, or ground. These pins may be connected internally.  
Failure to follow this guideline may result in device damage.  
NC  
Regulated converter output. Connect to the load and place output filter capacitor(s) between  
these pins and PGND pins 28 to 31.  
16-24  
VOUT  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 2  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
PIN  
NAME  
FUNCTION  
NO CONNECT: These pins are internally connected to the common switching node of the  
26-27,  
62-63  
NC(SW) internal MOSFETs. They must be soldered to PCB but not be electrically connected to any  
external signal, ground, or voltage. Failure to follow this guideline may result in device damage.  
Input and output power ground. Connect these pins to the ground electrode of the input and  
28-34  
35-43  
PGND  
output filter capacitors. Refer to VOUT, PVIN descriptions and Layout Recommendation for  
more details.  
Input power supply. Connect to input power supply and place input filter capacitor(s) between  
these pins and PGND pins 32 to 34.  
PVIN  
Internal regulated voltage used for the internal control circuitry. Decouple with an optional  
0.1µF capacitor to BGND for improved efficiency. This pin may be left floating if board space is  
limited.  
46  
47  
VDDB  
BGND  
Ground for VDDB. Refer to pin 46 description.  
Digital input. A high level on the M/S pin will make this EN6360QI a Slave and the S_IN will  
accept the S_OUT signal from another EN6360QI for parallel operation. A low level on the M/S  
pin will make this device a Master and the switching frequency will be phase locked to an  
external clock. Leave this pin floating if it is not used.  
48  
S_IN  
Digital output. A low level on the M/S pin will make this EN6360QI a Master and the internal  
switching PWM signal is output on this pin. This output signal is connected to the S_IN pin of  
another EN6360QI device for parallel operation. Leave this pin floating if it is not used.  
POK is a logic level high when VOUT is within -10% to +20% of the programmed output  
voltage (0.9VOUT_NOM VOUT 1.2VOUT_NOM). This pin has an internal pull-up resistor to AVIN  
with a nominal value of 120k.  
49  
50  
51  
S_OUT  
POK  
Device enable pin. A high level or floating this pin enables the device while a low level disables  
ENABLE the device. A voltage ramp from another power converter may be applied for precision enable.  
Refer to Power Up Sequencing  
Analog input voltage for the control circuits. Connect this pin to the input power supply (PVIN)  
52  
53  
AVIN  
at a quiet point. Can also be connected to an auxiliary supply within a voltage range that is  
sequencing.  
The quiet ground for the control circuits. Connect to the ground plane with a via right next to the  
pin.  
AGND  
Ternary (three states) input pin. Floating this pin disables parallel operation. A low level  
configures the device as Master and a high level configures the device as a Slave. A REXT  
resistor is recommended to pulling M/S high. Refer to Ternary Pin description in the Functional  
Description section for REXT values. Also refer to S_IN and S_OUT pin descriptions.  
This is the external feedback input pin. A resistor divider connects from the output to AGND.  
The mid-point of the resistor divider is connected to VFB. A feed-forward capacitor (CA) and  
resistor (R1) are required parallel to the upper feedback resistor (RA). The output voltage  
regulation is based on the VFB node voltage equal to 0.600V. For Slave devices, leave VFB  
floating.  
54  
55  
M/S  
VFB  
56  
57  
EAOUT  
SS  
Error amplifier output. Allows for customization of the control loop. May be left floating.  
A soft-start capacitor is connected between this pin and AGND. The value of the capacitor  
controls the soft-start interval. Refer to Soft-Start in the Functional Description for more details.  
This pin senses output voltage when the device is in pre-bias (or back-feed) mode. Connect  
VSENSE to VOUT when EN_PB is high or floating. Leave floating when EN_PB is low.  
Frequency adjust pin. This pin must have a resistor to AGND which sets the free running  
frequency of the internal oscillator.  
58  
60  
VSENSE  
FQADJ  
Enable pre-bias input. When this pin is pulled high, the device will support monotonic start-up  
under a pre-biased load. VSENSE must be tied to VOUT for EN_PB to function. This pin is  
pulled high internally. Enable pre-bias feature is not available for parallel operations.  
Not a perimeter pin. Device thermal pad to be connected to the system GND plane for heat-  
sinking purposes. Refer to Layout Recommendation section.  
61  
69  
EN_PB  
PGND  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 3  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Absolute Maximum Ratings  
CAUTION: Absolute Maximum ratings are stress ratings only. Functional operation beyond the recommended operating  
conditions is not implied. Stress beyond the absolute maximum ratings may impair device life. Exposure to absolute  
maximum rated conditions for extended periods may affect device reliability.  
PARAMETER  
SYMBOL  
MIN  
-0.3  
-0.3  
MAX  
7.0  
UNITS  
Voltages on : PVIN, AVIN, VOUT  
V
V
Voltages on: EN, POK, M/S  
VIN+0.3  
Voltages on: VFB, EXTREF, EAOUT, SS, S_IN, S_OUT, FQADJ  
Storage Temperature Range  
-0.3  
-65  
2.5  
150  
150  
260  
2000  
500  
V
°C  
°C  
°C  
V
TSTG  
Maximum Operating Junction Temperature  
Reflow Temp, 10 Sec, MSL3 JEDEC J-STD-020A  
ESD Rating (based on Human Body Model)  
ESD Rating (based on CDM)  
TJ-ABS Max  
V
Recommended Operating Conditions  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNITS  
Input Voltage Range  
VIN  
2.5  
6.6  
V
Output Voltage Range (Note 1)  
Output Current  
VOUT  
IOUT  
TA  
0.60  
VIN – VDO  
8
V
A
Operating Ambient Temperature  
Operating Junction Temperature  
-40  
-40  
+85  
°C  
°C  
TJ  
+125  
Thermal Characteristics  
PARAMETER  
SYMBOL  
θJA  
TYP  
UNITS  
Thermal Resistance: Junction to Ambient (0 LFM) (Note 2)  
15  
1.0  
150  
20  
°C/W  
Thermal Resistance: Junction to Case (0 LFM)  
Thermal Shutdown  
°C/W  
°C  
θJC  
TSD  
Thermal Shutdown Hysteresis  
TSDH  
°C  
Note 1: VDO (dropout voltage) is defined as (ILOAD x Dropout Resistance). Please refer to Electrical Characteristics Table.  
Note 2: Based on 2oz. external copper layers and proper thermal design in line with EIJ/JEDEC JESD51-7 standard for  
high thermal conductivity boards.  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 4  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Electrical Characteristics  
NOTE: VIN=6.6V, Minimum and Maximum values are over operating ambient temperature range unless otherwise noted.  
Typical values are at TA = 25°C.  
PARAMETER  
Operating Input  
Voltage  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VIN  
2.5  
6.6  
V
Internal Voltage Reference at:  
VIN = 5V, ILOAD = 0, TA = 25°C  
VFB Pin Voltage  
VVFB  
0.594  
0.588  
-0.2  
0.600  
0.600  
0.606  
0.612  
0.2  
V
V
VFB Pin Voltage  
2.5V VIN 6.6V  
0A ILOAD 8A  
VVFB  
(Line, Load and  
Temperature)  
VFB Pin Input Leakage  
Current  
IVFB  
VFB Pin Input Leakage Current  
µA  
mA  
V
Shut-Down Supply  
Current  
Power Supply Current with  
ENABLE=0  
IS  
1.5  
2.2  
2.1  
Under Voltage Lock-  
out – VIN Rising  
Voltage Above Which UVLO is Not  
Asserted  
VUVLOR  
VUVLOF  
Under Voltage Lock-  
out – VIN Falling  
Voltage Below Which UVLO is  
Asserted  
V
Drop Out Voltage  
V
INMIN – VOUT at Full Load  
400  
50  
800  
100  
8
mV  
mΩ  
A
VDO  
RDO  
Drop Out Resistance  
Input to Output Resistance  
Continuous Output  
Current  
IOUT_SRC  
0
Over Current Trip  
Level  
IOCP  
FSW  
Sourcing Current  
16  
A
Switching Frequency  
0.9  
1.2  
1.5  
MHz  
RFADJ = 4.42 kΩ, VIN = 5V  
External SYNC Clock  
Frequency Lock  
Range  
SYNC Clock Input Frequency  
Range  
FPLL_LOCK  
0.9*Fsw  
Fsw  
1.1*Fsw  
MHz  
S_IN Clock Amplitude  
– Low  
VS_IN_LO  
SYNC Clock Logic Low  
SYNC Clock Logic High  
M/S Pin Float or Low  
M/S Pin High  
0
0.8  
2.5  
80  
V
V
S_IN Clock Amplitude  
– High  
VS_IN_HI  
1.8  
20  
10  
S_IN Clock Duty Cycle  
(PLL)  
DCS_INPLL  
DCS_INPWM  
%
%
S_IN Clock Duty Cycle  
(PWM)  
90  
Allowable Pre-bias as a Fraction of  
Programmed Output Voltage for  
Monotonic start up. Minimum Pre-  
bias Voltage = 300mV.  
Pre-Bias Level  
VPB  
20  
75  
%
Allowable Non-monotonicity Under  
Pre-bias Startup  
Non-Monotonicity  
VPB_NM  
100  
mV  
%
Range of Output Voltage as a  
Fraction of Programmed Value  
When POK is Asserted. (Note 3)  
VOUT Range for POK  
High  
=
90  
120  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 5  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
UNITS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
Falling Edge Deglitch Delay After  
Output Crossing 90% level.  
FSW=1.2 MHz  
POK Deglitch Delay  
213  
µs  
VPOK Logic Low level  
VPOK Logic high level  
With 4mA Current Sink into POK Pin  
0.4  
V
V
VIN  
94  
POK Internal pull-up  
resistor  
kΩ  
With 2 to 4 Converters in Parallel,  
the Difference Between Nominal  
and Actual Current Levels.  
Current Balance  
+/-10  
%
IOUT  
VIN<50mV; RTRACE< 10 m,  
Iload= # Converter * IMAX  
tRISE [ms] = CSS [nF] x 0.065;  
10nF CSS 30nF;  
(Note 5 and Note 6)  
TRISE  
VOUT Rise Time  
Accuracy  
-25  
+25  
%
(Note 4)  
ENABLE Logic High  
ENABLE Logic Low  
ENABLE Pin Current  
VENABLE_HIGH 2.5V VIN 6.6V;  
1.2  
0
VIN  
0.8  
V
V
VENABLE_LOW  
IEN  
VIN = 6.6V  
50  
µA  
M/S Ternary Pin Logic  
Low  
VT-LOW  
Tie M/S Pin to GND  
0
0.7  
1.4  
V
V
V
M/S Ternary Pin Logic  
Float  
VT-FLOAT  
VT-HIGH  
M/S Pin is Open  
1.1  
1.8  
M/S Ternary Pin Logic  
Hi (Note 7)  
Pull Up to VIN through an external  
resistor REXT . Refer to Figure 7.  
2.5V VIN 4V, REXT = 15k  
4V < VIN 6.6V, REXT = 51k  
117  
88  
Ternary Pin Input  
Current  
ITERN  
µA  
Binary Pin Logic Low  
Threshold  
VB-LOW  
VB-HIGH  
ENABLE, S_IN  
ENABLE, S_IN  
0.8  
V
V
Binary Pin Logic High  
Threshold  
1.8  
2.0  
S_OUT Low Level  
S_OUT High Level  
VS_OUT_LOW  
VS_OUT_HIGH  
0.4  
V
V
Note 3: POK threshold when VOUT is rising is nominally 92%. This threshold is 90% when VOUT is falling. After crossing  
the 90% level, there is a 256 clock cycle (~213µs at 1.2 MHz) delay before POK is de-asserted. The 90% and 92% levels  
are nominal values. Expect these thresholds to vary by 3%.  
Note 4: Parameter not production tested but is guaranteed by design.  
Note 5: Rise time calculation begins when AVIN > VUVLO and ENABLE = HIGH.  
Note 6: VOUT Rise Time Accuracy does not include soft-start capacitor tolerance..  
Note 7: M/S pin is ternary. Ternary pins have three logic levels: high, float, and low. This pin is meant to be strapped to  
VIN through an external resistor, strapped to GND, or left floating. The state cannot be changed while the device is on.  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 6  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Typical Performance Curves  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 2.5V  
VOUT = 1.8V  
VOUT = 1.2V  
VOUT = 1.0V  
50  
VOUT = 1.8V  
40  
30  
20  
10  
0
VOUT = 1.2V  
VOUT = 1.0V  
CONDITIONS  
VIN = 3.3V  
CONDITIONS  
VIN = 5.0V  
0
1
2
3
4
5
6
7
8
8
8
0
1
2
3
4
5
6
7
8
8
8
OUTPUT CURRENT(A)  
OUTPUT CURRENT(A)  
Output Voltage vs. Output Current  
Output Voltage vs. Output Current  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
VOUT = 1.8V  
VOUT = 1.0V  
CONDITIONS  
VIN = 3.3V  
CONDITIONS  
VIN = 3.3V  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
OUTPUT CURRENT(A)  
OUTPUT CURRENT(A)  
Output Voltage vs. Output Current  
Output Voltage vs. Output Current  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
VOUT = 3.3V  
VOUT = 1.8V  
CONDITIONS  
VIN = 5.0V  
CONDITIONS  
VIN = 5.0V  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
OUTPUT CURRENT(A)  
OUTPUT CURRENT(A)  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 7  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Typical Performance Curves (Continued)  
Output Voltage vs. Input Voltage  
Output Voltage vs. Output Current  
1.820  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
VOUT = 1.0V  
CONDITIONS  
Load = 0A  
CONDITIONS  
VIN = 5.0V  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
6.6  
0
1
2
3
4
5
6
7
8
6.6  
85  
INPUTVOLTAGE (V)  
OUTPUT CURRENT(A)  
Output Voltage vs. Input Voltage  
Output Voltage vs. Input Voltage  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
CONDITIONS  
Load = 4A  
CONDITIONS  
Load = 8A  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
6.6  
INPUTVOLTAGE (V)  
INPUTVOLTAGE (V)  
Output Voltage vs. Temperature  
Output Voltage vs. Temperature  
1.802  
1.801  
1.800  
1.799  
1.798  
1.797  
1.796  
1.795  
1.794  
1.802  
1.801  
1.800  
1.799  
1.798  
1.797  
1.796  
1.795  
1.794  
LOAD = 0A  
LOAD = 2A  
LOAD = 4A  
LOAD = 6A  
LOAD = 8A  
LOAD = 0A  
LOAD = 2A  
LOAD = 4A  
LOAD = 6A  
LOAD = 8A  
CONDITIONS  
VIN = 6.6V  
VOUT_NOM =1.8V  
CONDITIONS  
VIN = 5V  
VOUT_NOM =1.8V  
-40  
-15  
10  
35  
60  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE ( C)  
AMBIENT TEMPERATURE ( C)  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 8  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Typical Performance Curves (Continued)  
Output Voltage vs. Temperature  
Output Voltage vs. Temperature  
1.802  
1.801  
1.800  
1.799  
1.798  
1.797  
1.796  
1.795  
1.794  
1.802  
LOAD = 0A  
LOAD = 2A  
LOAD = 4A  
LOAD = 6A  
LOAD = 8A  
LOAD = 0A  
LOAD = 2A  
LOAD = 4A  
LOAD = 6A  
LOAD = 8A  
1.801  
1.800  
1.799  
1.798  
1.797  
1.796  
1.795  
1.794  
CONDITIONS  
VIN = 3.6V  
VOUT_NOM =1.8V  
CONDITIONS  
VIN = 2.5V  
VOUT_NOM =1.8V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE ( C)  
AMBIENT TEMPERATURE ( C)  
No Thermal Derating  
No Thermal Derating  
10  
9
8
7
6
5
4
3
2
1
10  
9
8
7
6
5
4
3
CONDITIONS  
VIN =5.0V
VOUT=3.3V
CONDITIONS  
VIN =5.0V
VOUT=1.0V
2
1
0
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE( C)  
AMBIENT TEMPERATURE( C)  
EMI Performance (Vertical Scan)  
EMI Performance (Horizontal Scan)  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
CONDITIONS  
VIN = 5.0V  
VOUT_NOM =1.5V  
LOAD = 0.2Ω  
CONDITIONS  
VIN = 5.0V  
VOUT_NOM = 1.5V  
LOAD = 0.2Ω  
CISPR 22 Class B 3m  
CISPR 22 Class B 3m  
30  
300  
30  
300  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 9  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Typical Parallel Performance Curves  
Parallel Efficiency  
vs. Output Current  
Parallel Efficiency  
vs. Output Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
VOUT = 3.3V  
VOUT = 2.5V  
VOUT = 1.8V  
60  
50  
40  
30  
20  
10  
0
VOUT = 2.5V  
VOUT = 1.8V  
VOUT = 1.2V  
VOUT = 1.0V  
CONDITIONS  
VIN = 3.3V  
2x EN6360QI  
CONDITIONS  
VIN = 5.0V  
2x EN6360QI  
VOUT = 1.2V  
VOUT = 1.0V  
0
2
4
6
8
10  
12  
14  
16  
16  
16  
0
2
4
6
8
10  
12  
14  
16  
16  
16  
OUTPUT CURRENT(A)  
OUTPUT CURRENT(A)  
Parallel Current Share Mis-Match  
Parallel Current Share Breakdown  
5
10  
9
8
7
6
5
4
3
2
1
0
4
3
Mis-match (%) = (I_Master - I_Slave ) / I_Average x 100  
Master Device  
Slave Device  
2
1
0
-1  
-2  
-3  
-4  
-5  
CONDITIONS  
EN6360QI  
VIN = 5V  
CONDITIONS  
EN6360QI  
IN = 5V  
VOUT = 3.3V  
V
VOUT = 3.3V  
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
OUTPUT CURRENT(A)  
TOTAL OUTPUT CURRENT(A)  
Parallel Output Voltage  
vs. Output Current  
Parallel Output Voltage  
vs. Output Current  
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
1.1  
1.08  
1.06  
1.04  
1.02  
1
VOUT = 1.0V  
VOUT = 3.3V  
3.28  
3.26  
3.24  
3.22  
3.2  
0.98  
0.96  
0.94  
0.92  
0.9  
CONDITIONS  
VIN = 5.0V  
2x EN6360QI  
CONDITIONS  
VIN = 3.3V  
2x EN6360QI  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
OUTPUT CURRENT(A)  
OUTPUT CURRENT(A)  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 10  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Typical Performance Characteristics  
Output Ripple at 20MHz Bandwidth  
Output Ripple at 500MHz Bandwidth  
CONDITIONS  
VIN = 5V  
CONDITIONS  
VIN = 5V  
VOUT = 1V  
IOUT = 8A  
CIN = 2 x 22µF (1206)  
COUT = 2 x 47 µF (1206)  
VOUT = 1V  
IOUT = 8A  
CIN = 2 x 22µF (1206)  
VOUT  
(AC Coupled)  
VOUT  
(AC Coupled)  
COUT = 2 x 47 µF (1206)  
Output Ripple at 20MHz Bandwidth  
Output Ripple at 500MHz Bandwidth  
CONDITIONS  
VIN = 5V  
CONDITIONS  
VIN = 5V  
VOUT = 2.4V  
VOUT = 2.4V  
IOUT = 8A  
CIN = 2 x 22µF (1206)  
VOUT  
(AC Coupled)  
IOUT = 8A  
CIN = 2 x 22µF (1206)  
COUT = 2 x 47 µF (1206)  
VOUT  
(AC Coupled)  
COUT = 2 x 47 µF (1206)  
Enable Power Up/Down  
Enable Power Up/Down  
ENABLE  
ENABLE  
CONDITIONS  
VIN = 5V  
CONDITIONS  
VIN = 5V  
VOUT = 2.4V  
IOUT = 8A  
Css = 15nF  
VOUT  
VOUT = 1.0V  
IOUT = 8A  
Css = 15nF  
VOUT  
CIN = 2 x 22µF (1206)  
COUT = 2 x 47 µF (1206)  
CIN = 2 x 22µF (1206)  
COUT = 2 x 47 µF (1206)  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 11  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Typical Performance Characteristics (Continued)  
Load Transient from 0 to 8A  
Enable/Disable withPOK  
CONDITIONS  
VIN = 6.2V  
ENABLE  
VOUT = 1.5V  
CIN = 2 x 22µF (1206)  
COUT = 2 x 47µF (1206)  
VOUT  
POK  
VOUT  
(AC Coupled)  
CONDITIONS  
VIN = 5V, VOUT = 1.0V  
LOAD = 5A, Css = 15nF  
LOAD  
LOAD  
Parallel Operation Current Sharing  
Parallel Operation SW Waveforms  
MASTER VSW  
TOTALLOAD =18A  
SLAVE 2 VSW  
SLAVE 1 VSW  
MASTER LOAD =6A  
SLAVE 2 LOAD = 6A  
CONDITIONS  
COMBINEDLOAD(18A)  
CONDITIONS  
VIN= 5V  
SLAVE 1 LOAD = 6A  
VIN = 5V  
VOUT = 1.8V  
LOAD = 18A  
VOUT = 1.8V  
LOAD= 18A  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 12  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Functional Block Diagram  
Figure 4: Functional Block Diagram  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 13  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Functional Description  
capacitor between this pin and AGND provides a  
soft-start function to limit in-rush current during  
device power-up. When the part is initially powered  
up, the output voltage is gradually ramped to its  
final value. The gradual output ramp is achieved by  
increasing the reference voltage to the error  
amplifier. A constant current flowing into the soft-  
start capacitor provides the reference voltage ramp.  
When the voltage on the soft-start capacitor  
reaches 0.60V, the output has reached its  
programmed voltage. Once the output voltage has  
reached nominal voltage the soft-start capacitor will  
continue to charge to 1.5V (Typical). The output  
rise time can be controlled by the choice of soft-  
start capacitor value.  
The EN6360QI is a synchronous, programmable  
buck power supply with integrated power MOSFET  
switches and integrated inductor. The switching  
supply uses voltage mode control and a low noise  
PWM topology. This provides superior impedance  
matching to ICs processed in sub 90nm process  
technologies. The nominal input voltage range is  
2.5 - 6.6 volts. The output voltage is programmed  
using an external resistor divider network. The  
feedback control loop incorporates a type IV  
voltage mode control design. Type IV voltage mode  
control maximizes control loop bandwidth and  
maintains excellent phase margin to improve  
transient performance. The EN6360QI is designed  
to support up to 8A continuous output current  
operation. The operating switching frequency is  
between 0.9MHz and 1.5MHz and enables the use  
of small-size input and output capacitors.  
The rise time is defined as the time from when the  
ENABLE signal crosses the threshold and the input  
voltage crosses the upper UVLO threshold to the  
time when the output voltage reaches 95% of the  
programmed value. The rise time (tRISE) is given by  
the following equation:  
The power supply has the following features:  
Precision Enable Threshold  
Soft-Start  
tRISE [ms] = Css [nF] x 0.065  
Pre-bias Start-Up  
The rise time (tRISE) is in milliseconds and the soft-  
start capacitor (CSS) is in nano-Farads. The soft-  
start capacitor should be between 10nF and 100nF.  
Resistor Programmable Switching Frequency  
Phase-Lock Frequency Synchronization  
Parallel Operation  
Pre-Bias Start-up  
The EN6360QI supports startup into a pre-biased  
load. A proprietary circuit ensures the output  
voltage rises up from the pre-bias value to the  
programmed output voltage. Start-up is guaranteed  
to be monotonic for pre-bias voltages in the range  
of 20% to 75% of the programmed output voltage  
with a minimum pre-bias voltage of 300mV. Outside  
of the 20% to 75% range, the output voltage rise  
will not be monotonic. The Pre-Bias feature is  
automatically engaged with an internal pull-up  
resistor. For this feature to work properly, VIN must  
be ramped up prior to ENABLE turning on the  
device. Tie VSENSE to VOUT if Pre-Bias is used.  
Tie EN_PB to ground and leave VSENSE floating  
to disable the Pre-Bias feature. Pre-Bias is  
supported for external clock synchronization, but  
not supported for parallel operations.  
Power OK  
Over-Current/Short Circuit Protection  
Thermal Shutdown with Hysteresis  
Under-Voltage Lockout  
Precision Enable  
The ENABLE threshold is a precision analog  
voltage rather than a digital logic threshold. A  
precision voltage reference and a comparator  
circuit are kept powered up even when ENABLE is  
de-asserted. The narrow voltage gap between  
ENABLE Logic Low and ENABLE Logic High  
allows the device to turn on at a precise enable  
voltage level. With the enable threshold pinpointed,  
a proper choice of soft-start capacitor helps to  
accurately sequence multiple power supplies in a  
system as desired. There is an ENABLE lockout  
time of 2ms that prevents the device from re-  
enabling immediately after it is disabled.  
Resistor Programmable Frequency  
The operation of the EN6360QI can be optimized  
by a proper choice of the RFQADJ resistor. The  
frequency can be tuned to optimize dynamic  
performance and efficiency. Refer to Table 1 for  
recommended RFQADJ values.  
Soft-Start  
The SS pin in conjunction with a small external  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 14  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
together with the Master by connecting the S_OUT  
of the Master to the S_IN of all other Slave devices.  
Refer to Figure 5 for details.  
Table 1: Recommended RFQADJ (k)  
Careful attention is needed in the layout for parallel  
operation. The VIN, VOUT and GND of the  
paralleled devices should have low impedance  
connections between each other. Maximize the  
amount of copper used to connect these pins and  
use as many vias as possible when using multiple  
layers. Place the Master device between all other  
Slaves and closest to the point of load.  
VOUT  
0.8V 1.2V 1.5V 1.8V 2.5V 3.3V  
3.57 3.57 4.99 5.49 5.49 NA  
VIN  
3.3V 10%  
5.0V 10%  
6.0V 10%  
3.57 3.57 4.99 5.49 5.49 4.99  
3.57 3.57 4.99 5.49 5.49 5.49  
Phase-Lock Operation:  
The EN6360QI can be phase-locked to an external  
clock signal to synchronize its switching frequency.  
The M/S pin can be left floating or pulled to ground  
to allow the device to synchronize with an external  
clock signal using the S_IN pin. When a clock  
signal is present at S_IN, an activity detector  
recognizes the presence of the clock signal and the  
internal oscillator phase locks to the external clock.  
The external clock could be the system clock or the  
output of another EN6360QI. The phase locked  
clock is then output at S_OUT. Refer to Table 2 for  
recommended clock frequencies.  
Table 2: Recommended Clock fsw (MHz) 10%  
VOUT  
0.8V 1.2V 1.5V 1.8V 2.5V 3.3V  
VIN  
1.15 1.15 1.30 1.35 1.35  
NA  
3.3V 10%  
5.0V 10%  
6.0V 10%  
1.15 1.15 1.30 1.35 1.35 1.30  
1.15 1.15 1.30 1.35 1.35 1.35  
Master / Slave (Parallel) Operation and  
Frequency Synchronization  
Multiple EN6360QI devices may be connected in a  
Master/Slave configuration to handle larger load  
currents. The device is placed in Master mode by  
pulling the M/S pin low or in Slave mode by pulling  
M/S pin high. When the M/S pin is in float state,  
parallel operation is not possible. In Master  
mode, a version of the internal switching PWM  
signal is output on the S_OUT pin. This PWM  
signal from the Master is fed to the Slave device at  
its S_IN pin. The Slave device acts like an  
extension of the power FETs in the Master and  
inherits the PWM frequency and duty cycle. The  
inductor in the Slave prevents crow-bar currents  
from Master to Slave due to timing delays. The  
Master device’s switching clock may be phase-  
locked to an external clock source or another  
EN6360QI to move the entire parallel operation  
frequency away from sensitive frequencies. The  
feedback network for the Slave device may be left  
open. Additional Slave devices may be paralleled  
Figure 5: Master/Slave Parallel Operation Diagram  
POK Operation  
The POK signals that the output voltage is within  
the specified range. The POK signal is asserted  
high when the rising output voltage crosses 92%  
(nominal) of the programmed output voltage. If the  
output voltage falls outside the range of 90% to  
120%, POK remains asserted for the de-glitch time  
(213µs at 1.2MHz). After the de-glitch time, POK is  
de-asserted. POK is also de-asserted if the output  
voltage exceeds 120% of the programmed output  
voltage.  
Over Current Protection  
The current limit function is achieved by sensing  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 15  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
the current flowing through a sense P-FET. When  
the sensed current exceeds the current limit, both  
power FETs are turned off for the rest of the  
switching cycle. If the over-current condition is  
removed, the over-current protection circuit will re-  
enable PWM operation. If the over-current condition  
persists, the circuit will continue to protect the load.  
The OCP trip point is nominally set as specified in  
the Electrical Characteristics table. In the event the  
OCP circuit trips consistently in normal operation,  
the device enters a hiccup mode. The device is  
disabled for 27µs and restarted with a normal soft-  
start. This cycle can continue indefinitely as long as  
the over current condition persists.  
Thermal Overload Protection  
Temperature sensing circuits in the controller will  
disable operation when the junction temperature  
exceeds approximately 150ºC. Once the junction  
temperature drops by approx 20ºC, the converter  
will re-start with a normal soft-start.  
Input Under-Voltage Lock-Out  
When the input voltage is below a required voltage  
level (VUVHI) for normal operation, the converter  
switching is inhibited. The lock-out threshold has  
hysteresis to prevent chatter. Thus when the device  
is operating normally, the input voltage has to fall  
below the lower threshold (VUVLO) for the device to  
stop switching.  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 16  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Application Information  
Calculate the external feedback and compensation  
network values with the equations below.  
Output Voltage Programming and loop  
Compensation  
The EN6360QI output voltage is programmed using  
a simple resistor divider network. A phase lead  
capacitor plus a resistor are required for stabilizing  
the loop. Figure 6 shows the required components  
and the equations to calculate their values.  
RA [] = 48,400 x VIN [V]  
*Round RA up to closest standard value  
RB[] = (VFB x RA) / (VOUT – VFB) [V]  
VFB = 0.6V nominal  
*Round RB to closest standard value  
The EN6360QI output voltage is determined by the  
voltage presented at the VFB pin. This voltage is  
set by way of a resistor divider between VOUT and  
AGND with the midpoint going to VFB.  
CA [F] = 3.83 x 10-6 / RA []  
*Round CA down to closest standard value  
The EN6360QI uses a type IV compensation  
network. Most of this network is integrated.  
However, a phase lead capacitor and a resistor are  
required in parallel with upper resistor of the  
external feedback network (Refer to Figure 6). Total  
compensation is optimized for use with two 47µF  
output capacitance and will result in a wide loop  
bandwidth and excellent load transient performance  
for most applications. Additional capacitance may  
be placed beyond the voltage sensing point outside  
the control loop. Voltage mode operation provides  
high noise immunity at light load. Furthermore,  
voltage mode control provides superior impedance  
matching to ICs processed in sub 90nm  
technologies.  
R1 = 15kΩ  
The feedback resistor network should be sensed at  
the last output capacitor close to the device. Keep  
the trace to VFB pin as short as possible.  
Whenever possible, connect RB directly to the  
AGND pin instead of going through the GND plane.  
Input Capacitor Selection  
The EN6360QI has been optimized for use with two  
1206 22µF input capacitors. Low ESR ceramic  
capacitors are required with X5R or X7R dielectric  
formulation.  
Y5V  
or  
equivalent  
dielectric  
formulations must not be used as these lose  
capacitance with frequency, temperature and bias  
voltage.  
In some cases modifications to the compensation  
or output capacitance may be required to optimize  
device performance such as transient response,  
ripple, or hold-up time. The EN6360QI provides the  
capability to modify the control loop response to  
allow for customization for such applications. For  
more information, contact Enpirion Applications  
Engineering support.  
In some applications, lower value ceramic  
capacitors may be needed in parallel with the larger  
capacitors in order to provide high frequency  
decoupling. The capacitors shown in the table  
below are typical input capacitors. Other capacitors  
with similar characteristics may also be used.  
Table 3: Recommended Input Capacitors  
Description  
MFG  
P/N  
22µF, 10V, 20%  
X5R, 1206  
(2 capacitors needed)  
Murata  
GRM31CR61A226ME19L  
Taiyo Yuden  
LMK316BJ226ML-T  
Output Capacitor Selection  
The EN6360QI has been optimized for use with two  
1206 47µF output capacitors. Low ESR, X5R or  
X7R ceramic capacitors are recommended as the  
primary choice. Y5V or equivalent dielectric  
formulations must not be used as these lose  
capacitance with frequency, temperature and bias  
voltage.  
The  
capacitors  
shown  
in  
the  
Figure 6: External Feedback/Compensation Network  
Recommended Output Capacitors table are typical  
output capacitors. Other capacitors with similar  
characteristics may also be used. Additional bulk  
The feedback and compensation network values  
depend on the input voltage and output voltage.  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 17  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Table 5: Recommended REXT Resistor  
capacitance from 100µF to 1000µF may be placed  
beyond the voltage sensing point outside the  
control loop. This additional capacitance should  
have a minimum ESR of 6mto ensure stable  
operation. Most tantalum capacitors will have more  
than 6mof ESR and may be used without special  
care. Adding distance in layout may help increase  
the ESR between the feedback sense point and the  
bulk capacitors.  
VIN (V)  
IMAX (µA)  
REXT (k)  
2.5 – 4.0  
4.0 – 6.6  
117  
88  
15  
51  
Table 4: Recommended Output Capacitors  
Description  
47µF, 10V, 20%  
X5R, 1206  
MFG  
P/N  
Taiyo Yuden  
LMK316BJ476ML-T  
(2 capacitors needed)  
47µF, 6.3V, 20%  
X5R, 1206  
(2 capacitors needed)  
10µF, 6.3V, 10%  
X7R, 0805  
Murata  
Taiyo Yuden  
Murata  
GRM31CR60J476ME19L  
JMK316BJ476ML-T  
GRM21BR70J106KE76L  
(Optional 1 capacitor in  
parallel with 2x47µF)  
Taiyo Yuden  
JMK212B7106KG-T  
Output ripple voltage is primarily determined by the  
aggregate output capacitor impedance. Placing  
multiple capacitors in parallel reduces the  
impedance and hence will result in lower ripple  
voltage.  
Figure 7: Selection of REXT to Connect M/S pin to VIN  
Table 6: M/S (Master/Slave) Pin States  
1
1
1
1
=
+
ZTotal Z1 Z2  
+...+  
M/S Pin  
Function  
Zn  
M/S pin is pulled to ground directly. This is  
the Master mode. Switching PWM phase  
will lock onto S_IN external clock if a signal  
is available. S_OUT outputs a version of  
the internal switching PWM signal.  
Low  
Table 5: Typical Ripple Voltages  
(0V to 0.7V)  
Output Capacitor  
Configuration  
Typical Output Ripple (mVp-p)  
M/S pin is left floating. Parallel operation is  
not feasible. Switching PWM phase will  
lock onto S_IN external clock if a signal is  
available. S_OUT outputs a version of the  
internal switching PWM signal.  
2 x 47 µF  
<10mV  
Float  
20 MHz bandwidth limit measured on Evaluation Board  
(1.1V to 1.4V)  
M/S - Ternary Pin  
M/S pin is pulled to VIN with REXT. This is  
the Slave mode. The S_IN signal of the  
Slave should connect to the S_OUT of the  
Master device. This signal synchronizes  
the switching frequency and duty cycle of  
the Master to the Slave device.  
M/S is a ternary pin. This pin can assume 3 states  
– A low state (0V to 0.7V), a high state (1.8V to  
VIN) and a float state (1.1V to 1.4V). Device  
operation is controlled by the state of the pin. The  
pins may be pulled to ground or left floating without  
any special care. When pulling high to VIN, a series  
resistor is recommended. The resistor value may  
be optimized to reduce the current drawn by the  
pin. The resistance should not be too high as in that  
case the pin may not recognize the high state. The  
recommend resistance (REXT) value is given in the  
following table.  
High  
(>1.8V)  
Power-Up Sequencing  
During power-up, ENABLE should not be asserted  
before PVIN, and PVIN should not be asserted  
before AVIN. Tying all three pins together meets  
these requirements.  
Technical Suport  
Contact Enpirion Applications for additional support  
of  
regarding  
(techsupport@enpirion.com).  
the  
use  
this  
product  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 18  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Thermal Considerations  
Thermal considerations are important power supply  
design facts that cannot be avoided in the real  
world. Whenever there are power losses in a  
system, the heat that is generated by the power  
dissipation needs to be accounted for. The Enpirion  
PowerSoC helps alleviate some of those concerns.  
For VIN = 5V, VOUT = 3.3V at 8A, η ≈ 94%  
η = POUT / PIN = 94% = 0.94  
PIN = POUT / η  
PIN 26.4W / 0.94 28.085W  
The power dissipation (PD) is the power loss in the  
system and can be calculated by subtracting the  
output power from the input power.  
The Enpirion EN6360QI DC-DC converter is  
packaged in an 8x11x3mm 68-pin QFN package.  
The QFN package is constructed with copper lead  
frames that have exposed thermal pads. The  
exposed thermal pad on the package should be  
soldered directly on to a copper ground pad on the  
printed circuit board (PCB) to act as a heat sink.  
The recommended maximum junction temperature  
for continuous operation is 125°C. Continuous  
operation above 125°C may reduce long-term  
reliability. The device has a thermal overload  
protection circuit designed to turn off the device at  
an approximate junction temperature value of  
150°C.  
PD = PIN – POUT  
28.085W – 26.4W 1.685W  
With the power dissipation known, the temperature  
rise in the device may be estimated based on the  
theta JA value (θJA). The θJA parameter estimates  
how much the temperature will rise in the device for  
every watt of power dissipation. The EN6360QI has  
a θJA value of 15 ºC/W without airflow.  
Determine the change in temperature (T) based  
on PD and θJA.  
T = PD x θJA  
The EN6360QI is guaranteed to support the full 8A  
output current up to 85°C ambient temperature.  
The following example and calculations illustrate  
the thermal performance of the EN6360QI.  
T 1.685W x 15°C/W = 25.28°C 25.3°C  
The junction temperature (TJ) of the device is  
approximately the ambient temperature (TA) plus  
the change in temperature. We assume the initial  
ambient temperature to be 25°C.  
Example:  
VIN = 5V  
TJ = TA + T  
VOUT = 3.3V  
TJ 25°C + 25.3°C 50.3°C  
IOUT = 8A  
With 1.685W dissipated into the device, the TJ will  
be 50.3°C.  
First calculate the output power.  
POUT = 3.3V x 8A = 26.4W  
The maximum operating junction temperature  
(TJMAX) of the device is 125°C, so the device can  
operate at a higher ambient temperature. The  
maximum ambient temperature (TAMAX) allowed can  
be calculated.  
Next, determine the input power based on the  
efficiency (η) shown in Figure 8.  
Efficiency vs. Output Current  
100  
90  
TAMAX = TJMAX – PD x θJA  
94%  
80  
125°C – 25.3°C 99.7°C  
70  
60  
50  
40  
30  
The ambient temperature can actually rise by  
another 74.7°C, bringing it to 99.7°C before the  
device will reach TJMAX. This indicates that the  
EN6360QI can support the full 8A output current  
range up to approximately 99.7°C ambient  
temperature given the input and output voltage  
conditions. This allows the EN6360QI to guarantee  
full 8A output current capability at 85°C with room  
for margin. Note that the efficiency will be slightly  
lower at higher temperatures and this estimate will  
be slightly lower.  
CONDITIONS  
VIN = 5.0V  
20  
10  
0
VOUT = 3.3V  
0
1
2
3
4
5
6
7
8
OUTPUT CURRENT(A)  
Figure 8: Efficiency vs. Output Current  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 19  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Engineering Schematic  
Figure 9: Engineering Schematic with Engineering Notes  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 20  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Layout Recommendation  
Recommendation 4: The thermal pad underneath  
the component must be connected to the system  
ground plane through as many vias as possible.  
The drill diameter of the vias should be 0.33mm,  
and the vias must have at least 1 oz. copper plating  
on the inside wall, making the finished hole size  
around 0.20-0.26mm. Do not use thermal reliefs or  
spokes to connect the vias to the ground plane.  
This connection provides the path for heat  
dissipation from the converter.  
Recommendation 5: Multiple small vias (the same  
size as the thermal vias discussed in  
recommendation 4) should be used to connect  
ground terminal of the input capacitor and output  
capacitors to the system ground plane. It is  
preferred to put these vias along the edge of the  
GND copper closest to the +V copper. These vias  
connect the input/output filter capacitors to the  
GND plane, and help reduce parasitic inductances  
in the input and output current loops.  
Recommendation 6: AVIN is the power supply for  
the small-signal control circuits. It should be  
connected to the input voltage at a quiet point. In  
Figure 10 this connection is made at the input  
capacitor.  
Figure 10: Top Layout with Critical Components Only  
(Top View). See Figure 9 for corresponding schematic.  
This layout only shows the critical components and  
top layer traces for minimum footprint in single-  
supply mode with ENABLE tied to AVIN. Alternate  
circuit configurations & other low-power pins need  
to be connected and routed according to customer  
application. Please see the Gerber files at  
www.enpirion.com for details on all layers.  
Recommendation 7: The layer 1 metal under the  
device must not be more than shown in Figure 10.  
Refer to the section regarding Exposed Metal on  
Bottom of Package. As with any switch-mode  
DC/DC converter, try not to run sensitive signal or  
control lines underneath the converter package on  
other layers.  
Recommendation 1: Input and output filter  
capacitors should be placed on the same side of  
the PCB, and as close to the EN6360QI package  
as possible. They should be connected to the  
device with very short and wide traces. Do not use  
thermal reliefs or spokes when connecting the  
capacitor pads to the respective nodes. The +V and  
GND traces between the capacitors and the  
EN6360QI should be as close to each other as  
possible so that the gap between the two nodes is  
minimized, even under the capacitors.  
Recommendation 8: The VOUT sense point should  
be just after the last output filter capacitor. Keep the  
sense trace short in order to avoid noise coupling  
into the node.  
Recommendation 9: Keep RA, CA, RB, and R1  
close to the VFB pin (Refer to Figure 10). The VFB  
pin is a high-impedance, sensitive node. Keep the  
trace to this pin as short as possible. Whenever  
possible, connect RB directly to the AGND pin  
instead of going through the GND plane.  
Recommendation 2: The PGND connections for  
the input and output capacitors on layer 1 need to  
have a slit between them in order to provide some  
separation between input and output current loops.  
Recommendation 10: Follow all the layout  
recommendations as close as possible to optimize  
performance. Enpirion provides schematic and  
layout reviews for all customer designs. Please  
contact local Sales Representatives for references  
to Enpirion Applications Engineering support.  
Recommendation 3: The system ground plane  
should be the first layer immediately below the  
surface layer. This ground plane should be  
continuous and un-interrupted below the converter  
and the input/output capacitors.  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 21  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Design Considerations for Lead-Frame Based Modules  
Exposed Metal on Bottom of Package  
Lead-frames offer many advantages in thermal performance, in reduced electrical lead resistance, and in  
overall foot print. However, they do require some special considerations.  
In the assembly process lead frame construction requires that, for mechanical support, some of the lead-frame  
cantilevers be exposed at the point where wire-bond or internal passives are attached. This results in several  
small pads being exposed on the bottom of the package, as shown in Figure 11.  
Only the thermal pad and the perimeter pads are to be mechanically or electrically connected to the PC board.  
The PCB top layer under the EN6360QI should be clear of any metal (copper pours, traces, or vias) except for  
the thermal pad. The “shaded-out” area in Figure 11 represents the area that should be clear of any metal on  
the top layer of the PCB. Any layer 1 metal under the shaded-out area runs the risk of undesirable shorted  
connections even if it is covered by soldermask.  
The solder stencil aperture should be smaller than the PCB ground pad. This will prevent excess solder from  
causing bridging between adjacent pins or other exposed metal under the package. Please consult the  
Enpirion Manufacturing Application Note for more details and recommendations.  
Figure 11: Lead-Frame exposed metal (Bottom View)  
Shaded area highlights exposed metal that is not to be mechanically or electrically connected to the PCB.  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 22  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Recommended PCB Footprint  
Figure 12: EN6360QI PCB Footprint (Top View)  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 23  
06489  
April 16, 2012  
Rev: C  
EN6360QI  
Package and Mechanical  
Figure 13: EN6360QI Package Dimensions (Bottom View)  
Packing and Marking Information: http://www.enpirion.com/resource-center-packing-and-marking-information.htm  
Contact Information  
Enpirion, Inc.  
Perryville III Corporate Park  
53 Frontage Road - Suite 210  
Hampton, NJ 08827 USA  
Phone: 1.908.894.6000  
Fax: 1.908.894.6090  
Enpirion reserves the right to make changes in circuit design and/or specifications at any time without notice. Information furnished by Enpirion is  
believed to be accurate and reliable. Enpirion assumes no responsibility for its use or for infringement of patents or other third party rights, which may  
result from its use. Enpirion products are not authorized for use in nuclear control systems, as critical components in life support systems or equipment  
used in hazardous environment without the express written authority from Enpirion  
Enpirion 2011 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 24  
06489  
April 16, 2012  
Rev: C  
配单直通车
EN71NS128B0-7DCWP产品参数
型号:EN71NS128B0-7DCWP
生命周期:Transferred
IHS 制造商:EON SILICON SOLUTION INC
包装说明:VFBGA,
Reach Compliance Code:unknown
HTS代码:8542.32.00.51
风险等级:5.8
JESD-30 代码:R-PBGA-B56
长度:7.7 mm
内存密度:134217728 bit
内存集成电路类型:FLASH
内存宽度:16
功能数量:1
端子数量:56
字数:8388608 words
字数代码:8000000
工作模式:SYNCHRONOUS
最高工作温度:85 °C
最低工作温度:-25 °C
组织:8MX16
封装主体材料:PLASTIC/EPOXY
封装代码:VFBGA
封装形状:RECTANGULAR
封装形式:GRID ARRAY, VERY THIN PROFILE, FINE PITCH
并行/串行:PARALLEL
编程电压:1.8 V
座面最大高度:1 mm
最大供电电压 (Vsup):1.95 V
最小供电电压 (Vsup):1.7 V
标称供电电压 (Vsup):1.8 V
表面贴装:YES
技术:CMOS
温度等级:OTHER
端子形式:BALL
端子节距:0.5 mm
端子位置:BOTTOM
宽度:6.2 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!