欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • EPC1P8图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • EPC1P8
  • 数量8209 
  • 厂家√ 欧美㊣品 
  • 封装贴◆插 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • EPC1P8图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • EPC1P8
  • 数量25000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • EPC1P8CCDO图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • EPC1P8CCDO
  • 数量25000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号EPC1PC8的Datasheet PDF文件预览

Configuration Devices for SRAM-Based  
LUT Devices  
CF52005-3.0  
Datasheet  
This datasheet describes configuration devices for SRAM-based look-up table (LUT)  
devices.  
Supported Devices  
Table 1 lists the supported Alteraconfiguration devices.  
Table 1. Altera Configuration Devices  
Cascaded  
Support  
Recommended  
Device  
EPC1  
Memory Size (Bits)  
ISP Support  
Reprogrammable  
Operating Voltage (V)  
1,046,496  
1,695,680  
65,536  
No  
Yes  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
Yes  
No  
No  
No  
No  
5.0 or 3.3  
5.0 or 3.3  
5.0  
EPC2  
EPC1064  
EPC1064V  
EPC1213  
EPC1441  
65,536  
No  
3.3  
212,942  
440,800  
Yes  
No  
5.0  
5.0 or 3.3  
Features  
Configuration devices for SRAM-based LUT devices offer the following features:  
Configures Altera ACEX1K, APEX20K (including APEX 20K, APEX 20KC, and  
APEX 20KE), APEX II, ArriaGX, Cyclone, Cyclone II, FLEX10K (including  
FLEX 10KE and FLEX 10KA) Mercury, Stratix, Stratix GX, Stratix II, and  
Stratix II GX devices  
Easy-to-use four-pin interface  
Low current during configuration and near-zero standby mode current  
Programming support with the Altera Programming Unit (APU) and  
programming hardware from Data I/O, BP Microsystems, and other third-party  
programmers  
Available in compact plastic packages  
8-pin plastic dual in-line (PDIP) package  
20-pin plastic J-lead chip carrier (PLCC) package  
32-pin plastic thin quad flat pack (TQFP) package  
EPC2 device has reprogrammable flash configuration memory  
© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,  
QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark  
Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their  
respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor  
products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any  
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use  
of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are  
advised to obtain the latest version of device specifications before relying on any published information and before placing orders  
for products or services.  
ISO  
9001:2008  
Registered  
101 Innovation Drive  
San Jose, CA 95134  
www.altera.com  
January 2012 Altera Corporation  
Subscribe  
Page 2  
Functional Description  
5.0-V and 3.3-V in-system programmability (ISP) through the built-in IEEE Std.  
1149.1 JTAG interface  
Built-in JTAG boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1  
Supports programming through Serial Vector Format File (.svf), JamStandard  
Test and Programming Language (STAPL) Format File (.jam), JAM Byte Code File  
(.jbc), and the QuartusII and MAX+PLUSII softwares using the USB-Blaster,  
MasterBlaster, ByteBlasterII, EthernetBlaster, or ByteBlasterMVdownload  
cable  
Supports programming through Programmer Object File (.pof) for EPC1 and  
EPC1441 devices  
nINIT_CONFpin allows INIT_CONFJTAG instruction to begin FPGA configuration  
f For more information about enhanced configuration (EPC) devices, refer to the  
Enhanced Configuration (EPC) Devices Datasheet.  
f For more information about serial configuration (EPCS) devices, refer to the Serial  
Configuration (EPCS) Devices Datasheet.  
Functional Description  
With SRAM-based devices, configuration data must be reloaded each time the device  
powers up, the system initializes, or when new configuration data is needed. Altera  
configuration devices store configuration data for SRAM-based ACEX 1K, APEX 20K,  
APEX II, Arria GX, Cyclone, Cyclone II, FLEX 10K, FLEX 6000, Mercury, Stratix,  
Stratix GX, Stratix II, and Stratix II GX devices.  
Table 2 lists the supported configuration devices required to configure the ACEX 1K,  
APEX 20K, APEX 20KC, APEX 20KE, APEX II, Cyclone, Cyclone II, FLEX 10K,  
FLEX 10KA, FLEX 10KE, FLEX 6000/A, FLEX 8000A, Mercury, Stratix, Stratix GX, or  
Stratix II device.  
Table 2. Supported Configuration Devices (Part 1 of 4)  
Data Size (Bits)  
EPC1064 or  
EPC1064V  
Device Family  
Device  
EP1K10  
EPC1213 EPC1441  
EPC1  
EPC2  
(1)  
159,160  
473,720  
1
1
1
1
1
1
1
2
3
2
3
4
6
EP1K30  
1
ACEX 1K  
EP1K50  
784,184  
1
EP1K100  
1,335,720  
993,360  
1
EP20K100  
EP20K200  
EP20K400  
EP20K200C  
EP20K400C  
EP20K600C  
EP20K1000C  
APEX 20K  
1,950,800  
3,880,720  
1,968,016  
3,909,776  
5,673,936  
8,960,016  
APEX 20KC  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Functional Description  
Page 3  
Table 2. Supported Configuration Devices (Part 2 of 4)  
Data Size (Bits)  
EPC1064 or  
EPC1064V  
Device Family  
Device  
EPC1213 EPC1441  
EPC1  
EPC2  
(1)  
EP20K30E  
354,832  
648,016  
1
1
1
1
1
1
2
2
3
4
6
8
3
4
6
11  
1
1
1
EP20K60E  
EP20K100E  
EP20K160E  
EP20K200E  
EP20K300E  
EP20K400E  
EP20K600E  
EP20K1000E  
EP20K1500E  
EP2A15  
1
1
1,008,016  
1,524,016  
1,968,016  
2,741,616  
3,909,776  
5,673,936  
8,960,016  
12,042,256  
1,168,688  
1,646,544  
2,543,016  
4,483,064  
627,376  
1
1
APEX 20KE  
EP2A25  
APEX II  
Cyclone  
EP2A40  
EP2A70  
EP1C3  
EP1C4  
925,000  
1
(2)  
EP1C6  
1,167,216  
2,326,528  
3,559,608  
1,265,792  
1,983,536  
3,892,496  
6,848,608  
9,951,104  
14,319,216  
118,000  
1
(2)  
EP1C12  
1
1
(2)  
EP1C20  
2
EP2C5  
1
2
3
5
6
9
1
1
1
1
1
1
1
1
1
1
1
1
2
EP2C8  
EP2C20  
Cyclone II  
FLEX 10K  
FLEX 10KA  
EP2C35  
EP2C50  
EP2C70  
EPF10K10  
EPF10K20  
EPF10K30  
EPF10K40  
EPF10K50  
EPF10K70  
EPF10K100  
EPF10K10A  
EPF10K30A  
EPF10K50V  
EPF10K100A  
EPF10K130V  
EPF10K250A  
231,000  
1
1
376,000  
1
1
498,000  
1
1
621,000  
1
892,000  
1
1,200,000  
120,000  
1
406,000  
1
1
621,000  
1
1,200,000  
1,600,000  
3,300,000  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 4  
Functional Description  
Table 2. Supported Configuration Devices (Part 3 of 4)  
Data Size (Bits)  
EPC1064 or  
EPC1064V  
Device Family  
Device  
EPC1213 EPC1441  
EPC1  
EPC2  
(1)  
EPF10K30E  
EPF10K50E  
EPF10K50S  
EPF10K100B  
EPF10K100E  
EPF10K130E  
EPF10K200E  
EPF10K200S  
EPF6010A  
473,720  
784,184  
1
1
1
1
1
784,184  
1
1
1,200,000  
1,335,720  
1,838,360  
2,756,296  
2,756,296  
260,000  
1
1
FLEX 10KE  
1
2
2
2
EPF6016(5.0 V)/  
EPF6016A  
FLEX 6000/A  
260,000  
398,000  
40,000  
1
1
1
1
1
1
1
1
EPF6024A  
EPF8282A /  
EPF8282AV(3.3 V)  
EPF8452A  
EPF8636A  
EPF8820A  
EPF81188A  
EPF81500A  
EP1M120  
EP1M350  
EP1S10  
64,000  
96,000  
1
1
1
1
1
1
1
1
FLEX 8000A  
Mercury  
128,000  
1
1
1
192,000  
1
1
1
250,000  
1
1
1,303,120  
4,394,032  
3,534,640  
5,904,832  
7,894,144  
10,379,368  
12,389,632  
17,543,968  
23,834,032  
3,534,640  
7,894,144  
12,389,632  
3
(3)  
3
EP1S20  
4
5
EP1S25  
Stratix  
EP1S30  
7
EP1S40  
8
EP1S60  
11  
15  
3
EP1S80  
EP1SGX10  
EP1SGX25  
EP1SGX40  
Stratix GX  
5
8
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Functional Description  
Page 5  
Table 2. Supported Configuration Devices (Part 4 of 4)  
Data Size (Bits)  
EPC1064 or  
EPC1064V  
Device Family  
Device  
EPC1213 EPC1441  
EPC1  
EPC2  
(1)  
EP2S15  
5,000,000  
10,100,000  
17,100,000  
27,500,000  
39,600,000  
52,400,000  
3
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
7
11  
17  
24  
31  
Stratix II  
Notes to Table 2:  
(1) Raw Binary File (.rbf) were used to determine these sizes.  
(2) This number is calculated with the Cyclone series compression feature enabled.  
(3) EP1S10 ES devices requires four EPC2 devices.  
Figure 1 shows the configuration device block diagram.  
Figure 1. Configuration Device Block Diagram  
FPGA (except FLEX 8000) Configuration Using an EPC2, EPC1, or EPC1441  
DCLK  
Address  
Counter  
CLK  
ENA  
Oscillator  
nRESET  
Oscillator  
Control  
Address  
Decode  
Logic  
nCS  
nCASC (1)  
Error  
Detection  
Circuitry  
EPROM  
Array  
(2)  
OE  
DATA  
Shift  
Register  
DATA  
FLEX 8000 Device Configuration Using an EPC1, EPC1441, EPC1213, EPC1064, or EPC1064V  
Address  
Counter  
CLK  
ENA  
DCLK  
nRESET  
Address  
Decode  
Logic  
nCASC (1)  
nCS  
OE  
EPROM  
Array  
DATA  
Shift  
Register  
DATA  
Notes to Figure 1:  
(1) The EPC1441 devices do not support data cascading. The EPC1, EPC2, and EPC1213 devices support data cascading.  
(2) The OEpin is a bidirectional open-drain pin.  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 6  
Device Configuration  
Device Configuration  
The EPC1, EPC2, and EPC1441 devices store configuration data in its erasable  
programmable read-only memory (EPROM) array and serially clock data out using  
an internal oscillator. The OE nCS, and DCLKpins supply the control signals for the  
,
address counter and the DATAoutput tri-state buffer. The configuration device sends a  
serial bitstream of configuration data to its DATApin, which is routed to the DATA0  
input of the FPGA.  
The control signals for configuration devices, OE, nCS, and DCLK, interface directly with  
the FPGA control signals, nSTATUS CONF DONE, and DCLK. All Altera FPGAs can be  
,
_
configured by a configuration device without requiring an external intelligent  
controller.  
1
An EPC2 device cannot configure FLEX 8000 or FLEX 6000 devices. For configuration  
devices that support FLEX 8000 or FLEX 6000 devices, refer to Table 2.  
Figure 2 shows the basic configuration interface connections between the  
configuration device and the Altera FPGA.  
Figure 2. Altera FPGA Configured Using an EPC1, EPC2, or EPC1441 Configuration Device (1)  
V
V
V
CC  
CC  
CC  
Configuration  
Device  
(3)  
(2)  
(3)  
FPGA  
DCLK  
DATA  
DCLK  
DATA0  
OE (3)  
nCS (3)  
nINIT_CONF (2)  
nSTATUS  
CONF_DONE  
nCONFIG  
N.C.  
nCASC  
n
MSEL  
nCEO  
nCE  
N.C.  
GND  
Notes to Figure 2:  
(1) For more information about configuration interface connections, refer to the configuration chapter in the appropriate device handbook.  
(2) The nINIT CONFpin which is available on EPC2 devices has an internal pull-up resistor that is always active. This means an external pull-up  
resistor is not required on the nINIT CONF/nCONFIGline. The nINIT CONFpin does not need to be connected if its functionality is not used.  
If the nINIT CONFpin is not used or unavailable, nCONFIGmust be pulled to VCC either directly or through a resistor.  
_
_
_
_
(3) EPC2devices have internal programmable pull-up resistors on OEand nCSpins. If internal pull-up resistors are used, donot use external pull-up  
resistors on these pins. The internal pull-up resistors are set by default in the Quartus II software. To turn off the internal pull-up resistors, check  
the Disable nCS and OE pull-ups on configuration device option when you generate programming files.  
The EPC2 device allows you to begin configuration of the FPGA using an additional  
pin, nINIT  
nCONFIGpin of the FPGA, which allows the INIT  
FPGA configuration. The INIT CONFJTAG instruction causes the EPC2 device to drive  
the nINIT CONFpin low, which in turn pulls the nCONFIGpin low. Pulling the nCONFIG  
pin low on the FPGA will reset the device. When the JTAG state machine exits this  
state, the nINIT CONFpin is released and pulled high by an internal 1-kresistor,  
which in turn pulls the nCONFIGpin high to begin configuration. If you do not use the  
nINIT CONFpin, disconnect the nINIT CONFpin, and pull the nCONFIGpin of the FPGA  
to VCC either directly or through a resistor.  
_
CONF. The nINIT  
_
CONFpin of the EPC2 device can be connected to the  
_
CONFJTAG instruction to begin  
_
_
_
_
_
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Device Configuration  
Page 7  
The EPC2 device’s OEand nCSpins have internal programmable pull-up resistors. If  
you use internal pull-up resistors, do not use external pull-up resistors on these pins.  
The internal pull-up resistors are set by default in the Quartus II software. To turn off  
the internal pull-up resistors, check the Disable nCS and OE pull-ups on  
configuration device option when you generate programming files.  
The configuration device’s OEand nCSpins control the tri-state buffer on its DATA  
output pin and enable the address counter and oscillator. When the OEpin is driven  
low, the configuration device resets the address counter and tri-states its DATApin. The  
nCSpin controls the DATAoutput of the configuration device. If the nCSpin is held high  
after the OEreset pulse, the counter is disabled and the DATAoutput pin is tri-stated. If  
the nCSpin is driven low after the OEreset pulse, the counter and DATAoutput pin are  
enabled. When OEis driven low again, the address counter is reset and the DATA  
output pin is tri-stated, regardless of the state of the nCSpin.  
If the FPGA’s configuration data exceeds the capacity of a single EPC1 or EPC2  
configuration device, you can cascade multiple EPC1 or EPC2 devices together. If  
multiple EPC1 or EPC2 devices are required, the nCASCand nCSpins provide  
handshaking between the configuration devices.  
1
EPC1441 and EPC1064/EPC1064V devices cannot be cascaded.  
When configuring ACEX 1K, APEX 20K, APEX II, Arria GX, Cyclone, Cyclone II,  
FLEX 10K, Mercury, Stratix, Stratix GX, Stratix II, and Stratix II GX devices with  
cascaded EPC1 or EPC2 devices, the position of the EPC1 or EPC2 device in the chain  
determines its mode of operation. The first configuration device in the chain is the  
master, while subsequent configuration devices are slaves. The nINIT  
EPC2 master device can be connected to the nCONFIGpin of the FPGAs, which allows  
the INIT CONFJTAG instruction to begin FPGA configuration. The nCSpin of the  
master configuration device is connected to the CONF DONEpin of the FPGAs, while its  
_CONFpin of the  
_
_
nCASCpin is connected to the nCSpin of the next slave configuration device in the  
chain. Additional EPC1 or EPC2 devices can be chained together by connecting the  
nCASCpin to the nCSpin of the next EPC1 or EPC2 slave device in the chain. The last  
device’s nCSinput comes from the previous device, while its nCASCpin is left floating.  
All other configuration pins, DCLK, DATA, and OE, are connected to every device in the  
chain.  
f For more information about configuration interface connections, including pull-up  
resistor values, supply voltages, and MSELpin setting, refer to the configuration  
chapter in the appropriate device handbook.  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 8  
Device Configuration  
Figure 3 shows the basic configuration interface connections between a configuration  
device chain and the Altera FPGA.  
Figure 3. Altera FPGA Configured Using Two EPC1 or EPC2 Configuration Devices (1)  
V
V
V
CC  
CC  
CC  
Slave  
Configuration  
Device  
Master  
Configuration  
Device  
(3)  
(2)  
(3)  
FPGA  
DCLK  
DATA0  
nSTATUS  
CONF_DONE  
nCONFIG  
DCLK  
DATA  
OE (3)  
nCS (3)  
nINIT_CONF  
DCLK  
DATA  
nCS  
nCASC  
N.C.  
nCASC  
n
(2)  
OE  
MSEL  
N.C.  
nCEO  
nCE  
GND  
Notes to Figure 3:  
(1) For more information about configuration interface connections, refer to the configuration chapter in the appropriate device handbook.  
(2) The nINIT CONFpin which is available on EPC2 devices has an internal pull-up resistor that is always active. This means an external pull-up  
resistor is not required on the nINIT CONF/nCONFIGline. The nINIT CONFpin does not need to be connected if its functionality is not used.  
If the nINIT CONFpin is not used or unavailable, nCONFIGmust be pulled to VCC either directly or through a resistor.  
_
_
_
_
(3) EPC2devices have internal programmable pull-up resistors on OEand nCSpins. If internal pull-up resistors are used, donot use external pull-up  
resistors on these pins. The internal pull-up resistors are set by default in the Quartus II software. To turn off the internal pull-up resistors, check  
the Disable nCS and OE pull-ups on configuration device option when you generate programming files.  
When the first device in a configuration device chain is powered-up or reset, its nCS  
pin is driven low because it is connected to the CONF_DONEpin of the FPGA. Because  
both OEand nCSpins are low, the first device in the chain recognizes it as the master  
device and controls configuration. Since the slave devices’ nCSpin is fed by the  
previous devices’ nCASCpin, its nCSpin is high after power-up and reset. In the slave  
configuration devices, the DATAoutput is tri-stated and DCLKis an input. During  
configuration, the master device supplies the clock through DCLKto the FPGA and to  
any slave configuration devices. The EPC1 or EPC2 master device also provides the  
first stream of data to the FPGA during multi-device configuration. After the EPC1 or  
EPC2 master device finishes sending configuration data, it tri-states its DATApin to  
avoid contention with other configuration devices. The EPC1 or EPC2 master device  
also drives its nCASCpin low, which pulls the nCSpin of the next device low. This  
action signals the EPC1 or EPC2 slave device to start sending configuration data to the  
FPGAs.  
The EPC1 or EPC2 master device clocks all slave configuration devices until  
configuration is complete. When all configuration data is transferred and the nCSpin  
on the EPC1 or EPC2 master device is driven high by the FPGA’s CONF_DONEpin, the  
EPC1 or EPC2 master device then goes into zero-power (idle) state. The EPC2 master  
device drives DATAhigh and DCLKlow, while the EPC1 and EPC1441 device tri-state  
DATAand drive DCLKlow.  
If the nCSpin on the EPC1 or EPC2 master device is driven high before all  
configuration data is transferred, the EPC1 or EPC2 master device drives its OEsignal  
low, which in turn drives the FPGA’s nSTATUSpin low, indicating a configuration  
error. Additionally, if the configuration device generates its data and detects that the  
CONF  
_DONEpin has not gone high, it recognizes that the FPGA has not configured  
successfully. EPC1 and EPC2 devices wait for 16 DCLKcycles after the last  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Power and Operation  
Page 9  
configuration bit was sent for the CONF  
_
DONEpin to reach a high state. In this case, the  
configuration device pulls its OEpin low, which in turn drives the target device’s  
nSTATUSpin low. Configuration automatically restarts if the Auto-restart  
configuration on error option is turned on in the Quartus II software from the  
General tab of the Device & Pin Options dialog box or the MAX+PLUS II software’s  
Global Project Device Options dialog box (Assign menu).  
f For more information about FPGA configuration and configuration interface  
connections between configuration devices and Altera FPGAs, refer to the  
configuration chapter in the appropriate device handbook.  
Power and Operation  
This section describes power-on reset (POR) delay, error detection, and 3.3-V and  
5.0-V operation of Altera configuration devices.  
Power-On Reset  
During initial power-up, a POR delay occurs to permit voltage levels to stabilize.  
When configuring an FPGA with one EPC1, EPC2, or EPC1441 device, the POR delay  
occurs inside the configuration device and the POR delay is a maximum of 200 ms.  
When configuring a FLEX 8000 device with one EPC1213, EPC1064, or EPC1064V  
device, the POR delay occurs inside the FLEX 8000 device and the POR delay is  
typically 100 ms, with a maximum of 200 ms.  
During POR, the configuration device drives its OEpin low. This low signal delays  
configuration because the OEpin is connected to the target FPGA’s nSTATUSpin. When  
the configuration device completes POR, it releases its open-drain OEpin, which is  
then pulled high by a pull-up resistor.  
1
You should power up the FPGA before the configuration device exits POR to avoid  
the master configuration device from entering slave mode.  
If the FPGA is not powered up before the configuration device exits POR, the  
CONF_DONE/nCSline is high because of the pull-up resistor. When the configuration  
device exits POR and releases OE, it sees nCShigh, which signals the configuration  
device to enter slave mode. Therefore, configuration will not begin because the DATA  
output is tri-stated and DCLKis an input pin in slave mode.  
Error Detection Circuitry  
The EPC1, EPC2, and EPC1441 configuration devices have built-in error detection  
circuitry for configuring ACEX 1K, APEX 20K, APEX II, Arria GX, Cyclone,  
Cyclone II, FLEX 10K, FLEX 6000, Mercury, Stratix, Stratix GX, Stratix II, or  
Stratix II GX devices.  
Built-in error detection circuitry uses the nCSpin of the configuration device, which  
monitors the CONF_DONEpin on the FPGA. If the nCSpin on the EPC1 or EPC2 master  
device is driven high before all configuration data is transferred, the EPC1 or EPC2  
master device drives its OEsignal low, which in turn drives the FPGA’s nSTATUSpin  
low, indicating a configuration error. Additionally, if the configuration device  
generates its data and detects that the CONF  
_
DONEpin has not gone high, it recognizes  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 10  
Power and Operation  
that the FPGA has not configured successfully. EPC1 and EPC2 devices wait for  
16 DCLKcycles after the last configuration bit was sent for the CONF DONEpin to reach a  
_
high state. In this case, the configuration device pulls its OEpin low, which in turn  
drives the target device’s nSTATUSpin low. Configuration automatically restarts if the  
Auto-restart configuration on error option is turned on in the Quartus II software  
from the General tab of the Device & Pin Options dialog box or the MAX+PLUS II  
software’s Global Project Device Options dialog box (Assign menu).  
In addition, if the FPGA detects a cyclic redundancy check (CRC) error in the received  
data, it will flag the error by driving the nSTATUSsignal low. This low signal on  
nSTATUSdrives the OEpin of the configuration device low, which resets the  
configuration device. CRC checking is performed when configuring all Altera FPGAs.  
3.3-V or 5.0-V Operation  
Power the EPC1, EPC2, and EPC 1441 configuration device at 3.3 V or 5.0 V. For each  
configuration device, an option must be set for the 3.3-V or 5.0-V operation.  
For EPC1 and EPC1441 configuration devices, 3.3-V or 5.0-V operation is controlled  
by a programming bit in the .pof. The Low-Voltage mode option in the Options tab of  
the Configuration Device Options dialog box in the Quartus II software or the Use  
Low-Voltage Configuration EPROM option in the Global Project Device Options  
dialog box (Assign menu) in the MAX+PLUS II software sets this parameter. For  
example, EPC1 devices are programmed automatically to operate in 3.3-V mode when  
configuring FLEX 10KA devices, which have a VCC voltage of 3.3 V. In this example,  
the EPC1 device’s VCCpin is connected to a 3.3-V power supply.  
For EPC2 devices, this option is set externally by the VCCSELpin. In addition, the EPC2  
device has an externally controlled option, set by the VPPSELpin, to adjust the  
programming voltage to 5.0 V or 3.3 V. The functions of the VCCSELand VPPSELpins  
are described below. These pins are only available in the EPC2 devices.  
VCCSELpin—For EPC2 configuration devices, 5.0-V or 3.3-V operation is controlled  
by the VCCSELoption pin. The device functions in 5.0-V mode when VCCSELis  
connected to GND and 3.3-V mode when VCCSELis connected to VCC  
.
VPPSELpin—The VPP programming power pin of the EPC2 device is normally tied  
to VCC. For EPC2 devices operating at 3.3 V, it is possible to improve ISP time by  
setting VPP to 5.0 V. For all other configuration devices, VPP must be tied to VCC  
.
The VPPSELpin of the EPC2 device must be set in accordance with the VPPpin of  
the EPC2 device. If the VPPpin is supplied by a 5.0-V power supply, VPPSELmust  
be connected to GND and if the VPPpin is supplied by a 3.3-V power supply,  
VPPSELmust be connected to VCC  
.
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Power and Operation  
Page 11  
Table 3 lists the relationship between the VCC and VPP voltage levels and the required  
logic level for VCCSELand VPPSELpins. A high logic level means the pin should be  
connected to VCC, while a low logic level means the pin should be connected to GND.  
Table 3. VCCSEL and VPPSEL Pin Functions on the EPC2 Device  
VCC Voltage Level  
(V)  
VPP Voltage Level  
(V)  
VCCSEL Pin Logic  
Level  
VPPSEL Pin Logic  
Level  
3.3  
3.3  
5.0  
3.3  
5.0  
5.0  
High  
High  
Low  
High  
Low  
Low  
At a 3.3-V operation, all EPC2 inputs are 5.0-V tolerant, except for DATA, DCLK, and  
nCASCpins. The DATAand DCLKpins are used only to interface between the EPC2  
device and the FPGA it is configuring. Table 4 lists the voltage tolerences of all EPC2  
device pins.  
Table 4. EPC2 Device Input and Bidirectional Pin Voltage Tolerance  
5.0-V Operation  
3.3-V Operation  
Pin  
5.0-V Tolerant  
3.3-V Tolerant  
5.0-V Tolerant  
3.3-V Tolerant  
DATA  
DCLK  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
n
CASC  
OE  
CS  
n
VCCSEL  
VPPSEL  
nINIT_CONF  
TDI  
TMS  
TCK  
If one EPC1, EPC2, or EPC1441 configuration device is powered at 3.3 V, the nSTATUS  
and CONF DONEpull-up resistors must be connected to 3.3 V. If these configuration  
devices are powered at 5.0 V, the nSTATUSand CONF  
connected to either 3.3 V or 5.0 V.  
_
_
DONEpull-up resistors can be  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 12  
Programming and Configuration File Support  
Programming and Configuration File Support  
The Quartus II and MAX+PLUS II softwares provide programming support for Altera  
configuration devices. During compilation, the Quartus II and MAX+PLUS II  
softwares automatically generates a .pof, which is used to program the configuration  
devices. In a multi-device configuration, the software combines the programming  
files for multiple ACEX 1K, APEX 20K, APEX II, Arria GX, Cyclone, Cyclone II,  
FLEX 10K, Mercury, Stratix, Stratix GX, Stratix II, and Stratix II GX devices into one or  
more configuration devices. The software allows you to select the appropriate  
configuration device to store the data for each FPGA.  
All Altera configuration devices are programmable using Altera programming  
hardware in conjunction with the Quartus II or MAX+PLUS II software. In addition,  
many third-party programmers offer programming hardware that supports Altera  
configuration devices.  
1
An EPC2 device can be programmed with a .pof generated for an EPC1 or EPC1441  
device. An EPC1 device can be programmed with a .pof generated for an EPC1441  
device.  
EPC2 configuration devices can be programmed in-system through its  
industry-standard four-pin JTAG interface. ISP capability in the EPC2 devices provide  
ease in prototyping and FPGA functionality. When programming multiple EPC2  
devices in a JTAG chain, the Quartus II and MAX+PLUS II softwares and other  
programming methods employ concurrent programming to simultaneously program  
multiple devices and reduce programming time. EPC2 devices can be programmed  
and erased up to 100 times.  
After programming an EPC2 device in-system, FPGA configuration is initiated by the  
INIT  
_CONFJTAG instruction of the EPC2 device. For more information, refer to  
Table 6.  
f For more information about programming and configuration support, refer to the  
following documents:  
Altera Programming Hardware Data Sheet  
USB-Blaster Download Cable User Guide  
MasterBlaster Serial/USB Communications Cable User Guide  
ByteBlaster II Download Cable User Guide  
ByteBlasterMV Download Cable User Guide  
BitBlaster Serial Download Cable Data Sheet  
You can also program the configuration devices using the Quartus II or MAX+PLUS II  
software with the APU or the appropriate configuration device programming adapter.  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Programming and Configuration File Support  
Page 13  
Table 5 lists the programming adapter to use with each configuration device.  
Table 5. Programming Adapters  
Device  
Package  
20-pin J-Lead  
32-pin TQFP  
8-pin DIP  
Adapter  
PLMJ1213  
PLMT1213  
PLMJ1213  
PLMJ1213  
PLMJ1213  
PLMJ1213  
PLMT1064  
EPC2  
EPC1  
20-pin J-Lead  
8-pin DIP  
EPC1441  
20-pin J-Lead  
32-pin TQFP  
To program Altera configuration devices using the Quartus II software and the APU,  
follow these steps:  
1. Choose the Quartus II Programmer (Tools menu).  
2. Load the appropriate .pof by clicking Add. The Device column displays the  
device for the current programming file.  
3. Insert a blank configuration device into the programming adapter’s socket.  
4. Turn on the Program/Configure. You can also turn on Verify to verify the contents  
of a programmed device against the programming data loaded from a  
programming file.  
5. Click Start.  
6. After successful programming, you can place the configuration device on the PCB  
to configure the FPGA device.  
To program Altera configuration devices using the MAX+PLUS II software and the  
APU, follow these steps:  
1. Open the MAX+PLUS II Programmer.  
2. Load the appropriate .pof using the Select Programming File dialog box (File  
menu). By default, the Programmer loads the current project’s .pof. The Device  
field displays the device for the current programming file.  
3. Insert a blank configuration device into the programming adapter’s socket.  
4. Click Program.  
5. After successful programming, you can place the configuration device on the PCB  
to configure the FPGA device.  
If you are cascading EPC1 or EPC2 devices, you must generate multiple .pof. The first  
device .pof have the same name as the project, while the second device .pof have the  
same name as the first, but with a “_1” extension (e.g., top_1.pof).  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 14  
IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing  
IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing  
The EPC2 device provides JTAG BST circuitry that complies with the IEEE Std.  
1149.1-1990 specification. You can perform JTAG BST before or after configuration, but  
not during configuration. Table 6 lists the JTAG instructions supported by the EPC2  
device.  
Table 6. EPC2 Device JTAG Instructions  
JTAG Instruction  
OPCODE  
Description  
Allows a snapshot of a signal at the device pins to be captured and  
examined during normal device operation and permits an initial data  
pattern output at the device pins.  
SAMPLE/PRELOAD  
00 0101 0101  
Allows the external circuitry and board-level interconnections to be  
tested by forcing a test pattern at the output pins and capturing  
results at the input pins.  
EXTEST  
BYPASS  
00 0000 0000  
11 1111 1111  
Places the 1-bit bypass register between the TDIand TDOpins,  
which allows the BST data to pass synchronously through a selected  
device to adjacent devices during normal device operation.  
Selects the device IDCODEregister and places it between the TDI  
and TDOpins, allowing the device IDCODEto be serially shifted out of  
the TDOpin. The device IDCODEfor the EPC2 configuration device is  
shown below:  
IDCODE  
00 0101 1001  
00 0111 1001  
0000 0001000000000010 00001101110 1  
Selects the USERCODEregister and places it between the TDIand  
TDOpins, allowing the USERCODEto be serially shifted out of the  
TDO pin. The 32-bit USERCODEis a programmable user-defined  
pattern.  
USERCODE  
Initiates the FPGA re-configuration process by pulsing the  
nINIT_CONFpin low, which is connected to the FPGAs nCONFIG  
pins. After this instruction is updated, the nINIT_CONFpin is pulsed  
low when the JTAG state machine enters the Run-Test/Idle state. The  
nINIT_CONFpin is then released and nCONFIGis pulled high by the  
resistor after the JTAG state machine goes out of Run-Test/Idle state.  
The FPGA configuration starts after the nCONFIGpin goes high. As a  
result, the FPGA is configured with the new configuration data stored  
in the configuration device. You can add this function to your  
programming file (.pof, .jam, .jbc) in the Quartus II software by  
enabling the Initiate configuration after programming option in the  
Programmer options window (Options menu). This instruction is  
also used by the MAX+PLUS II software, .jam files, and .jbc files.  
INIT_CONF  
00 0110 0001  
These instructions are used when programming an EPC2 device  
using JTAG ports with a USB-Blaster, MasterBlaster, ByteBlaster II,  
EthernetBlaster, or ByteBlasterMV download cable, or using a .jam,  
.jbc, or .svf file using an embedded processor.  
ISP Instructions  
f For more information, refer to AN39: IEEE 1149.1 JTAG Boundary-Scan Testing in Altera  
Devices.  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing  
Page 15  
Figure 4 shows the timing requirements for the JTAG signals.  
Figure 4. EPC2 Device JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
tJCL  
tJPH  
tJPSU  
TCK  
TDO  
t
tJPXZ  
tJPCO  
JPZX  
tJSSU  
tJSH  
Signal  
to be  
Captured  
tJSZX  
tJSCO  
tJSXZ  
Signal  
to be  
Driven  
Table 7 lists the timing parameters and values for configuration devices.  
Table 7. JTAG Timing Parameters and Values  
Symbol  
Parameter  
Min  
100  
50  
50  
20  
45  
20  
Max  
25  
25  
25  
25  
25  
25  
Unit  
tJCP  
TCKclock period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCH  
TCKclock high time  
TCKclock low time  
tJCL  
tJPSU  
tJPH  
JTAG port setup time  
JTAG port hold time  
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
Capture register setup time  
Capture register hold time  
45  
tJSCO  
tJSZX  
tJSXZ  
Update register clock to output  
Update register high impedance to valid output  
Update register valid output to high impedance  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 16  
Timing Information  
Timing Information  
Figure 5 shows the timing waveform when using a configuration device.  
Figure 5. Timing Waveform Using a Configuration Device  
nINIT_CONF or VCC/nCONFIG  
tPOR  
OE/nSTATUS  
nCS/CONF_DONE  
tCH  
tDSU  
tCL  
DCLK  
DATA  
tOEZX  
tDH  
D2  
D0  
D1  
D3  
Dn  
(1)  
tCO  
User I/O  
User Mode  
Tri-State  
Tri-State  
INIT_DONE  
Note to Figure 5:  
(1) The EPC2 device drives DCLKlowand DATAhigh after configuration. The EPC1 and EPC1441 devices drive DCLKlow and tri-state DATAafter  
configuration.  
Table 8 lists the timing parameters when using EPC2 devices at 3.3 V.  
Table 8. Timing Parameters when Using EPC2 devices at 3.3 V  
Symbol  
tPOR  
tOEZX  
tCE  
tDSU  
tDH  
Parameter  
Min  
30  
0
Typ  
7.7  
65  
65  
Max  
200  
80  
Units  
ms  
ns  
(1)  
POR delay  
OE high to DATAoutput enabled  
OE high to first rising edge on DCLK  
Datasetup time before rising edge on DCLK  
Datahold time after rising edge on DCLK  
DCLKto DATAout  
300  
ns  
ns  
ns  
tCO  
5
30  
ns  
tCDOE  
fCLK  
tMCH  
tMCL  
tSCH  
tSCL  
tCASC  
tCCA  
tOEW  
tOEC  
tNRCAS  
DCLKto DATAenable/disable  
30  
ns  
DCLKfrequency  
12.5  
100  
100  
MHz  
ns  
DCLKhigh time for the first device in the configuration chain  
DCLKlow time for the first device in the configuration chain  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
DCLKrising edge to nCASC  
40  
40  
40  
40  
100  
ns  
ns  
ns  
25  
ns  
n
CSto nCASCcascade delay  
15  
ns  
OE low pulse width (reset) to guarantee counter reset  
OE low (reset) to DCLKdisable delay  
OE low (reset) to nCASCdelay  
ns  
30  
ns  
30  
ns  
Note to Table 8:  
(1) During initial power-up, a POR delay occurs to permit voltage levels to stabilize. Subsequent reconfigurations do not incur this delay.  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Timing Information  
Page 17  
Table 9 lists the timing parameters when using EPC1 and EPC1441 devices at 3.3 V.  
Table 9. Timing Parameters when Using EPC1 and EPC1441 Devices at 3.3 V  
Symbol Parameter  
tPOR  
tOEZX  
tCE  
tDSU  
tDH  
Min  
30  
0
Typ  
4
Max  
200  
80  
Units  
ms  
ns  
(1)  
POR delay  
OE high to DATAoutput enabled  
OE high to first rising edge on DCLK  
Datasetup time before rising edge on DCLK  
Datahold time after rising edge on DCLK  
DCLKto DATAout  
300  
ns  
ns  
ns  
tCO  
2
30  
ns  
tCDOE  
fCLK  
tMCH  
tMCL  
tSCH  
tSCL  
tCASC  
tCCA  
tOEW  
tOEC  
tNRCAS  
DCLKto DATAenable/disable  
30  
ns  
DCLKfrequency  
10  
MHz  
ns  
DCLKhigh time for the first device in the configuration chain  
DCLKlow time for the first device in the configuration chain  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
DCLKrising edge to nCASC  
50  
50  
50  
50  
100  
125  
125  
250  
250  
ns  
ns  
ns  
25  
ns  
nCSto nCASCcascade delay  
15  
ns  
OE low pulse width (reset) to guarantee counter reset  
OE low (reset) to DCLKdisable delay  
OE low (reset) to nCASCdelay  
ns  
30  
ns  
30  
ns  
Note to Table 9:  
(1) During initial power-up, a POR delay occurs to permit voltage levels to stabilize. Subsequent reconfigurations do not incur this delay.  
Table 10 lists the timing parameters when using EPC1, EPC2, and EPC1441 devices at  
5.0 V.  
Table 10. Timing Parameters when Using EPC1, EPC2, and EPC1441 Devices at 5.0 V (Part 1 of 2)  
Symbol  
tPOR  
tOEZX  
tCE  
tDSU  
tDH  
Parameter  
Min  
30  
0
Typ  
10  
50  
50  
Max  
200  
50  
Units  
ms  
ns  
(1)  
POR delay  
OE high to DATAoutput enabled  
OE high to first rising edge on DCLK  
Datasetup time before rising edge on DCLK  
Datahold time after rising edge on DCLK  
DCLKto DATAout  
200  
ns  
ns  
ns  
tCO  
6.7  
30  
30  
30  
30  
20  
ns  
tCDOE  
fCLK  
tMCH  
tMCL  
tSCH  
tSCL  
tCASC  
tCCA  
DCLKto DATAenable/disable  
20  
ns  
DCLKfrequency  
16.7  
75  
MHz  
ns  
DCLKhigh time for the first device in the configuration chain  
DCLKlow time for the first device in the configuration chain  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
DCLKrising edge to nCASC  
75  
ns  
ns  
ns  
20  
ns  
nCSto nCASCcascade delay  
10  
ns  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 18  
Timing Information  
Table 10. Timing Parameters when Using EPC1, EPC2, and EPC1441 Devices at 5.0 V (Part 2 of 2)  
Symbol  
tOEW  
Parameter  
OE low pulse width (reset) to guarantee counter reset  
OE low (reset) to DCLKdisable delay  
Min  
100  
Typ  
Max  
Units  
ns  
tOEC  
20  
ns  
tNRCAS  
OE low (reset) to nCASCdelay  
25  
ns  
Note to Table 10:  
(1) During initial power-up, a POR delay occurs to permit voltage levels to stabilize. Subsequent reconfigurations do not incur this delay.  
Table 11 lists the timing parameters when using EPC1, EPC1064, EPC1064V, EPC1213,  
and EPC1441 devices when configuring the FLEX 8000 device.  
Table 11. FLEX 8000 Device Configuration Parameters Using EPC1, EPC1064, EPC1064V, EPC1213, and EPC1441  
Devices  
EPC1064 and  
EPC1213  
EPC1 and  
EPC1441  
EPC1064V  
Symbol  
Parameter  
Unit  
Min  
Max  
75  
Min  
100  
0
Max  
50  
50  
50  
75  
6
Min  
Max  
50  
50  
50  
75  
8
tOEZX  
OE high to DATAoutput enabled  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCSZX  
tCSXZ  
tCSS  
tCSH  
tDSU  
tDH  
n
n
n
n
CSlow to DATAoutput enabled  
75  
75  
100  
4
CS high to DATAoutput disabled  
CSlow setup time to first DCLKrising edge  
CSlow hold time after DCLKrising edge  
150  
0
Datasetup time before rising edge on DCLK  
Datahold time after rising edge on DCLK  
DCLKto DATAout delay  
75  
50  
0
50  
0
0
tCO  
160  
80  
80  
100  
100  
50  
50  
100  
tCK  
Clock period  
240  
fCK  
Clock frequency  
tCL  
DCLKlow time  
120  
120  
75  
90  
75  
150  
50  
60  
50  
100  
50  
50  
50  
100  
tCH  
DCLKhigh time  
tXZ  
OE low or nCS high to DATAoutput disabled  
OE pulse width to guarantee counter reset  
Last DCLK+ 1 to nCASClow delay  
Last DCLK+ 1 to DATAtri-state delay  
tOEW  
tCASC  
tCKXZ  
tCEOUT  
150  
nCShigh to nCASChigh delay  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Operating Conditions  
Page 19  
Operating Conditions  
Table 12 through Table 19 list information about absolute maximum ratings,  
recommended operating conditions, DC operating conditions, and capacitance for  
configuration devices.  
(1)  
Table 12. Absolute Maximum Ratings  
Symbol Parameter  
Supply voltage  
Conditions  
Min  
–2.0  
–2.0  
Max  
7.0  
7.0  
50  
Unit  
V
(2)  
VCC  
With respect to GND  
(2)  
VI  
DC input voltage  
With respect to GND  
V
IMAX  
IOUT  
PD  
DC VCC or GND current  
DC output current, per pin  
Power dissipation  
mA  
mA  
mW  
° C  
° C  
° C  
–25  
25  
250  
150  
135  
135  
TSTG  
TAMB  
TJ  
Storage temperature  
Ambient temperature  
Junction temperature  
No bias  
–65  
–65  
Under bias  
Under bias  
Table 13. Recommended Operating Conditions  
Symbol  
Parameter  
Supply voltage for 5.0-V operation  
Supply voltage for 3.3-V operation  
Input voltage  
Conditions  
Min  
Max  
Unit  
V
4.75  
(4.50)  
5.25  
(5.50)  
(3) (4)  
,
VCC  
(3) (4)  
,
3.0 (3.0)  
3.6 (3.6)  
V
VCC + 0.3  
VI  
With respect to GND  
–0.3  
V
(5)  
VO  
Output voltage  
For commercial use  
For industrial use  
0
0
VCC  
70  
85  
20  
20  
V
° C  
° C  
ns  
TA  
Operating temperature  
–40  
tR  
tF  
Input rise time  
Input fall time  
ns  
Table 14. DC Operating Conditions  
Symbol  
Parameter  
High-level input voltage  
Low-level input voltage  
Conditions  
Min  
2.0  
Max  
Unit  
V
VCC + 0.3  
VIH  
(5)  
VIL  
–0.3  
2.4  
0.8  
V
5.0-V mode high-level TTL output  
voltage  
(6)  
IOH = –4 mA DC  
V
VOH  
3.3-V mode high-level CMOS  
output voltage  
(6)  
IOH = –0.1 mA DC  
VCC – 0.2  
V
(6)  
VOL  
II  
Low-level output voltage  
Input leakage current  
IOL = 4 mA DC  
0.4  
10  
10  
V
VI = VCC or GND  
VO = VCC or GND  
–10  
–10  
A  
A  
IOZ  
Tri-state output off-state current  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 20  
Operating Conditions  
Table 15. EPC1064, EPC1064V, and EPC1213 Devices ICC Supply Current Values  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
100  
10  
Max  
ICC0  
ICC1  
VCC supply current (standby)  
200  
50  
A  
VCC supply current (during configuration)  
mA  
Table 16. EPC2 Device Values  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ICC0  
VCC supply current (standby) VCC = 5.0 V or 3.3 V  
50  
100  
µA  
VCC supply current (during  
VCC = 5.0 V or 3.3 V  
configuration)  
ICC1  
18  
1
50  
mA  
Internal pull up (OE, nCS  
,
RCONF  
Configuration pins  
k  
nINIT_CONF)  
Table 17. EPC1 Device ICC Supply Current Values  
Symbol  
Parameter  
Conditions  
Min  
Typ  
50  
30  
10  
Max  
100  
50  
Unit  
µA  
ICC0  
VCC supply current (standby)  
VCC = 5.0 V  
mA  
mA  
ICC1  
VCC supply current (during configuration)  
VCC = 3.3 V  
16.5  
Table 18. EPC1441 Device ICC Supply Current Values  
Symbol  
Parameter  
Conditions  
Min  
Typ  
30  
15  
5
Max  
60  
Unit  
µA  
ICC0  
VCC supply current (standby)  
ICC1  
ICC1  
VCC supply current (during configuration)  
VCC supply current (during configuration)  
VCC = 5.0 V  
VCC = 3.3 V  
30  
mA  
mA  
10  
Table 19. Capacitance (7)  
Symbol  
Parameter  
Conditions  
Min  
Max  
10  
Unit  
pF  
CIN  
Input pin capacitance  
Output pin capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
COUT  
10  
pF  
Notes to Table 12 through Table 19:  
(1) For more information, refer to the Operating Requirements for Altera Devices Datasheet.  
(2) The minimum DC input is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than  
100 mA and periods shorter than 20 ns under no-load conditions.  
(3) Numbers in parentheses are for industrial temperature range devices.  
(4) Maximum VCC rise time is 100 ms.  
(5) Certain EPC2 device pins are driven to 5.75 V when operated with a 3.3-V VCC. For more information, refer to Table 4 on page 11.  
(6) The IOH parameter refers to high-level TTL or CMOS output current and the IOL parameter refers to low-level TTL or CMOS output current.  
(7) Capacitance is sample tested only.  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Pin Information  
Page 21  
Pin Information  
Table 20 lists the pin functions of the EPC1, EPC2, and EPC1441 devices during device  
configuration.  
f For more information about pin information of EPC devices, refer to the Enhanced  
Configuration (EPC) Devices Datasheet.  
f For more information about pin information of EPCS devices, refer to the Serial  
Configuration (EPCS) Devices Datasheet.  
Table 20. EPC1, EPC2, and EPC1441 Device Pin Functions During Configuration (Part 1 of 3)  
Pin Number  
Pin Name  
Pin Type  
Description  
8-Pin  
20-Pin  
PLCC  
32-Pin  
(1)  
(2)  
PDIP  
TQFP  
Serial data output. The DATApin connects to the DATA0pin  
of the FPGA. DATAis latched into the FPGA on the rising  
edge of DCLK  
.
DATA  
1
2
31  
Output  
The DATApin is tri-stated before configuration and when  
the nCSpin is high. After configuration, the EPC2 device  
drives DATAhigh, while the EPC1 and EPC1441 device  
tri-state DATA  
.
Clock output when configuring with a single configuration  
device or when the configuration device is the first  
(master) device in a chain. Clock input for the next (slave)  
configuration devices in a chain. The DCLKpin connects to  
the DCLKpin of the FPGA.  
Rising edges on DCLKincrement the internal address  
counter and present the next bit of data on the DATApin.  
The counter is incremented only if the OEinput is held  
high, the nCSinput is held low, and all configuration data  
has not been transferred to the target device.  
DCLK  
2
4
2
Bidirectional  
After configuration or when OE is low, the EPC1, EPC2 and  
EPC1441 device drive DCLKlow.  
Output enable (active high) and reset (active low). The OE  
pin connects to the nSTATUSpin of the FPGA.  
A low logic level resets the address counter. A high logic  
level enables DATAand the address counter to count. If this  
pin is low (reset) during configuration, the internal  
Open-drain  
oscillator becomes inactive and DCLKdrives low. For more  
OE  
3
8
7
bidirectional information, refer to “Error Detection Circuitry” on page 9.  
The OE pin has an internal programmable 1-kresistor in  
EPC2 devices. If internal pull-up resistors are used, do not  
use external pull-up resistors on these pins. You can  
disable the internal pull-up resistors through the Disable  
nCS and OE pull-ups on configuration device option.  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 22  
Pin Information  
Table 20. EPC1, EPC2, and EPC1441 Device Pin Functions During Configuration (Part 2 of 3)  
Pin Number  
Pin Name  
Pin Type  
Description  
8-Pin  
20-Pin  
PLCC  
32-Pin  
(1)  
(2)  
PDIP  
TQFP  
Chip select input (active low). The nCSpin connects to the  
DONEpin of the FPGA.  
CONF  
_
A low input allows DCLKto increment the address counter  
and enables DATAto drive out. If the EPC1 or EPC2 device  
is reset (OEpulled low) while nCS is low, the device  
initializes as the master device in a configuration chain. If  
the EPC1 or EPC2 device is reset (OEpulled low) while nCS  
is high, the device initializes as a slave device in the chain.  
nCS  
4
9
10  
Input  
The nCSpin has an internal programmable 1-kresistor  
in EPC2 devices. If internal pull-up resistors are used, do  
not use external pull-up resistors on these pins. You can  
disable the internal pull-up resistors through the Disable  
nCS and OE pull-ups on configuration device option.  
Cascade select output (active low).  
This output goes low when the address counter has  
reached its maximum value. When the address counter has  
reached its maximum value, the configuration device has  
sent all its configuration data to the FPGA. In a chain of  
EPC1 or EPC2 devices, the nCASCpin of one device is  
connected to the nCSpin of the next device, which permits  
DCLKto clock data from the next EPC1 or EPC2 device in  
the chain. For single EPC1 or EPC2 device and the last  
device in the chain, nCASC is left floating.  
nCASC  
6
12  
15  
Output  
This pin is only available in EPC1 and EPC2 devices, which  
support data cascading.  
Allows the INIT  
configuration. The nINIT  
CONFIGpin of the FPGA.  
_
CONFJTAG instruction to initiate  
_CONFpin connects to the  
n
If multiple EPC2 devices are used to configure an FPGA,  
the nINIT CONFof the first EPC2 device pin is tied to the  
FPGA’s nCONFIGpin, while subsequent devices'  
INIT CONFpins are left floating.  
_
Open-Drain  
Output  
nINIT  
_
CONF  
N/A  
13  
16  
n
_
The INIT CONFpin has an internal 1-kpull-up resistor  
_
that is always active in EPC2 devices.  
This pin is only available in EPC2 devices.  
JTAG data input pin. Connect this pin to VCC if the JTAG  
circuitry is not used.  
TDI  
TDO  
TMS  
N/A  
N/A  
N/A  
11  
1
13  
28  
25  
Input  
This pin is only available in EPC2 devices.  
JTAG data output pin. Do not connect this pin if the JTAG  
circuitry is not used.  
Output  
Input  
This pin is only available in EPC2 devices.  
JTAG mode select pin. Connect this pin to VCC if the JTAG  
circuitry is not used.  
19  
This pin is only available in EPC2 devices.  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Pin Information  
Page 23  
Table 20. EPC1, EPC2, and EPC1441 Device Pin Functions During Configuration (Part 3 of 3)  
Pin Number  
Pin Name  
Pin Type  
Description  
8-Pin  
20-Pin  
PLCC  
32-Pin  
(1)  
(2)  
PDIP  
TQFP  
JTAG clock pin. Connect this pin to GND if the JTAG  
circuitry is not used.  
TCK  
N/A  
3
32  
Input  
This pin is only available in EPC2 devices.  
Mode select for VCC supply. VCCSELmust be connected to  
GND if the device uses a 5.0-V power supply (VCC = 5.0 V).  
VCCSELmust be connected to VCC if the device uses a  
3.3-V power supply (VCC = 3.3 V).  
VCCSEL  
VPPSEL  
VPP  
N/A  
N/A  
N/A  
5
3
Input  
Input  
Power  
This pin is only available in EPC2 devices.  
Mode select for VPP. supply. VPPSELmust be connected to  
GND if VPP uses a 5.0-V power supply (VPP = 5.0 V).  
VPPSELmust be connected to VCC if VPP uses a 3.3-V  
power supply (VPP = 3.3 V).  
14  
18  
17  
23  
This pin is only available in EPC2 devices.  
Programming power pin. For the EPC2 device, this pin is  
normally tied to VCC. If the VCC of the EPC2 device is 3.3 V,  
tie VPP to 5.0 V to improve ISP time. For EPC1 and  
EPC1441 devices, VPP must be tied to VCC.  
This pin is only available in EPC2 devices.  
Power pin.  
VCC  
7, 8  
5
20  
10  
27  
12  
Power  
Ground pin. Place a 0.2-µF decoupling capacitor between  
the VCC and GND pins.  
GND  
Ground  
Notes to Table 20:  
(1) This package is available for EPC1 and EPC1441 devices only.  
(2) This package is available for EPC2 and EPC1441 devices only.  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 24  
Package  
Package  
Figure 6 and Figure 7 show the configuration device package pin-outs.  
Figure 6. EPC1, EPC1064, EPC1064V, EPC1213, and EPC1441 Package Pin-Out Diagrams (1)  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
N.C.  
VCC  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
1
2
3
4
5
6
7
8
N.C.  
DCLK  
N.C.  
N.C.  
N.C.  
N.C.  
OE  
3
2
1
20 19  
18  
DCLK  
N.C.  
4
5
6
7
8
VCC  
N.C.  
17  
16  
15  
14  
DATA  
DCLK  
OE  
1
2
3
4
8
7
6
5
VCC  
N.C.  
N.C.  
VCC  
nCASC(2)  
GND  
N.C.  
OE  
N.C.  
N.C.  
nCS  
N.C.  
9
10 11 12 13 14 15 16  
9
10 11 12 13  
32-Pin TQFP  
20-Pin PLCC  
8-Pin PDIP  
EPC1441  
EPC1064  
EPC1064V  
EPC1  
EPC1  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
Notes to Figure 6:  
(1) EPC1 and EPC1441 devices are one-time programmable devices. ISP is not available in these devices.  
(2) The nCASCpin is available on EPC1 devices, which allows them to be cascaded. For EPC1441 devices, nCASCis a reserved pin and should  
be left unconnected.  
Figure 7. EPC2 Package Pin-Out Diagrams  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
N.C.  
DCLK  
VCCSEL  
N.C.  
24  
23  
22  
21  
20  
19  
18  
N.C.  
VPP  
N.C.  
N.C.  
3
2
1
20 19  
18  
DCLK  
VCCSEL  
N.C.  
4
5
6
7
8
VPP  
N.C.  
N.C.  
17  
16  
15  
14  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
OE  
N.C.  
VPPSEL  
VPPSEL  
8
17  
16  
N.C.  
OE  
9
10 11 12 13 14 15  
9
10 11 12 13  
32-Pin TQFP  
20-Pin PLCC  
f For more information about package outlines and drawings, refer to the Package and  
Thermal Resistance page.  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
Ordering Codes  
Page 25  
Ordering Codes  
Table 21 lists the ordering codes for the EPC1, EPC2, and EPC1441 configuration  
devices.  
Table 21. Configuration Device Ordering Codes  
Device  
EPC1  
Package  
Temperature  
Commercial  
Industrial  
Ordering Code  
EPC1LC20  
20-pin PLCC  
20-pin PLCC  
8-pin PDIP  
8-pin PDIP  
32-pin TQFP  
32-pin TQFP  
20-pin PLCC  
20-pin PLCC  
32-pin TQFP  
32-pin TQFP  
20-pin PLCC  
20-pin PLCC  
8-pin PDIP  
8-pin PDIP  
EPC1  
EPC1LI20  
EPC1  
Commercial  
Industrial  
EPC1PC8  
EPC1  
EPC1PI8  
EPC2  
Commercial  
Industrial  
EPC2TC32  
EPC2  
EPC2TI32  
EPC2  
Commercial  
Industrial  
EPC2LC20  
EPC2  
EPC2LI20  
EPC1441  
EPC1441  
EPC1441  
EPC1441  
EPC1441  
EPC1441  
Commercial  
Industrial  
EPC1441TC32  
EPC1441TI32  
EPC1441LC20  
EPC1441LI20  
EPC1441PC8  
EPC1441PI8  
Commercial  
Industrial  
Commercial  
Industrial  
Document Revision History  
Table 22 lists the revision history for this document.  
Table 22. Document Revision History  
Date  
Version  
Changes  
January 2012  
3.0  
Minor text edits.  
Updated “Features” section.  
December 2009  
2.4  
Removed “Referenced Documents” section.  
Updated “Features” and “IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing”  
sections.  
Updated Table 5–2 and Table 5–16.  
Added “Referenced Documents” section.  
Updated new document format.  
October 2008  
2.3  
April 2007  
2.2  
2.0  
1.0  
Added document revision history.  
July 2004  
Added Stratix II and Cyclone II device information throughout chapter.  
Initial Release.  
September 2003  
January 2012 Altera Corporation  
Configuration Devices for SRAM-Based LUT Devices  
Page 26  
Document Revision History  
Configuration Devices for SRAM-Based LUT Devices  
January 2012 Altera Corporation  
配单直通车
EPC1PC8产品参数
型号:EPC1PC8
是否无铅: 含铅
是否Rohs认证: 不符合
生命周期:Transferred
IHS 制造商:ALTERA CORP
零件包装代码:DIP
包装说明:DIP, DIP8,.3
针数:8
Reach Compliance Code:not_compliant
ECCN代码:3A991.B.2.A
HTS代码:8542.32.00.61
风险等级:3.79
Samacsys Confidence:3
Samacsys Status:Released
Samacsys PartID:2131650
Samacsys Pin Count:8
Samacsys Part Category:Integrated Circuit
Samacsys Package Category:Dual-In-Line Packages
Samacsys Footprint Name:8-Pin Plastic Dual In-Line Package (PDIP)—Wire Bond
Samacsys Released Date:2019-12-27 06:19:51
Is Samacsys:N
其他特性:IT CAN ALSO OPERATE AT 5V SUPPLY
最大时钟频率 (fCLK):10 MHz
I/O 类型:COMMON
JESD-30 代码:R-PDIP-T8
JESD-609代码:e0
长度:9.398 mm
内存密度:1046496 bit
内存集成电路类型:CONFIGURATION MEMORY
内存宽度:1
湿度敏感等级:1
功能数量:1
端子数量:8
字数:1046496 words
字数代码:1046496
工作模式:SYNCHRONOUS
最高工作温度:70 °C
最低工作温度:
组织:1046496X1
输出特性:3-STATE
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装等效代码:DIP8,.3
封装形状:RECTANGULAR
封装形式:IN-LINE
并行/串行:SERIAL
峰值回流温度(摄氏度):NOT SPECIFIED
电源:5 V
认证状态:Not Qualified
座面最大高度:4.318 mm
子类别:OTP ROMs
最大压摆率:0.05 mA
最大供电电压 (Vsup):3.6 V
最小供电电压 (Vsup):3 V
标称供电电压 (Vsup):3.3 V
表面贴装:NO
技术:MOS
温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.62 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!