欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • FAN7930CMX图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • FAN7930CMX 现货库存
  • 数量6980 
  • 厂家FAIRCHILD 
  • 封装SOP-8 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • FAN7930CMX图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • FAN7930CMX 现货库存
  • 数量12500 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • FAN7930CMX-G图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • FAN7930CMX-G 现货库存
  • 数量6018 
  • 厂家ON(安森美) 
  • 封装8-SOIC(0.154,3.90mm 宽) 
  • 批号22+ 
  • 原装正品现货,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • FAN7930CMX图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • FAN7930CMX 现货库存
  • 数量35600 
  • 厂家FAIRCHILD 
  • 封装SOIC-8 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • FAN7930CMX图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • FAN7930CMX 现货库存
  • 数量60030 
  • 厂家FAIRCHILD/仙童 
  • 封装SOP-8 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • FAN7930CMX-G图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • FAN7930CMX-G
  • 数量5300 
  • 厂家ON(安森美) 
  • 封装SOP-8 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • FAN7930CMX-G图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • FAN7930CMX-G
  • 数量9840 
  • 厂家ON(安森美) 
  • 封装N/A 
  • 批号22+ 
  • 只做原装 实单来谈★★☆
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • FAN7930CMX-G图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • FAN7930CMX-G
  • 数量5280 
  • 厂家ON(安森美) 
  • 封装SOP-8 
  • 批号23+ 
  • ▉原装正品▉力挺实单可含税可拆样
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • FAN7930CMX图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • FAN7930CMX
  • 数量85000 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • FAN7930CMX图
  • 集好芯城

     该会员已使用本站13年以上
  • FAN7930CMX
  • 数量14916 
  • 厂家FAIRCHILD/仙童 
  • 封装SOP-8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • FAN7930CMX_G图
  • 首天国际(深圳)集团有限公司

     该会员已使用本站17年以上
  • FAN7930CMX_G
  • 数量5000 
  • 厂家FSC 
  • 封装原厂封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807088 QQ:528164397QQ:1318502189
  • FAN7930CMX图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • FAN7930CMX
  • 数量8800 
  • 厂家FAIRCHILD/仙童 
  • 封装SOP8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • FAN7930CMX图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • FAN7930CMX
  • 数量2500 
  • 厂家FAIRCHILD 
  • 封装SOP8 
  • 批号23+ 
  • 只做进口原装/到货/可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • FAN7930CMX图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • FAN7930CMX
  • 数量6980 
  • 厂家FAIRCHILD 
  • 封装SOP-8 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • FAN7930CMX图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • FAN7930CMX
  • 数量27048 
  • 厂家ON/安森美 
  • 封装SOP 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • FAN7930CMX图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • FAN7930CMX
  • 数量85000 
  • 厂家FAIRCHILD/仙童 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • FAN7930CMX-G图
  • 深圳市勤思达科技有限公司

     该会员已使用本站14年以上
  • FAN7930CMX-G
  • 数量13621 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号24+ 
  • 全新现货可以开税票
  • QQ:2881239445QQ:2881239445 复制
  • 0755-83264115 QQ:2881239445
  • FAN7930CMX图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • FAN7930CMX
  • 数量32222 
  • 厂家ON/安森美 
  • 封装SOP 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • FAN7930CMX-G图
  • 现代芯城(深圳)科技有限公司

     该会员已使用本站15年以上
  • FAN7930CMX-G
  • 数量72000 
  • 厂家一级代理 
  • 封装一级代理 
  • 批号一级代理 
  • 一级代理正品采购
  • QQ:3007226851QQ:3007226851 复制
    QQ:3007226849QQ:3007226849 复制
  • 0755-82542579 QQ:3007226851QQ:3007226849
  • FAN7930CMX-G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • FAN7930CMX-G
  • 数量14950 
  • 厂家仙童 
  • 封装NA 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • FAN7930CMX图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • FAN7930CMX
  • 数量5680 
  • 厂家FAIRCHILD 
  • 封装SOP 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • FAN7930CMX图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • FAN7930CMX
  • 数量5000 
  • 厂家Fairchild Semiconductor 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • FAN7930CMX-G图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • FAN7930CMX-G
  • 数量19414 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • FAN7930CMX图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • FAN7930CMX
  • 数量50000 
  • 厂家FAIRCHILD 
  • 封装SOP8 
  • 批号21+ 
  • 原装现货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • FAN7930CMX图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • FAN7930CMX
  • 数量12000 
  • 厂家FSC 
  • 封装SMD 
  • 批号2017+ 
  • 原厂/代理渠道价格优势
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • FAN7930CMX_G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • FAN7930CMX_G
  • 数量5000 
  • 厂家FSC 
  • 封装原厂封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • FAN7930CMX图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • FAN7930CMX
  • 数量5716 
  • 厂家FAIRCHLD 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • FAN7930CMX-G图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • FAN7930CMX-G
  • 数量40894 
  • 厂家FAI 
  • 封装SOP8 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • FAN7930CMX图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • FAN7930CMX
  • 数量30430 
  • 厂家FAIECHILD 
  • 封装SOP8 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • FAN7930CMX图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • FAN7930CMX
  • 数量36218 
  • 厂家ON-安森美 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥2.8元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • FAN7930CMX图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • FAN7930CMX
  • 数量2800 
  • 厂家FAIRCHILD/仙童 
  • 封装SOP8 
  • 批号20+ 
  • 绝对全新原装现货,欢迎来电查询
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • FAN7930CMX图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • FAN7930CMX
  • 数量3273 
  • 厂家Fairchild 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • FAN7930CMX-G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • FAN7930CMX-G
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • FAN7930CMX图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • FAN7930CMX
  • 数量23000 
  • 厂家Fairchild 
  • 封装8-SOP 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • FAN7930CMX-G图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • FAN7930CMX-G
  • 数量33619 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • FAN7930CMX图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • FAN7930CMX
  • 数量5800 
  • 厂家FSC 
  • 封装SOP 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291

产品型号FAN7930CMX的概述

FAN7930CMX芯片概述 FAN7930CMX是一款高性能的电源管理芯片,广泛用于各种消费电子产品中。该芯片由Fairchild Semiconductor公司(现为ON Semiconductor的一部分)设计并生产,其独特的结构和功能使其在能源效率和小型化设计领域具有优势。FAN7930CMX主要用于DC-DC转换器、LED驱动器和电池管理系统,具备多种保护功能,如过流保护、过温保护和欠压锁定功能,确保系统的安全和稳定运行。 详细参数 FAN7930CMX的技术参数包括输入电压范围、输出电流、开关频率、效率等。具体参数如下: - 输入电压范围:4.5V至30V - 输出电流:最大可达到3A - 开关频率:典型为300kHz,调整范围根据具体应用而定 - 效率:在负载条件下,最高可达92%以上 - 工作温度范围:-40℃至+125℃ - 封装形式:SOIC-8封装,适合多种PCB...

产品型号FAN7930CMX的Datasheet PDF文件预览

October 2010  
FAN7930C  
Critical Conduction Mode PFC Controller  
Features  
Description  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
PFC-Ready Signal  
The FAN7930C is an active power factor correction  
(PFC) controller for boost PFC applications that operate  
in critical conduction mode (CRM). It uses a voltage-  
mode PWM that compares an internal ramp signal with  
the error amplifier output to generate a MOSFET turn-off  
signal. Because the voltage-mode CRM PFC controller  
does not need rectified AC line voltage information, it  
saves the power loss of an input voltage sensing network  
necessary for a current-mode CRM PFC controller.  
Input Voltage Absent Detection  
Maximum Switching Frequency Limitation  
Internal Soft-Start and Startup without Overshoot  
Internal Total Harmonic Distortion (THD) Optimizer  
Precise Adjustable Output Over-Voltage Protection  
Open-Feedback Protection and Disable Function  
Zero-Current Detector (ZCD)  
FAN7930C provides over-voltage protection (OVP),  
open-feedback protection, over-current protection  
(OCP), input-voltage-absent detection, and under-  
voltage lockout protection (UVLO). The PFC-ready pin  
can be used to trigger other power stages when PFC  
output voltage reaches the proper level with hysteresis.  
The FAN7930C can be disabled if the INV pin voltage is  
lower than 0.45V and the operating current decreases to  
a very low level. Using a new variable on-time control  
method, THD is lower than the conventional CRM boost  
PFC ICs.  
150μs Internal Startup Timer  
MOSFET Over-Current Protection (OCP)  
Under-Voltage Lockout with 3.5V Hysteresis  
Low Startup and Operating Current  
Totem-Pole Output with High State Clamp  
+500/-800mA Peak Gate Drive Current  
8-Pin SOP  
Related Resources  
Applications  
AN-8035 — Design Consideration for Boundary  
Conduction Mode PFC Using FAN7930  
ƒ
ƒ
ƒ
ƒ
Adapter  
Ballast  
LCD TV, CRT TV  
SMPS  
Ordering Information  
Operating  
Temperature Range  
Packing  
Part Number  
Top Mark  
Package  
Method  
FAN7930CM  
Rail  
-40 to +125°C  
FAN7930C 8-Lead Small Outline Package (SOP)  
FAN7930CMX  
Tape & Reel  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
Application Diagram  
Figure 1.  
Typical Boost PFC Application  
Internal Block Diagram  
Figure 2.  
Functional Block Diagram  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
2
Pin Configuration  
Figure 3.  
Pin Configuration (Top View)  
Pin Definitions  
Pin # Name Description  
This pin is the inverting input of the error amplifier. The output voltage of the boost PFC converter  
should be resistively divided to 2.5V.  
1
2
3
4
INV  
RDY  
COMP  
CS  
This pin is used to detect PFC output voltage reaching a pre-determined value. When output  
voltage reaches 89% of rated output voltage, this pin is pulled HIGH, which is an (open-drain)  
output type.  
This pin is the output of the transconductance error amplifier. Components for the output voltage  
compensation should be connected between this pin and GND.  
This pin is the input of the over-current protection comparator. The MOSFET current is sensed  
using a sensing resistor and the resulting voltage is applied to this pin. An internal RC filter is  
included to filter switching noise.  
This pin is the input of the zero-current detection block. If the voltage of this pin goes higher than  
1.5V, then goes lower than 1.4V, the MOSFET is turned on.  
5
6
ZCD  
GND  
This pin is used for the ground potential of all the pins. For proper operation, the signal ground  
and the power ground should be separated.  
This pin is the gate drive output. The peak sourcing and sinking current levels are +500mA and  
-800mA, respectively. For proper operation, the stray inductance in the gate driving path must be  
minimized.  
7
8
OUT  
VCC  
This is the IC supply pin. IC current and MOSFET drive current are supplied using this pin.  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VCC  
Parameter  
Min.  
Max.  
VZ  
Unit  
V
Supply Voltage  
IOH, IOL  
ICLAMP  
IDET  
Peak Drive Output Current  
-800  
-10  
+500  
+10  
+10  
8.0  
mA  
mA  
mA  
Driver Output Clamping Diodes VO>VCC or VO<-0.3V  
Detector Clamping Diodes  
-10  
Error Amplifier Input, Output, ZCD and RDY Pin(1)  
CS Input Voltage(2)  
-0.3  
-10.0  
VIN  
V
6.0  
TJ  
TA  
Operating Junction Temperature  
Operating Temperature Range  
+150  
+125  
+150  
2.5  
°C  
°C  
°C  
-40  
-65  
TSTG  
Storage Temperature Range  
Human Body Model, JESD22-A114  
Charged Device Model, JESD22-C101  
Electrostatic Discharge  
Capability  
ESD  
kV  
2.0  
Notes:  
1. When this pin is supplied by external power sources by accident, its maximum allowable current is 50mA.  
2. In case of DC input, acceptable input range is -0.3V~6V: within 100ns -10V~6V is acceptable, but electrical  
specifications are not guaranteed during such a short time.  
Thermal Impedance  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Thermal Resistance, Junction-to-Ambient(3)  
150  
°C/W  
ΘJA  
Note:  
3. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7930C • Rev. 1.0.0  
4
Electrical Characteristics  
VCC = 14V, TA = -40°C~+125°C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
VCC Section  
VSTART  
VSTOP  
Start Threshold Voltage  
Stop Threshold Voltage  
UVLO Hysteresis  
VCC Increasing  
VCC Decreasing  
11  
7.5  
3.0  
20  
12  
8.5  
3.5  
22  
13  
9.5  
4.0  
24  
V
V
V
V
V
HYUVLO  
VZ  
Zener Voltage  
ICC=20mA  
VOP  
Recommended Operating Range  
13  
20  
Supply Current Section  
ISTART Startup Supply Current  
IOP Operating Supply Current  
VCC=VSTART-0.2V  
120  
1.5  
2.5  
160  
190  
3.0  
µA  
mA  
mA  
µA  
Output Not Switching  
IDOP  
Dynamic Operating Supply Current 50kHZ, CI=1nF  
Operating Current at Disable VINV=0V  
4.0  
230  
IOPDIS  
90  
Error Amplifier Section  
VREF1  
ΔVREF1  
ΔVREF2  
IEA,BS  
Voltage Feedback Input Threshold1 TA=25°C  
2.465  
2.500  
0.1  
2.535  
10.0  
V
Line Regulation  
VCC=14V~20V  
mV  
mV  
µA  
(4)  
Temperature Stability of VREF1  
Input Bias Current  
20  
VINV=1V~4V  
-0.5  
0.5  
IEAS,SR  
Output Source Current  
VINV=VREF -0.1V  
VINV=VREF +0.1V  
VINV=1V, VCS=0V  
-12  
12  
µA  
µA  
IEAS,SK  
VEAH  
VEAZ  
gm  
Output Sink Current  
Output Upper Clamp Voltage  
6.0  
0.9  
90  
6.5  
1.0  
115  
7.0  
1.1  
140  
V
Zero-Duty Cycle Output Voltage  
Transconductance(4)  
V
µmho  
Maximum On-Time Section  
tON,MAX1  
tON,MAX2  
Maximum On-Time Programming 1 TA=25°C, VZCD=1V  
35.5  
11.2  
41.5  
13.0  
47.5  
14.8  
µs  
µs  
TA=25°C,  
Maximum On-Time Programming 2  
IZCD=0.469mA  
Current-Sense Section  
Current-Sense Input Threshold  
Voltage Limit  
VCS  
ICS,BS  
tCS,D  
0.7  
0.8  
-0.1  
350  
0.9  
1.0  
500  
V
Input Bias Current  
VCS=0V~1V  
-1.0  
µA  
ns  
dV/dt=1V/100ns,  
from 0V to 5V  
Current-Sense Delay to Output(4)  
Continued on the following page…  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
5
Electrical Characteristics  
VCC = 14V, TA = -40°C~+125°C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max.  
Units  
Zero-Current Detect Section  
VZCD  
Input Voltage Threshold(4)  
1.35  
0.05  
5.5  
0
1.50  
0.10  
6.2  
1.65  
0.15  
7.5  
1.00  
1.0  
-4  
V
V
HYZCD Detect Hysteresis(4)  
VCLAMPH Input High Clamp Voltage  
VCLAMPL Input Low Clamp Voltage  
IZCD,BS Input Bias Current  
IZCD,SR Source Current Capability(4)  
IZCD,SK Sink Current Capability(4)  
IDET=3mA  
V
IDET= -3mA  
VZCD=1V~5V  
TA=25°C  
0.65  
-0.1  
V
-1.0  
µA  
mA  
mA  
TA=25°C  
10  
Maximum Delay From ZCD to Output  
Turn-On(4)  
dV/dt=-1V/100ns,  
from 5V to 0V  
tZCD,D  
100  
9.2  
200  
ns  
Output Section  
VOH  
VOL  
Output Voltage High  
IO=-100mA, TA=25°C  
IO=200mA, TA=25°C  
CIN=1nF  
11.0  
1.0  
50  
12.8  
2.5  
V
V
Output Voltage Low  
Rising Time(4)  
Falling Time(4)  
tRISE  
tFALL  
100  
100  
14.5  
1
ns  
ns  
V
CIN=1nF  
50  
VO,MAX Maximum Output Voltage  
VCC=20V, IO=100µA  
VCC=5V, IO=100µA  
11.5  
13.0  
VO,UVLO Output Voltage with UVLO Activated  
V
Restart / Maximum Switching Frequency Limit Section  
tRST  
fMAX  
Restart Timer Delay  
Maximum Switching Frequency(4)  
50  
150  
300  
300  
350  
µs  
250  
kHz  
RDY Pin  
IRDY,SK Output Sink Current  
VRDY,SAT Output Saturation Voltage  
IRDY,LK Output Leakage Current  
Soft-Start Timer Section  
1
2
4
500  
1
mA  
mV  
µA  
IRDY,SK=2mA  
320  
Output High Impedance  
tSS  
UVLO Section  
Internal Soft-Soft(4)  
3
5
7
ms  
VRDY  
Output Ready Voltage  
2.166 2.240 2.314  
0.189  
V
V
HYRDY Output Ready Hysteresis  
Protections  
VOVP  
OVP Threshold Voltage  
TA=25°C  
TA=25°C  
2.620 2.675 2.730  
0.120 0.175 0.230  
V
V
HYOVP OVP Hysteresis  
VEN  
HYEN  
TSD  
Enable Threshold Voltage  
0.40  
0.050  
125  
0.45  
0.10  
140  
60  
0.50  
0.15  
155  
V
Enable Hysteresis  
V
Thermal Shutdown Temperature(4)  
Hysteresis Temperature of TSD(4)  
°C  
°C  
THYS  
Note:  
4. These parameters, although guaranteed by design, are not production tested.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7930C • Rev. 1.0.0  
6
Comparison of FAN7530 and FAN7930C  
Function  
FAN7530  
FAN7930C  
FAN7930C Advantages  
ƒ
ƒ
No External Circuit for PFC Output UVLO  
Reduce Power Loss and BOM Cost Caused by  
PFC Out UVLO Circuit  
PFC Ready Pin  
None  
Integrated  
ƒ
ƒ
ƒ
Versatile Open-Drain Pin  
Abnormal CCM Operation Prohibited  
Frequency Limit  
None  
None  
None  
Integrated  
Integrated  
Abnormal Inductor Current Accumulation can be  
Prohibited  
ƒ
ƒ
Increase System Reliability by testing for input  
supply voltage  
VIN-Absent Detection  
Guarantee Stable Operation at Short Electric  
Power Failure  
ƒ
ƒ
Reduce Voltage and Current Stress at Startup  
Soft-Start and  
Overshoot  
Prevention  
Integrated  
Internal  
Eliminate Audible Noise due to Unwanted OVP  
Triggering  
ƒ
ƒ
ƒ
No External Resistor is Needed  
THD Optimizer  
TSD  
External  
None  
Stable and Reliable TSD Operation  
Converter Temperature Range Limited Range  
140°C with 60°C  
Hysteresis  
Comparison between FAN7930 and FAN7930C  
Function  
FAN7930  
FAN7930C  
FAN7930C Remark  
ƒ
If PFC rated output voltage is assumed 390V:  
FAN7930: VRDY_HIGH trigger voltage = 349V  
VRDY_LOW trigger voltage = 256V  
RDY Threshold  
2.240V  
2.240V  
FAN7930C: VRDY_HIGH trigger voltage = 349V  
VRDY_LOW trigger voltage = 320V  
RDY Hysteresis  
0.600V  
None  
0.189V  
Control Range  
Compensation  
Integrated  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
7
Typical Performance Characteristics  
Figure 4. Voltage Feedback Input Threshold 1 (VREF1  
vs. TA  
)
Figure 5. Start Threshold Voltage (VSTART) vs. TA  
Figure 6. Stop Threshold Voltage (VSTOP) vs. TA  
Figure 7. Startup Supply Current (ISTART) vs. TA  
Figure 8. Operating Supply Current (IOP) vs. TA  
Figure 9. Output Upper Clamp Voltage (VEAH) vs. TA  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
8
Typical Performance Characteristics  
Figure 10. Zero Duty Cycle Output Voltage (VEAZ  
vs. TA  
)
Figure 11. Maximum On-Time Program 1 (tON,MAX1  
vs. TA  
)
Figure 12. Maximum On-Time Program 2 (tON,MAX2  
vs. TA  
)
Figure 13. Current-Sense Input Threshold Voltage  
Limit (VCS) vs. TA  
Figure 14. Input High Clamp Voltage (VCLAMPH) vs. TA Figure 15. Input Low Clamp Voltage (VCLAMPL) vs. TA  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
9
Typical Performance Characteristics  
Figure 16. Output Voltage High (VOH) vs. TA  
Figure 17. Output Voltage Low (VOL) vs. TA  
Figure 19. Output Ready Voltage (VRDY) vs. TA  
Figure 21. OVP Threshold Voltage (VOVP) vs. TA  
Figure 18. Restart Timer Delay (tRST) vs. TA  
Figure 20. Output Saturation Voltage (VRDY,SAT  
vs. TA  
)
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
10  
Applications Information  
1. Startup: Normally, supply voltage (VCC) of a PFC  
block is fed from the additional power supply, which can  
be called standby power. Without this standby power,  
auxiliary winding for zero current detection can be used  
as a supply source. Once the supply voltage of the PFC  
block exceeds 12V, internal operation is enabled until  
the voltage drops to 8.5V. If VCC exceeds VZ, 20mA  
current is sinking from VCC  
.
Figure 23. Circuit Around INV Pin  
Figure 22. Startup Circuit  
2. INV Block: Scaled-down voltage from the output is  
the input for the INV pin. Many functions are embedded  
based on the INV pin: transconductance amplifier,  
output OVP comparator, disable comparator, and output  
UVLO comparator.  
For the output voltage control, a transconductance  
amplifier is used instead of the conventional voltage  
amplifier. The transconductance amplifier (voltage-  
controlled current source) aids the implementation of the  
OVP and disable functions. The output current of the  
amplifier changes according to the voltage difference of  
the inverting and non-inverting input of the amplifier. To  
cancel down the line input voltage effect on power factor  
correction, the effective control response of the PFC  
block should be slower than the line frequency and this  
conflicts with the transient response of controller. Two-  
pole one-zero type compensation may be used to meet  
both requirements.  
Figure 24. Timing Chart for INV Block  
3. RDY Output: When the INV voltage is higher than  
2.24V, RDY output is triggered HIGH and lasts until the  
INV voltage is lower than 2.051V. When input AC  
voltage is quite high, for example 240VAC, PFC output  
voltage is always higher than RDY threshold, regardless  
of boost converter operation. In this case, the INV  
voltage is already higher than 2.24V before PFC VCC  
touches VSTART; however, RDY output is not triggered to  
HIGH until VCC touches VSTART. After boost converter  
operation stops, RDY is not pulled LOW because the  
INV voltage is higher than the RDY threshold. When VCC  
of the PFC drops below 5V, RDY is pulled LOW even  
though PFC output voltage is higher than threshold. The  
RDY pin output is open drain, so needs an external pull-  
up resistor to supply the proper power source. The RDY  
pin output remains floating until VCC is higher than 2V.  
The OVP comparator shuts down the output drive block  
when the voltage of the INV pin is higher than 2.675V  
and there is 0.175V hysteresis. The disable comparator  
disables operation when the voltage of the inverting  
input is lower than 0.35V and there is 100mV hysteresis.  
An external small-signal MOSFET can be used to  
disable the IC, as shown in Figure 23. The IC operating  
current decreases to reduce power consumption if the  
IC is disabled. Error! Reference source not found. is  
the timing chart of the internal circuit near the INV pin  
when rated PFC output voltage is 390VDC and VCC  
supply voltage is 15V.  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
11  
(see Equation 1). Positive voltage is induced (see  
Equation 2) when the power switch turns off.  
T
AUX  
V
= −  
V  
AC  
AUX  
AUX  
(1)  
(2)  
T
IND  
T
AUX  
V
=
(V  
V  
AC  
)
PFCOUT  
T
IND  
where:  
VAUX is the auxiliary winding voltage;  
TIND is boost inductor turns;  
TIND auxiliary winding turns;  
VAC is input voltage for PFC converter; and  
VOUT_PFC is output voltage from the PFC converter.  
Figure 25. Two Cases of RDY Triggered HIGH  
Figure 27. Circuit Near ZCD  
Because auxiliary winding voltage can swing from  
negative to positive voltage, the internal block in ZCD  
pin has both positive and negative voltage clamping  
circuits. When the auxiliary voltage is negative, internal  
circuit clamps the negative voltage at the ZCD pin  
around 0.65V by sourcing current to the serial resistor  
between the ZCD pin and the auxiliary winding. When  
the auxiliary voltage is higher than 6.5V, current is  
sinked through a resistor from the auxiliary winding to  
the ZCD pin.  
Figure 28. Auxiliary Voltage Depends on  
MOSFET Switching  
Figure 26. Two Cases of RDY Triggered LOW  
The auxiliary winding voltage is used to check the boost  
inductor current zero instance. When boost inductor  
current becomes zero, there is a resonance between  
boost inductor and all capacitors at the MOSFET drain  
pin: including COSS of the MOSFET; an external  
capacitor at the D-S pin to reduce the voltage rising and  
falling slope of the MOSFET; a parasitic capacitor at  
inductor; and so on to improve performance. Resonated  
voltage is reflected to the auxiliary winding and can be  
used for detecting zero current of boost inductor and  
4. Zero-Current Detection: Zero-current detection  
(ZCD) generates the turn-on signal of the MOSFET  
when the boost inductor current reaches zero using an  
auxiliary winding coupled with the inductor. When the  
power switch turns on, negative voltage is induced at the  
auxiliary winding due to the opposite winding direction  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
12  
valley position of MOSFET voltage stress. For valley  
detection, a minor delay by the resistor and capacitor is  
needed. A capacitor increases the noise immunity at the  
ZCD pin. If ZCD voltage is higher than 1.5V, an internal  
ZCD comparator output becomes HIGH and LOW when  
the ZCD goes below 1.4V. At the falling edge of  
comparator output, internal logic turns on the MOSFET.  
current is reset to zero at the next switch on; inductor  
current builds up at every switching cycle and can be  
raised to very high current that exceeds the current  
rating of the power switch or diode. This can seriously  
damage the power switch and result in burn down. To  
avoid this, maximum switching frequency limitation is  
embedded. If ZCD signal is applied again within 3.3μs  
after the previous rising edge of gate signal, this signal  
is ignored internally and FAN7930C waits for another  
ZCD signal. This slightly degrades the power factor  
performance at light load and high input voltage.  
Figure 31. Maximum Switching Frequency  
Limit Operation  
5. Control: The scaled output is compared with the  
internal reference voltage and sinking or sourcing  
current is generated from the COMP pin by the  
transconductance amplifier. The error amplifier output is  
compared with the internal sawtooth waveform to give  
proper turn-on time based on the controller.  
Figure 29. Auxiliary Voltage Threshold  
When no ZCD signal is available, the PFC controller  
cannot turn on the MOSFET, so the controller checks  
every switching off time and forces MOSFET turn on  
when the off time is longer than 150μs. This is called the  
restart timer, which triggers MOSFET turn-on at startup  
and may be used at the input voltage zero-cross period.  
Figure 32. Control Circuit  
Unlike a conventional voltage-mode PWM controller,  
FAN7930C turns on the MOSFET at the falling edge of  
ZCD signal. On-instance is determined by the external  
signal and the turn-on time lasts until the error amplifier  
output (VCOMP) and sawtooth waveform meet. When  
load is heavy, output voltage decreases, scaled output  
decreases, COMP voltage increases to compensate low  
output, turn-on time lengthens to give more inductor  
turn-on time, and increased inductor current raises the  
output voltage. This is how PFC negative feedback  
controller regulates output.  
150μs  
Figure 30. Restart Timer at Startup  
Because the MOSFET turn-on depends on the ZCD  
input, switching frequency may increase to higher than  
several megahertz due to the miss-triggering or noise  
on the nearby ZCD pin. If the switching frequency is  
higher than needed for critical conduction mode (CRM),  
operation mode shifts to continuous conduction mode  
(CCM). In CCM, unlike CRM where the boost inductor  
The maximum of VCOMP is limited to 6.5V, which dictates  
the maximum turn-on time, and switching stops when  
VCOMP is lower than 1.0V.  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
13  
6. Soft-Start: When VCC reaches VSTART, the internal  
reference voltage is increased like a stair step for 5ms.  
As a result, VCOMP is also raised gradually and MOSFET  
turn-on time increases smoothly. This reduces voltage  
and current stress on the power switch during startup.  
0.155 V / μs  
Figure 33. Turn-On Time Determination  
The roles of PFC controller are regulating output voltage  
and input current shaping to increase power factor. Duty  
control based on the output voltage should be fast  
enough to compensate output voltage dip or overshoot.  
For the power factor, however, the control loop must not  
react to the fluctuating AC input voltage. These two  
requirements conflict; therefore, when designing a  
feedback loop, the feedback loop should be least 10  
times slower than AC line frequency. That slow  
response is made by C1 at compensator. R1 makes  
gain boost around operation region and C2 attenuates  
gain at higher frequency. Boost gain by R1 helps raise  
the response time and improves phase margin.  
Figure 36. Soft-Start Sequence  
7. Startup without Overshoot: Feedback control speed  
of PFC is quite slow. Due to the slow response, there is  
a gap between output voltage and feedback control.  
That is why over-voltage protection (OVP) is critical at  
the PFC controller and voltage dip caused by fast load  
changes from light to heavy is diminished by a bulk  
capacitor. OVP is easily triggered at startup phase.  
Operation on and off by OVP at startup may cause  
audible noise and can increase voltage stress at startup,  
which is normally higher than in normal operation. This  
operation is better when soft-start time is very long.  
However, too much startup time enlarges the output  
voltage building time at light load. FAN7930C has  
overshoot avoidance at startup. During startup, the  
feedback loop is controlled by an internal proportional  
gain controller and, when the output voltage reaches the  
rated value, it switches to an external compensator after  
a transition time of 30ms. This internal proportional gain  
controller eliminates overshoot at startup and an  
external conventional compensator takes over  
successfully afterward.  
Figure 34. Compensators Gain Curve  
For the transconductance error amplifier side, gain  
changes based on differential input. When the error is  
large, gain is large to make the output dip or peak to  
suppress quickly. When the error is small, low gain is  
used to improve power factor performance.  
250μmho  
115μmho  
Figure 35. Gain Characteristic  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
14  
Figure 37. Startup Control without Overshoot  
Figure 39. Input and Output Current Near Input  
Voltage Peak Zero Cross  
8. THD Optimization: Total Harmonic Distortion (THD)  
is the factor that dictates how closely input current  
shape matches sinusoidal form. The turn-on time of the  
PFC controller is almost constant over one AC line  
period due to the extremely low feedback control  
response. The turn-off time is determined by the current  
decrease slope of the boost inductor made by the input  
voltage and output voltage. Once inductor current  
becomes zero, resonance between COSS and the boost  
inductor makes oscillating waveforms at the drain pin  
and auxiliary winding. By checking the auxiliary winding  
voltage through the ZCD pin, the controller can check  
the zero current of boost inductor. At the same time, a  
minor delay is inserted to determine the valley position  
of drain voltage. The input and output voltage difference  
is at its maximum at the zero cross point of AC input  
voltage. The current decrease slope is steep near the  
zero cross region and more negative inductor current  
flows during a drain voltage valley detection time. Such  
a negative inductor current cancels down the positive  
current flows and input current becomes zero, called  
“zero-cross distortion” in PFC.  
To improve this, lengthened turn-on time near the zero  
cross region is a well-known technique, though the  
method may vary and may be proprietary. FAN7930C  
optimizes this by sourcing current through the ZCD pin.  
Auxiliary winding voltage becomes negative when the  
MOSFET turns on and is proportional to input voltage.  
The negative clamping circuit of ZCD outputs the  
current to maintain the ZCD voltage at a fixed value.  
The sourcing current from the ZCD is directly  
proportional to the input voltage. Some portion of this  
current is applied to the internal sawtooth generator,  
together with a fixed-current source. Theoretically, the  
fixed-current source and the capacitor at sawtooth  
generator determine the maximum turn-on time when no  
current is sourcing at ZCD clamp circuit and available  
turn-on time gets shorter proportional to the ZCD  
sourcing current.  
Figure 38. Input and Output Current Near Input  
Voltage Peak  
Figure 40. Circuit of THD Optimizer  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
15  
suddenly interrupted during two or three AC line  
periods; VCC is still live during that time, but output  
voltage drops because there is no input power source.  
Consequently, the control loop tries to compensate for  
the output voltage drop and VCOMP reaches its  
maximum. This lasts until AC input voltage is live again.  
When AC input voltage is live again, high VCOMP allows  
high switching current and more stress is put on the  
MOSFET and diode. To protect against this, FAN7930C  
checks if the input AC voltage exists. If input does not  
exist, soft-start is reset and waits until AC input is live  
again. Soft-start manages the turn-on time for smooth  
operation when it detects AC input is applied again and  
applies less voltage and current stress on startup.  
Figure 41. Effect of THD Optimizer  
10. Current Sense: The MOSFET current is sensed  
using an external sensing resistor for over-current  
protection. If the CS pin voltage is higher than 0.8V, the  
By THD optimizer, turn-on time over one AC line period  
is proportionally changed, depending on input voltage.  
Near zero cross, lengthened turn-on time improves THD  
performance.  
over-current protection comparator generates  
a
protection signal. An internal RC filter of 40kand 8pF  
is included to filter switching noise.  
9. VIN Absent Detection: To save power loss caused by  
input voltage sensing resistors and to optimize THD, the  
FAN7930C omits AC input voltage detection. Therefore,  
no information about AC input is available from the  
internal controller. In many cases, the VCC of PFC  
controller is supplied by a independent power source,  
like standby power. In this scheme, some mismatch  
may exist. For example, when the electric power is  
11. Gate Driver Output: FAN7930C contains a single  
totem-pole output stage designed for a direct drive of  
the power MOSFET. The drive output is capable of up  
to +500/-800mA peak current with a typical rise and fall  
time of 50ns with 1nF load. The output voltage is  
clamped to 13V to protect the MOSFET gate even if the  
VCC voltage is higher than 13V.  
VOUT  
VIN  
Though VIN is  
eliminated, operation of  
controller is normal due  
to the large bypass  
capacitor.  
VAUX  
DMAX  
fMIN  
DMIN  
MOSFET gate  
NewVCOMP  
fMIN  
VIN Absence Detected  
IDS  
Smooth  
Soft-Start  
FAN7930 Rev.00  
t
Figure 43. Operation with VIN Absent Circuit  
Figure 42. Operation without VIN Absent Circuit  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
16  
PCB Layout Guide  
PFC block normally handles high switching current and  
the voltage low energy signal path can be affected by  
the high energy path. Cautious PCB layout is mandatory  
for stable operation.  
5. A stabilizing capacitor for VCC is recommended as  
close as possible to the VCC and ground pins. If it is  
difficult, place the SMD capacitor as close to the  
corresponding pins as possible.  
1. The gate drive path should be as short as possible.  
The closed-loop that runs from the gate driver,  
MOSFET gate, and MOSFET source to ground of  
PFC controller should be as close as possible. This  
is also crossing point between power ground and  
signal ground. Power ground path from the bridge  
diode to the output bulk capacitor should be short  
and wide. The sharing position between power  
ground and signal ground should be only at one  
position to avoid ground loop noise. Signal path of  
PFC controller should be short and wide for  
external components to contact.  
2. PFC output voltage sensing resistor is normally  
high to reduce current consumption. This path can  
be affected by external noise. To reduce noise  
potential at the INV pin, a shorter path for output  
sensing is recommended. If a shorter path is not  
possible, place some dividing resistors between  
PFC output and the INV pin — closer to the INV pin  
is better. Relative high voltage close to the INV pin  
can be helpful.  
3. ZCD path is recommended close to auxiliary  
winding from boost inductor and to the ZCD pin. If  
that is difficult, place a small capacitor (below 50pF)  
to reduce noise.  
Figure 44. Recommended PCB Layout  
4. The switching current sense path should not share  
with another path to avoid interference. Some  
additional components may be needed to reduce  
the noise level applied to the CS pin.  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
17  
Typical Application Circuit  
Output Voltage  
(Maximum  
Current)  
Input Voltage  
Range  
Rated Output  
Power  
Application  
Device  
FAN7930C  
LCD TV Power Supply  
90-265VAC  
195W  
390V (0.5A)  
Features  
ƒ
ƒ
ƒ
Average efficiency of 25%, 50%, 75%, and 100% load conditions is higher than 95% at universal input.  
Power factor at rated load is higher than 0.98 at universal input.  
Total Harmonic Distortion (THD) at rated load is lower than 15% at universal input.  
Key Design Notes  
ƒ
When auxiliary VCC supply is not available, VCC power can be supplied through Zero Current Detect (ZCD)  
winding. The power consumption of R103 is quite high, so its power rating needs checking.  
ƒ
Because the input bias current of INV pin is almost zero, output voltage sensing resistors (R112~R115) should  
be as high as possible. However, too-high resistance makes the node susceptible to noise. Resistor values need  
to strike a balance between power consumption and noise immunity.  
ƒ
Quick-charge diode D106 can be eliminated. Without D106, system operation is normal due to the controller’s  
highly reliable protection features.  
1. Schematic  
Optional  
D106  
600V 3A  
D105  
600V 8A  
230mH,  
49:6  
DC OUTPUT  
LP101,EER3124N  
BD101,  
600V,15A  
VAUX  
R103,  
10k,1W  
C104,  
12nF  
R109  
47  
Q101  
FCPF  
20N60  
D102,  
UF4004  
FAN7930C  
D103,1N414  
8
R108  
4.7  
8
7
VCC  
ZC  
Out  
C102,  
680nF  
5
3
2
4
1
D
CS  
Com  
p
INV  
RD  
Y
GND  
6
C114 C115  
,2.2n ,2.2n  
F
F
C101,  
220nF  
R101,1M-  
J
VCC for another power stage  
ZNR101  
,10D471  
Circuit for VCC. If external VCC is used, this circuit is not needed.  
Circuit for VCC for another power stage thus components structure and values may vary.  
Figure 45. Demonstration Circuit  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
18  
2. Transformer  
Figure 46. Transformer Schematic Diagram  
3. Winding Specification  
Barrier Tape  
Winding  
Method  
Position  
Bottom  
Top  
No  
Pin (S F)  
9, 10 7, 8  
Wire  
Turns  
TOP  
BOT  
Ts  
Np  
0.1φ×50  
49  
Solenoid Winding  
1
Insulation: Polyester Tape t = 0.025mm, 3 Layers  
NAUX 2 4 0.3φ  
Insulation: Polyester Tape t = 0.025mm, 4 Layers  
6
Solenoid Winding  
4. Electrical Characteristics  
Pin  
Specification  
230μH ±7%  
Remark  
Inductance  
9, 10 7, 8  
100kHz, 1V  
5. Core & Bobbin  
Core: EER3124, Samhwa (PL-7) (Ae=97.9mm2)  
Bobbin: EER3124  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
19  
6. Bill of Materials  
Part #  
Value  
Resister  
1MΩ  
Note  
Part #  
Value  
Switch  
Note  
R101  
R102  
R103  
R104  
1W  
1/2W  
1W  
Q101  
FCPF20N60  
20A, 600V, SuperFET  
Diode  
330kΩ  
10kΩ  
D101  
D102  
1N4746  
UF4004  
1W, 18V, Zener Diode  
1A, 400V Glass Passivated  
High-Efficiency Rectifier  
1/4W  
30kΩ  
R107  
R108  
R109  
1/4W  
1/4W  
1/4W  
D103  
D104  
1N4148  
1N4148  
1A, 100V Small-Signal Diode  
1A, 100V Small-Signal Diode  
10kΩ  
4.7kΩ  
8A, 600V, General-Purpose  
Rectifier  
D105  
D106  
47kΩ  
10kΩ  
R110  
1/4W  
3A, 600V, General-Purpose  
Rectifier  
R111  
R112, 113, 114  
R115  
5W  
0.80kΩ  
3.9kΩ  
1/4W  
1/4W  
IC101  
FAN7930C  
CRM PFC Controller  
75kΩ  
Capacitor  
Fuse  
C101  
C102  
C103  
C104  
C105  
C107  
C108  
C109  
C110  
C112  
C111  
C114  
C115  
220nF/275VAC  
680nF/275VAC  
0.68µF/630V  
12nF/50V  
Box Capacitor  
Box Capacitor  
FS101  
TH101  
BD101  
LF101  
T1  
5A/250V  
5D-15  
NTC  
Box Capacitor  
Bridge Diode  
Ceramic Capacitor  
SMD (1206)  
100nF/50V  
33µF/50V  
15A, 600V  
Line Filter  
Electrolytic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
220nF/50V  
47nF/50V  
23mH  
Transformer  
EER3124  
1nF/50V  
Ae=97.9mm2  
ZNR  
47nF/50V  
220µF/450V  
2.2nF/450V  
2.2nF/450V  
Electrolytic Capacitor ZNR101  
Box Capacitor  
10D471  
Box Capacitor  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
20  
Physical Dimensions  
5.00  
A
4.80  
0.65  
3.81  
8
5
B
1.75  
6.20  
5.80  
4.00  
3.80  
5.60  
1
4
PIN ONE  
INDICATOR  
1.27  
1.27  
(0.33)  
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
0.25  
0.10  
0.25  
0.19  
C
1.75 MAX  
0.51  
0.33  
0.10 C  
x 45°  
OPTION A - BEVEL EDGE  
0.50  
0.25  
R0.10  
R0.10  
GAGE PLANE  
OPTION B - NO BEVEL EDGE  
0.36  
NOTES: UNLESS OTHERWISE SPECIFIED  
8°  
0°  
0.90  
0.40  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-012, VARIATION AA, ISSUE C,  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
SEATING PLANE  
(1.04)  
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.  
E) DRAWING FILENAME: M08AREV13  
DETAIL A  
SCALE: 2:1  
Figure 47. 8-Lead Small Outline Package (SOP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the  
warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
21  
© 2010 Fairchild Semiconductor Corporation  
FAN7930C • Rev. 1.0.0  
www.fairchildsemi.com  
22  
配单直通车
FAN7930CMX产品参数
型号:FAN7930CMX
Brand Name:Fairchild Semiconductor
是否无铅:不含铅
是否Rohs认证:符合
生命周期:Transferred
IHS 制造商:FAIRCHILD SEMICONDUCTOR CORP
零件包装代码:SOIC
包装说明:SOP, SOP8,.25
针数:8
制造商包装代码:8LD, SOIC,JEDEC MS-012, .150" NARROW BODY
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.31.00.01
风险等级:7.81
Is Samacsys:N
模拟集成电路 - 其他类型:POWER FACTOR CONTROLLER
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:20 V
最小输入电压:9.5 V
标称输入电压:14 V
JESD-30 代码:R-PDSO-G8
JESD-609代码:e3
长度:4.9 mm
湿度敏感等级:1
功能数量:1
端子数量:8
最高工作温度:125 °C
最低工作温度:-40 °C
最大输出电流:0.5 A
标称输出电压:13 V
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP8,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
电源:14 V
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Switching Regulator or Controllers
最大供电电流 (Isup):4 mA
标称供电电压 (Vsup):14 V
表面贴装:YES
切换器配置:BOOST
最大切换频率:350 kHz
温度等级:AUTOMOTIVE
端子面层:Matte Tin (Sn)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:30
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!