欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • GC2011A-PQ图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • GC2011A-PQ 现货库存
  • 数量500 
  • 厂家 
  • 封装QFP 
  • 批号16+ 
  • 价格及优,真实库存,全新原装正品!!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • GC2011A-PQ图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • GC2011A-PQ 现货库存
  • 数量1897 
  • 厂家TI 
  • 封装代理 
  • 批号24+ 
  • 假一罚万,原厂原装有COC,长期有订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • GC2011A-PQ图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • GC2011A-PQ
  • 数量13450 
  • 厂家TI/德州仪器 
  • 封装QFP160 
  • 批号24+ 
  • 原厂原装公司现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • GC2011A-PQ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • GC2011A-PQ
  • 数量3000 
  • 厂家TI 
  • 封装QFP 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • GC2011A-PQ图
  • 毅创腾(集团)有限公司

     该会员已使用本站16年以上
  • GC2011A-PQ
  • 数量3000 
  • 厂家Texas 
  • 封装QFP160 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507168QQ:2355507168 复制
  • 86-755-83210801 QQ:2355507165QQ:2355507168
  • GC2011A-PQ图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • GC2011A-PQ
  • 数量3768 
  • 厂家TI 
  • 封装160-BQFP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • GC2011A-PQ图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • GC2011A-PQ
  • 数量682 
  • 厂家TI 
  • 封装QFP 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • GC2011A-PQ图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • GC2011A-PQ
  • 数量2015 
  • 厂家TI 
  • 封装SMD/DIP 
  • 批号19889 
  • ★一级代理原装现货,特价热卖!★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • GC2011A-PQ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • GC2011A-PQ
  • 数量3000 
  • 厂家TI 
  • 封装QFP 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • GC2011A-PQ图
  • 集好芯城

     该会员已使用本站13年以上
  • GC2011A-PQ
  • 数量13450 
  • 厂家TI/德州仪器 
  • 封装QFP160 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • GC2011A-PQ图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • GC2011A-PQ
  • 数量45000 
  • 厂家TI/德州仪器 
  • 封装QFP 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • GC2011A-PQ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • GC2011A-PQ
  • 数量16851 
  • 厂家TI/德州仪器 
  • 封装TI-2019 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • GC2011A-PQ图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • GC2011A-PQ
  • 数量100000 
  • 厂家TEXAS INSTRUMENTS 
  • 封装N/A 
  • 批号16+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • GC2011A-PQ图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • GC2011A-PQ
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装160-BQFP 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • GC2011A-PQ图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • GC2011A-PQ
  • 数量4402 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • GC2011A-PQ图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • GC2011A-PQ
  • 数量5000 
  • 厂家GRAYCHIP 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • GC2011A-PQ图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • GC2011A-PQ
  • 数量4904 
  • 厂家Texas Instruments 
  • 封装160-BQFP 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • GC2011A-PQ图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • GC2011A-PQ
  • 数量1897 
  • 厂家TI 
  • 封装代理 
  • 批号2021+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 755-83950019 QQ:3003818780QQ:3003819484
  • GC2011A-PQ图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • GC2011A-PQ
  • 数量53525 
  • 厂家TI/德州仪器 
  • 封装NA 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • GC2011A-PQ图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • GC2011A-PQ
  • 数量917 
  • 厂家QFP160 
  • 封装SOP44 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • GC2011A-PQ图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • GC2011A-PQ
  • 数量20000 
  • 厂家GRAYCHIP 
  • 封装QFP208 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • GC2011A-PQ图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • GC2011A-PQ
  • 数量
  • 厂家TI 
  • 封装QFP 
  • 批号0052+ 
  • 一定原装现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • GC2011A-PQ图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • GC2011A-PQ
  • 数量23 
  • 厂家Texas 
  • 封装QFP160 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • GC2011A-PQ图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • GC2011A-PQ
  • 数量23480 
  • 厂家TI 
  • 封装QFP160 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • GC2011A-PQ图
  • 上海振基实业有限公司

     该会员已使用本站13年以上
  • GC2011A-PQ
  • 数量1564 
  • 厂家TI 
  • 封装原厂封装 
  • 批号23+ 
  • 全新原装现货/另有约30万种现货,欢迎来电!
  • QQ:330263063QQ:330263063 复制
    QQ:1985476892QQ:1985476892 复制
  • 021-59159268 QQ:330263063QQ:1985476892
  • GC2011A-PQ图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • GC2011A-PQ
  • 数量5500 
  • 厂家09+ 
  • 封装QFP160 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • GC2011A-PQ图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • GC2011A-PQ
  • 数量30000 
  • 厂家ON 
  • 封装SOT23 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • GC2011A-PQ图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • GC2011A-PQ
  • 数量8560 
  • 厂家Texas 
  • 封装QFP160 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • GC2011A-PQ图
  • 麦尔集团

     该会员已使用本站10年以上
  • GC2011A-PQ
  • 数量600 
  • 厂家TI 
  • 封装十五周年庆典 
  • 批号17+ 
  • TI全线优势订货
  • QQ:1716771758QQ:1716771758 复制
    QQ:2574148071QQ:2574148071 复制
  • 88266576 QQ:1716771758QQ:2574148071
  • GC2011A-PQ图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • GC2011A-PQ
  • 数量28000 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • GC2011A-PQ图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • GC2011A-PQ
  • 数量20000 
  • 厂家Texas 
  • 封装QFP160 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • GC2011A-PQ图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • GC2011A-PQ
  • 数量8000 
  • 厂家TI/德州仪器 
  • 封装 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • GC2011A-PQ图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • GC2011A-PQ
  • 数量9800 
  • 厂家TI 
  • 封装QFP 
  • 批号21+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877805QQ:97877805 复制
  • 171-4929-0036(微信同号) QQ:97877805
  • GC2011A-PQ图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • GC2011A-PQ
  • 数量1001 
  • 厂家TI 
  • 封装QFP-160 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97671959QQ:97671959 复制
  • 171-4729-9698(微信同号) QQ:97671959

产品型号GC2011A-PQ的概述

芯片GC2011A-PQ的概述 GC2011A-PQ是一款高度集成的数字信号处理器(DSP),广泛应用于音频处理、影像信号处理及其他高性能计算任务中。该芯片采用先进的制造工艺与架构设计,能够在多种应用场景下提供优异的性能与灵活性。为了适应快速发展的市场需求,GC2011A-PQ在功耗、处理速度和集成度上均有所突破。 在品牌和型号的背景下,GC2011A-PQ不仅是一款技术领先的芯片,同时也代表了其制造商在数字信号处理技术上的不断创新。该芯片的设计理念是使其在维持高性能输出的同时,尽可能降低系统的复杂度和成本。这使得GC2011A-PQ适用于广泛的消费电子产品,如智能音响、智能摄像头等。 芯片GC2011A-PQ的详细参数 GC2011A-PQ的技术参数为用户和开发者提供了丰富的参考信息。以下是其主要参数: - 工作电压: 1.8V~3.3V - 处理频率: 200 MHz - 引脚数量...

产品型号GC2011A-PQ的Datasheet PDF文件预览

SLWS129A  
GC2011A  
3.3V DIGITAL FILTER CHIP  
DATASHEET  
March 21, 2000  
Information provided by Graychip is believed to be accurate and reliable. No responsibility is  
assumed by Graychip for its use, nor for any infringement of patents or other rights of third parties  
which may arise from its use. No license is granted by implication or otherwise under any patent rights  
of Graychip.  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
REVISION HISTORY  
Revision  
Date  
Description  
0.0  
1.0  
3 Feb 1999  
Original  
Preliminary markings removed  
22 Sept, 1999  
Section 7: Electrical and timing tables changed to reflect production test  
Pg 19, Sec 3.7, Table 8, changed Hilbert Transform output register to 2000  
Pg 25: added ball grid array package  
Pg 33: changed the gain equation to reference the MSBs of the input and output.  
1.1  
21 Mar 2000  
Page 25, Rotated marking text on PBGA package  
Page 35, Snap rate of 2 is invalid  
Page 39, Changed test load to +/- 2mA from 4mA  
Page 40, Changed Output delay threshold (Note 4) to 1.3v.  
Page 40, Changed Data to output MIN delay to 1ns to match test.  
Texas Instruments Incorporated  
- i -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
1.0  
KEY FEATURES .........................................................................................................................1  
1.1  
1.2  
1.3  
BLOCK DIAGRAM ................................................................................................................................1  
GC2011A TO GC2011 COMPARISON................................................................................................. 2  
DATASHEET OVERVIEW ....................................................................................................................3  
2.0  
FUNCTIONAL DESCRIPTION ...................................................................................................4  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
TRANSVERSAL FILTERS ....................................................................................................................5  
CONTROL INTERFACE ....................................................................................................................... 6  
COUNTER AND SYNCHRONIZATION CIRCUIT................................................................................. 7  
INPUT MUX ...........................................................................................................................................8  
INPUT NEGATION ................................................................................................................................8  
A/B FILTER PATHS ..............................................................................................................................8  
FILTER CELL ........................................................................................................................................9  
ACCUMULATOR .................................................................................................................................10  
24 BIT MUX CIRCUIT .........................................................................................................................10  
SUMMER ............................................................................................................................................10  
OUTPUT NEGATION ..........................................................................................................................11  
GAIN ....................................................................................................................................................11  
OUTPUT MUX .....................................................................................................................................11  
SNAPSHOT MEMORY .......................................................................................................................11  
2.9  
2.10  
2.11  
2.12  
2.13  
2.14  
3.0  
FILTERING MODES .................................................................................................................13  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
FULL RATE .........................................................................................................................................14  
HALF RATE .........................................................................................................................................15  
QUARTER RATE ................................................................................................................................16  
DOUBLE RATE I/O .............................................................................................................................16  
DECIMATION ......................................................................................................................................17  
INTERPOLATION ...............................................................................................................................18  
HILBERT TRANSFORM FILTERS ......................................................................................................19  
REAL TO COMPLEX QUADRATURE DOWN CONVERT .................................................................20  
COMPLEX TO REAL QUADRATURE UPCONVERT .........................................................................21  
DIAGNOSTICS ....................................................................................................................................22  
4.0  
PACKAGING ............................................................................................................................23  
4.1  
4.2  
160 PIN QUAD FLAT PACK (QFP) PACKAGE ..................................................................................23  
160 PIN BALL GRID ARRAY (PBGA) PACKAGE................................................................................25  
5.0  
6.0  
PIN DESCRIPTIONS ................................................................................................................27  
CONTROL REGISTERS ...........................................................................................................28  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
6.10  
A-PATH AND B-PATH CONTROL REGISTER 0 ................................................................................29  
A-PATH AND B-PATH CONTROL REGISTER 1 ................................................................................31  
CASCADE MODE CONTROL REGISTER .........................................................................................32  
COUNTER REGISTER .......................................................................................................................32  
GAIN REGISTER ................................................................................................................................32  
OUTPUT MODE REGISTER ...............................................................................................................34  
SNAPSHOT MODE CONTROL REGISTERS .....................................................................................35  
SNAPSHOT START CONTROL REGISTER ......................................................................................36  
ONE SHOT ADDRESS .......................................................................................................................36  
NEW MODES REGISTER ..................................................................................................................37  
7.0  
8.0  
SPECIFICATIONS ....................................................................................................................38  
ABSOLUTE MAXIMUM RATINGS ......................................................................................................38  
RECOMMENDED OPERATING CONDITIONS ..................................................................................38  
THERMAL CHARACTERISTICS ........................................................................................................38  
DC CHARACTERISTICS ....................................................................................................................39  
AC CHARACTERISTICS ....................................................................................................................40  
7.1  
7.2  
7.3  
7.4  
7.5  
APPLICATION NOTES .............................................................................................................41  
8.1  
8.2  
8.3  
8.4  
8.5  
POWER AND GROUND CONNECTIONS ..........................................................................................41  
STATIC SENSITIVE DEVICE .............................................................................................................41  
100 MHZ OPERATION .......................................................................................................................41  
REDUCED VOLTAGE OPERATION ...................................................................................................41  
SYNCHRONIZING MULTIPLE GC2011A CHIPS ...............................................................................42  
Texas Instruments Incorporated  
- iii -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
LIST OF FIGURES  
Figure 1: GC2011a Block Diagram ...............................................................................................................1  
Figure 2: Basic Transversal Filters ................................................................................................................5  
Figure 3: Control I/O Timing ..........................................................................................................................7  
Figure 4: 16 Cell Filter Path Block Diagram ..................................................................................................8  
Figure 5: The Filter Cell .................................................................................................................................9  
Figure 6: I/O Timing .....................................................................................................................................13  
Figure 7: Input Timing .................................................................................................................................28  
Figure 8: Output Timing ...............................................................................................................................28  
Figure 9: Processing Complex Input Data ...................................................................................................40  
LIST OF TABLES  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Table 9:  
Default Control Register Settings .................................................................................................13  
Full Rate Mode Control Register Settings ....................................................................................14  
Half Rate Mode Control Register Settings ...................................................................................15  
Quarter Rate Mode Control Register Settings .............................................................................16  
Double Rate Mode Control Register Settings ..............................................................................16  
Decimation Mode Control Register Settings ................................................................................17  
Interpolation Mode Control Register Settings ..............................................................................18  
Hilbert Transform Mode Control Register Settings ......................................................................19  
Real To Complex Conversion Mode Control Register Settings ...................................................20  
Table 10: Complex To Real Conversion Mode Control Register Settings ...................................................21  
Table 11: Diagnostic Test Configuration ......................................................................................................22  
Table 12: Expected Test Results .................................................................................................................22  
Table 13: Pin Listing For 160 Pin QFP Package ..........................................................................................24  
Table 14: Pin Listing For 160 Pin BGA Package  
Table 15: Mask Revisions ............................................................................................................................35  
Table 16: Absolute Maximum Ratings .........................................................................................................36  
Table 17: Recommended Operating Conditions ..........................................................................................36  
Table 18: Thermal Data ...............................................................................................................................36  
Table 19: DC Operating Conditions .............................................................................................................37  
Table 20: AC Characteristics ........................................................................................................................38  
Texas Instrument Incorporated  
-iv -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
GC2011A DATASHEET  
1.0  
KEY FEATURES  
128 tap interpolate by 2 or 4  
Improved 3.3 volt, higher speed, GC2011  
replacement  
128 taps for 1/2 rate I/O  
256 taps for 1/4 rate I/O  
106 million samples per second (MSPS) input  
rate  
200 MSPS real to 100 MSPS complex  
conversion mode  
Dual inputs for complex, dual path or double  
rate input processing  
Real to complex or complex to real  
conversion modes  
2’s Complement to offset binary conversion  
12 bit or 24 bit data, 14 bit coefficients  
8, 10, 12, 14, 16, 20 or 24 bit outputs  
32 bit internal precision  
Snapshot memory for adaptive filter  
update calculations  
Gain adjust in 0.5 dB steps  
Microprocessor interface for control,  
output, and diagnostics  
32 multiply-add filter cells  
Snapshot memory for adaptive filtering  
64 taps with even or odd symmetry  
128 tap decimate by 2  
Built in diagnostics  
1.6 Watt at 80 MHz, 3.3 volts  
160 pin quad flat pack package  
160 pin ball grid array package  
256 tap decimate by 4  
1.1  
BLOCK DIAGRAM  
A block diagram illustrating the major functions of the chip is shown in Figure 1  
Feedback In  
+/-1  
12 bits  
12 bits  
32 bits  
12 bits  
32 bits  
A
IN  
Data In  
Data Out  
(16 FILTER CELLS)  
Sum Out  
A-PATH  
16 bits  
16 bits  
32 bits  
Sum In  
A
OUT  
+/-1  
ADD  
GAIN  
(CASCADE MODE ONLY)  
Feedback Out  
Data In  
12 bits  
32 bits  
12 bits  
Data Out  
B-PATH  
(16 FILTER CELLS)  
Sum In Sum Out  
24 bits  
16 bits  
12 bits  
32 bits  
32 bits  
B
IN  
BOUT  
+/-1  
+/-1  
2-12  
CASCADE MODE  
24 BIT MODE  
16 bits  
9 bits  
12 bits  
12 bits  
C
A
A
IN  
MODE CONTROLS  
SNAPRAM READ  
SNAPSHOT RAM  
BIN  
-DUAL 128 BY 16 BIT MODE  
-DUAL 256 BY 8 BIT MODE  
-SINGLE 256 BY 16 BIT MODE  
-SINGLE 512 BY 8 BIT MODE  
CONTROL INTERFACE  
RE  
16 bits  
16 bits  
A
B
OUT  
WE  
CE  
COEFFICIENT READ/WRITE  
OUT  
Figure 1. GC2011A Block Diagram  
Texas Instruments Incorporated  
- 1 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
1.2 GC2011A TO GC2011 COMPARISON  
SLWS129A  
The GC2011A is designed to be a functional and footprint compatible replacement for the GC2011 chip. The  
timing specifications for the GC2011A meet and exceed the timing specifications for the GC2011. Electrically the  
GC2011A is a 3.3 volt only part, making it incompatible with the GC2011’s 5 volt mode. The GC2011A is fully compatible  
with the GC2011’s 3.3 volt mode, but at a lower power consumption. See Section 7 for timing and electrical  
specifications. NOTE: The GC2011A inputs are NOT 5 volt tolerant; chip damage may occur if the input voltages exceed  
Vcc + 0.5V (3.8 volts). Designs using the GC2011 at 5 volts will need to add a 3.3 volt supply and voltage level  
translators to use the GC2011A.  
The function of the GC2011A has been slightly enhanced, but any enhancements are “backward” compatible  
with the GC2011 so that a GC2011 user will not need to change any software or processing algorithms to use the  
GC2011A chip. Highlights of the enhancements follow.  
1.2.1  
Offset Binary Conversion  
Digital filter chips are commonly used with analog to digital converters (ADCs) or digital to analog converters  
(DACs) which often require an offset binary data format rather than the two’s complement data format of the GC2011.  
Offset binary data is easily converted to two’s compliment by inverting the most significant bit (MSB) of the data word.  
The GC2011A has been enhanced to allow conversion between offset binary and two’s complement format by  
optionally inverting the MSB of the input or output data. Four control bits (register address 12) have been added which,  
when set high, invert the MSBs of the Ain, Bin Aout, and Bout data words. These control bits are cleared at power up  
so that the GC2011A will power up in the GC2011’s two’s complement mode.  
See Section 6.10 for details.  
1.2.2  
Clock Loss Detect and Power Down Modes  
The GC2011 chip draws excessive current if operated without a clock signal. This is caused by internal  
dynamic storage nodes being left in an unknown state when the clock is stopped. A clock loss detect circuit has been  
added to the GC2011A that will put the chip in a fully static mode if the clock has stopped. The fully static mode powers  
down the chip and reduces the power consumption down to a few microwatts until the clock resumes. The user can also  
force the power down state if desired. Two control bits (register address 12) are used to control the clock loss detect  
and power down modes. One control bit turns off the clock loss detect circuit, the other forces the power down mode.  
Both bits are cleared at power up to keep GC2011 compatibility.  
See Section 6.10 for details.  
1.2.3  
Control Interface  
The control interface has been enhanced to use either the R/W and CS strobes of the original GC2011, or to  
use the RE, WE and CE strobes used by most memory interfaces. If the RE pin is grounded, then the interface behaves  
in the R/W and CS mode, where the WE pin becomes the R/W pin and the CE pin becomes the CS pin. The RE pin on  
the GC2011A chip is a ground pin on the GC2011 chip, so that a GC2011A chip soldered into a GC2011 socket will  
automatically operate in the GC2011 R/W and CS mode.  
See Section 2.2 for details.  
1.2.4  
NEW_MODES Control Register  
A control register at address 12 has been added to the GC2011A to control the new GC2011A modes. Address  
12 was unused in the GC2011 chip so that existing GC2011 control software will not activate the new modes. This  
control register powers up in the GC2011 compatible mode. See Section 6.10 for details.  
Texas Instruments Incorporated  
- 2 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
1.3  
DATASHEET OVERVIEW  
This document is organized in 8 Sections:  
Section 2 provides a functional description of the chip.  
Section 3 describes how to configure the chip to implement several commonly used  
filters.  
Section 4 describes the packaging specifications  
Section 5 describes the I/O signals  
Section 6 describes the control register contents.  
Section 7 describes the specifications.  
Section 8 contains application notes.  
Texas Instruments Incorporated  
- 3 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
2.0 FUNCTIONAL DESCRIPTION  
SLWS129A  
Fabricated in 0.5 micron CMOS technology, the GC2011A chip is a general purpose digital filter chip with 32  
multiply-add filter cells. The chip operates at rates up to 106 MHz. The input data size is 12 bits and the coefficient data  
size is 14 bits. The output data size is 8, 10, 12, 14, 16, 20 or 24 bits. The 32 multiply-add cells can be arranged as a  
32 tap arbitrary phase filter or a 64 tap linear phase filter with even or odd symmetry.  
Decimation and interpolation modes double or quadruple the number of taps in the filter.  
Two input ports allow the 32 filter cells to be shared between two data paths in order to process two signals or  
to process complex data. Each path becomes a 16 tap arbitrary phase filter, a 32 tap symmetric filter, a 64 tap decimate  
by 2 filter or a 128 tap decimate by 4 filter.  
Coefficient double buffering and clock synchronization logic permits the user to switch between coefficient sets  
without causing any undesirable transients in the filter’s operation.  
Complex coefficients can be handled using an add/subtract cell which combines the two data paths. A complex  
data by complex coefficient filter requires two chips, one for the I output and one for the Q output. The number of  
complex taps varies from 16 to 128 depending upon the symmetry and desired I/O rate.  
The input data rate can be equal to the clock rate, half the clock rate or a quarter of the clock rate. The effective  
number of taps doubles for half rate data and quadruples for quarter rate data. The input data rate can be extended to  
212 MHz if two chips are used. With two chips the filter size is 32 taps arbitrary phase or 64 taps linear phase. If  
decimation by two is desired, then only one chip is required and the filter size is 64 taps.  
A single chip can be used to convert data between real and complex formats. When converting from real to  
complex the chip mixes the signal down by FS/4 and lowpass filters the results. To convert from complex to real the chip  
interpolates the signal by two, mixes it up by FS/4 and outputs the real part of the result.  
The two 12 bit data paths can be used to process 24 bit input data by filtering the upper 12 bits in one path and  
the lower 12 bits in the other. A 12 bit shift and add circuit merges the results into a 24 bit output.  
The chip includes a snapshot memory which can capture blocks of input or output data. The size of the  
snapshot can be programmed to be two 128 sample by 16 bit snapshots, two 256 sample by 8 bit snapshots, one 256  
sample by 16 bit snapshot, or one 512 sample by 8 bit snapshot. These samples can be read by an external processor  
and used for adaptive updates of the filter coefficients.  
The internal data precision is 32 bits, sufficient to preserve the full multiplier products and to prevent overflow  
in the filter’s adder tree. The 32 bit results are passed through a gain circuit before they are rounded to 8, 10, 12, 14, or  
16 bits. The gain circuit can adjust the signal’s amplitude over a 96 dB range in 0.5 dB steps.  
On chip diagnostic circuits are provided to simplify system debug and maintenance.  
The chip receives configuration and control information over a microprocessor compatible bus consisting of a  
16 bit data I/O port, a 9 bit address port, a read/write bit, and a control select strobe. The control registers, coefficient  
registers, and snapshot memory are memory mapped into the 512 word address space of the control port.  
Texas Instruments Incorporated  
- 4 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
2.1  
TRANSVERSAL FILTERS  
The chip implements finite impulse response (FIR) transversal filters defined by Equation (1):  
N – 1  
y(n) =  
h(k)x(n k)  
Eq. (1)  
k = 0  
where x(n) is the input sample at time n, y(n) is the output sample at time n, N is the number of taps in the filter and h(k)  
are the filter coefficients. Many common filters are symmetric, meaning the tap coefficients are symmetric about the  
center tap. For example, the 16 coefficients (1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1) have even-length symmetry. The  
15 coefficients (1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1) have odd-length symmetry. Figure 2 shows the basic transversal  
filter structure for an 8 tap non-symmetric filter, a 16 tap even symmetry filter and a 15 tap odd symmetry filter (actual  
GC2011A filter sizes are up to 256 taps).  
x(n)  
h0  
h1  
h2  
h3  
h4  
h5  
h6  
h7  
y(n)  
(a) 8 TAP NON-SYMMETRIC FILTER  
x(n)  
h0  
h1  
h2  
h3  
h4  
h5  
h6  
h7  
y(n)  
(b) 16 TAP EVEN SYMMETRY FILTER  
x(n)  
h0  
h1  
h2  
h3  
h4  
h5  
h6  
h7  
y(n)  
(c) 15 TAP ODD SYMMETRY FILTER  
Figure 2. Basic Transversal Filters  
The GC2011A chip implements the transversal filter structures shown in Figure 2 with the addition of pipeline  
delays to increase the maximum clock rate of the chip. The pipeline delays add latency to the chip but do not effect its  
operation.  
Texas Instruments Incorporated  
- 5 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
2.2  
CONTROL INTERFACE  
The control interface performs five major functions: It allows an external processor to configure the chip, it  
allows an external processor to load the filter coefficients, it allows an external processor to capture and read samples  
from the chip, it allows an external processor to perform diagnostics, and it generates a one-shot synchronization strobe.  
The chip is configured by writing control information into 16 bit control registers within the chip. The contents  
of these control registers and how to use them are described in Section 6. The registers are written to or read from using  
the C[0:15], A[0:8], CE, RE and WE pins. Each control register has been assigned a unique address within the chip.  
This interface is designed to allow the GC2011A to appear to an external processor as a memory mapped peripheral  
(the pin RE is equivalent to a memory chip’s OE pin).  
The chip’s control address space is divided into thirteen control registers, 128 coefficient registers, and 256  
snapshot memory words. The thirteen control registers are APATH_REG0, APATH_REG1, BPATH_REG0,  
BPATH_REG1,  
CASCADE_REG,  
COUNTER_REG,  
OUTPUT_REG,  
SNAP_REGA,  
SNAP_REGB,  
SNAP_START_REG,ONE_SHOT, and NEW_MODES. The control registers are mapped to addresses 0 to 12. See  
Section 6.0 for details about the contents of these registers.  
The 128 filter coefficients are stored in 128 read/write registers which are accessed using addresses 128  
through 255. There are 4 filter coefficients stored per filter cell. Addresses 128+4K, 128+4K+1, 128+4K+2 and  
128+4K+3 are the four coefficient registers for filter cell K, where K ranges from 0 to 31. Filter cells 0 to 15 are in path-A  
and filter cells 16 to 31 are in path-B.  
The contents of the snapshot memory are accessed using addresses 256 through 511.  
Address 11 is used to generate a one-shot pulse. This pulse, OS, which is one clock cycle wide, can be output  
from the chip on the SO pin.  
An external processor (a microprocessor, computer, or DSP chip) can write into a register by setting A[0:8] to  
the desired register address, selecting the chip using the CE pin, setting C[0:15] to the desired value and then pulsing  
WE low. The data will be written into the selected register when both WE and CE are low and will be held when either  
signal goes high.  
To read from a control register the processor must set A[0:8] to the desired address, select the chip with the  
CE pin, and then set RE low. The chip will then drive C[0:15] with the contents of the selected register. After the  
processor has read the value from C[0:15] it should set RE and CE high. The C[0:15] pins are turned off (high  
impedance) whenever CE or RE are high or when WE is low. The chip will only drive these pins when both CE and RE  
are low and WE is high.  
One can also ground the RE pin and use the WE pin as a read/write direction control and use the CE pin as a  
control I/O strobe. This mode is equivalent to the GC2011 control interface.  
Figure 3 shows timing diagrams illustrating both I/O modes.  
Texas Instruments Incorporated  
- 6 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
CE  
t
CSU  
WE  
RE  
t
CHD  
t
CSU  
A[0:8]  
C[0:15]  
t
t
CZ  
CDLY  
READ CYCLE- NORMAL MODE  
CE  
t
CSU  
t
CSPW  
WE  
RE  
t
CSU  
A[0:8]  
t
t
CHD  
C[0:15]  
WRITE CYCLE- NORMAL MODE  
CE  
WE  
CHD  
t
CSU  
A[0:8]  
C[0:15]  
t
t
CZ  
CDLY  
READ CYCLE- RE HELD LOW  
t
CSPW  
CE  
WE  
t
CSU  
A[0:8]  
t
CHD  
C[0:15]  
WRITE CYCLE- RE HELD LOW  
Figure 3. Control I/O Timing  
The setup, hold and pulse width requirements for control read or write operations are given in Section 7.  
IMPORTANT: Care should be taken to insure that the control data is stable during the write cycle and meets  
the TCSU and TCHD setup and hold requirements. If the data changes during the write cycle, then control modes may  
momentarily change, adversely effecting the chip’s operation.  
2.3  
COUNTER AND SYNCHRONIZATION CIRCUIT  
The chip contains a 20 bit control counter which is used to synchronize the filter chip’s internal controls. The  
counter is synchronized to the SI sync input pulse, or can be left to free run (see the SS_OFF control bit description in  
Section 6.8). The period of the counter can be set to 16*(CNT+1) clocks, where CNT ranges from 0 to 65535. The value  
of CNT is set using the control register COUNTER_REG. The counter counts down from (16*CNT+15) to zero and starts  
over again. Each time the counter reaches zero it generates a terminal count strobe (TC). The TC pulse can be output  
on the SO pin or it can be used to trigger the snapshot memory. If the TC pulse is output on the SO pin, then it can be  
used to synchronize multiple GC2011A chips. Application notes showing the use of this pin are included in Section 8.5.  
The least significant 3 bits of the counter are used to synchronize the internal operation of the chip. The least  
significant 12 bits of the counter can be used as diagnostic inputs to the filter paths.  
The SO sync output pin can be used to output either SI delayed by 4 clock cycles, the one-shot pulse OS, or  
the terminal count TC.  
Texas Instruments Incorporated  
- 7 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
2.4  
INPUT MUX  
The input multiplexor circuit performs three functions: It allows the user to select which data source to use as  
the input to the two filter paths, it sets the input data rate, and it optionally delays the data. The controls for the input  
selection, the input rate, and the data delay are independent for the A and B filter paths.  
The input circuit allows the user to select either the A-input, the B-input or the 12 LSBs of the counter for the  
filter path’s input. Typically the A-input will feed the A-path and the B-input will feed the B-path. The counter input is  
selected for diagnostics.  
If the input rate is less than the clock rate, as is the case for the interpolation modes, the half rate I/O modes  
and the quarter rate I/O modes, then the input circuit can be programmed to hold every-other or every-fourth input  
sample.  
The input delay can be set to 0, 1 or 3 clock cycles. These delays are typically set to zero, but are necessary  
in the real to complex and complex to real conversion modes.  
The control and timing information for the input circuit are described in Section 6.1.  
2.5  
INPUT NEGATION  
The data from the input circuit can be optionally negated by the input negate circuit. The input negation circuit  
allows the user to negate all samples, the even time samples (i.e., every other input), or the odd time samples. This  
circuit is used to mix the input data down by FS/4 in the real to complex conversion mode.  
The input negation controls are described in Section 6.1.  
2.6  
A/B FILTER PATHS  
A block diagram of the 16 cell filter path is shown in Figure 4.  
Feedback Controls  
Cascade Mode  
a
Delay Controls  
Delay Controls  
Delay Controls  
Feedback  
In  
b
Feedback  
12 Bits  
12 Bits  
Rev  
Out  
Rev  
In  
Rev  
Out  
Rev  
In  
Rev  
Out  
Rev  
In  
Out  
FEEDBACK  
CIRCUIT  
Data  
In  
Data  
In  
Data  
Out  
Data  
In  
Data  
Out  
Data  
In  
Data  
Out  
a
• • •  
Data  
Out  
C-Sel  
In  
2 Bits  
C-Sel  
In  
C-Sel  
Out  
C-sel  
In  
C-Sel  
Out  
C-Sel  
In  
C-Sel  
Out  
b
Sum  
In  
32 Bits  
32 Bits  
Sum  
In  
Sum  
Out  
Sum  
In  
Sum  
Out  
Sum  
In  
Sum  
Out  
Sum  
Out  
FILTER CELL #1  
FILTER CELL #2  
FILTER CELL #16  
KEY: a = These signals are unique to the A-Path circuit  
b = These signals are unique to the B-Path circuit  
Figure 4. 16 Cell Filter Path Block Diagram  
Only the data paths through the filter cells are shown. The coefficient interfaces are not shown. Each filter path  
contains 16 filter cells and a data feedback circuit. The filter cell contains a multiplier-adder structure described in the  
next section. The feedback circuit delays and feeds back the data output to provide the reverse data used in the  
Texas Instruments Incorporated  
- 8 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
symmetric filter modes. The feedback circuit will also negate the reverse data, if desired, to implement anti-symmetric  
filters. In non-symmetric modes the feedback samples are cleared.  
There are four filter coefficients stored within each filter cell. The C-Sel signal is a two bit control which selects  
which coefficient to use at what time. The C-Sel signal can be forced to any value, it can toggle between two coefficients,  
or can rotate through all four coefficients. The C-Sel signal is synchronized to the LSBs of the control counter when  
toggling between coefficients.  
In the cascade mode the A and B paths are used in series as a single path with 32 filter cells. In this mode the  
data-out and sum-out outputs of path A are fed into the data-in and sum-in inputs of path B, and the feedback-out of  
path B is fed into the feedback-in of path A.  
The two paths are independent and can be programmed differently, for example path A can be interpolating  
while path B is decimating.  
2.7  
FILTER CELL  
A block diagram of the filter cell is shown in Figure 5.  
Forward Delay Control  
Reverse Delay Control  
NOTE: The delay circuits can also hold the data  
during interpolation.  
12 Bits  
Rev  
In  
Rev  
Out  
Z-(1,2,4)  
Data  
In  
12 Bits  
Data  
Out  
Z-(1,2,4)  
CIN  
Unsigned Mode  
12 Bit Signed  
or unsigned Adder  
C-Sel  
In  
2 Bits  
C-Sel  
Out  
Coefficient  
I/O  
16 Bits  
Register 0  
14 Bits  
Register 1  
Register 2  
Register 3  
14 LSBs  
14 by 14 Bit Multiplier  
28 Bits  
Sum  
In  
Sum  
Out  
32 Bits  
32 Bits  
32 Bit Adder  
Figure 5. The Filter Cell  
The 12 bit forward and reverse data samples are delayed and then passed to the 12 bit adder. The amount of  
delay depends upon the selected filtering modes. In the normal mode the samples are delayed by one clock. In the  
decimate by 2 mode the samples are delayed two cycles and in the decimate by four mode the forward samples are  
Texas Instruments Incorporated  
- 9 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
delayed by four cycles. In the interpolate modes the samples are held for multiple clock cycles rather than delayed.  
Details of the delay control modes are described in Section 6.1  
The 12 bit adder can operate in the signed or unsigned mode. In the signed mode it outputs a 13 bit result  
which is sign extended to 14 bits. In the unsigned mode it outputs a 14 bit signed result, where the 14th bit (the sign bit)  
is forced to zero. The 14 bit adder output is multiplied by a 14 bit coefficient selected by the C-Sel control from one of  
four 16 bit coefficient registers. The 14 bit coefficient is taken from the 14 LSBs of the 16 bit registers.  
A 32 bit adder adds the 28 bit multiplier output to the 32 bit sum in data and outputs the result to the next filter  
cell.  
2.8  
ACCUMULATOR  
The sum output from the filter path is passed to a 32 bit accumulator as shown in Figure 1. The accumulator  
can be programmed to accumulate blocks of 1, 2 or 4 samples. The accumulator is used to expand the effective length  
of the filter when the output rate is less than the clock rate. Modes that use the accumulator are the decimation, half  
rate, and quarter rate modes.  
IMPORTANT  
The 32 bit accumulator does not guard against overflow. It is the user’s respon-  
sibility to insure that the filter’s gain will not cause overflow. Overflow will not  
occur if the user restricts the filter coefficients so that the sum of their absolute  
values is less than 220. Since the maximum absolute value of any 14 bit coeffi-  
cient is 213, this restriction does not affect filters with less than 128 taps. For  
those filters with lengths greater than 128 taps, which are found in the decimate  
by 4 and quarter rate modes, this restriction only applies to the hypothetical  
case where every coefficient is close to full scale.  
2.9  
24 BIT MUX CIRCUIT  
The 24 bit mux circuit is used when filtering 24 bit input data. To use this mode the user splits the 24 bit input  
data into the upper 12 bits and the lower 12 bits. The upper 12 bits are used as the A-path input and the lower 12 bits  
are used as the B-path input. The two paths are programmed the same except that the A-path is configured for signed  
inputs and the B-path is configured for unsigned inputs. The same filter coefficients are loaded into the two paths. The  
sum outputs from the two paths are then added together by shifting the B-path sum down by 12 bits, rounding the result  
(using the round-to-even algorithm), and adding it to the A-path output. The 32 bit result is passed through the gain  
circuit, rounded to 24 bits and output on the A and B output pins. The upper 16 bits of the result are output on the A-out  
pins and the lower 8 bits are output on the upper 8 bits of the B-out pins.  
2.10  
SUMMER  
The summer circuit is used to add the results from the two paths together. This feature is used in the 24 bit  
input mode, the double rate modes, and when implementing complex filters. The adder can be converted to a subtracter  
by using the input negation controls.  
Texas Instruments Incorporated  
- 10 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
2.11  
OUTPUT NEGATION  
The output negation control allows every other output sample to be negated. This is used to mix complex data  
up in frequency by a quarter or half of the output sample rate. This is used primarily when converting complex data to  
real.  
2.12  
GAIN  
The gain of the filter can be adjusted in 0.5 dB steps using the gain circuit. The 32 bit sum output is multiplied  
by the gain value 2S(1+F/16) where S and F range from 0 to 15. The result is saturated to plus or minus full scale  
whenever the product overflows the 32 bit word. The AOF and BOF output bits pulse high for one clock cycle each time  
an overflow is detected. The output is then rounded to the upper 8, 10, 12, 16, 20 or 24 bits of the result. The lower bits  
are cleared.  
The gain adjustment allows the user to scale the filter coefficients in order to optimize the filter’s dynamic range,  
and then to readjust the overall filter gain using the gain circuit.  
2.13  
OUTPUT MUX  
The output multiplexor circuit formats the gain outputs for output from the chip. In the dual path mode the upper  
16 bit of each gain output word are passed to the A-out and B-out pins. If the output data rate is half or quarter rate, then  
the user can have the A-path and B-path outputs multiplexed onto the A-out pins.  
In the cascade or 24 bit modes the B path result can be output as a 24 bit value using a combination of the  
A-out and B-out pins. In the 24 bit output mode the upper 16 bits are output on the A-out pins and the lower 8 bits are  
output on the upper 8 B-out pins.  
2.14  
SNAPSHOT MEMORY  
The snapshot memory is used to capture blocks of input or output samples. The memory can be configured  
as two independent snapshots, or one longer snapshot. In the dual mode the memory can be configured to capture two  
128 word by 16 bit snapshots, or two 256 byte by 8 bit snapshots. In the single mode the memory can be configured to  
capture a 256 word by 16 bit snapshot, or a 512 byte by 8 bit snapshot.  
The snapshot data can come from the A-in, B-in, A-out, or B-out samples. In the dual mode the input selection  
for the two memories can be made independently. In the 8 bit mode the upper 8 bits of each data source is stored in  
the snapshot. In the 16 bit mode the 12 bit A-in or B-in samples are stored in the upper 12 bits of the 16 bit snapshot.  
The snapshot can be programmed to store every sample, every-other sample, every third sample, or every  
forth sample. This is useful when the chip’s input or output data rate is less than the clock rate.  
The snapshot is started by writing configuration information to control registers SNAP_REGA, SNAP_REGB  
and SNAP_REGC, and then setting the START bit in SNAP_REGC (See Section 6.8). The snapshot then waits for a  
trigger condition plus an optional delay before starting. The trigger conditions are: start immediately after START is set,  
trigger on the snapshot sync (SN) strobe, trigger on the sync input (SI) strobe, or trigger on the counter’s (see Section  
2.3) terminal count (TC) strobe. The delay from trigger can be set to multiples of 128 sample times, where the sample  
time depends upon the selected data rate. The delay is 128DR, where D is the delay count ranging from 0 to 15 and R  
is the rate ranging from 1 to 4. The delay setting is useful when there are multiple GC2011A chips running in parallel  
and the user wishes to capture a longer snapshot. For example, a two chip configuration could capture 1024 samples  
by setting up one chip to capture samples 0 to 511 and setting up the second chip with a delay setting of 512 to capture  
512 samples.  
Texas Instruments Incorporated  
- 11 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
By triggering on the TC strobe the user can guarantee that the snapshots are spaced by a known number of  
samples. For example, the user can program the chip to capture blocks of 512 samples every 220 clocks. The blocks  
can then be coherently combined to calculate accurate spectral information.  
Once the snapshot has been triggered, the chip clears the START control bit. When the snapshot is finished  
the chip will set the A_DONE or B_DONE bits in SNAP_REGC. NOTE that the delay from START being cleared to the  
DONE bits being set can be up to 8192 clocks when the rate is every fourth clock and the trigger delay is set to 15.  
The user accesses the snapshot as 256 16 bit words using addresses 256 to 511 in the chip’s control address  
space. If the samples were stored as bytes, the results can either be read as two byte words, or be read as sign  
extended bytes. If the user is reading bytes, then a control bit is used to select the upper or lower byte. The snapshot  
memory is read-only by the user.  
Texas Instruments Incorporated  
- 12 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.0  
FILTERING MODES  
This Section describes common filtering modes and how to configure the chip to implement them. Unless  
otherwise indicated, only the A-path, B-path and cascade mode control register values are given. The counter, gain,  
output, and snapram control registers can be given the default values listed in Table 1 below.  
Table 1: Default Control Register Settings  
REGISTER  
DEFAULT  
COMMENT  
COUNTER  
GAIN  
0
Don’t care  
1030  
See Section 6.5  
See Section 6.6  
OUTPUT  
0
0
0
0
SNAP_REGA  
SNAP_REGB  
SNAP_REGC  
See Sections 6.7 and 6.8 to  
configure the snapshot memory  
The default settings configure the chip to:  
Use the A-in pins for the cascaded mode data input and the B-out pins for the cascaded  
mode data output. The cascaded mode results can be output on the A-out pins by  
setting the OUTPUT register to 0008HEX  
.
Round the outputs to 16 bits.  
Give an input to output gain of 213  
h(k)  
The input to output latency is given for each of the modes. The latency is due to pipeline delays and is defined  
as the delay from x0 (see Figure 6-a) to the first filter output affected by x0. One can measure this delay by clearing all  
of the filter taps except for the first tap and using an impulse as the data input. The latency is then defined as the delay  
in clock cycles (not data samples) from the impulse in to the impulse out  
The modes described in this Section have been configured so that the input and output timing is as shown in  
Figure 6. In the half rate and quarter rate modes the inputs must be synchronized with SI as shown. The output timing  
shows how the output samples are generated relative to SI.  
CK  
0
1
2
3
4
5
6
7
8
9
TIME  
SI  
X0  
X0  
X0  
Full Rate  
Half Rate  
Quarter Rate  
(a) INPUT TIMING  
Full Rate  
Half Rate  
Quarter Rate  
(b) OUTPUT TIMING  
Figure 6. I/O Timing  
Texas Instruments Incorporated  
- 13 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.1  
FULL RATE  
The full rate filter implements Equation (1) using the structures shown in Figure 2. The control register settings  
which configure the chip in the full rate modes are tabulated below:  
Table 2: Full Rate Mode Control Register Settings  
A-PATH  
B-PATH  
Cascade  
REG  
Dual Path or  
Cascaded  
# of Taps  
(N)  
Symmetry  
None  
Latency  
REG0 REG1 REG0 REG1  
Dual  
Cascaded  
Dual  
16  
32  
32  
64  
31  
63  
20D8  
20D8  
20D8  
20D8  
20D8  
20D8  
6000  
6028  
6108  
6128  
6181  
61A8  
00D8  
00D8  
00D8  
00D8  
00D8  
00D8  
6000  
6000  
6108  
6108  
6181  
6181  
2000  
9E00  
2000  
9E00  
2000  
9E00  
44  
60  
44  
60  
44  
60  
Even  
Odd  
Cascaded  
Dual  
Cascaded  
The coefficients can be stored in coefficient register 1 or 3 of each filter cell. Coefficient registers 0 and 2 are  
not used in the full rate mode. To store coefficients h(k) in register 1 of each filter cell use the memory addresses  
BASE+4*k+1, where BASE is 128 for A-path or cascaded filters and is 192 for B-path filters, and  
k ranges from 0 to N-1 for filters without symmetry,  
k ranges from 0 to N/2-1 for filters with even symmetry, or  
k ranges from 0 to (N-1)/2 for filters with odd symmetry.  
To store the coefficients in register 3 of each filter cell use the addresses BASE+4*k+3.  
The control register settings in Table 2 assume the coefficients are stored in coefficient register 1 of each filter  
cell. To use register 3 in each cell add 0020HEX to the REG0 values shown in Table 1. The coefficient access logic within  
each filter cell is synchronized to the clock (CK) so that the user can switch between taps stored in register 1 and register  
3 without causing any undesirable transients in the filter’s operation. This is useful for adaptive filter applications.  
Texas Instruments Incorporated  
- 14 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.2  
HALF RATE  
The number of taps in the filter can be doubled if the data rate into and out of the chip is one half the clock rate.  
In this mode each filter cell stores two filter coefficients and performs two tap multiplications per output sample. The  
cells’ delay lines are adjusted so that two feed-forward and two feedback data samples are delayed within each filter  
cell. The accumulator at the end of the filter path sums the products to give the half rate output. The chip is configured  
in the half rate mode using the control settings shown in Table 3.  
Table 3: Half Rate Mode Control Register Settings  
A-PATH  
B-PATH  
Cascade  
REG  
Dual Path or  
Cascaded  
# of Taps  
(N)  
Symmetry  
None  
Latency  
REG0 REG1 REG0 REG1  
Dual  
Cascaded  
Dual  
32  
64  
638B  
638B  
638B  
638B  
638B  
638B  
AE00  
AE28  
A218  
A228  
A294  
A2A8  
438B  
438B  
438B  
438B  
438B  
438B  
AE00  
AE00  
A218  
A218  
A294  
A294  
2000  
5E00  
2000  
5E00  
2000  
5E00  
46  
62  
46  
62  
46  
62  
Even  
Odd  
64  
Cascaded  
Dual  
128  
63  
Cascaded  
127  
The coefficients can be stored in coefficient registers 0 and 1 in each filter cell or registers 2 and 3. To store  
coefficients h(k) in registers 0 and 1 of each filter cell use memory addresses:  
BASE+2*k  
for k even and  
for k odd.  
BASE+2*k-1  
To use registers 2 and 3 store the coefficients in addresses  
BASE+2*k+2  
BASE+2*k+1  
for k even and  
for k odd.  
Where BASE is 128 for A-path or cascaded filters, and is 192 for B-path filters.  
To switch from using registers 0 and 1 to registers 2 and 3 add 0020HEX to the REG0 values shown in Table  
3. Register switching is synchronized by the chip to the clock in order to prevent unwanted transients.  
Texas Instruments Incorporated  
- 15 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
3.3 QUARTER RATE  
SLWS129A  
The number of taps in the filter can be quadrupled if the data rate into and out of the chip is one quarter the  
clock rate. In this mode each filter cell stores four filter coefficients and performs two tap multiplications per output  
sample. The cells’ delay lines are adjusted so that four feed-forward and four feedback data samples are delayed within  
each filter cell. The accumulator at the end of the filter path sums the products to give the quarter rate output. The chip  
is configured in the quarter rate mode using the control settings shown in Table 4.  
Table 4: Quarter Rate Mode Control Register Settings  
A-PATH  
B-PATH  
Cascade  
REG  
Dual Path or  
Cascaded  
# of Taps  
(N)  
Symmetry  
None  
Latency  
REG0 REG1 REG0 REG1  
Dual  
Cascaded  
Dual  
64  
A202  
A202  
A202  
A202  
A202  
A202  
8E00  
8E28  
9018  
9028  
9094  
90A8  
8202  
8202  
8202  
8202  
8202  
8202  
8E00  
8E00  
9018  
9018  
9094  
9094  
2000  
5E00  
2000  
5E00  
2000  
5E00  
50  
66  
50  
66  
50  
66  
128  
128  
256  
127  
255  
Even  
Odd  
Cascaded  
Dual  
Cascaded  
The coefficients are stored in the filter cells using the formula:  
Store h(k) in memory address BASE+k.  
where BASE is 128 for A-path or cascaded filters and is 192 for B-path filters.  
All four coefficients are active within each filter cell so the user can not switch between banks of filter  
coefficients. To change or update the coefficients in the quarter rate mode, the user should set the SYNC_COEF control  
bit. When set, this bit synchronizes the control write operation to the data clock in order to prevent any filter transients  
or “glitches” due to asynchronous coefficient changes. This allows single coefficients to be updated synchronously  
3.4  
DOUBLE RATE I/O  
The chip will filter data samples which are received at twice the clock rate. The user must split the data into  
two data streams, each at the clock rate, one containing even time samples and one containing odd time samples. The  
even data stream is then used as the A-in input and the odd data stream is used as the B-in input. Two chips are required  
to perform the filtering, one for the even time outputs and one for the odd time outputs. The filtered samples are output  
on the A-out pins of each chip. If the filter is intended to be a decimate by two filter, then only one chip is needed since  
only the even time output samples need be generated. The double rate mode control register settings are shown in  
Table 5.  
Table 5: Double Rate Mode Control Register Settings  
A-PATH  
B-PATH  
Cascade Output  
Symmetr # of Taps  
Output  
Latency  
y
(N)  
REG0 REG1 REG0 REG1  
REG  
REG  
Even Output chip  
None  
Odd  
32  
63  
32  
63  
60d8 6000 00D8 6000  
60d8 6108 00D8 6181  
00d8 6000 20D8 6000  
00d8 6108 20D8 6181  
2000  
2000  
2000  
2000  
0048  
0048  
0048  
0048  
44  
44  
44  
44  
Odd Output chip  
None  
Odd  
The filter coefficients h(k) are stored in addresses:  
128+2*k+1  
192+2*k-1  
for k even, and  
for k odd,  
where k ranges from 0 to 31. h(31) is the center tap for the odd symmetry filters.  
Texas Instruments Incorporated  
- 16 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
3.5 DECIMATION  
SLWS129A  
A common filtering operation is to low pass filter the input signal and then to reduce (decimate) its sample rate  
by a factor of two or four. The sample rate reduction is performed by only calculating every other or every fourth output  
sample. This allows the number of taps in the filter to be doubled or quadrupled. Table 5 shows the control register  
settings for the decimation modes.  
Table 6: Decimation Mode Control Register Settings  
I/O Rates  
A-PATH  
B-PATH  
Cascade  
REG  
Symmetr Dual Path or # of Taps  
Tap  
Latency  
y
Cascaded  
(N)  
Storagea  
REG0 REG1 REG0 REG1  
In  
Full  
Out  
Half  
None  
Dual  
Cascaded  
Dual  
32  
64  
208B 2E00 008B 2E00  
208B 2E28 008B 2E00  
208B 2E12 008B 2E12  
208B 2E28 008B 2E12  
208B 2E91 008B 2E91  
208B 2EA8 008B 2E91  
2002 0200 0002 0200  
2002 0228 0002 0200  
2002 0214 0002 0214  
2002 0228 0002 0214  
2002 0292 0002 0292  
2002 02A8 0002 0292  
2000  
5E00  
2000  
5E00  
2000  
5E00  
2000  
5E00  
2000  
5E00  
2000  
5E00  
46  
62  
46  
62  
46  
62  
50  
66  
50  
66  
50  
66  
HR  
Even  
Odd  
64  
Cascaded  
Dual  
128  
63  
Cascaded  
Dual  
127  
64  
Quar-  
ter  
None  
Even  
Odd  
QR  
Cascaded  
Dual  
128  
128  
256  
127  
255  
Cascaded  
Dual  
Cascaded  
a. HR = Use half rate coefficient storage as described in Section 3.2.  
QR = Use quarter rate storage as described in Section 3.3.  
The decimate by two filter coefficients should be designed with a passband between 0 and FS/4 and a  
stopband from FS/4 to FS/2, where FS is the input data rate. The decimate by 4 filter (full rate in to quarter rate out) filter  
should be designed with a passband between 0 and FS/8 and a stopband above FS/8.  
The filter coefficients for the decimation modes are stored using the registers described for half rate or quarter  
rate operation. The decimation modes which result in half rate output samples use the half rate mode coefficient  
registers as described in Section 3.2. The quarter rate outputs use the quarter rate coefficient storage as described in  
Section 3.3.  
Texas Instruments Incorporated  
- 17 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.6  
INTERPOLATION  
Another common filtering application is to increase the signal’s sample rate through interpolation. Interpolation  
is performed by inserting zeros between input samples so as to double or quadruple the sample rate, and then to low  
pass filter the result. In the interpolation modes the GC2011A chip automatically zero pads the input as it low pass filters  
the result. The interpolation modes double or quadruple the number of taps implemented by each filter cell. The input  
sample rate is one half or one fourth the clock rate as shown in Figure 6. The output rate is at the clock rate.  
Table 7: Interpolation Mode Control Register Settings  
I/O Rates  
A-PATH  
B-PATH  
Cascade  
REG  
Symmetr Dual Path or # of Taps  
Tap  
Latency  
y
Cascaded  
(N)  
Storagea  
In  
Out  
REG0 REG1 REG0 REG1  
Full  
Double  
Full  
Odd  
Dual  
Dual  
63  
32  
20D8 6108 20D8 6181  
6388 2E00 4388 2E00  
6388 2E28 4388 2E00  
6388 2E91 4388 2E91  
6388 2EA8 4388 2E91  
A200 0000 8200 0000  
A200 0028 9200 0000  
2000  
2000  
5E00  
2000  
5E00  
2000  
5E00  
44  
46  
62  
46  
62  
46  
62  
DF  
HR  
Half  
None  
Cascaded  
Dual  
64  
Odd  
63  
Cascaded  
Dual  
127  
64  
Quar-  
ter  
Full  
None  
See  
Text  
Cascaded  
128  
a. HR = Use half rate coefficient storage as described in Section 3.2. DF = Use double to full rate storage in Section 3.8.  
In the interpolate by 4 (quarter rate in, full rate out) mode the coefficient storage is reversed within each filter  
cell. The interpolate by 4 coefficients, h(k), are stored in:  
memory address BASE+k+0 if k modulo-4 is 0  
memory address BASE+k+2 if k modulo-4 is 1  
memory address BASE+k+0 if k modulo-4 is 2  
memory address BASE+k-2 if k modulo-4 is 3  
where BASE is 128 for A-path or cascaded filters and is 192 for B-path filters. For example,  
Coefficient Memory address  
h(0)  
h(1)  
h(2)  
h(3)  
h(4)  
h(5)  
h(6)  
h(7)  
h(8)  
h(9)  
128+0  
128+3  
128+2  
128+1  
128+4  
128+7  
128+6  
128+5  
128+8  
128+11  
etc.  
Texas Instruments Incorporated  
- 18 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.7  
DHILBERT TRANSFORM FILTERS  
A Hilbert transform filter converts real signals to complex signals by passing the signal’s positive spectral  
frequencies and rejecting its negative frequencies. For example, a sinewave of frequency “w” has both the positive  
frequency component ejwt and the negative frequency component e-jwt. The Hilbert transform of the sinewave will be  
just the positive component ejwt  
.
The coefficients for a Hilbert transform can be generated by designing a linear phase low pass filter with a  
passband from 0 to FS/4 and a stopband from FS/4 to FS/2, where FS is the signal’s sample rate. The low pass filter’s  
impulse response is then mixed up to be centered on FS/4 by multiplying the coefficients by the sequence: (j, -1, -j, 1, j,  
-1, -j, …).  
For example, the coefficients:  
( h0, h1, h2, h3, h4, h5, h6, h7, h6, h5, h4, h3, h2, h1, h0)  
would become:  
(jh0, -h1,-jh2, h3, jh4, -h5,-jh6, h7, jh6, -h5,-jh4, h3, jh2, -h1,-jh0).  
These coefficients then split into the real coefficients:  
( 0, -h1,  
and the imaginary coefficients:  
(h0, 0, -h2, 0, h4, 0, -h6, 0, h6,  
0, h3, 0, -h5,  
0, h7, 0, -h5,  
0, h3, 0, -h1,  
0)  
0, -h4, 0, h2, 0, -h0).  
As seen in this example, the real coefficients of a Hilbert transform filter have odd symmetry with the center  
tap non-zero and every other tap equal to zero. The imaginary coefficients have negative odd symmetry.  
A special, but important, version of the Hilbert transform exists when the filter has half-band symmetry.  
Half-band symmetry forces all of the real coefficients except the center tap to be zero. The real half filter, for the  
half-band Hilbert Transform, is, therefore, just a delay line.  
The following table shows how to configure the GC2011A chip for the Hilbert Transform. The A-path is used  
for the real part and the B-path for the imaginary part.  
Table 8: Hilbert Transform Mode Control Register Settings  
A-PATH  
REG0 REG1 REG0 REG1  
60C8 2E84 20C8 2E78  
B-PATH  
Cascade  
Dual Path or  
Cascaded  
# of Taps  
(N)  
Latency  
45  
REG  
2000  
Dual  
63  
Since the coefficients are symmetric, only 32 of the 63 low pass filter coefficients are stored in the chip. If the  
low-pass filter coefficients are h(k), for k=0 to 31, where h(31) is the center tap, then coefficient register 0 of each filter  
cell is loaded as:  
Store -h(4k)  
in memory address 192+8*k for k=0 to 7  
Store -h(4k+1) in memory address 128+8*k for k=0 to 7  
Store +h(4k+2) in memory address 196+8*k for k=0 to 7  
Store +h(4k+3) in memory address 132+8*k for k=0 to 7  
Note that the odd coefficients are stored in the A-path, and that the even coefficients are stored in the B-path. Also note  
that every other odd and every other even coefficient are negated. In the half-band Hilbert transform only h(31) will be  
non-zero in the A-path.  
Texas Instruments Incorporated  
- 19 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.8  
REAL TO COMPLEX QUADRATURE DOWN CONVERT  
The chip can convert from real data to complex data by mixing the data down by FS/4, low pass filtering the  
result and then decimating by a factor of two. The control register settings for this mode are shown in Table 9. The  
Table 9: Real To Complex Conversion Mode Control Register Settings  
I/O Rates  
A-PATH  
B-PATH  
Cascade  
REG  
Symmetr # of Taps  
Latency  
y
(N)  
In  
Out  
REG0 REG1 REG0 REG1  
Double  
Full  
Half  
Odd  
63  
24D8 6108 04D8 6181  
248B 2E12 048B 2E91  
2402 0214 0402 0292  
6B8B A218 2B8B A294  
AE02 9018 6E02 9094  
2000  
2000  
2000  
2000  
2000  
44  
46  
50  
46  
50  
127  
255  
127  
255  
Quarter  
Half  
Full  
Half  
Quarter  
double rate input mode assumes the even time samples are in the A-path inputs and the odd time samples are the  
B-path inputs. The real output is the A-out and the imaginary output is the B-out.  
The low pass filter coefficients h(k) are stored so that the even coefficients are stored in the A-path filter cells  
and the odd coefficients are stored in the B-path filter cells. The lowpass filter should be designed to cut off frequencies  
above FS/4 for the double to full, full to half, or half to quarter modes, where FS is the input sample rate. The cut off  
frequencies are FS/8 and FS/16 for the double to half and double to quarter modes, respectfully.  
In the double rate in to full rate out mode the coefficients are stored in register 1 of each filter cell. In this mode  
store h(k) in addresses:  
128+2*k+1  
192+2*k-1  
for k even, and  
for k odd,  
where k ranges from 0 to 31. h(31) is the center tap.  
In the double or full rate in to half rate out modes the coefficients are stored in registers 0 and 1 of each filter  
cell. In this mode store h(k) in addresses:  
128+k  
for k modulo 4 = 0  
for k modulo 4 = 1  
for k modulo 4 = 2  
for k modulo 4 = 3  
192+k-1  
128+k-1  
192+k-2  
where k ranges from 0 to 63. h(63) is the center tap.  
In the double or half rate in to quarter rate out modes the coefficients are stored in registers 0, 1, 2 and 3 of  
each filter cell. In this mode store h(k) in addresses:  
128+k/2  
for k even  
for k odd  
192+(k-1)/2  
where k ranges from 0 to 127. h(127) is the center tap.  
Texas Instruments Incorporated  
- 20 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.9  
COMPLEX TO REAL QUADRATURE UPCONVERT  
Complex data can be converted to real data by doubling the sample rate, mixing the data up by FS/4 and saving  
the real part. The control settings for this mode are shown in Table 9.  
Table 10: Complex To Real Conversion Mode Control Register Settings  
I/O Rates A-PATH B-PATH Cascade Output  
Symmetr # of Taps  
Latency  
y
(N)  
In  
Out  
REG0 REG1 REG0 REG1  
REG  
REG  
Full  
Double  
Full  
Odd  
63  
20D8 6108 00D8 6181  
638B A218 438B A294  
A202 9018 8202 9094  
2000  
2000  
2000  
0001  
0012  
0033  
44  
46  
50  
Half  
127  
255  
Quar-  
ter  
Half  
The filter is an interpolate by two low pass filter with a pass band from 0 to FS/4 and a stop band from FS/4 to  
FS/2, where FS is the output sample rate. The even coefficients of the filter are stored in the A-path filter cells and the  
odd-coefficients are stored in the B-path filter cells. The real half of the complex samples are input as A-in, and the  
imaginary half are input as B-in. The real results are output as A-out in all modes except for the double rate output mode.  
In the double rate output mode the even time samples are output as A-out and the odd time samples are output as B-out.  
In the full rate in to double rate out mode the coefficients h(k) are stored in register 1 of each filter cell. In this  
mode store h(k) in addresses:  
128+2*k+1  
192+2*k-1  
for k even, and  
for k odd,  
where k ranges from 0 to 31. h(31) is the center tap.  
In the half rate in to full rate out mode the coefficients are stored in registers 0 and 1 of each filter cell. In this  
mode store h(k) in addresses:  
128+k  
for k modulo 4 = 0  
for k modulo 4 = 1  
for k modulo 4 = 2  
for k modulo 4 = 3  
192+k-1  
128+k-1  
192+k-2  
where k ranges from 0 to 63. h(63) is the center tap.  
In the quarter rate in to half rate out mode the coefficients are stored in registers 0, 1, 2 and 3 of each filter cell.  
In this mode store h(k) in addresses:  
128+k/2  
for k even  
for k odd  
192+(k-1)/2  
where k ranges from 0 to 127. h(127) is the center tap.  
Texas Instruments Incorporated  
- 21 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
3.10  
DIAGNOSTICS  
The user can use the ramp input and the snapshot memory to perform diagnostics on the chip. The suggested  
diagnostic procedure is to configure the chip as it will be used in normal operation, but to select the ramp as the data  
input source (see Section 6.1), to set the counter control to 0FFF HEX (see Section 6.4), and to set the snapshot controls  
to capture 128 output samples (see Section 6.7). The snapshot should be triggered on TC with a delay of 4 blocks from  
trigger. The delay guarantees that the filter has flushed and settled out before the snapshot is taken. The user can then  
read the snapshot from memory and compare it against a known snapshot or save it for future comparison.  
Two suggested diagnostic configurations are given below along with the expected snapshot output. These  
configurations use all of the coefficient registers and all of the forward and reverse delay storage registers. The  
diagnostic procedure is, for each test configuration in table 11:  
(1)  
(2)  
(3)  
Load the 11 control registers with the values shown in Table 11.  
Load the coefficients h(k) in addresses 128+k for k=0 to 127.  
Set the start bit in the snapshot register by writing 0413HEX to address 10.  
(4)  
Wait, while reading address 10, until the register value is 0463HEX.  
(5)  
Read addresses 256 through 271 and 384 through 399 and compare them to the expected values in  
Table 12.  
Table 11: Diagnostic Test Configuration  
Parameter  
h(k)  
Address  
Test A Test B  
k modulo 4 = 0  
EAAA  
FFFF  
0F0F  
0001  
C402  
0292  
D402  
0214  
1000  
0FFF  
1035  
0041  
004E  
004F  
0403  
0000  
1555  
E000  
F0F0  
1FFF  
E402  
0108  
E402  
02F2  
2F00  
0FFF  
103A  
0041  
004F  
005F  
0403  
0000  
k modulo 4 = 1  
k modulo 4 = 2  
k modulo 4 = 3  
A_PATH_REG0  
A_PATH_REG1  
B_PATH_REG0  
B_PATH_REG1  
CASCADE  
0
1
2
3
4
COUNTER  
5
GAIN  
6
OUTPUT  
7
SNAP_REGA  
SNAP_REGB  
SNAP_REGC  
NEW_MODES  
8
9
10  
12  
Table 12: Expected Test Results  
Address  
Test A Test B  
Address  
Test A Test B  
Address  
Test A Test B  
Address  
Test A Test B  
256  
257  
258  
259  
260  
261  
262  
263  
C302  
C2E2  
C2C2  
C2A2  
C282  
C262  
C243  
C223  
A635  
A606  
A5D7  
A5A8  
A578  
A549  
A51A  
A4EA  
264  
265  
266  
267  
268  
269  
270  
271  
C621  
CA1F  
CE1E  
D21D  
D61B  
DA1A  
DE19  
E217  
C3D3  
C8BD  
CDA6  
D290  
F692  
0094  
0A97  
1499  
384  
385  
386  
387  
388  
389  
390  
391  
3BC2  
3BE2  
3C02  
3C22  
3C42  
3C62  
3C82  
3CA2  
4BAD  
4B7E  
4B4F  
4B1F  
4AF0  
4AC1  
4A91  
4A62  
392  
393  
394  
395  
396  
397  
398  
399  
3CC2  
3CE2  
3D02  
3D22  
3D41  
3D61  
3D81  
3DA1  
4A33  
4A04  
49D4  
49A5  
4976  
4947  
4917  
48E8  
Texas Instruments Incorporated  
- 22 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
4.0  
4.1  
PACKAGING  
160 PIN QUAD FLAT PACK (QFP) PACKAGE  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
140  
AI11(MSB)  
AI10  
AI9  
AI8  
AI7  
AI6  
AI5  
AI4  
AI3  
(MSB) AO15  
AO14  
AO13  
AO12  
AO11  
AO10  
AO9  
A1  
139  
138  
135  
134  
133  
132  
131  
130  
129  
124  
123  
122  
121  
119  
118  
A
L
D
AO8  
AO7  
AO6  
AO5  
AO4  
AO3  
AO2  
AO1  
AI2  
AI1  
AI0  
B
120  
P (0.65mm)81  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
121  
80  
BI11(MSB)  
BI10  
BI9  
BI8  
BI7  
BI6  
BI5  
BI4  
BI3  
AO0  
112  
107  
106  
105  
104  
103  
98  
97  
90  
89  
88  
(MSB)  
BO15  
BO14  
B013  
BO12  
BO11  
BO10  
BO9  
BO8  
BO7  
BO6  
BO5  
BO4  
BO3  
BO2  
BO1  
BO0  
GRAYCHIP  
GC2011A-PQ  
DIGITAL FILTER  
MMMMMLLL YYWW  
BI2  
BI1  
BI0  
77  
78  
SI  
SN  
87  
86  
85  
84  
160  
41  
9
8
5
C15 (MSB)  
C14  
C13  
1
40  
GC2011A  
2
83  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
160 PIN QUAD FLAT PACK PACKAGE  
155  
154  
153  
152  
151  
150  
149  
146  
145  
144  
143  
142  
116  
117  
115  
GC2011A-PQ = Enhanced Thermal Plastic Package  
GC2011A-CQ = Ceramic Package (special order only)  
DAV  
AOF  
BOF  
MMMMM = Mask Code  
LLL = Lot Number  
Package Markings:  
74  
SO  
YYWW = Date Code  
DIMENSION  
PLASTIC  
CERAMIC  
D
(width pin to pin)  
31.2 mm (1.228") 32.0 mm (1.260")  
28.0 mm (1.102") 28.0 mm (1.102")  
0.65 mm (0.026") 0.65 mm (0.026")  
0.30 mm (0.012") 0.30 mm (0.012")  
0.88 mm (0.035") 0.70 mm (0.028")  
4.07 mm (0.160") 3.25 mm (0.128")  
47  
46  
45  
37  
36  
33  
32  
27  
24  
D1 (width body)  
A8 (MSB)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
P
B
L
(pin pitch)  
(pin width)  
(leg length)  
(height)  
A
A1 (pin thickness)  
0.17 mm (0.007")  
0.2 mm (0.008")  
VCC PINS: 3,4,7,12,13,16,21,22,26,30,31,35,38,39,44,75,76,80,91,92,93,  
99,100,108,109,113,125,126,136,147,156  
15  
17  
14  
RE (GND)  
WE (R/W)  
CE (CS)  
GND PINS: 6,10,11,19,20,25,28,29,34,42,43,72,73,79,94,95,96,101,102,  
110,111,114,127,128,137,148,157,158,159  
18  
23  
CKEN  
CK  
UNUSED PINS: 1, 40, 41, 81, 120, 160  
AOE  
141  
BOE  
82  
NOTE: 0.01 to 0.1 µf DECOUPLING CAPACITORS SHOULD BE PLACED  
AS CLOSE AS POSSIBLE TO THE MIDDLE OF EACH SIDE OF THE CHIP  
Texas Instruments Incorporated  
- 23 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
Table 13: Pin Listing For 160 Pin QFP Package  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
1
-
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
-
81  
-
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
AO2  
AO3  
AO4  
AO5  
VCC  
VCC  
GND  
GND  
AO6  
AO7  
AO8  
AO9  
AO10  
AO11  
AO12  
VCC  
GND  
AO13  
AO14  
AO15  
AOE  
C0  
2
C12  
VCC  
VCC  
C13  
GND  
VCC  
C14  
C15  
GND  
GND  
VCC  
VCC  
GND  
GND  
VCC  
A6  
82  
BOE  
BO0  
BO1  
BO2  
BO3  
BO4  
BO5  
BO6  
BO7  
VCC  
VCC  
VCC  
GND  
GND  
GND  
BO8  
BO9  
VCC  
VCC  
GND  
GND  
BO10  
BO11  
BO12  
BO13  
BO14  
VCC  
VCC  
GND  
GND  
BO15  
VCC  
GND  
BOF  
DAV  
AOF  
AO0  
AO1  
-
3
83  
4
84  
5
85  
6
A7  
86  
7
A8  
87  
8
BI11  
BI10  
BI9  
BI8  
BI7  
BI6  
BI5  
BI4  
BI3  
BI2  
BI1  
BI0  
AI11  
AI10  
AI9  
AI8  
AI7  
AI6  
AI5  
AI4  
AI3  
AI2  
AI1  
AI0  
GND  
GND  
SO  
88  
9
89  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
90  
91  
92  
93  
CE  
(CS)  
(GND)  
94  
RE  
95  
VCC  
96  
WE (R/W)  
CKEN  
GND  
GND  
VCC  
VCC  
CK  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
C1  
A0  
C2  
GND  
VCC  
A1  
C3  
C4  
VCC  
GND  
C5  
GND  
GND  
VCC  
VCC  
A2  
C6  
C7  
C8  
A3  
C9  
GND  
VCC  
A4  
C10  
C11  
VCC  
VCC  
SI  
VCC  
GND  
GND  
GND  
-
A5  
VCC  
VCC  
-
SN  
GND  
VCC  
NOTE: The pin names in parenthesis (*) indicate the GC2011 pin names.  
Texas Instruments Incorporated  
- 24 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
4.2  
160 PIN BALL GRID ARRAY (PBGA) PACKAGE  
1.53 mm  
H11  
G12  
H12  
G14  
G13  
G11  
F14  
F12  
F13  
F11  
E14  
E12  
H3  
0.36 mm  
A2  
AI11(MSB)  
AI10  
AI9  
AI8  
AI7  
AI6  
AI5  
AI4  
AI3  
(MSB) AO15  
AO14  
AO13  
AO12  
AO11  
AO10  
AO9  
D1  
13 mm  
G4  
G1  
F3  
F1  
F2  
E4  
E3  
E1  
E2  
C1  
C2  
B1  
B2  
B3  
C3  
A1  
A
0.5 mm  
1 2 3 4 5 6 7 8 9 1011 1213 14  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
AO8  
AO7  
AO6  
AO5  
AO4  
AO3  
AO2  
AO1  
AI2  
AI1  
AI0  
D
L14  
L11  
K13  
K14  
K12  
K11  
J13  
J14  
J12  
J11  
H13  
H14  
BI11(MSB)  
BI10  
BI9  
BI8  
BI7  
BI6  
BI5  
BI4  
BI3  
AO0  
B5  
C6  
A6  
D7  
B7  
A7  
B8  
D9  
B10  
D11  
A11  
C11  
B11  
A12  
B12  
A13  
(MSB)  
BO15  
BO14  
B013  
BO12  
BO11  
BO10  
BO9  
BO8  
BO7  
BO6  
BO5  
BO4  
BO3  
BO2  
BO1  
BO0  
BI2  
BI1  
BI0  
TOP VIEW  
MMMMM = Mask Code  
LLL = Lot Number  
YYWW = Date Code  
C14  
C12  
SI  
SN  
L
0.5 mm  
P
N
M
L
K
J
H
G
F
E
D
C
B
A
N5  
L4  
N4  
P2  
L2  
L3  
L1  
K4  
K2  
K3  
K1  
J3  
C15 (MSB)  
C14  
C13  
GC2011A  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
P
1.0 mm  
B4  
A3  
C4  
DAV  
AOF  
BOF  
B
D14  
SO  
J1  
0.53 mm  
H4  
H2  
H1  
1 2 3 4 5 6 7 8 9 1011 1213 14  
BOTTOM VIEW  
L12  
L13  
M14  
M12  
P12  
P11  
L10  
N9  
A8 (MSB)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DIMENSION  
TYP  
TOLERANCE  
mm  
D
(width body)  
15 mm  
13 mm  
1.0 mm  
0.53 mm  
0.5 mm  
1.53 mm  
0.5 mm  
0.36 mm  
D1 (width cover)  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
P
B
L
(ball pitch)  
(ball width)  
(overhang)  
(overall height)  
A
A1 (ball height)  
L8  
A2 (substrate thickness)  
M6  
N7  
RE (GND)  
WE (R/W)  
CE (CS)  
VCC (CORE):  
A8, B6, C10, D2, D6, D8, D10, D12, D13, L5, L6, M7, M9, M10,  
N3, N6, N10, N11, N12, P3, P4, P8, P13  
P6  
P7  
N8  
VCC (PAD RING):  
GND:  
A10, B14, D3, D5, F4, J2, M1, M13  
CKEN  
CK  
A5, A9, B9, C5, C7, C8, D4, E11, E13, L7, L9, M2, M4, M5, M8,  
M11, N1, N13, P5, P9, P10, A4, C9, C13, D1, G2, J4, M3, N14  
AOE  
G3  
BOE  
B13  
GND (THERMAL):  
UNUSED:  
G7, G8, H7, H8  
A2, N2  
NOTE: 0.01 to 0.1 µf DECOUPLING CAPACITORS SHOULD BE PLACED  
AS CLOSE AS POSSIBLE TO THE MIDDLE OF EACH SIDE OF THE CHIP  
Texas Instruments Incorporated  
- 25 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
Table 14: Pin Listing For 160 Pin BGA Package (Top View)  
1:  
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  
10:  
11:  
12:  
13:  
14:  
*
AOF  
AO1  
AO0  
PVCC  
AO8  
AO12  
AOE  
AO15  
C4  
GND  
DAV  
BOF  
GND  
AO9  
PVCC  
AO14  
C2  
GND  
BO15  
GND  
BO13  
CVCC  
BO14  
CVCC  
BO10  
BO11  
GND  
CVCC  
BO9  
GND  
GND  
GND  
BO8  
PVCC  
BO7  
BO5  
BO3  
BO4  
BO6  
GND  
AI2  
BO2  
BO1  
SN  
BO0  
BOE  
GND  
CVCC  
GND  
AI3  
A:  
B:  
C:  
D:  
E:  
F:  
G:  
H:  
J:  
AO3  
AO5  
GND  
AO7  
AO11  
AO13  
C0  
AO2  
AO4  
CVCC  
AO6  
AO10  
GND  
C1  
PVCC  
SI  
GND  
CVCC  
CVCC  
PVCC  
BO12  
CVCC  
CVCC  
AI0  
SO  
AI1  
AI5  
AI8  
BI0  
BI4  
BI8  
BI11  
A6  
AI4  
TGND  
TGND  
TGND  
TGND  
AI6  
AI10  
AI9  
AI7  
AI11  
BI2  
BI1  
C3  
PVCC  
C7  
GND  
C8  
BI3  
BI5  
C5  
C6  
BI6  
BI7  
BI9  
K:  
L:  
C9  
C11  
GND  
*
C10  
C14  
CVCC  
GND  
C15  
CVCC  
RE  
GND  
CVCC  
WE  
A0  
GND  
CVCC  
A1  
A2  
BI10  
GND  
CVCC  
A3  
A8  
A7  
PVCC  
GND  
GND  
CVCC  
CVCC  
GND  
C13  
GND  
CK  
CVCC  
CVCC  
GND  
A5  
PVCC  
GND  
CVCC  
M:  
N:  
P:  
CVCC  
CE  
CVCC  
A4  
GND  
C12  
CVCC  
GND  
CKEN  
CVCC  
GND  
* = unused ball  
CVVC = Core VCC  
PVCC = Pad VCC  
TGND = Thermal Ground  
Texas Instruments Incorporated  
- 26 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
5.0  
PIN DESCRIPTIONS  
SIGNAL  
AI[0:11]  
DESCRIPTION  
A-PATH INPUT DATA. Active high  
The 12 bit two’s complement input samples for path A. New samples are clocked into the chip on  
the rising edge of the clock.  
BI[0:11]  
CK  
B-PATH INPUT DATA. Active high  
The 12 bit two’s complement input samples for path B. New samples are clocked into the chip on  
the rising edge of the clock.  
CLOCK INPUT. Active high  
The clock input to the chip. The AI, BI, SI, SN and CKEN signals are clocked into the chip on the  
rising edge of this clock. The AO, BO, DAV, AOF, BOF and SO signals are clocked out on the  
rising edge of this clock.  
CKEN  
CLOCK ENABLE INPUT. Active low  
The clock enable input to the chip. This signal is gated with CK to generate the chip’s internal clock.  
CKEN is clocked into the chip on the rising edge of CK and will enable or disable the following clock  
edge. A low level on CKEN enables the clock edge.  
SI  
SYNC INPUT. Active low  
The sync input to the chip. All timers, accumulators, and control counters are, or can be,  
synchronized to SI. This sync is clocked into the chip on the rising edge of the clock.  
SN  
SNAPSHOT SYNC. Active low  
The snapshot sync is provided to synchronously start the data snapshot. This signal is clocked into  
the chip on the rising edge of the clock.  
AO[0:15]  
BO[0:15]  
A-PATH OUTPUT DATA. Active high  
The A-path output samples are output as 16 bit words on these pins. The bits are clocked out on  
the rising edge of the clock.  
B-PATH OUTPUT DATA. Active high  
The B-path output samples are output as 16 bit words on these pins. The bits are clocked out on  
the rising edge of the clock.  
AOE  
BOE  
DAV  
A-PATH OUTPUT ENABLE. Active low  
The A[0:15] and AOF output pins are put into a high impedance state when this pin is high.  
B-PATH OUTPUT ENABLE. Active low  
The B[0:15] BOF output pins are put into a high impedance state when this pin is high.  
DATA VALID STROBE. Programmable active high or low level  
This strobe is output synchronous with the A and B data words. The strobe is used in the decimate,  
half rate, or quarter rate output modes to indicate when the output words are valid. The high/low  
polarity of the strobe is programmable.  
AOF  
BOF  
SO  
A-PATH OVERFLOW Active high  
This signal goes high for one clock cycle each time there is an overflow in the A-path gain output.  
B-PATH OVERFLOW Active high  
This signal goes high for one clock cycle each time there is an overflow in the B-path gain output.  
SYNC OUT. Active low  
This signal is either the input sync SI delayed by 4 clock cycles, the one shot sync OS, or the  
internal counter’s terminal count strobe TC.  
C[0:15]  
CONTROL DATA I/O BUS. Active high  
This is the 16 bit control data I/O bus. Control register contents are loaded into the chip or read from  
the chip through these pins. The chip will only drive these pins when CE and RE are low and WE  
is high.  
A[0:8]  
CONTROL ADDRESS BUS. Active high  
These pins are used to address the control registers, coefficient registers, and the snapram  
memory within the chip.  
RE, WE, CE  
READ, WRITE, and CHIP ENABLE STROBES. active low  
These pins control the reading and writing of control data. If RE is held low the chip will operate in  
the GC2011 read/write mode, where WE is the GC2011’s R/W control and CE is the GC2011’s CS  
control strobe. (See Section 2.2)  
Texas Instruments Incorporated  
- 27 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
6.0  
CONTROL REGISTERS  
The chip is configured and controlled through the use of 11 sixteen bit control registers. These registers are  
accessed for reading or writing using the control bus pins (CE, RE, WE, A[0:8], and C[0:15]) described in the previous  
section. The register names and their addresses are:  
ADDRESS  
NAME  
ADDRESS  
NAME  
0
1
2
3
4
5
6
7
APATH_REG0  
APATH_REG1  
BPATH_REG0  
BPATH_REG1  
CASCADE_REG  
COUNTER_REG  
GAIN_REG  
8
SNAP_REGA  
SNAP_REGB  
SNAP_REGC  
ONE_SHOT  
NEW_MODES  
unused  
9
10  
11  
12  
13 to 127  
128 to 255  
256 to 511  
Coefficient Registers  
Snapram  
OUTPUT_REG  
The following sections describe each of these registers. The type of each register bit is either R or R/W  
indicating whether the bit is read only or read/write. All bits are active high.  
The APATH_REG0, APATH_REG1, BPATH_REG0, BPATH_REG1, CASCADE_REG and OUTPUT_REG  
control register settings given in Section 3.0 will configure the chip into the most common modes of operation. This  
Section describes the meanings of the individual register bits used to set up those modes.  
Texas Instruments Incorporated  
- 28 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
6.1  
A-PATH AND B-PATH CONTROL REGISTER 0  
Control registers APATH_REG0 and BPATH_REG0 are identical and are described here.  
ADDRESS 0:  
ADDRESS 2:  
APATH_REG0  
BPATH_REG0  
BIT  
TYPE  
NAME  
DESCRIPTION  
0,1 (LSBs)  
R/W  
ACCUM  
This two bit field controls the accumulator according to the  
following table:  
ACCUM  
DESCRIPTION  
0,1  
2
3
don’t accumulate (full rate output)  
accumulate 4 sums (quarter rate)  
accumulate 2 sums (half rate)  
The ACCUM control also sets the output data rate as shown in  
Figure 8.  
2
R/W  
R/W  
UNSIGNED  
COEF_SEL  
The filter cell adder (See Figure 5) is in the unsigned mode when  
this bit is set.  
3-7  
This five bit field controls how the four coefficients are used  
within the filter cells. The controls are:  
COEF_SEL  
DESCRIPTION  
(HEX)  
1B  
use coefficient reg 1  
1F  
use coefficient reg 3  
11  
15  
00  
toggle between registers 0 and 1  
toggle between registers 2 and 3  
cycle through all four registers  
8,9  
R/W  
R/W  
RATE  
This two bit field sets the input rate as follows: (See Figure 7)  
RATE  
0,1  
2
DESCRIPTION  
full rate input  
quarter rate input  
half rate input  
3
10-12  
NEG_IN  
These three bits control the input sample negation as follows:  
NEG_IN  
DESCRIPTION  
0
1
2
3
4
5
6
7
don’t negate  
negate even time full rate samples  
negate odd time half rate samples  
negate even time quarter rate samples  
always negate  
negate odd time full rate samples  
negate even time half rate samples  
negate odd time quarter rate samples  
where the definition of even and odd time samples is shown in  
Figure 7.  
13  
R/W  
R/W  
AB_SEL  
Select input A-in when high, B-in when low.  
14,15(MSB)  
DELAY_SEL  
Selects the input delay or counter input as follows:  
DELAY_SEL  
DESCRIPTION  
no delay  
one clock delay  
3 clock delay  
0
1
2
3
use counter as input  
Texas Instruments Incorporated  
- 29 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
The operation of these control bits are illustrated in the following figures.  
CK  
0
1
2
3
4
5
6
7
8
9
TIME  
SI  
SO  
TC  
even  
X0  
odd  
X1  
even  
X2  
odd  
X3  
Full Rate  
Half Rate  
even  
X2  
even  
X0  
odd  
X1  
even  
X0  
odd  
X1  
Quarter Rate  
(a) DEL_SEL = 0 (no delay)  
even  
X0  
odd  
X1  
even  
odd  
X3  
X2  
Full Rate  
Half Rate  
even  
X2  
even  
X0  
odd  
X1  
odd  
X3  
even  
X0  
odd  
X1  
Quarter Rate  
(b) DEL_SEL = 1 (1 clock delay)  
even  
X0  
odd  
X1  
even  
X2  
odd  
X3  
Full Rate  
Half Rate  
even  
X2  
odd  
X3  
even  
X0  
odd  
X1  
even  
X0  
even  
X2  
odd  
X1  
Quarter Rate  
(c) DEL_SEL = 2 (3 clock delay)  
Figure 7. Input Timing  
NOTES:  
(1)  
(2)  
The TC strobe appears 8 clocks after SI and every 16*(CNT+1) clocks thereafter.  
The input delays selected by the DEL_SEL control are clock cycle delays, not sample delays. These delays occur  
before the input rate circuit captures the samples as shown above.  
CK  
0
1
2
3
4
5
6
7
8
9
TIME  
SI  
odd  
even  
odd  
even  
odd  
even  
odd  
even  
odd  
even  
Full Rate  
(ACCUM = 0,1, The DAV output is always high)  
odd  
even  
odd  
odd  
even  
odd  
Half Rate  
(ACCUM = 3)  
DAV  
even  
Quarter Rate  
even  
(ACCUM = 2)  
DAV  
Figure 8. Output Timing  
- 30 -  
Texas Instruments Incorporated  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
6.2  
A-PATH AND B-PATH CONTROL REGISTER 1  
Control registers APATH_REG1 and BPATH_REG1 are identical and are described here.  
ADDRESS 1:  
ADDRESS 3:  
APATH_REG1  
BPATH_REG1  
BIT  
TYPE  
NAME  
DESCRIPTION  
0-4 (LSBs)  
R/W  
FEED_BACK  
This 5 bit field controls the symmetric filter feedback mode according to the  
following table:  
FEED_BACK  
DESCRIPTION  
(HEX)  
00  
no symmetry  
01  
full rate odd symmetry  
08  
full rate even symmetry and  
A-path cascade mode  
11  
12  
decimate and interpolate by 2 odd symmetry  
decimate by 2 even symmetry and  
decimate by 4 odd symmetry  
decimate by 4 even symmetry and  
half and quarter rate odd symmetry  
half and quarter rate even symmetry  
14  
18  
NOTE: the A-path FEED_BACK control must be 08 in the  
cascade mode.  
5
6
R/W  
R/W  
ANTI_SYM  
Anti-symmetric filters can be implemented by setting this bit and the CIN  
bit described below. This bit complements (bitwise inverts) the feedback  
data.  
EXCEPTION: In the cascade mode the A-PATH ANTI_SYM bit must be  
set for all filters.  
CIN  
This is the carry input to the filter cell’s 12 bit adder (See Figure 5). This  
bit is set to create anti-symmetric filters. In the cascade mode this bit is  
cleared in both paths to create a symmetric filter and it is set in both paths  
to create an anti-symmetric filter.  
7
R/W  
R/W  
ODD_SYM  
This bit must be set for odd-symmetry filters and cleared for even  
or non symmetric filters.  
8-12  
REV_DELAY  
These five bits control the filter cells’ reverse delays.  
These bits are not used if FEED_BACK=00 (no symmetry)  
REV_DELAY  
DESCRIPTION  
(HEX)  
00  
no symmetry  
01  
full rate filters  
02  
0E  
10  
decimate by 4 and half rate filters  
decimate and integrate by 2 filters  
quarter rate filters  
13-15(MSB)  
R/W  
FOR_DELAY  
These 3 bits control the filter cells’ forward delays.  
FOR_DELAY  
DESCRIPTION  
0
1
3
4
5
decimate and interpolate by 4 filters  
decimate and interpolate by 2 filters  
full rate filters  
quarter rate filters  
half rate filters  
Texas Instruments Incorporated  
- 31 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
6.3  
CASCADE MODE CONTROL REGISTER  
This register controls the cascade mode and the synchronous coefficient storage mode.  
ADDRESS 4:  
BIT  
CASCADE_REG  
NAME  
TYPE  
DESCRIPTION  
0 (LSB)  
R/W  
SYNC_COEF  
This bit forces the filter coefficient data to be synchronized to the  
system clock before they are stored in the filter cell coefficient  
registers.  
NOTE: The write cycle control strobe, when storing a coefficient in this  
mode, must be active for at least 5 data clock cycles.  
1-8  
R/W  
R/W  
-
Unused.  
9-15(MSB)  
CASCADE  
This 7 bit field controls the cascade mode according to the following  
table:  
CASCADE  
DESCRIPTION  
(HEX)  
10  
Dual path mode.  
2F  
4F  
Cascade mode for non-full rate filters  
Cascade mode for full rate filters.  
To enable the cascade mode the user must also set ANTI_SYM to 1 and FEED_BACK to 08 in APATH_REG1.  
In the cascade mode the following control bits are not used:  
APATH_REG0:  
APATH_REG1:  
BPATH_REG0:  
BPATH_REG1:  
ACCUM  
ODD_SYM  
RATE,NEG_IN, AB_SEL, DELAY_SEL, COEF_SEL  
REV_DELAY, FOR_DELAY  
These bits can be treated as “don’t cares”.  
The SYNC_COEF mode is only needed when the user is dynamically changing filter coefficients in the  
decimate by 4, interpolate by 4 or quarter rate modes. These modes use all four coefficient registers in each filter cell.  
Otherwise the user can dynamically change filter coefficients by switching between banks of filter coefficients using the  
COEF_SEL control described in Section 6.1.  
6.4  
COUNTER REGISTER  
This register sets the cycle time of the 20 bit internal counter.  
ADDRESS 5:  
BIT  
COUNTER_REG  
NAME  
CNT  
TYPE  
DESCRIPTION  
0-15  
R/W  
CNT is the 16 bit counter control word. The counter is preset to  
(16*CNT+15) by SI, counts down to zero, and then starts over  
again.  
A TC terminal count strobe is generated by the counter when it is preset by SI and every time it reaches zero.  
The delay from SI to the first TC strobe is set at 8 clocks. The TC strobe will then repeat every 16*(CNT+1) clocks.  
6.5  
GAIN REGISTER  
The gain register controls the filter’s output gain and rounding. Note that the gain setting is synchronized to the  
data clock so that gain changes will not cause “glitches” on the output when it is changed. The gain and rounding control  
is common to both paths of the chip.  
Texas Instruments Incorporated  
- 32 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
ADDRESS 6:  
BIT  
GAIN_REG  
TYPE  
NAME  
DESCRIPTION  
0-3  
R/W  
R/W  
R/W  
F
The 4 bit gain fraction.  
The 4 bit gain exponent.  
4-7  
S
8-14  
ROUND  
Controls the output rounding according to the following table:  
ROUND  
(HEX)  
DESCRIPTION  
00  
01  
02  
04  
08  
10  
20  
40  
Truncate  
Round to the 8 MSBs  
Round to the 10 MSBs  
Round to the 12 MSBs  
Round to the 14 MSBs  
Round to the 16 MSBs  
Round to the 20 MSBs  
Round to the 24 MSBs  
15 (MSB)  
R/W  
-
Unused  
The chip’s output gain is set using F and S according to the following formula:  
GAIN =2(S-20)(1+F/16)(DC_GAIN)  
Where DC_GAIN is the sum of the filter coefficients. Unity gain, according to this formula, will map the MSB of the12 bit  
input data (AI11 or BI11) into the MSB of the selected output word (AO15 or BO15).  
The 32 bit filter path output is rounded to the number of most significant bits selected by the round control. The  
gain circuit output is saturated to plus or minus full scale if the GAIN setting causes an overflow. The AOF or BOF output  
pins will go high whenever an overflow is detected in the A-Path or B-path gain circuit.  
For example: If the DC gain of the filter coefficients is 215 (i.e., the sum of the coefficients is 215), then the  
overall gain of the filter can be set to unity by setting S to 5 and F to 0.  
Texas Instruments Incorporated  
- 33 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
6.6  
OUTPUT MODE REGISTER  
The output mode register controls the output formatting.  
ADDRESS 7:  
BIT  
OUTPUT_REG  
TYPE  
NAME  
DESCRIPTION  
This two bit field controls the output sample negation as follows:  
0,1 (LSBs)  
R/W  
NEG_OUT  
NEG_OUT  
DESCRIPTION  
0
1
2
3
don’t negate  
negate full rate output samples  
negate half rate output samples  
negate quarter rate output samples  
When negation is enabled the circuit will negate the even time A-Path  
outputs and the odd time B-path outputs where the definition of even and  
odd time samples is shown in Figure 8. If the user desires to negate the  
odd time A-path outputs, or negate the even time B-path outputs, then  
the NEG_IN control should be used to negate the path’s input.  
2
R/W  
24BIT_MODE  
Enables the 24 bit mode. PATH_ADD and 24BIT_OUT must also be set  
in this register. A-path and B-path must be configured the same except  
for:  
B-path must be in the unsigned mode,  
A-path CIN must be zero,  
A-path AB_SEL is 1, and  
B-path AB_SEL is 0.  
3
R/W  
R/W  
24BIT_OUT  
MUX_MODE  
Enables the 24 bit output mode. The 24 bit B-path output samples are  
output on the A-out and B-out pins as follows: The upper 16 bits are  
output on the A-out pins, the lower 8 bits are output on the upper 8 bits  
of the B-out pins.  
4,5  
In the MUX_MODE the A-path and B-path outputs are multiplexed  
together on the A-out pins. The B-out pins are cleared. The MUX_MODE  
settings are:  
MUX_MODE  
DESCRIPTION  
0
1
3
mux mode is off,  
mux half rate outputs,  
mux quarter rate outputs  
The multiplexed half rate outputs will generate a full rate output stream,  
the multiplexed quarter rate outputs will generate a half rate stream. The  
A-path sample is output first, followed by the B-path sample.  
6
R/W  
R/W  
R/W  
PATH_ADD  
Adds the A-path and B-path results. The result is output on the B-out pins  
unless the 24BIT_OUT control is enabled.  
7
DAV_POLARITY  
-
Invert the polarity of the data valid (DAV) strobe. Figure 8 shows  
DAV with DAV_POLARITY = 0.  
8-15  
unused  
Texas Instruments Incorporated  
- 34 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
6.7 SNAPSHOT MODE CONTROL REGISTERS  
SLWS129A  
The snapshot memory is divided into two halves, 128 words by 16 bits each. SNAP_REGA controls the A-half  
of the snapshot memory, SNAP_REGB controls the B-half.  
ADDRESS 8:  
ADDRESS 9:  
SNAP_REGA  
SNAP_REGB  
BIT  
TYPE  
NAME  
DESCRIPTION  
0,1 (LSBs)  
R/W  
SEL_IN  
Selects the snapshot source as:  
SEL_IN  
DESCRIPTION  
0
1
2
3
IB[0:11]  
IA[0:11]  
OA[0:15]  
OB[0:15]  
2,3  
4-7  
R/W  
R/W  
SNAP_RATE  
Determines the rate at which samples are stored according to:  
SNAP_RATE  
DESCRIPTION  
0
1
2
every clock, full rate samples  
every other clock, half rate samples  
invalid  
th  
3
every 4 clock, quarter rate samples.  
SNAP_DELAY  
Delay from snapshot trigger in blocks of 128 samples until start of  
snapshot. The delay is:  
128*SNAP_DELAY*(SNAP_RATE+1)  
clock cycles where SNAP_DELAY ranges from 0 to 15. This control  
allows the user to start the A or B-half snapshot a fixed number of  
samples after the other half’s snapshot.  
8
R/W  
R/W  
R/W  
SNAP_HOLD  
Do not start a new snapshot. This control lets the user start one  
half of the snapshot memory and not the other.  
9
BYTE_MODE  
This control reorganizes the memory half into 256 bytes instead  
of 128 words. The upper 8 bits of the input source are stored.  
10-15(MSB)  
-
unused  
In the BYTE_MODE the memory is reorganized so that the first 128 bytes of the 256 byte snapshot are stored  
in the least significant bytes of the 128 word memory and the second 128 bytes are stored in the most significant bytes  
of the 128 word memory.  
Texas Instruments Incorporated  
- 35 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
6.8  
SNAPSHOT START CONTROL REGISTER  
This register controls the snapshot trigger settings, the snapshot read modes and the chip’s sync modes.  
ADDRESS 10:  
BIT  
SNAP_REGC  
TYPE  
NAME  
DESCRIPTION  
0,1 (LSBs)  
R/W  
TRIGGER  
This control sets the trigger condition which will start a snapshot once  
the ARMED bit is set. The trigger conditions are to start:  
TRIGGER  
DESCRIPTION  
0
1
2
3
immediately,  
when the SN strobe is received,  
when the SI strobe is received,  
when the TC strobe is received.  
2,3  
R/W  
READ_MODE  
Selects whether words or bytes are read from the snapshot memory  
according to:  
READ_MODE  
DESCRIPTION  
0,2  
1
3
read words,  
read the least significant bytes  
read the most significant bytes  
When reading bytes, the bytes are placed in the LSBs of the 16 bit  
control word and sign extended.  
4
R/W  
ARMED  
The user sets this bit to arm the snapshot memory so that it will  
start on the next trigger condition. The chip clears this bit when  
the trigger occurs.  
5
6
R/W  
R/W  
A_DONE  
B_DONE  
This bit goes high when the A-half snapshot is complete. This bit  
must be cleared by writing a zero to it.  
This bit goes high when the B-half snapshot is complete. This bit  
must be cleared by writing a zero to it.  
7
R/W  
R/W  
-
unused  
8,9  
SYNC_OUT  
This two bit field selects the sync output (SO) source as:  
SYNC_OUT  
DESCRIPTION  
0
1
2
3
SI delayed by 4 clocks (SYNC_OFF=0),  
TC,  
OS,  
never  
10  
R/W  
R/W  
SYNC_OFF  
-
This bit disables the sync input to the chip. The counter will free  
run when this bit is high  
11-15  
unused  
6.9  
ONE SHOT ADDRESS  
The one shot pulse is generated on the OS pin by writing to address 11. This is a write-only address. The data  
written to it is irrelevant.  
ADDRESS 11:  
ONE_SHOT  
Texas Instruments Incorporated  
- 36 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
6.10  
NEW MODES REGISTER  
This register controls the new modes added to the GC2011A chip. This address was not used in the GC2011  
chip. Bits 8,9,12,13,14,and 15 power up low.  
ADDRESS 12:  
BIT  
NEW_MODES  
TYPE  
NAME  
DESCRIPTION  
0-7 (LSBs)  
R only  
R/W  
REVISION  
These bits read back the current mask revision number.  
8
9
POWER_DOWN  
Forces the chip to be in the static power down mode when set.  
R/W  
DISABLE_CLOCK_LOSS_DETECT  
Turns off the clock loss detect circuit when set. This bit should be kept  
low.  
10,11  
R only  
POWER_DOWN_STATUS  
These bits go low when the chip is in the power down state,  
either because bit 8 (POWER_DOWN) above is set, or because  
clock loss has been detected. These bits are normally high.  
12  
R/W  
R/W  
R/W  
R/W  
INV_MSB_AOUT  
INV_MSB_BOUT  
INV_MSB_AIN  
INV_MSB_BIN  
Inverts the MSB of the A-output when set.  
Inverts the MSB of the B-output when set.  
Inverts the MSB of the A-input when set.  
Inverts the MSB of the B-input when set.  
13  
14  
15 (MSB)  
The REVISION field can be used to determine the mask revision number for the GC2011A. The mask revision  
numbers and the mask change descriptions are shown in Table 15 below (the mask codes are printed on the GC2011A  
package).  
Table 15: Mask Revisions  
Mask  
Revision  
Number  
(bits 0-7)  
Mask Code  
on Package  
Release Date  
February 1999  
Description  
01  
55585B  
Original  
The INV_MSB control bits will invert the MSB of the A and B inputs or the A and B outputs in order to convert  
to and from offset binary and two’s complement formats. If the input data is offset binary, then the INV_MSB_AIN and/or  
INV_MSB_BIN control bits should be set. If the output data needs to be converted to offset binary, then the  
INV_MSB_AOUT and/or INV_MSB_BOUT control bits should be set.  
Texas Instruments Incorporated  
- 37 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
7.0  
7.1  
SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
Table 16: Absolute Maximum Ratings  
PARAMETER  
DC Supply Voltage  
SYMBOL  
VCC  
MIN  
MAX  
5
UNITS NOTES  
-0.3  
-0.5  
-65  
V
V
VIN  
VCC+0.5  
150  
Input voltage (undershoot and overshoot)  
Storage Temperature  
TSTG  
°C  
°C  
300  
Lead Soldering Temperature (10 seconds)  
7.2  
RECOMMENDED OPERATING CONDITIONS  
Table 17: Recommended Operating Conditions  
PARAMETER  
DC Supply Voltage  
SYMBOL  
VCC  
TA  
MIN  
3.1  
MAX  
3.5  
UNITS NOTES  
V
-40  
+85  
125  
°C  
°C  
1
1
Temperature Ambient, no air flow  
Junction Temperature  
TJ  
Notes:  
1. Thermal management is required to keep TJ below MAX for full rate operation. See Table 17 below.  
7.3  
THERMAL CHARACTERISTICS  
Table 18: Thermal Data  
GC2011A-PB GC2011A-PQ  
THERMAL  
SYMBOL  
UNITS  
CONDUCTIVITY  
2 Watts  
2 Watts  
θja  
θjc  
TBD  
TBD  
18  
4
°C/W  
°C/W  
Theta Junction to Ambient  
Theta Junction to Case  
Note: Air flow will reduce θja and is highly recommended.  
Texas Instruments Incorporated  
- 38 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
7.4  
DC CHARACTERISTICS  
All parameters are industrial temperature range of -40 to 85 oC ambient unless noted.:  
Table 19: DC Operating Conditions  
Vcc = 3.3V  
PARAMETER  
SYMBOL  
UNITS  
NOTES  
MIN  
MAX  
0.8  
Voltage input low  
VIL  
VIH  
IIN  
V
V
2
2
2
2
2
1
Voltage input high  
2.0  
Input current (VIN = 0V)  
Typical +/- 10  
0.5  
uA  
V
Voltage output low (IOL = 2mA)  
Voltage output high (IOH = -2mA)  
VOL  
VOH  
CIN  
2.4  
3.3  
V
Data input capacitance (All inputs except CK  
and C[0:15])  
Typical 4  
pF  
Clock input capacitance (CK input)  
CCK  
Typical 10  
Typical 6  
pF  
pF  
1
1
Control data capacitance (C[0:15] I/O pins)  
CCON  
Notes:  
1. Controlled by design and process and not directly tested. Verified on initial parts evaluation.  
2. Each part is tested at 85°C for the given specification.  
Texas Instruments Incorporated  
- 39 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
7.5  
AC CHARACTERISTICS  
Table 20: AC Characteristics (-40 TO +85oC Ambient, unless noted)  
3.1V to 3.5V  
PARAMETER  
SYMBOL  
UNITS NOTES  
MIN  
MAX  
106  
Clock Frequency  
FCK  
tCKL  
tCKH  
tSU  
0.01  
3.8  
MHz  
ns  
2, 3  
2
Clock low period (Below VIL)  
Clock high period (Above VIH)  
3.6  
ns  
2
Data setup before CK goes high  
(AI, BI, SI, SN or CKEN)  
3.0  
ns  
2
Data hold time after CK goes high  
tHD  
1.0  
1.0  
ns  
ns  
2
Data output delay from rising edge of CK.  
(AO, BO, DAV, or SO)  
tDLY  
8.0  
5.0  
8.0  
2,4  
Data to tristate delay  
(AO, BO, AOF or BOF to hiZ from AOE or BOE)  
tDZ  
2.0  
3.0  
1
4
Tristate to data output delay  
(AO, BO, AOF, or BOF valid from AOE or BOE)  
tZD  
ns  
ns  
ns  
ns  
ns  
Note 1 Note 2  
Control Setup before CE and RE, or WE go low (A, WE during  
read, and A, RE, C during write) See Figure 3.  
tCSU  
tCHD  
tCSPW  
tCDLY  
5.0  
2
Control hold after CE,RE, or WE go high (A, WE during read,  
and A, RE, C during write) See Figure 3.  
5.0  
2
Control enable CE or WE pulse width  
(Write operation) See Figure 3.  
30.0  
2,5  
2,6  
Control output delay CE and RE low to C  
35.0  
(Read Operation) See Figure 3.  
Control tristate delay after CE or RE go high. See Figure 3.  
tCZ  
10.0  
2.0  
ns  
1
1
Quiescent supply current  
ICCQ  
mA  
(VIN=0 or VCC, FCK = 0, or POWER_DOWN=1)  
Supply current  
(FCK = 80 MHz)  
ICC  
500.0  
mA  
2, 7  
Notes:  
1. Controlled by design and process and not directly tested. Verified on initial part evaluation.  
2. Each part is tested at 85 deg C for the given specification.  
3. The chip may not operate properly at clock frequencies below MIN and MAX.  
4. Capacitive output load is 20pf. Delays are measured from the rising edge of the clock to the output level rising  
above or falling below 1.3v.  
5. tCSPW must be at least five clock cycles wide if the SYNC_COEF control bit is set (See Section 6.3).  
6. Capacitive output load is 80pf.  
FCK  
VCC  
7. Current changes linearly with voltage and clock speed.  
Icc (MAX) = ------------ ---------- 500mA  
3.3 80M  
Texas Instruments Incorporated  
- 40 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
8.0  
8.1  
APPLICATION NOTES  
POWER AND GROUND CONNECTIONS  
The GC2011A chip is a very high performance chip which requires solid power and ground connections to  
avoid noise on the VCC and GND pins. If possible the GC2011A chip should be mounted on a circuit board with  
dedicated power and ground planes and with at least two decoupling capacitors (0.01 and 0.1 µf) adjacent to each  
GC2011A chip. If dedicated power and ground planes are not possible, then the user should place decoupling  
capacitors adjacent to each VCC and GND pair.  
IMPORTANT  
The GC2011A chip may not operate properly if these power and ground guidelines are violated.  
8.2  
STATIC SENSITIVE DEVICE  
The GC2011A chip is fabricated in a high performance CMOS process which is sensitive to the high voltage  
transients caused by static electricity. These parts can be permanently damaged by static electricity and should only be  
handled in static free environments.  
8.3  
106 MHZ OPERATION  
Care must be taken in generating the clock when operating the GC2011A chip at its full 106 MHz clock rate.  
The user must insure that the clock is above 2 volts for at least 3.6 nanoseconds and is below 0.8 volt for at least 3.8  
nanoseconds.  
8.4  
REDUCED VOLTAGE OPERATION  
The power consumed by the GC2011A chip can be greatly reduced by operating the chip at the lowest VCC  
voltage which will meet the application’s timing requirements.  
Texas Instruments Incorporated  
- 41 -  
This document contains information which may be changed at any time without notice  
GC2011A 3.3V DIGITAL FILTER CHIP  
SLWS129A  
8.5  
SYNCHRONIZING MULTIPLE GC2011A CHIPS  
A system containing a bank of GC2011A chips will need to be synchronized so that the output data from each  
chip are aligned. This is especially important for the half rate and quarter rate I/O modes. The synchronization can be  
achieved by connecting the SI inputs of all the chips to a system sync input. If a system sync is not available, then the  
counter within the GC2011A chip can be used to generate one. The TC strobe of the counter can be output from a  
“master” GC2011A and used as the SI input for all other GC2011A chips. The SO should also be used as the SN (snap  
strobe) input to all of the chip, including the master chip, so that the snapshot memories within all of the chips can be  
synchronized.  
For example, two chips can be operated in parallel as a complex filter processing complex data. The suggested  
configuration for these chips is shown in Figure 9.  
AO  
BO  
I
OUT  
AI  
I
IN  
BI  
GC2011A  
“Slave”  
SI  
SO  
SN  
AO  
BO  
Q
AI  
OUT  
Q
BI  
IN  
GC2011A  
“Master”  
SYNC  
SI  
SO  
SN  
SYNC OUT  
Figure 9. Processing Complex Input Data  
In this configuration the slave chip generates the I-outputs and the master chip generates the Q-outputs. The  
two chips are synchronized by connecting the SO signal from the master chip to the SN inputs of both chips and to the  
SI input of the slave chip. A system sync, if available, can be used to synchronize the master chip to the rest of the  
system. If a system sync is not available, then a one shot strobe generated by the slave chip and output on the SO pin,  
can be routed into the SI input of the master chip. This is shown as the dashed line in Figure 9. The SO from the master  
chip can then be used as a system sync for the rest of the system.  
Texas Instruments Incorporated  
- 42 -  
This document contains information which may be changed at any time without notice  
SLWS129A  
GC2011A 3.3V DIGITAL FILTER CHIP  
PACKAGING  
160 PIN QUAD FLAT PACK (QFP) PACKAGE  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
140  
139  
138  
135  
134  
133  
132  
131  
130  
129  
124  
123  
122  
121  
119  
118  
AI11(MSB)  
AI10  
AI9  
AI8  
AI7  
AI6  
AI5  
AI4  
AI3  
(MSB) AO15  
AO14  
AO13  
AO12  
AO11  
AO10  
AO9  
A1  
A
L
D
AO8  
AO7  
AO6  
AO5  
AO4  
AO3  
AO2  
AO1  
AI2  
AI1  
AI0  
B
120  
P (0.65mm)81  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
121  
80  
BI11(MSB)  
BI10  
BI9  
BI8  
BI7  
BI6  
BI5  
BI4  
BI3  
AO0  
112  
107  
106  
105  
104  
103  
98  
97  
90  
89  
88  
(MSB)  
BO15  
BO14  
B013  
BO12  
BO11  
BO10  
BO9  
BO8  
BO7  
BO6  
BO5  
BO4  
BO3  
BO2  
BO1  
BO0  
GC2011A-PQ  
DIGITAL FILTER  
MMMMMLLL YYWW  
BI2  
BI1  
BI0  
77  
78  
SI  
SN  
87  
86  
85  
84  
160  
41  
9
8
5
C15 (MSB)  
C14  
C13  
1
40  
GC2011A  
2
83  
C12  
C11  
C10  
C9  
160 PIN QUAD FLAT PACK PACKAGE  
155  
154  
153  
152  
151  
150  
149  
146  
145  
144  
143  
142  
116  
117  
115  
GC2011A-PQ = Enhanced Thermal Plastic Package  
GC2011A-CQ = Ceramic Package (special order only)  
DAV  
AOF  
BOF  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
MMMMM = Mask Code  
LLL = Lot Number  
Package Markings:  
74  
SO  
YYWW = Date Code  
DIMENSION  
PLASTIC  
CERAMIC  
C0  
D
(width pin to pin)  
31.2 mm (1.228") 32.0 mm (1.260")  
28.0 mm (1.102") 28.0 mm (1.102")  
0.65 mm (0.026") 0.65 mm (0.026")  
0.30 mm (0.012") 0.30 mm (0.012")  
0.88 mm (0.035") 0.70 mm (0.028")  
4.07 mm (0.160") 3.25 mm (0.128")  
47  
46  
45  
37  
36  
33  
32  
27  
24  
D1 (width body)  
A8 (MSB)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
P
B
L
(pin pitch)  
(pin width)  
(leg length)  
(height)  
A
A1 (pin thickness)  
0.17 mm (0.007")  
0.2 mm (0.008")  
VCC PINS: 3,4,7,12,13,16,21,22,26,30,31,35,38,39,44,75,76,80,91,92,93,  
99,100,108,109,113,125,126,136,147,156  
15  
17  
14  
RE (GND)  
WE (R/W)  
CE (CS)  
GND PINS: 6,10,11,19,20,25,28,29,34,42,43,72,73,79,94,95,96,101,102,  
110,111,114,127,128,137,148,157,158,159  
18  
23  
CKEN  
CK  
UNUSED PINS: 1, 40, 41, 81, 120, 160  
AOE  
141  
BOE  
82  
NOTE: 0.01 to 0.1 mf DECOUPLING CAPACITORS SHOULD BE PLACED  
AS CLOSE AS POSSIBLE TO THE MIDDLE OF EACH SIDE OF THE CHIP  
This document contains information which may be changed at any time without notice  
SLWS129A  
GC2011A 3.3V DIGITAL FILTER CHIP  
160 PIN BALL GRID ARRAY (PBGA) PACKAGE  
1.53 mm  
H11  
G12  
H12  
G14  
G13  
G11  
F14  
F12  
F13  
F11  
E14  
E12  
H3  
G4  
G1  
F3  
F1  
F2  
E4  
E3  
E1  
E2  
C1  
C2  
B1  
B2  
B3  
C3  
0.36 mm  
A2  
AI11(MSB)  
AI10  
AI9  
AI8  
AI7  
AI6  
AI5  
AI4  
AI3  
(MSB) AO15  
AO14  
AO13  
AO12  
AO11  
AO10  
AO9  
D1  
13 mm  
A1  
A
0.5 mm  
1 2 3 4 5 6 7 8 9 1011121314  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
AO8  
AO7  
AO6  
AO5  
AO4  
AO3  
AO2  
AO1  
AI2  
AI1  
AI0  
D
L14  
L11  
K13  
K14  
K12  
K11  
J13  
J14  
J12  
J11  
H13  
H14  
BI11(MSB)  
BI10  
BI9  
BI8  
BI7  
BI6  
BI5  
BI4  
BI3  
AO0  
B5  
C6  
A6  
D7  
B7  
A7  
B8  
D9  
B10  
D11  
A11  
C11  
B11  
A12  
B12  
A13  
(MSB)  
BO15  
BO14  
B013  
BO12  
BO11  
BO10  
BO9  
BO8  
BO7  
BO6  
BO5  
BO4  
BO3  
BO2  
BO1  
BO0  
BI2  
BI1  
BI0  
TOP VIEW  
MMMMM = Mask Code  
LLL = Lot Number  
YYWW = Date Code  
C14  
C12  
SI  
SN  
L
0.5 mm  
P
N
M
L
K
J
H
G
F
E
D
C
B
A
N5  
L4  
N4  
P2  
L2  
L3  
L1  
K4  
K2  
K3  
K1  
J3  
C15 (MSB)  
C14  
C13  
GC2011A  
C12  
C11  
C10  
C9  
P
1.0 mm  
B4  
A3  
C4  
DAV  
AOF  
BOF  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
B
D14  
SO  
0.53 mm  
J1  
H4  
H2  
H1  
C0  
1 2 3 4 5 6 7 8 9 1011121314  
BOTTOM VIEW  
L12  
L13  
M14  
M12  
P12  
P11  
L10  
N9  
A8 (MSB)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DIMENSION  
TYP  
TOLERANCE  
mm  
D
(width body)  
15 mm  
13 mm  
1.0 mm  
0.53 mm  
0.5 mm  
1.53 mm  
0.5 mm  
0.36 mm  
D1 (width cover)  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
P
B
L
(ball pitch)  
(ball width)  
(overhang)  
(overall height)  
A
A1 (ball height)  
L8  
A2 (substrate thickness)  
M6  
N7  
P6  
RE (GND)  
WE (R/W)  
CE (CS)  
VCC (CORE):  
A8, B6, C10, D2, D6, D8, D10, D12, D13, L5, L6, M7, M9, M10,  
N3, N6, N10, N11, N12, P3, P4, P8, P13  
P7  
N8  
A10, B14, D3, D5, F4, J2, M1, M13  
VCC (PAD RING):  
GND:  
CKEN  
CK  
A5, A9, B9, C5, C7, C8, D4, E11, E13, L7, L9, M2, M4, M5, M8,  
M11, N1, N13, P5, P9, P10, A4, C9, C13, D1, G2, J4, M3, N14  
AOE  
G3  
BOE  
B13  
GND (THERMAL):  
UNUSED:  
G7, G8, H7, H8  
A2, N2  
NOTE: 0.01 to 0.1 mf DECOUPLING CAPACITORS SHOULD BE PLACED  
AS CLOSE AS POSSIBLE TO THE MIDDLE OF EACH SIDE OF THE CHIP  
This document contains information which may be changed at any time without notice  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
BGA  
QFP  
Drawing  
GC2011A-PB  
GC2011A-PQ  
ACTIVE  
ACTIVE  
GJZ  
160  
160  
126  
24  
TBD  
TBD  
Call TI  
Call TI  
Level-3-220C-168 HR  
Call TI  
PCM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  
配单直通车
GC2011A-PQ产品参数
型号:GC2011A-PQ
Brand Name:Texas Instruments
是否无铅: 含铅
是否Rohs认证: 符合
生命周期:Obsolete
IHS 制造商:TEXAS INSTRUMENTS INC
零件包装代码:QFP
包装说明:QFP, QFP160,1.2SQ
针数:160
Reach Compliance Code:compliant
ECCN代码:5A991.G
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:5.77
边界扫描:NO
最大时钟频率:106 MHz
外部数据总线宽度:12
JESD-30 代码:S-PQFP-G160
JESD-609代码:e4
长度:31.2 mm
低功率模式:YES
湿度敏感等级:3
端子数量:160
最高工作温度:85 °C
最低工作温度:-40 °C
输出数据总线宽度:16
封装主体材料:PLASTIC/EPOXY
封装代码:QFP
封装等效代码:QFP160,1.2SQ
封装形状:SQUARE
封装形式:FLATPACK
峰值回流温度(摄氏度):245
电源:3.3 V
认证状态:Not Qualified
子类别:DSP Peripherals
最大压摆率:500 mA
最大供电电压:3.5 V
最小供电电压:3.1 V
标称供电电压:3.3 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:31.2 mm
uPs/uCs/外围集成电路类型:DSP PERIPHERAL, DIGITAL FILTER
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!