欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • GM5115图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • GM5115 现货库存
  • 数量5000 
  • 厂家 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • GM5115图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • GM5115
  • 数量98500 
  • 厂家GENESIS 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • GM5115图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • GM5115
  • 数量2000 
  • 厂家GM 
  • 封装QFP 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • GM5115图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • GM5115
  • 数量6500 
  • 厂家GENESIS 
  • 封装BGA 
  • 批号24+ 
  • 全新原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • GM5115图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • GM5115
  • 数量19856 
  • 厂家GENESIS 
  • 封装QFP208 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • GM5115图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • GM5115
  • 数量3320 
  • 厂家GENESIS 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • GM5115图
  • 集好芯城

     该会员已使用本站13年以上
  • GM5115
  • 数量17848 
  • 厂家GENESIS 
  • 封装QFP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • GM5115图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • GM5115
  • 数量37071 
  • 厂家GENESIS 
  • 封装QFP 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • GM5115图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • GM5115
  • 数量74 
  • 厂家GENESIS 
  • 封装MQFP2828 
  • 批号04+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • GM5115图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • GM5115
  • 数量200 
  • 厂家GENESIS 
  • 封装QFP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • GM5115图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • GM5115
  • 数量2000 
  • 厂家GENESIS 
  • 封装QFP 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • GM5115图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • GM5115
  • 数量30000 
  • 厂家GENESIS 
  • 封装QFP 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • gm5115图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • gm5115
  • 数量5000 
  • 厂家GENESIS 
  • 封装QFP 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • GM5115图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • GM5115
  • 数量169 
  • 厂家GENESIS 
  • 封装BGA 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • GM5115图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • GM5115
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • GM5115-BD图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • GM5115-BD
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • GM5115图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • GM5115
  • 数量35600 
  • 厂家GENESIS 
  • 封装QFP 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • GM5115图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • GM5115
  • 数量8560 
  • 厂家GENESIS 
  • 封装QFP208 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • GM5115图
  • 长荣电子

     该会员已使用本站14年以上
  • GM5115
  • 数量25 
  • 厂家 
  • 封装QFP 
  • 批号00+ 
  • 现货
  • QQ:172370262QQ:172370262 复制
  • 754-4457500 QQ:172370262
  • GM5115图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • GM5115
  • 数量6890000 
  • 厂家GENESIS 
  • 封装MQFP2828 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • GM5115图
  • 深圳市晨豪科技有限公司

     该会员已使用本站12年以上
  • GM5115
  • 数量89630 
  • 厂家GENSIS 
  • 封装QFP 
  • 批号23+ 
  • 当天发货全新原装现货
  • QQ:1743149803QQ:1743149803 复制
    QQ:1852346906QQ:1852346906 复制
  • 0755-82732291 QQ:1743149803QQ:1852346906
  • GM5115图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • GM5115
  • 数量12000 
  • 厂家GENESIS 
  • 封装QFP208 
  • 批号19+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871

产品型号GM5115的概述

芯片GM5115概述 GM5115是一种高性能的集成电路,广泛应用于各种电子设备中,特别是在电源管理、信号处理和数据采集等领域。作为现代电子系统中不可或缺的组成部分,GM5115因其卓越的性能和灵活的应用而受到青睐。该芯片主要功能包括数据转换、信号放大、以及高效的电能管理,适合多种应用环境。 GM5115通过一系列的内部电路设计,能够在保证高效能的同时,降低功耗,满足当前技术趋势对节能的需求。其应用场景涵盖了智能家居、工业控制、自动化设备、监控系统等,为电子产品的开发提供了强大的支持。 芯片GM5115的详细参数 GM5115的技术参数是其重要特征之一,直接影响到其应用效果和性能。以下是GM5115的一些关键参数: - 工作电压范围:2.7V至5.5V,适配多种电源供给。 - 输入信号范围:0至3.3V,确保多种信号源接入。 - 输出信号范围:数字信号输出,有效抑制电磁干扰,保证信号完...

产品型号GM5115的Datasheet PDF文件预览

Genesis Microchip Publication  
PRELIMINARY DATA SHEET  
gm5115/gm5115-H  
gm5125/gm5125-H  
OnPanel LCD Panel Controller  
*** Genesis Microchip Confidential ***  
NOTE: Sections in this data sheet that mention HDCP apply only to the HDCP-enabled chip  
versions (gm5115-H and gm5125-H). All other sections apply to all chip versions (gm5115,  
gm5115-H, gm5125, and gm5125-H).  
Publication number: C5115-DAT-01H  
Publication date: June 2002  
Genesis Microchip Inc.  
2150 Gold Street, Alviso, P.O. Box 2150, CA USA 95002 Tel: (408) 262-6599 Fax: (408) 262-6365  
165 Commerce Valley Dr. West, Thornhill, ON Canada L3T 7V8 Tel: (905) 889-5400 Fax: (905) 889-5422  
1096, 12thA Main, Hal II Stage, Indira Nagar, Bangalore-560 008, India, Tel: (91)-80-526-3878, Fax: (91)-80-529-6245  
4F, No. 24, Ln 123, Sec 6, Min-Chuan E. Rd., Taipei, Taiwan, ROC Tel: 886-2-2791-0118 Fax: 886-2-2791-0196  
143-37 Hyundai Tower, #902, Samsung-dong, Kangnam-gu, Seoul, Korea 135-090 Tel 82-2-553-5693 Fax 82-2-552-4942  
Rm2614-2618 Shenzhen Office Tower, 6007 Shennan Blvd, 518040, Shenzhen, Guandong, P.R.C., Tel (0755)386-0101, Fax (0755)386-7874  
2-9-5 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan, Tel 81-3-5798-2758, Fax 81-3-5798-2759  
www.genesis-microchip.com  
/
info@genesis-microchip.com  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Trademarks: RealColor, Real Recovery, and Ultra-Reliable DVI are trademarks of Genesis Microchip Inc.  
© Copyright 2002, Genesis Microchip Inc. All Rights Reserved.  
Genesis Microchip Inc. reserves the right to change or modify the information contained herein without  
notice. It is the customer’s responsibility to obtain the most recent revision of the document. Genesis  
Microchip Inc. makes no warranty for the use of its products and bears no responsibility for any errors or  
omissions that may appear in this document.  
ii  
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
Revision History  
gm5115/25 Preliminary Data Sheet  
Document  
Description  
Date  
Initial release.  
C5115-DAT-01A  
C5115-DAT-01B  
March 2001  
In Table 18 corrected description of OSC_SEL (on pin ROM_ADDR13). It should be set to 1 to  
June 2001  
indicate usage of a single-ended clock oscillator.  
Corrected image and orientation of logo in pin out diagram Figure 2.  
Added section 4.11.3.  
Replaced all occurrences of CVDD with CVDD_2.5, including pin numbers 26, 88, 134 and 203  
to make them consistent with the names of other 2.5V voltage supply signals.  
Pin number 205 name changed from GPIO16/HFS to GPIO16/HFSn and all occurrences of  
HFS replaced with HFSn to reflect the fact that this signal is active low.  
Added description of 2-wire serial protocol in section 4.17.2 and Table 24.  
Removed “Read with Increment” operation description.  
C5115-DAT-01C  
C5115-DAT-01D  
July 2001  
July 2001  
Corrected mechanical specification in Figure 32.  
Changes to Table 21 – DC Characteristics:  
- Maximum voltage for 5V-tolerance inputs is 5.5V.  
- Added maximum current requirements.  
Added description of OCM Standalone configuration Figure 26.  
Added Figure 22 – Panel Power Sequencing.  
Added description of gm5125 (SXGA device).  
C5115-DAT-01E  
August 2001  
Pin names changed to reflect alternate hard-wired functions:  
- pin 50 from GPIO11 to GPIO11/ROM_WEn,  
- pin 51 from GPIO12 to GPIO12/NVRAM_SDA,  
- pin 52 from GPIO13 to GPIO13/NVRAM_SCL,  
- pin 6 from DDC_SCL to GPIO14/DDC_SCL,  
- pin 7 from DDC_SDA to GPIO15/DDC_SDA,  
- pin 46 from GPIO6 to GPIO6/TCON_SHC,  
- pin 47 from GPIO7 to GPIO7/TCON_TDIV.  
Removed description of 6-wire host interface, since this is not recommended operation. Pin 1  
name changed from GPIO17/HDATA0 to GPIO17, and similarly for pins 206, 207 and 208.  
Corrected maximum ADC sampling frequency in Table 15 and maximum ADC_CLK frequency  
in Table 22 to 162.5MHz.  
Added section 4.5 Test Pattern Generator.  
Added description of TCON_SHC and TCON_TDIV in section 4.13.1.  
Clarifications to section 4.1 describing clock generation, section 4.7.2 describing sRGB support,  
and section 4.15.3 describing GPIOs.  
Removed mention of row attributes in Figure 25.  
gm5115/25 OSD controller does not have row attributes.  
Corrected Table 21, Note 3. Pins VDD1_ADC_2.5, VDD2_ADC_2.5, VDD_RX0_2.5,  
VDD_RX1_2.5 and VDD_RX2_2.5 are digital 2.5V supplies, not analog.  
Changed signal names SCL and SDA to HCLK and HFSn, respectively in Figure 29, Figure 30,  
and Figure 31.  
Added note on Front Cover regarding HDCP enabled versions.  
Added section 4.12 - Energy Spectrum Management (ESM).  
Added clarification in section 4.13.1 indicating that single bus configurations are supported in  
XGA column drivers only.  
C5115-DAT-01F  
October 2001  
In section 4.16, clarified that ROM_ADDR[15:0] have internal 60Kpull-down resistor.  
Changes to Table 20 – Absolute Maximum Ratings:  
– Renamed parameters θJA_XGA, θJA_SXGA, θJC_XGA and θJC_SXGA to θJA_5115, θJA_5125, θJC_5115 and  
θJC_5125 and revised their values.  
– Added note (4) regarding the maximum case temperature.  
Changes to Table 21 – DC Characteristics:  
– Renamed parameters P5115 and P5125 and revised their values.  
– Revised the values of PLP and ILP.  
– Renamed parameters I5115, I5115_2.5_VDD, etc.  
– Added note (6).  
Removed the clock speed column from section 6 – Ordering Information and added the ordering  
information for gm5115-H and gm5125-H.  
Replaced occurrences of TMDS with DVI.  
Changed TCON_RCLK to TCON_ROWCLK in Figure 2 and in Table 7.  
Changed RCLK to ROWCLK in 4.13.2 and in Figure 24.  
iii  
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Added section 4.15.3 - In-System-Programming (ISP) of FLASH ROM Devices.  
Added section 4.15.4 - UART Interface.  
C5115-DAT-01G  
March 2002  
Added section 4.15.5 - DDC2Bi Interface.  
In sections 4.3.2 - ADC Characteristics and 4.4.1 - DVI Receiver Characteristics clarified that  
input formats with resolutions higher than that supported by the LCD panel are supported as  
recovery modes only.  
Pins 143 ~ 146: changed xxx_SDDS or xxxx_SDDS to xxx_DDDS or xxxx_DDDS respectively  
Pins 138 ~ 141: changed xxx_DDDS or xxxx_DDDS to xxx_SDDS or xxxx_SDDS respectively  
Pins 147 ~ 148: changed xxx_DPLL to xxx_RPLL  
D5115-DAT-01H  
June 2002  
iv  
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Related documents  
Chip documents  
C5115-PBR-01  
C5125-PBR-01  
C5115-APB-01  
C5115-APB-02  
C5115-TOP-01  
C5115-DSL-01  
C5115-DSR-01  
C5115-DSR-02  
C5115-APN-03  
C5115-APN-04  
C5115-APN-06  
C5115-APN-07  
C5115-APN-08  
C5115-APN-10  
Preliminary Product Brief gm5115  
Preliminary Product Brief gm5125  
gm5115 Product Family On-chip Microcontroller (OCM) Firmware Configurations  
gm5115 Product Family Support for Standard RGB (sRGB)  
gm5115 Theory of Operation  
gm5115 Register Listing  
gm5115 TCON Programming Guide  
gm5115 Input Processing Programming Guide  
gRGB Support in gm5115 Family Products  
gm5115 Family OCM User Manual  
Energy Spectrum Management (ESM) using gm5115 family OnPanel Controllers  
gm5115 Family IBIS Models  
gm5115 Monitor Standby Power Consumption  
gm5115 Enhanced Auto-Clock Configuration  
Reference design documents  
B0124-GUD-01  
B0124-SCH-01  
B0124-BOM-01  
B0124-DNF-01  
B0106-GUD-01  
B0106-SCH-01  
5120RD2 Reference Design Users Guide  
5120RD2 Reference Design Schematics  
5120RD2 Reference Design Bill of Materials  
5120RD2 Reference Design Layout Files  
5115EV2 Board User Guide  
5115EV2 Schematics  
Firmware / tools documents  
B0092-SWT-01  
B0092-SUG-01  
B0092-PRN-01  
C5115-SUG-01  
C5115-PRN-01  
S0006-GUD-01  
S0014-GUD-01  
gm5115 Product Family Firmware Theory of Operation for Full Custom Configuration  
gm5115 Product Family Firmware User Guide for Full-Custom  
gm5115 Product Family Firmware Release Notes for Full-Custom  
gm5115 Product Family Firmware User Guide for Standalone  
gm5115 Product Family Firmware Release Notes for Standalone  
G-Probe Debug Software User Guide  
G-Wizard Software User Guide  
v
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Table Of Contents  
1. Overview ............................................................................................................................................ 1  
1.1 gm5115/25 System Design Example ........................................................................................... 1  
1.2 gm5115/25 Features..................................................................................................................... 2  
2. gm5115/25 Pinout .............................................................................................................................. 3  
3. gm5115/25 Pin List ............................................................................................................................ 4  
4. Functional Description ..................................................................................................................... 10  
4.1 Clock Generation ....................................................................................................................... 10  
4.1.1 Using the Internal Oscillator with External Crystal............................................................ 11  
4.1.2 Using an External Clock Oscillator .................................................................................... 13  
4.1.3 Clock Synthesis................................................................................................................... 14  
4.2 Hardware Reset.......................................................................................................................... 16  
4.3 Analog to Digital Converter (ADC)........................................................................................... 16  
4.3.1 ADC Pin Connection .......................................................................................................... 17  
4.3.2 ADC Characteristics ........................................................................................................... 17  
4.3.3 Clock Recovery Circuit ...................................................................................................... 18  
4.3.4 Sampling Phase Adjustment ............................................................................................... 19  
4.3.5 ADC Capture Window........................................................................................................ 19  
4.4 Ultra-Reliable Digital Visual Receiver (DVI Rx)...................................................................... 20  
4.4.1 DVI Receiver Characteristics ............................................................................................. 20  
4.4.2 DVI Capture Window......................................................................................................... 21  
4.4.3 High-Bandwidth Digital Content Protection (HDCP) ........................................................ 21  
4.5 Test Pattern Generator (TPG) .................................................................................................... 21  
4.6 Input Format Measurement (IFM) ............................................................................................. 22  
4.6.1 HSYNC / VSYNC Delay.................................................................................................... 22  
4.6.2 Horizontal and Vertical Measurement................................................................................ 23  
4.6.3 Format Change Detection ................................................................................................... 23  
4.6.4 Watchdog............................................................................................................................ 24  
4.6.5 Internal Odd/Even Field Detection ..................................................................................... 24  
4.6.6 Input Pixel Measurement.................................................................................................... 24  
4.6.7 Image Phase Measurement ................................................................................................. 24  
4.6.8 Image Boundary Detection ................................................................................................. 25  
4.6.9 Image Auto Balance............................................................................................................ 25  
4.7 RealColorTM Digital Color Controls .......................................................................................... 25  
4.7.1 RealColor™ Flesh tone Adjustment................................................................................... 25  
4.7.2 Color Standardization and sRGB Support.......................................................................... 26  
4.8 High-Quality Scaling ................................................................................................................. 26  
4.8.1 Variable Zoom Scaling ....................................................................................................... 26  
vi  
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.8.2 Horizontal and Vertical Shrink........................................................................................... 26  
4.8.3 Moiré Cancellation ............................................................................................................. 26  
4.9 Bypass Options .......................................................................................................................... 27  
4.10 Gamma Look-Up-Table (LUT) ............................................................................................... 27  
4.11 Display Output Interface.......................................................................................................... 27  
4.11.1 Display Synchronization................................................................................................... 27  
4.11.2 Programming the Display Timing .................................................................................... 27  
4.11.3 Panel Power Sequencing (PPWR, PBIAS)....................................................................... 29  
4.11.4 Output Dithering............................................................................................................... 30  
4.12 Energy Spectrum Management (ESM).................................................................................... 30  
4.13 Timing Controller (TCON)...................................................................................................... 31  
4.13.1 Programmable Column Driver Interface .......................................................................... 31  
4.13.2 Programmable Row Driver Interface................................................................................ 33  
4.14 OSD.......................................................................................................................................... 35  
4.14.1 On-Chip OSD SRAM ....................................................................................................... 35  
4.14.2 Color Look-up Table (LUT)............................................................................................. 36  
4.15 On-Chip Microcontroller (OCM)............................................................................................. 37  
4.15.1 Standalone Configuration ................................................................................................. 37  
4.15.2 Full-Custom Configuration............................................................................................... 38  
4.15.3 In-System-Programming (ISP) of FLASH ROM Devices ............................................... 39  
4.15.4 UART Interface ................................................................................................................ 39  
4.15.5 DDC2Bi Interface............................................................................................................. 40  
4.15.6 General Purpose Inputs and Outputs (GPIO).................................................................... 40  
4.16 Bootstrap Configuration Pins................................................................................................... 41  
4.17 Host Interface........................................................................................................................... 42  
4.17.1 Host Interface Command Format...................................................................................... 42  
4.17.2 2-wire Serial Protocol ....................................................................................................... 42  
4.18 Miscellaneous Functions.......................................................................................................... 44  
4.18.1 Power Down Operation .................................................................................................... 44  
4.18.2 Pulse Width Modulation (PWM) Back Light Control...................................................... 44  
5. Electrical Specifications................................................................................................................... 45  
5.1 Preliminary DC Characteristics ................................................................................................. 45  
5.2 Preliminary AC Characteristics ................................................................................................. 47  
6. Ordering Information ....................................................................................................................... 48  
7. Mechanical Specifications................................................................................................................ 49  
vii  
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
List Of Tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Analog Input Port........................................................................................................4  
DVI Input Port ............................................................................................................5  
RCLK PLL Pins..........................................................................................................5  
System Interface and GPIO Signals............................................................................6  
Display Output Port ....................................................................................................7  
Parallel ROM Interface Port .......................................................................................8  
TCON Output Port......................................................................................................8  
Reserved Pins..............................................................................................................8  
Power Pins for ADC Sampling Clock DDS................................................................9  
Table 10. Power Pins for Display Clock DDS............................................................................9  
Table 11. I/O Power and Ground Pins ........................................................................................9  
Table 12. Core Power and Ground Pins......................................................................................9  
Table 13. TCLK Specification..................................................................................................14  
Table 14. Pin Connection for RGB Input with HSYNC/VSYNC ............................................17  
Table 15. ADC Characteristics .................................................................................................18  
Table 16. DVI Receiver Characteristics....................................................................................20  
Table 17. gm5115/25 GPIOs and Alternate Functions.............................................................41  
Table 18. Bootstrap Signals ......................................................................................................41  
Table 19. Instruction Byte Map ................................................................................................42  
Table 20. Absolute Maximum Ratings .....................................................................................45  
Table 21. DC Characteristics ....................................................................................................46  
Table 22. Maximum Speed of Operation..................................................................................47  
Table 23. Display Timing and DCLK Adjustments .................................................................47  
Table 24. 2-Wire Host Interface Port Timing...........................................................................47  
viii  
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
List Of Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
gm5115/25 System Design Example..........................................................................1  
gm5115/25 Pin Out Diagram......................................................................................3  
gm5115/25 Functional Block Diagram.....................................................................10  
Using the Internal Oscillator with External Crystal..................................................11  
Internal Oscillator Output .........................................................................................12  
Sources of Parasitic Capacitance ..............................................................................13  
Using an External Single-ended Clock Oscillator ....................................................14  
Internally Synthesized Clocks...................................................................................15  
On-chip Clock Domains ...........................................................................................16  
Figure 10. Example ADC Signal Terminations .........................................................................17  
Figure 11. gm5115/25 Clock Recovery .....................................................................................18  
Figure 12. ADC Capture Window..............................................................................................19  
Figure 13. Some of gm5115/25 built-in test patterns.................................................................21  
Figure 14. Factory Calibration and Test Environment...............................................................22  
Figure 15. HSYNC Delay ..........................................................................................................23  
Figure 16. Active Data Crosses HSYNC Boundary...................................................................23  
Figure 17. ODD/EVEN Field Detection ....................................................................................24  
Figure 18. RealColorTM Digital Color Controls .........................................................................25  
Figure 19. Display Windows and Timing ..................................................................................28  
Figure 20. Single Pixel Width Display Data ..............................................................................29  
Figure 21. Double Pixel Wide Display Data..............................................................................29  
Figure 22. Panel Power Sequencing...........................................................................................30  
Figure 23. Column Driver Interface Timing ..............................................................................32  
Figure 24. Row Driver Interface Timing....................................................................................34  
Figure 25. OSD Cell Map...........................................................................................................36  
Figure 26. OCM Full-Custom and Standalone Configurations..................................................37  
Figure 27. Programming OCM in Standalone Configuration ....................................................38  
Figure 28. Programming the OCM in Full-Custom Configuration............................................39  
Figure 29. 2-Wire Protocol Data Transfer..................................................................................43  
Figure 30. 2-Wire Write Operations (0x1x & 0x2x)..................................................................43  
Figure 31. 2-Wire Read Operation (0xAx).................................................................................44  
Figure 32. gm5115/25 208-pin PQFP Mechanical Drawing.....................................................49  
ix  
June 2002  
C5115-DAT-01H  
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
1. OVERVIEW  
The gm5115/25 is a graphics processing IC for Liquid Crystal Display (LCD) monitors at  
XGA/SXGA resolution. It provides all key IC functions required for image capture, processing  
and timing control for direct interface to the row and column drivers of the LCD panel. On-chip  
TM  
functions include a high-speed triple-ADC and PLL, Ultra-Reliable DVI  
receiver, a high  
quality zoom and shrink scaling engine, an on-screen display (OSD) controller, an on-chip  
microcontroller (OCM), and a programmable panel timing controller (TCON). With all these  
functions integrated onto a single device, the gm5115/25 eliminates the need for a printed circuit  
board (PCB) from the system along with the associated connectors and cables. Therefore, the  
gm5115/25 simplifies the design and reduces the cost of LCD monitors while maintaining a high-  
degree of flexibility and quality.  
1.1 gm5115/25 System Design Example  
Figure 1 below shows a typical dual interface LCD monitor system based on the gm5115/25.  
Designs based on the gm5115/25 have reduced system cost, simplified hardware and firmware  
design and increased reliability because only a minimal number of components are required in  
the system.  
Column  
Driver  
ICs  
Analog  
RGB  
LCD  
gm5115/25  
Panel  
Row  
Driver  
ICs  
DVI  
Back-light  
ROM  
(optional)  
NVRAM  
Figure 1.  
gm5115/25 System Design Example  
1
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
1.2 gm5115/25 Features  
On-chip OSD Controller  
On-chip RAM for downloadable menus  
FEATURES  
1, 2 and 4-bit per pixel character cells  
Horizontal and vertical stretch of OSD menus  
Blinking, transparency and blending  
Zoom (from VGA) and shrink (from UXGA) scaling  
Integrated 8-bit triple-channel ADC / PLL  
Integrated Ultra-Reliable DVI 1.0-compliant receiver  
High-Bandwidth Digital Content Protection (HDCP)  
On-chip programmable OnPanel timing controller  
Embedded microcontroller with parallel ROM interface  
On-chip versatile OSD engine  
All system clocks synthesized from a single external crystal  
Programmable gamma correction (CLUT)  
RealColor controls provide sRGB compliance  
PWM back light intensity control  
On-chip Microcontroller  
Requires no external micro-controller  
External parallel ROM interface allows firmware customization  
with little additional cost  
23 general-purpose inputs/outputs (GPIOs) available for  
managing system devices (keypad, back-light, NVRAM, etc)  
Industry-standard firmware embedded on-chip, requires no  
external ROM (configuration settings stored in NVRAM)  
Built-in OnPanel Timing Controller  
5 Volt tolerant inputs  
Low EMI and power saving features  
Eliminates the need for an external panel timing controller  
(TCON) device, thereby reducing system cost  
High-Quality Advanced Scaling  
Direct connect to commercial row/column driver ICs (supports  
dual-bus / dual-port and dual-bus / single-port)  
Low EMI and power saving features include frame, line and in-line  
inversion, blanking, data staggering and slew rate control.  
Fully programmable zoom ratios  
High-quality shrink capability from UXGA resolution  
Real Recoveryfunction provides full color recovery  
image for refresh rates higher than those supported by  
the LCD panel  
Programmable Output Format  
Single / double wide up to XGA/SXGA 75Hz output  
Moire cancellation  
Pin swap, odd / even swap and red / blue group swap of  
RGB outputs for flexibility in board layout  
Support for 8 or 6-bit panels (with high-quality dithering)  
Analog RGB Input Port  
Supports up to 162.5MHz (SXGA 75Hz / UXGA 60Hz)  
On-chip high-performance PLLs  
(only a single reference crystal required)  
Highly Integrated System-on-a-Chip  
Reduces Component Count for Highly Cost  
Effective Solution  
Auto-Configuration / Auto-Detection  
Input format detection  
Phase and image positioning  
Standalone operation requires no external  
ROM and no firmware development for Fast  
Time to Market  
Ultra-Reliable DVI Compliant Input Port  
Operating up to 165 MHz (up to UXGA 60Hz)  
Direct connect to all DVI compliant digital transmitters  
High-bandwidth Digital Content Protection (HDCP)  
RealColorTechnology  
Pin and register compatible OnPanel Family:  
- gm5115/gm5125 Dual-Interface XGA/SXGA  
Digital brightness and contrast controls  
TV color controls including hue and saturation controls  
Flesh-tone adjustment  
- gm3115/gm3125 Digital-Interface XGA/SXGA  
- gm2115/gm2125 Analog-Interface XGA/SXGA  
Full color matrix allows end-users to experience the  
same colors as viewed on CRTs and other displays  
(e.g. sRGB compliance)  
2
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
2. GM5115/25 PINOUT  
The gm5115/25 is available in a 208-pin Plastic Quad Flat Pack (PQFP) package. Figure 2  
provides the pin locations for all signals.  
GND1_ADC  
VDD1_ADC_2.5  
GND2_ADC  
VDD2_ADC_2.5  
TCLK  
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
1
GPIO17  
RVDD  
2
3
RVSS  
4
GPIO21/IRQn  
RESETn  
5
XTAL  
6
GPIO14/DDC_SCL  
GPIO15/DDC_SDA  
ROM_ADDR15  
ROM_ADDR14  
ROM_ADDR13  
ROM_ADDR12  
ROM_ADDR11  
ROM_ADDR10  
ROM_ADDR9  
ROM_ADDR8  
ROM_ADDR7  
ROM_ADDR6  
ROM_ADDR5  
ROM_ADDR4  
RVDD  
AVDD_RPLL  
AVSS_RPLL  
VDD_RPLL  
VSS_RPLL  
AVDD_DDDS  
AVSS_DDDS  
VDD_DDDS  
VSS_DDDS  
N/C  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
AVDD_SDDS  
AVSS_SDDS  
VDD_SDDS  
VSS_SDDS  
HSYNC  
VSYNC  
RVSS  
CVSS  
ROM_ADDR3  
ROM_ADDR2  
ROM_ADDR1  
ROM_ADDR0  
CVDD_2.5  
CVDD_2.5  
CVSS  
Reserved  
Reserved  
RVSS  
CVSS  
RVDD  
ROM_DATA7  
ROM_DATA6  
ROM_DATA5  
ROM_DATA4  
ROM_DATA3  
ROM_DATA2  
ROM_DATA1  
ROM_DATA0  
ROM_Oen  
TCON_ROE  
TCON_ROWCLK  
TCON_RSP3  
TCON_RSP2  
TCON_EINV  
TCON_EPOL  
TCON_ESP  
TCON_OINV  
TCON_OPOL  
TCON_OSP  
DCLK/TCON_OCLK  
DVS/TCON_FSYNC  
DHS/TCON_LP  
DEN/TCON_ECLK  
PBIAS  
RVDD  
RVSS  
GPIO8/IRQINn  
GPIO0/PWM0  
GPIO1/PWM1  
GPIO2/PWM2  
GPIO3/TIMER1  
GPIO4/UART_D1  
GPIO5/UART_D0  
GPIO6/TCON_SHC  
GPIO7/TCON_TDIV  
GPIO9/TCON_ROE2  
GPIO10/TCON_ROE3  
GPIO11/ROM_WEn  
GPIO12/NVRAM_SDA  
GPIO13/NVRAM_SCL  
PPWR  
RVSS  
RVDD  
PD47/OB7  
PD46/OB6  
PD45/OB5  
PD44/OB4  
PD43/OB3  
PD42/OB2  
Figure 2.  
gm5115/25 Pin Out Diagram  
3
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
3. GM5115/25 PIN LIST  
I/O Legend: A = Analog, I = Input, O = Output, P = Power, G= Ground  
Table 1. Analog Input Port  
Pin Name  
No. I/O Description  
AVDD_RED  
172  
AP  
Analog power (3.3V) for the red channel. Must be bypassed with decoupling capacitor to  
AGND_RED pin on system board (as close as possible to the pin).  
RED+  
RED-  
AGND_RED  
171  
170  
169  
AI  
Positive analog input for Red channel.  
AI  
Negative analog input for Red channel.  
AG  
Analog ground for the red channel.  
Must be directly connected to the analog system ground plane.  
AVDD_GREEN  
168  
AP  
Analog power (3.3V) for the green channel. Must be bypassed with decoupling capacitor to  
AGND_GREEN pin on system board (as close as possible to the pin).  
GREEN+  
GREEN-  
AGND_GREEN  
167  
166  
165  
AI  
Positive analog input for Green channel.  
AI  
Negative analog input for Green channel.  
AG  
Analog ground for the green channel.  
Must be directly connected to the analog system ground plane.  
AVDD_BLUE  
164  
AP  
Analog power (3.3V) for the blue channel. Must be bypassed with decoupling capacitor to  
AGND_BLUE pin on system board (as close as possible to the pin).  
BLUE+  
BLUE-  
AGND_BLUE  
163  
162  
161  
AI  
Positive analog input for Blue channel.  
AI  
Negative analog input for Blue channel.  
AG  
Analog ground for the blue channel.  
Must be directly connected to the analog system ground plane.  
AVDD_ADC  
160  
AP  
Analog power (3.3V) for ADC analog blocks that are shared by all three channels. Includes  
band gap reference, master biasing and full-scale adjust. Must be bypassed with  
decoupling capacitor to AGND_ADC pin on system board (as close as possible to the pin).  
ADC_TEST  
AGND_ADC  
159  
158  
AO  
AG  
Analog test output for ADC Do not connect.  
Analog ground for ADC analog blocks that are shared by all three channels. Includes band  
gap reference, master biasing and full-scale adjust.  
Must be directly connected to analog system ground plane.  
SGND_ADC  
GND1_ADC  
VDD1_ADC_2.5  
GND2_ADC  
VDD2_ADC_2.5  
HSYNC  
157  
156  
155  
154  
153  
137  
136  
AG  
G
P
G
P
I
Dedicated pad for substrate guard ring that protects the ADC reference system.  
Must be directly connected to the analog system ground plane.  
Digital GND for ADC clocking circuit.  
Must be directly connected to the digital system ground plane  
Digital power (2.5V) for ADC encoding logic. Must be bypassed with decoupling capacitor to  
GND1_ADC pin on system board (as close as possible to the pin).  
Digital GND for ADC clocking circuit.  
Must be directly connected to the digital system ground plane.  
Digital power (2.5V) for ADC encoding logic. Must be bypassed with decoupling capacitor to  
GND2_ADC pin on system board (as close as possible to the pin).  
ADC input horizontal sync input.  
[Input, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
ADC input vertical sync input.  
VSYNC  
I
[Input, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
4
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Table 2. DVI Input Port  
No I/O Description  
Pin Name  
AVDD_IMB  
173  
174  
175  
176  
177  
178  
AP  
Analog VDD (3.3V) for internal biasing circuits.  
Must be bypassed with decoupling capacitors (as close as possible to the pin).  
REXT  
AI  
External reference resistor.  
An external 1Kohm (1%) resistor should be connected from this pin to AVDD_IMB pin.  
AGND_IMB  
VDD_RX2_2.5  
GND_RX2  
AGND_RX2  
AG  
P
Analog GND for internal biasing circuits.  
Must be connected directly to the ground plane.  
VDD (2.5V) for DVI input pair 2 logic circuits. Must be bypassed with decoupling capacitor to  
GND_RX2 pin (as close as possible to the pin).  
G
GND for DVI input pair 2 logic circuits.  
Must be connected directly to the ground plane.  
AG  
Analog GND for DVI input pair 2 input buffer.  
Must be connected directly to the analog ground plane.  
RX2+  
RX2-  
AVDD_RX2  
179  
180  
181  
AI  
AI  
AP  
DVI input pair 2  
DVI input pair 2  
Analog VDD (3.3V) for DVI input pair 2 input buffer. Must be bypassed with decoupling  
capacitor to AGND_RX2 pin (as close as possible to the pin).  
VDD_RX1_2.5  
GND_RX1  
182  
183  
184  
P
VDD (2.5V) for DVI input pair 1 logic circuits. Must be bypassed with decoupling capacitor to  
GND_RX1 pin (as close as possible to the pin).  
G
GND for DVI input pair 1 input buffer.  
Must be connected directly to the analog ground plane.  
AGND_RX1  
AG  
Analog GND for DVI input pair 1 input buffer.  
Must be connected directly to the analog ground plane.  
RX1+  
RX1-  
AVDD_RX1  
185  
186  
187  
AI  
AI  
AP  
DVI input pair 1  
DVI input pair 1  
Analog VDD (3.3V) for DVI input pair 1 input buffer. Must be bypassed with decoupling  
capacitor to AGND_RX1 pin (as close as possible to the pin).  
VDD_RX0_2.5  
GND_RX0  
188  
189  
190  
P
VDD (2.5V) for DVI input pair 0 logic circuits. Must be bypassed with decoupling capacitor to  
GND_RX0 pin (as close as possible to the pin).  
G
GND for DVI input pair 0 logic circuits.  
Must be connected directly to the ground plane.  
AGND_RX0  
AG  
Analog GND for DVI input pair 0 input buffer.  
Must be connected directly to the analog ground plane.  
RX0+  
RX0-  
AVDD_RX0  
191  
192  
193  
AI  
AI  
AP  
DVI input pair 0  
DVI input pair 0  
Analog VDD (3.3V) for DVI input pair 0 input buffer. Must be bypassed with decoupling  
capacitor to AGND_RX0 pin (as close as possible to the pin).  
RXC+  
RXC-  
AVDD_RXC  
194  
195  
196  
AI  
AI  
AP  
DVI input clock pair  
DVI input clock pair  
Analog VDD (3.3V) for DVI input clock pair input buffer. Must be bypassed with 100pF  
capacitor to AGND_RXC pin (as close as possible to the pin).  
AGND_RXC  
GND_RXPLL  
VDD_RXPLL_2.5  
CLKOUT  
197  
198  
199  
201  
AG  
G
Analog GND for DVI input clock pair input buffer.  
Must be connected directly to the analog ground plane.  
Digital GND for the DVI receiver internal PLL.  
Must be connected directly to the system ground plane.  
AP  
AO  
Analog VDD (2.5V) for the DVI receiver internal PLL. Must be bypassed with a decoupling  
capacitor to AGND_RXPLL pin (as close as possible to the pin).  
For test purposes only. Do not connect.  
Table 3. RCLK PLL Pins  
Pin Name  
AVDD_RPLL  
AVSS_RPLL  
TCLK  
No I/O Description  
150  
149  
152  
AP  
AG  
AI  
Analog power for the Reference DDS PLL. Connect to 3.3V supply. Must be bypassed with a  
0.1uF capacitor to pin AVSS_RPLL (as close to the pin as possible).  
Analog ground for the Reference DDS PLL.  
Must be directly connected to the analog system ground plane.  
Reference clock (TCLK) from the 14.3MHz crystal oscillator (see Figure 4), or from single-  
ended CMOS/TTL clock oscillator (see Figure 7). This is a 5V-tolerant input. See Table 14.  
XTAL  
VDD_RPLL  
VSS_RPLL  
151  
148  
147  
AO  
P
G
Crystal oscillator output.  
Digital power for RCLK PLL. Connect to 3.3V supply.  
Digital ground for RCLK PLL.  
5
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Table 4. System Interface and GPIO Signals  
Pin Name  
RESETn  
No I/O Description  
5
I
Active-low hardware reset signal. The reset signal must be held low for at least 1µS.  
[Input, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
GPIO0/PWM0  
GPIO1/PWM1  
GPIO2/PWM2  
GPIO3/TIMER1  
40  
41  
42  
43  
IO  
IO  
IO  
IO  
General-purpose input/output signal or PWM0. Open drain option via register setting.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal or PWM1. Open drain option via register setting.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal or PWM2. Open drain option via register setting.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal. Open drain option via register setting. This pin is also  
connected to Timer 1 clock input of the OCM.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
GPIO4/UART_DI  
GPIO5/UART_DO  
44  
45  
IO  
IO  
General-purpose input/output signal. Open drain option via register setting. This pin is also  
connected to the OCM UART data input signal by programming an OCM register.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal. Open drain option via register setting. This pin is also  
connected to the OCM UART data output signal by programming an OCM register.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
GPIO6/TCON_SHC  
GPIO7/TCON_TDIV  
GPIO8/IRQINn  
46  
47  
39  
IO  
IO  
IO  
General-purpose input/output signal.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal. This is also active-low interrupt input to OCM and is  
directly wired to OCM int_0n.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
GPIO9/TCON_ROE2  
GPIO10/TCON_ROE3  
GPIO11/ROM_WEn  
48  
49  
50  
IO  
IO  
IO  
General-purpose input/output signal. Open drain option via register setting. This pin can  
also function as TCON signal ROE2.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal. Open drain option via register setting. This pin can  
also function as TCON signal ROE3.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
General-purpose input/output signal, or ROM write enable if a programmable FLASH  
device is used. Open drain option via register setting.  
[Bi-directional Input, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
GPIO12/NVRAM_SDA  
GPIO13/NVRAM_SCL  
51  
52  
IO  
IO  
General-purpose input/output signals, or 2-wire master serial interface to NVRAM in  
standalone mode. Open drain option via register setting.  
[Bi-directional Input, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
GPIO14/DDC_SCL  
GPIO15/DDC_SDA  
GPIO16/HFSn  
6
7
205  
IO  
IO  
IO  
DDC Interface for DVI-HDCP communication. This is 5V-tolerant SCL pin.  
General-purpose input/output signal when host port is disabled, or data signal for 2-wire  
serial host interface.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), slew rate limited, 5V tolerant]  
GPIO17  
1
IO  
IO  
IO  
IO  
IO  
General-purpose input/output signals.  
GPIO18  
208  
207  
206  
4
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
GPIO19  
GPIO20  
GPIO21/IRQn  
General-purpose input/output signal when host port is disabled, or active-low and open-  
drain interrupt output pin.  
[Bi-directional, 5V-tolerant]  
GPIO22/HCLK  
204  
IO  
General-purpose input/output signal when host port is disabled, or clock for 2-wire serial  
host interface.  
[Bi-directional, Schmitt trigger (400mV typical hysteresis), 5V-tolerant]  
6
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Table 5. Display Output Port  
No I/O Description  
Pin Name  
DCLK/TCON_OCLK  
118  
117  
116  
115  
O
O
O
O
Panel output clock or TCON Odd Column Driver Bus Clock.  
[Tri-state output, Programmable Drive]  
DVS/TCON_FSYNC  
DHS/TCON_LP  
Panel Vertical Sync or TCON Frame Synchronization.  
[Tri-state output, Programmable Drive]  
Panel Horizontal Sync or TCON Load Pulse.  
[Tri-state output, Programmable Drive]  
DEN/TCON_ECLK  
Panel Display Enable, which frames the output background window, or TCON Even Column  
Driver Bus Clock.  
[Tri-state output, Programmable Drive]  
PBIAS  
PPWR  
114  
113  
O
O
Panel Bias Control (back light enable)  
[Tri-state output, Programmable Drive]  
Panel Power Control  
[Tri-state output, Programmable Drive]  
Panel or TCON output data.  
PD47  
PD46  
PD45  
PD44  
PD43  
PD42  
PD41  
PD40  
PD39  
PD38  
PD37  
PD36  
PD35  
PD34  
PD33  
PD32  
PD31  
PD30  
PD29  
PD28  
PD27  
PD26  
PD25  
PD24  
PD23  
PD22  
PD21  
PD20  
PD19  
PD18  
PD17  
PD16  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
[Tri-state output, Programmable Drive]  
96  
95  
94  
93  
92  
91  
90  
87  
86  
85  
84  
83  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
66  
65  
64  
PD8  
63  
PD7  
62  
PD6  
61  
PD5  
60  
PD4  
59  
PD3  
58  
PD2  
57  
PD1  
56  
PD0  
55  
7
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Table 6. Parallel ROM Interface Port  
Pin Name  
No I/O Description  
ROM_ADDR15  
ROM_ADDR14  
ROM_ADDR13  
ROM_ADDR12  
ROM_ADDR11  
ROM_ADDR10  
ROM_ADDR9  
ROM_ADDR8  
ROM_ADDR7  
ROM_ADDR6  
ROM_ADDR5  
ROM_ADDR4  
ROM_ADDR3  
ROM_ADDR2  
ROM_ADDR1  
ROM_ADDR0  
ROM_DATA7  
ROM_DATA6  
ROM_DATA5  
ROM_DATA4  
ROM_DATA3  
ROM_DATA2  
ROM_DATA1  
ROM_DATA0  
ROM_Oen  
8
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
ROM address output. These pins also serve as 5V-tolerant bootstrap inputs on power up.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
36  
5V-tolerant external PROM data input  
I
I
I
I
I
I
I
O
External PROM data Output Enable  
Table 7. TCON Output Port  
Pin Name  
TCON_OSP  
TCON_OPOL  
TCON_OINV  
TCON_ESP  
TCON_EPOL  
TCON_EINV  
TCON_RSP2  
TCON_RSP3  
TCON_ROWCLK  
TCON_ROE  
No I/O Description  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
O
O
O
O
O
O
O
O
O
O
Odd Starting Pulse  
Odd Polarity  
Odd Data Transmission Inversion  
Even Starting Pulse  
Even Polarity  
Even Data Transmission Inversion  
Row Starting Pulse for 2-Voltage Row Driver  
Row Starting Pulse for 3-Voltage Row Driver  
Row Shift Clock  
Row Output Enable  
Table 8. Reserved Pins  
Pin Name  
No I/O Description  
Reserved  
Reserved  
N/C  
131  
132  
142  
200  
I
Tie to GND.  
Tie to GND.  
No connect.  
No connect.  
I
O
O
N/C  
8
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Note that VDD pins having "_2.5" in their names should be connected to 2.5V power supplies. All  
other VDD pins should be connected to 3.3V power supplies.  
Table 9. Power Pins for ADC Sampling Clock DDS  
Pin Name  
No I/O Description  
AVDD_DDDS  
146  
AP  
Analog power for the Destination DDS. Connect to 3.3V supply.  
Must be bypassed with a 0.1uF capacitor to AVSS_DDDS pin  
(as close to the pin as possible).  
AVSS_DDDS  
145  
AG  
Analog ground for the Destination DDS.  
Must be directly connected to the analog system ground.  
Digital power for the Destination DDS. Connect to 3.3V supply.  
Digital ground for the Destination DDS.  
VDD_DDDS  
VSS_DDDS  
144  
143  
P
G
Table 10. Power Pins for Display Clock DDS  
No I/O Description  
Pin Name  
AVDD_SDDS  
141  
AP  
Analog power for Source DDS. Connect to 3.3V supply.  
Must be bypassed with a 0.1uF capacitor to AVSS_SDDS pin  
(as close to the pin as possible).  
AVSS_SDDS  
140  
AG  
Analog ground for Source DDS.  
Must be directly connected to the analog system ground plane.  
Digital power for the Source DDS. Connect to 3.3V supply.  
Digital ground for the Source DDS.  
VDD_SDDS  
VSS_SDDS  
139  
138  
P
G
Table 11. I/O Power and Ground Pins  
Pin Name  
No I/O Description  
RVDD  
2
20  
37  
53  
67  
81  
97  
111  
129  
3
P
P
P
P
P
P
P
P
P
G
G
G
G
G
G
G
G
G
Connect to 3.3V supply.  
Must be bypassed with a 0.1uF capacitor to RVSS (as close to the pin as possible).  
RVSS  
Connect to digital ground.  
21  
38  
54  
68  
82  
98  
112  
130  
Table 12. Core Power and Ground Pins  
Pin Name  
No I/O Description  
CVDD_2.5  
26  
88  
P
P
Connect to 2.5V supply.  
Must be bypassed with a 0.1uF capacitor to CVSS (as close to the pin as possible).  
134  
203  
27  
89  
133  
135  
P
P
CVSS  
G
G
G
G
G
Connect to digital ground.  
Note: “AP” indicates20a2 power supply that is analog in nature and does not have large switching  
currents. These should be isolated from other digital supplies that do have large switching currents.  
9
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4. FUNCTIONAL DESCRIPTION  
A functional block diagram is illustrated below. Each of the functional units shown is described  
in the following sections.  
NVRAM  
Serial I/F  
Serial Host I/F  
GPIO  
Crystal  
Parallel  
ROM IF  
Reference  
Host  
8051-style  
Micro-  
External  
ROM I/F  
OSD  
Clock  
Interface  
Controller  
Generation  
controller  
OSD  
RAMs  
Internal  
ROM  
MCU  
RAM  
Panel  
Timing  
Timing  
Control  
Signals  
Controller  
Ultra-Reliable  
DVI Rx  
DVI-Compliant  
Input  
HDCP  
Panel Data  
Output  
Data  
Brightness /  
Contrast /  
Hue / Sat /  
RealColor /  
Moire  
Image  
Capture /  
Measure-  
ment  
Zoom /  
Shrink /  
Filter  
Path  
Gamma  
Control  
Triple ADC  
and PLL  
Analog RGB  
Input  
Test Pattern  
Generator  
Figure 3.  
gm5115/25 Functional Block Diagram  
4.1 Clock Generation  
The gm5115/25 features three clock inputs. All additional clocks are internal clocks derived from  
one or more of these:  
1. Crystal Input Clock (TCLK and XTAL). This is the input pair to an internal crystal oscillator  
and corresponding logic. A 14.3 MHz TV crystal is recommended. Other crystal frequencies  
may be used, but require custom programming. This is illustrated in Figure 4 below.  
Alternatively, a single-ended TTL/CMOS clock oscillator can be driven into the TCLK pin  
(leave XTAL as N/C in this case). This is illustrated in Figure 7 below. This option is  
selected by connecting a 10Kpull-up to ROM_ADDR13 (refer to Table 18). See also Table  
14.  
2. DVI Differential Input Clock (RC+ and RC-)  
3. Host Interface Transfer Clock (HCLK)  
10  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
The gm5115 TCLK oscillator circuitry is a custom designed circuit to support the use of an  
external oscillator or a crystal resonator to generate a reference frequency source for the gm5115  
device.  
4.1.1 Using the Internal Oscillator with External Crystal  
The first option for providing a clock reference is to use the internal oscillator with an external  
crystal. The oscillator circuit is designed to provide a very low jitter and very low harmonic clock  
to the internal circuitry of the gm5115. An Automatic Gain Control (AGC) is used to insure  
startup and operation over a wide range of conditions. The oscillator circuit also minimizes the  
overdrive of the crystal, which reduces the aging of the crystal.  
When the gm5115/25 is in reset, the state of the ROM_ADDR13 pin (pin number 10) is sampled.  
If the pin is left unconnected (internal pull-down) then internal oscillator is enabled. In this mode  
a crystal resonator is connected between TCLK (pin 152) and the XTAL (pin 151) with the  
appropriately sized loading capacitors CL1 and CL2. The size of CL1 and CL2 are determined from  
the crystal manufacturer’s specification and by compensating for the parasitic capacitance of the  
gm5115/25 device and the printed circuit board traces. The loading capacitors are terminated to  
the analog VDD power supply. This connection increases the power supply rejection ratio when  
compared to terminating the loading capacitors to ground.  
gm5115/25  
Vdda  
CL1  
152  
Vdd  
TCLK  
151  
Vdda  
OSC_OUT  
XTAL  
100 K  
TCLK Distribution  
CL2  
180 uA  
10  
N/C  
Reset State Logic  
ROM_ADDR13  
Internal Oscillator Enable  
Internal Pull Down  
Resistor  
~ 60K  
Figure 4.  
Using the Internal Oscillator with External Crystal  
11  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
The TCLK oscillator uses a Pierce Oscillator circuit. The output of the oscillator circuit,  
measured at the TCLK pin, is an approximate sine wave with a bias of about 2 volts above  
ground (see Figure 5). The peak-to-peak voltage of the output can range from 250 mV to 1000  
mV depending on the specific characteristics of the crystal and variation in the oscillator  
characteristics. The output of the oscillator is connected to a comparator that converts the sine  
wave to a square wave. The comparator requires a minimum signal level of about 50-mV peak to  
peak to function correctly. The output of the comparator is buffered and then distributed to the  
gm5115/25 circuits.  
3.3 Volts  
250 mV peak to peak  
to  
~ 2 Volts  
1000 mV peak to peak  
time  
Figure 5.  
Internal Oscillator Output  
One of the design parameters that must be given some consideration is the value of the loading  
capacitors used with the crystal as shown in Figure 6. The loading capacitance (Cload) on the  
crystal is the combination of CL1 and CL2 and is calculated by Cload = ((CL1 * CL2) / (CL1 + CL2)) +  
Cshunt. The shunt capacitance Cshunt is the effective capacitance between the XTAL and TCLK  
pins. For the gm5115/25 this is approximately 9 pF. CL1 and CL2 are a parallel combination of the  
external loading capacitors (Cex), the PCB board capacitance (Cpcb), the pin capacitance (Cpin), the  
pad capacitance (Cpad), and the ESD protection capacitance (Cesd). The capacitances are  
symmetrical so that CL1 = CL2 = Cex + CPCB + Cpin + Cpad + CESD. The correct value of Cex must be  
calculated based on the values of the load capacitances. Approximate values are provided in  
Figure 6.  
12  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
CL1 = Cex1 + Cpcb + Cpin + Cpad + Cesd  
Vdda  
Cex1  
Cpcb  
Cpin  
Cpad  
Cesd  
141  
Internal Oscillator  
TCLK  
gm5115/25  
Cshunt  
Cpcb  
142  
Vdda  
XTAL  
Cex2  
Cpin  
Cpad  
Cesd  
Approximate values:  
C
C
C
C
C
PCB ~ 2 pF to 10 pF (layout dependent)  
pin ~ 1.1 pF  
pad ~ 1 pF  
esd ~ 5.3 pF  
shunt ~ 9 pF  
CL2 = Cex1 + Cpcb + Cpin + Cpad + Cesd  
Figure 6.  
Sources of Parasitic Capacitance  
Some attention must be given to the details of the oscillator circuit when used with a crystal  
resonator. The PCB traces should be as short as possible. The value of Cload that is specified by  
the manufacturer should not be exceeded because of potential start up problems with the  
oscillator. Additionally, the crystal should be a parallel resonate-cut and the value of the  
equivalent series resistance must be less then 90 Ohms.  
4.1.2 Using an External Clock Oscillator  
Another option for providing the reference clock is to use a single-ended external clock  
oscillator. When the gm5115/25 is in reset, the state of the ROM_ADDR13 (pin 10) is sampled.  
If ROM_ADDR13 is pulled high by connecting to VDD through a pull-up resistor (15KΩ  
recommended, 15Kmaximum) then external oscillator mode is enabled. In this mode the  
internal oscillator circuit is disabled and the external oscillator signal that is connected to the  
TCLK pin (pin number 152) is routed to an internal clock buffer. This is illustrated in Figure 7.  
13  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Vdd  
14 to 24 MHz  
gm5115/25  
152  
Vdd  
Oscillator  
GND  
TCLK  
OSC_OUT  
TCLK Distribution  
151  
Internal  
Disable  
Vdd  
Oscillator  
XTAL  
10 K  
10  
ROM_ADDR13  
Reset State Logic  
External Oscillator Enable  
Internal Pull Down  
Resistor  
~ 60 K  
Figure 7.  
Using an External Single-ended Clock Oscillator  
Frequency  
Jitter Tolerance  
Rise Time (10% to 90%)  
Maximum Duty Cycle  
14 to 24 MHz  
250 ps  
5 ns  
40-60  
Table 13. TCLK Specification  
4.1.3 Clock Synthesis  
The gm5115/25 synthesis all additional clocks internally as illustrated in Figure 8 below. The  
synthesized clocks are as follows:  
1. Main Timing Clock (TCLK) is the output of the chip internal crystal oscillator. TCLK is  
derived from the TCLK/XTAL pad input.  
2. Reference Clock (RCLK) synthesized by RCLK PLL (RPLL) using TCLK as the reference.  
3. DVI Input Clock (DVI_CLK) synthesized by DVI receiver PLL using RC+/RC- pair as the  
reference.  
4. Input Source Clock (SCLK) synthesized by Source DDS (SDDS) PLL using input HSYNC  
as the reference. The SDDS internal digital logic is driven by RCLK.  
5. Display Clock (DCLK) synthesized by Destination DDS (DDDS) PLL using IP_CLK as the  
reference. The DDDS internal digital logic is driven by RCLK.  
14  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
6. Half Reference Clock (RCLK/2) is the RCLK (see 2, above) divided by 2. Used as  
OCM_CLK domain driver.  
7. Quarter Reference Clock (RCLK/4) is the RCLK (see 2, above) divided by 4. Used as  
alternative clock (faster than TCLK) to drive IFM.  
8. ADC Output Clock (SENSE_ACLK) is a delay-adjusted ADC sampling clock, ACLK.  
ACLK is derived from SCLK.  
SDDS  
HSYNC  
SCLK  
DCLK  
DDDS  
IP_CLK  
RCLK  
PLL  
TCLK  
/2  
/4  
RCLK/2  
RCLK/4  
RC+  
RC-  
DVI Rx  
DVI_CLK  
Figure 8.  
Internally Synthesized Clocks  
The on-chip clock domains are selected from the synthesized clocks as shown in Figure 9 below.  
These include:  
1. Input Domain Clock (IP_CLK). Max = 165MHz  
2. Host Interface and On-Chip Microcontroller Clock (OCM_CLK). Max = 100MHz  
3. Filter and Display Pixel Clock (DP_CLK). Max = 135MHz  
4. Source Timing Measurement Domain Clock (IFM_CLK). Max = 50MHz  
5. ADC Domain Clock (ACLK). Max = 165MHz.  
The clock selection for each domain as shown in the figure below is controlled using the  
CLOCK_CONFIG registers (index 0x03 and 0x04).  
15  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
SCLK  
DCLK  
SENSE_ACLK  
IP_CLK  
DP_CLK  
DVI_CLK  
IP_CLK  
RCLK/2  
RCLK/4  
IFM_CLK  
TCLK  
ACLK  
OCM_CLK  
SCLK  
TCLK  
Figure 9.  
On-chip Clock Domains  
4.2 Hardware Reset  
Hardware Reset is performed by holding the RESETn pin low for a minimum of 1µs. A TCLK  
input (see Clock Options above) must be applied during and after the reset. When the reset period  
is complete and RESETn is de-asserted, the power-up sequence is as follows:  
1. Reset all registers of all types to their default state (this is 00h unless otherwise specified in  
the gm5115/25 Register Listing).  
2. Force each clock domain into reset. Reset will remain asserted for 64 local clock domain  
cycles following the de-assertion of RESETn.  
3. Operate the OCM_CLK domain at the TCLK frequency.  
4. Preset the RCLK PLL to output ~200MHz clock (assumes 14.3MHz TCLK crystal  
frequency).  
5. Wait for RCLK PLL to Lock. Then, switch the OCM_CLK domain to operate from the  
bootstrap selected clock.  
6. If a pull-up resistor is installed on ROM_ADDR9 pin (see Table 18), then the OCM becomes  
active as soon as OCM_CLK is stable. Otherwise, the OCM remains in reset until  
OCM_CONTROL register (0x22) bit 1 is enabled.  
4.3 Analog to Digital Converter (ADC)  
The gm5115/25 chip has three ADC’s (analog-to-digital converters), one for each color (red,  
green, and blue).  
16  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
4.3.1 ADC Pin Connection  
gm5115/25 Preliminary Data Sheet  
The analog RGB signals are connected to the gm5115/25 as described below:  
Table 14. Pin Connection for RGB Input with HSYNC/VSYNC  
Pin Name  
ADC Signal Name  
Red+  
Red  
Red-  
Terminate as illustrated in Figure 10  
Green  
Terminate as illustrated in Figure 10  
Blue  
Green+  
Green-  
Blue+  
Blue-  
HSYNC  
VSYNC  
Terminate as illustrated in Figure 10  
Horizontal Sync (Terminate as illustrated in Figure 10)  
Vertical Sync (Terminate as with HSYNC illustrated in Figure 10)  
gm5115/25  
100Ω  
RED  
GND  
RED +  
0.01uF  
0.01uF  
75Ω  
DB15  
100Ω  
RED -  
HSYNC  
HS  
Figure 10.  
Example ADC Signal Terminations  
Please note that it is very important to follow the recommended layout guidelines for the circuit  
shown in Figure 10. These are described in "gm5115/25 Layout Guidelines" document number  
C5115-SLG-01A.  
4.3.2 ADC Characteristics  
The table below summarizes the characteristics of the ADC:  
17  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Table 15. ADC Characteristics  
MIN  
TYP  
290 MHz  
MAX NOTE  
Track & Hold Amp Bandwidth  
Guaranteed by design. Note that the Track &  
Hold Amp Bandwidth is programmable. 290  
MHz is the maximum setting.  
Full Scale Adjust Range at RGB Inputs  
Full Scale Adjust Sensitivity  
0.55 V  
0.90 V  
+/- 1 LSB  
+/- 1 LSB  
+/-0.5 LSB  
Measured at ADC Output.  
Independent of full-scale RGB input.  
Measured at ADC Output.  
Zero Scale Adjust Sensitivity  
Sampling Frequency (Fs)  
Differential Non-Linearity (DNL)  
No Missing Codes  
Integral Non-Linearity (INL)  
Channel to Channel Matching  
10 MHz  
162.5 MHz  
+/-0.9 LSB Fs = 135 MHz  
Guaranteed by test.  
Fs =135 MHz  
+/- 1.5 LSB  
+/- 0.5 LSB  
Note that input formats with resolutions or refresh rates higher than that supported by the LCD  
panel are supported as recovery modes only. This is called RealRecovery™. For example, it may  
be necessary to shrink the image. This may introduce image artifacts. However, the image is  
clear enough to allow the user to change the display properties.  
The gm5115/25 ADC has a built-in clamp circuit for AC-coupled inputs. By inserting series  
capacitors (about 10 nF), the DC offset of an external video source can be removed. The clamp  
pulse position and width are programmable.  
4.3.3 Clock Recovery Circuit  
The SDDS (Source Direct Digital Synthesis) clock recovery circuit generates the clock used to  
sample analog RGB data (IP_CLK or source clock). This circuit is locked to HSYNC of the  
incoming video signal.  
Patented digital clock synthesis technology makes the gm5115/25 clock circuits resistant to  
temperature/voltage drift. Using DDS (Direct Digital Synthesis) technology, the clock recovery  
circuit can generate any IP_CLK clock frequency within the range of 10MHz to 165MHz.  
Image Phase  
Measurement  
R
Window  
Capture  
24  
G
B
ADC  
Phase  
SDDS  
HSYNC  
(delayed)  
HSYNC  
IPCLK  
Figure 11.  
gm5115/25 Clock Recovery  
18  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
4.3.4 Sampling Phase Adjustment  
gm5115/25 Preliminary Data Sheet  
The programmable ADC sampling phase is adjusted by delaying the HSYNC input to the SDDS.  
The accuracy of the sampling phase is checked and the result read from a register. This feature  
enables accurate auto-adjustment of the ADC sampling phase.  
4.3.5 ADC Capture Window  
Figure 12 below illustrates the capture window used for the ADC input. In the horizontal  
direction the capture window is defined in IP_CLKs (equivalent to a pixel count). In the vertical  
direction it is defined in lines.  
All the parameters beginning with “Source” are programmed gm5115/25 registers values. Note  
that the Input Vertical Total is solely determined by the input and is not a programmable  
parameter.  
Source Horizontal Total (pixels)  
Reference  
Point  
Source  
Hstart  
Source Width  
Capture Window  
Figure 12.  
ADC Capture Window  
The Reference Point marks the leading edge of the first internal HSYNC following the leading  
edge of an internal VSYNC. Both the internal HSYNC and the internal VSYNC are derived  
from external HSYNC and VSYNC inputs.  
Horizontal parameters are defined in terms of single pixel increments relative to the internal  
horizontal sync. Vertical parameters are defined in terms of single line increments relative to the  
internal vertical sync.  
For ADC interlaced inputs, the gm5115/25 may be programmed to automatically determine the  
field type (even or odd) from the VSYNC/HSYNC relative timing. See Input Format  
Measurement, Section 4.6.  
19  
June 2002  
C5115-DAT-01H  
 
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.4 Ultra-Reliable Digital Visual Receiver (DVI Rx)  
The Ultra-Reliable DVITM receiver block of the gm5115/25 is compliant with DVI1.0 single link  
specifications. Digital Visual Interface (DVI) is a standard that uses Transition Minimized  
Differential Signaling protocol (TMDS). This block supports an input clock frequency ranging  
from 20 MHz to 165 MHz.  
4.4.1 DVI Receiver Characteristics  
Table 16 summarizes the characteristics of the four Receiver Pair inputs. Please note that it is  
very important to follow the recommended layout guidelines for these signals. These are  
described in "gm5115/25 Layout Guidelines" document number C5115-SLG-01A.  
Table 16. DVI Receiver Characteristics  
MIN  
TYP  
MAX  
NOTE  
DC Characteristics  
Differential Input Voltage  
Input Common Mode Voltage  
150mV  
AVDD  
1200mV  
AVDD  
–300m V  
AVDD  
-10mV  
-37mV  
AVDD  
+10mV  
Behavior when Transmitter Disable  
AC Characteristics  
20 MHz  
150mV  
Input clock frequency  
165 MHz  
Input differential sensitivity (Peak-to-peak)  
Max differential input (peak-to-peak)  
Allowable Intra-Pair skew at Receiver  
Allowable Inter-Pair skew at Receiver  
1560 mV  
250 ps  
4.0 ns  
Input clock = 160 MHz  
Worst case differential input clock jitter  
188 ps  
tolerance  
Note that input formats with resolutions or refresh rates higher than that supported by the LCD  
panel are supported as recovery modes only. This is called RealRecovery™. For example, it may  
be necessary to shrink the image. This may introduce image artifacts. However, the image is  
clear enough to allow the user to change the display properties.  
Through register programming, the receiver unit may be placed in one of three states:  
Active: The receiver block is fully on and running.  
Standby: Only the RC (clock) channel remains active. Data and other control signals are not  
decoded.  
Off: The receiver block is powered down.  
20  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
4.4.2 DVI Capture Window  
gm5115/25 Preliminary Data Sheet  
DE (Display Enable), HSYNC and VSYNC are synthesized internally by examining the active  
regions of each line and compensating for possible source timing errors and/or embedded  
HSYNC / VSYNC jitter.  
There are two ways to define the DVI capture region:  
CREF Capture - In this mode the usual active window parameters must be programmed as with  
ADC inputs (see Section 4.3.5.).  
DE Capture - In this mode the active window code embedded in the DVI signal defines the  
active window automatically. Only the active width and active length parameters obtained by  
performing Input Format Measurement (IFM) need be programmed.  
4.4.3 High-Bandwidth Digital Content Protection (HDCP)  
Note: This section applies to the HDCP-enabled chip versions gm5115-H and gm5125-H but not  
the standard versions gm5115 and gm5125.  
The HDCP system allows authentication of a video receiver by a video transmitter, decryption of  
transmitter-encoded video data by the receiver, and periodic renew-ability of authentication  
during transmission. The gm5115/25 implements circuitry to allow full support of the HDCP 1.0  
protocol for DVI inputs.  
For enhanced security, Genesis provides a means of storing and accessing the secret key given to  
individual monitor units in an encrypted format.  
Further details of the protocol and theory of the system can be found in the High-bandwidth  
Digital Content Protection System specification (see www.digital-cp.com).  
4.5 Test Pattern Generator (TPG)  
The gm5115/25 contains hundreds of test patterns, some of which are shown in Figure 13. Once  
programmed, the gm5115/25 test pattern generator can replace a video source (e.g. a PC) during  
factory calibration and test. This simplifies the test procedure and eliminates the possibility of  
image noise being injected into the system from the source. The foreground and background  
colors are programmable. In addition, the gm5115/25 OSD controller can be used to produce  
other patterns.  
Figure 13.  
Some of gm5115/25 built-in test patterns  
21  
June 2002  
C5115-DAT-01H  
 
 
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
The DDC2Bi port can be used for factory testing. This is illustrated in Figure 14. The factory test  
station connects to the gm5115/25 through the Direct Data Channel (DDC) of the DSUB15 or  
DVI connectors. Then, the PC can make gm5115/25 display test patterns (see section 4.5). A  
camera can be used to automate the calibration of the LCD panel.  
DDC  
Factory Test Station  
Device-Under-Test  
Camera  
Figure 14.  
Factory Calibration and Test Environment  
4.6 Input Format Measurement (IFM)  
The gm5115/25 has an Input Format Measurement block (the IFM) providing the capability of  
measuring the horizontal and vertical timing parameters of the input video source. This  
information may be used to determine the video format and to detect a change in the input  
format. It is also capable of detecting the field type of interlaced formats.  
The IFM features a programmable reset, separate from the regular gm5115/25 soft reset. This  
reset disables the IFM, reducing power consumption. The IFM is capable of operating while the  
gm5115/25 is running in power-down mode.  
Horizontal measurements are measured in terms of the selected IFM_CLK (either TCLK or  
RCLK/4), while vertical measurements are measured in terms of HSYNC pulses.  
For an overview of the internally synthesized clocks, see section 4.1.  
4.6.1 HSYNC / VSYNC Delay  
The active input region captured by the gm5115/25 is specified with respect to internal HSYNC  
and VSYNC. By default, internal syncs are equivalent to the HSYNC and VSYNC at the input  
pins and thus force the captured region to be bounded by external HSYNC and VSYNC timing.  
However, the gm5115/25 provides an internal HSYNC and VSYNC delay feature that removes  
this limitation. This feature is available for use with both the ADC input and the DVI Rx (DE-  
regeneration mode). By delaying the sync internally, the gm5115/25 can capture data that spans  
across the sync pulse.  
It is possible to use HSNYC and VSYNC delay for image positioning. (Alternatively,  
Source_HSTART and Source_VSTART in Figure 12 are used for image positioning of analog  
input.) Taken to an extreme, the intentional movement of images across apparent HSYNC and  
VSYNC boundaries creates a horizontal and/or vertical wrap effect.  
HSYNC is delayed by a programmed number of selected input clocks.  
22  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
active  
active  
HS(system)  
HS(internal)  
capture  
capture  
capture  
programmable  
delay  
input block actually  
captures across HSYNC  
Figure 15.  
HSYNC Delay  
Delayed horizontal sync may be used to solve a potential problem with VSYNC jitter with  
respect to HSYNC. VSYNC and HSYNC are generally driven active coincidentally, but with  
different paths to the gm5115/25 (HSYNC is often regenerated from a PLL). As a result,  
VSYNC may be seen earlier or later. Because VSYNC is used to reset the line counter and  
HSYNC is used to increment it, any difference in the relative position of HSYNC and VSYNC is  
seen on-screen as vertical jitter. By delaying the HSYNC a small amount, it can be ensured that  
VSYNC always resets the line counter prior to it being incremented by the “first” HSYNC.  
active data crosses HS boundary  
delayed HS placed safely within blanking  
Data  
HS (system)  
Internal Delayed HS  
Figure 16.  
Active Data Crosses HSYNC Boundary  
4.6.2 Horizontal and Vertical Measurement  
The IFM is able to measure the horizontal period and active high pulse width of the HSYNC  
signal, in terms of the selected clock period (either TCLK or RCLK/4.). Horizontal  
measurements are performed on only a single line per frame (or field). The line used is  
programmable. It is able to measure the vertical period and VSYNC pulse width in terms of  
rising edges of HSYNC.  
Once enabled, measurement begins on the rising VSYNC and is completed on the following  
rising VSYNC. Measurements are made on every field / frame until disabled.  
4.6.3 Format Change Detection  
The IFM is able to detect changes in the input format relative to the last measurement and then  
alert both the system and the on-chip microcontroller. The microcontroller sets a measurement  
difference threshold separately for horizontal and vertical timing. If the current field / frame  
23  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
timing is different from the previously captured measurement by an amount exceeding this  
threshold, a status bit is set. An interrupt can also be programmed to occur.  
4.6.4 Watchdog  
The watchdog monitors input VSYNC / HSYNC. When any HSYNC period exceeds the  
programmed timing threshold (in terms of the selected IFM_CLK), a register bit is set. When any  
VSYNC period exceeds the programmed timing threshold (in terms of HSYNC pulses), a second  
register bit is set. An interrupt can also be programmed to occur.  
4.6.5 Internal Odd/Even Field Detection  
The IFM has the ability to perform field decoding of interlaced inputs to the ADC. The user  
specifies start and end values to outline a “window” relative to HSYNC. If the VSYNC leading  
edge occurs within this window, the IFM signals the start of an ODD field. If the VSYNC  
leading edge occurs outside this window, an EVEN field is indicated (the interpretation of odd  
and even can be reversed). The window start and end points are selected from a predefined set of  
values.  
HS  
window  
Window  
Start  
Window End  
VS - even  
VS - odd  
Figure 17.  
ODD/EVEN Field Detection  
4.6.6 Input Pixel Measurement  
The gm5115/25 provides a number of pixel measurement functions intended to assist in  
configuring system parameters such as pixel clock, SDDS sample clocks per line and phase  
setting, centering the image, or adjusting the contrast and brightness.  
4.6.7 Image Phase Measurement  
This function measures the sampling phase quality over a selected active window region. This  
feature may be used when programming the source DDS to select the proper phase setting. Please  
refer to the gm5115/25 Programming Guide for the optimized algorithm.  
24  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
4.6.8 Image Boundary Detection  
gm5115/25 Preliminary Data Sheet  
The gm5115/25 performs measurements to determine the image boundary. This information is  
used when programming the Active Window and centering the image.  
4.6.9 Image Auto Balance  
The gm5115/25 performs measurements on the input data that are used to adjust brightness and  
contrast.  
4.7 RealColorTM Digital Color Controls  
The gm5115/25 provides high-quality digital color controls. These consist of a subtractive “black  
level” stage, followed by a full 3x3 RGB matrix multiplication stage, followed by an signed  
offset stage as shown in Figure 18.  
Subtractive  
Offset  
3x3 Color  
Additive  
Offset  
Conversion  
(Black Level)  
(Brightness)  
Red In  
Red Out  
-
-
-
+/-  
+/-  
+/-  
X
Green In  
Blue In  
Green Out  
Blue Out  
Figure 18.  
RealColorTM Digital Color Controls  
This structure can accommodate all RGB color controls such as black-level (subtractive stage),  
contrast (multiplicative stage), and brightness (signed additive offset). In addition, it supports all  
YUV color controls including brightness (additive factor applied to Y), contrast (multiplicative  
factor applied to Y), hue (rotation of U and V through an angle) and saturation (multiplicative  
factor applied to both Y and V).  
To provide the highest color purity all mathematical functions use 10 bits of accuracy. The final  
result is then dithered to eight or six bits (as required by the LCD panel).  
4.7.1 RealColor™ Flesh tone Adjustment  
The human eye is more sensitive to variations of flesh tones than other colors; for example, the  
user may not care if the color of grass is modified slightly during image capture and/or display.  
However, if skin tones are modified by even a small amount, it is unacceptable. The gm5115/25  
features flesh tone adjustment capabilities. This feature is not based on lookup tables, but rather a  
manipulation of YUV-channel parameters. Flesh tone adjustment is available for all inputs.  
25  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.7.2 Color Standardization and sRGB Support  
Internet shoppers may be very picky about what color they experience on the display.  
Gm5115/25 RealColorTM digital color controls can be used to make the color response of an LCD  
monitor compliant with standard color definitions, such as sRGB. SRGB is a standard for color  
exchange proposed by Microsoft and HP (see www.srgb.com). gm5115/25 RealColor controls  
can be used to make LCD monitors sRGB compliant, even if the native response of the LCD  
panel itself is not. For more information on sRGB compliance using gm5115/25 family devices  
please refer to the sRGB application brief C5115-APB-02A.  
4.8 High-Quality Scaling  
The gm5115/25 zoom/shrink scaler uses an adaptive scaling technique proprietary to Genesis  
Microchip Inc., and provides high quality scaling of real time video and graphics images. An  
input field/frame is scalable in both the vertical and horizontal dimensions.  
Interlaced fields may be spatially de-interlaced by vertically scaling and repositioning the input  
fields to align with the output display’s pixel map.  
4.8.1 Variable Zoom Scaling  
The gm5115/25 scaling filter can combine its advanced scaling with a pixel-replication type  
scaling function. This is useful for improving the sharpness and definition of graphics when  
scaling at high zoom factors (such as VGA to XGA).  
4.8.2 Horizontal and Vertical Shrink  
A shrink function may be performed on the input data. This is an arbitrary horizontal active  
resolution reduction to between (50% + 1 pixel) to 100% of the input. For example, this allows  
SXGA 1280 pixels to be displayed as 1024 (XGA).  
The gm5115/25 provides an arbitrary vertical shrink down to (50% + 1 line) of the original image  
size. Together with the arbitrary horizontal shrink, this allows the gm5115/25 to capture and  
display images one VESA standard format larger than the native display resolution. For  
example, SXGA may be captured and displayed on an XGA panel.  
4.8.3 Moiré Cancellation  
The gamma curve and other non-linearities can affect the energy distribution of pixels when  
scaled to different areas of the screen. This is an example of the Moiré effect. The gm5115/25 has  
hardware features to negate the Moiré effect, improving the scaling quality.  
26  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.9 Bypass Options  
The gm5115/25 has the capability to completely bypass internal processing. In this case,  
captured input signals and data are passed, with a small latency, straight through to the display  
output. The gm5115/25 is also able to bypass the zoom filter and the gamma LUT.  
4.10 Gamma Look-Up-Table (LUT)  
The gm5115/25 provides an 8 to 10-bit look-up table (LUT) for each input color channel  
intended for Gamma correction and to compensate for a non-linear response of the LCD panel.  
A 10-bit output results in an improved color depth control. The 10-bit output is then dithered  
down to 8 bits (or 6 bits) per channel at the display (see section 4.11.3 below). The LUT is user-  
programmable to provide an arbitrary transfer function. Gamma correction occurs after the zoom  
/ shrink scaling block. If bypassed, the LUT does not require programming.  
4.11 Display Output Interface  
The Display Output Port provides data and control signals that permit the gm5115/25 to connect  
to a variety of flat panel or CRT devices. The output interface is configurable for 18 or 24-bit  
RGB pixels, either single- or double-pixel wide. All display data and timing signals are  
synchronous with the DCLK output clock.  
4.11.1 Display Synchronization  
Refer to section 4.1 for information regarding internal clock synthesis.  
The gm5115/25 supports the following display synchronization modes:  
Frame Sync Mode: The display frame rate is synchronized to the input frame or field  
rate. This mode is used for standard operation.  
Free Run Mode: No synchronization. This mode is used when there is no valid input  
timing (i.e. to display OSD messages or a splash screen) or for testing purposes. In free-  
run mode, the display timing is determined only by the values programmed into the  
display window and timing registers.  
4.11.2 Programming the Display Timing  
Display timing signals provide timing information so the Display Port can be connected to an  
external display device. Based on values programmed in registers, the Display Output Port  
produces the horizontal sync (DHS), vertical sync (DVS), and data enable (DEN) control signals.  
The figure below provides the registers that define the output display timing.  
27  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Horizontal values are programmed in single-pixel increments relative to the leading edge of the  
horizontal sync signal. Vertical values are programmed in line increments relative to the leading  
edge of the vertical sync signal.  
DH_BKGND_START  
DH_BKGND_END  
DV_VS_END  
VSYNC Region  
Vertical Blanking (Back Porch)  
DV_BKGND_START  
DV_ACTIVE_START  
Display Background Window  
Display Active Window  
DV_ACTIVE_LENGTH  
DV_BKGND_END  
Vertical Blanking (Front Porch)  
DH_TOTAL  
DHS  
DEN **  
DH_HS_END  
** DEN is not asserted during vertical blanking  
DH_ACTIVE_WIDTH  
DH_ACTIVE_START  
Figure 19.  
Display Windows and Timing  
28  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
The double-wide output only supports an even number of horizontal pixels.  
DCLK (Output)  
DEN (Output)  
ER/EG/EB  
XXX  
rgb0  
rgb1  
XXX  
rgb2  
rgb3  
rgb4  
(Output)  
OR/OG/OB  
(Output)  
Figure 20.  
Single Pixel Width Display Data  
DCLK (Output)  
DEN (Output)  
ER/EG/EB  
(Output)  
XXX  
XXX  
rgb0  
rgb1  
rgb2  
rgb3  
rgb4  
rgb5  
rgb6  
rgb7  
rgb8  
rgb9  
OR/OG/OB  
(Output)  
Figure 21.  
Double Pixel Wide Display Data  
4.11.3 Panel Power Sequencing (PPWR, PBIAS)  
The gm5115/25 has two dedicated outputs PPWR and PBIAS (pins 113 and 114) to control LCD  
power sequencing once data and control signals are stable. The timing of these signals is fully  
programmable.  
29  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
TMG1  
TMG2  
TMG2  
TMG1  
PPWR Output  
Panel Data and Control Signals  
PBIAS Output  
<State0>  
<State1>  
<State2>  
<State3>  
<State2>  
<State1> <State0>  
POWER_SEQ_EN = 1  
POWER_SEQ_EN = 0  
Figure 22.  
Panel Power Sequencing  
4.11.4 Output Dithering  
The Gamma LUT outputs a 10-bit value for each color channel. This value is dithered down to  
either 8-bits for 24-bit per pixel panels, or 6-bits for 18-bit per pixel panels.  
The benefit of dithering is that the eye tends to average neighboring pixels and a smooth image  
free of contours is perceived. Dithering works by spreading the quantization error over  
neighboring pixels both spatially and temporally. Two dithering algorithms are available: random  
or ordered dithering. Ordered dithering is recommended when driving a 6-bit panel.  
All gray scales are available on the panel output whether using 8-bit panel (dithering from 10 to 8  
bits per pixel) or using 6-bit panel (dithering from 10 down to 6 bits per pixel).  
4.12 Energy Spectrum Management (ESM)  
High spikes in the electromagnetic interference (EMI) power spectrum can cause LCD monitor  
products to violate emissions standards. The gm5115/25 programmable TCON has many features  
that can be used to reduce EMI. These include:  
transition minimization,  
drive strength control,  
data staggering,  
even/odd, red/blue, bit 0/7 swapping for reduced trace length,  
slew rate control,  
dual-edge clocking, and  
clock spectrum modulation.  
These features eliminate the costs associated with EMI-reducing components and shielding.  
30  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.13 Timing Controller (TCON)  
The gm5115/25 features an integrated timing controller (TCON) that connects directly to  
commercially available row and column drivers. It supports either 18 or 24-bits per pixel in 1 or  
2 pixels per clock XGA operation. Also, it supports single or dual-edge clocking modes. Frame,  
Line (Row) and pixel inversion is available for better image quality. In-Line inversion reduces  
power consumption and EMI radiation. Data signals have programmable drive strength.  
During panel power-up the TCON control signals can be held inactive. This is to provide correct  
power sequencing that does not damage the panel. The TCON control signals only become active  
when the panel power sequencing is complete.  
4.13.1 Programmable Column Driver Interface  
The gm5115/25 column driver interface is highly programmable. gm5115 supports dual bus /  
dual port, dual bus / one port (both interleave and bank) as well as single bus / single port for  
XGA column drivers. gm5125 supports dual bus / dual port and dual bus / one port (both  
interleave and bank) for SXGA column drivers.  
The column driver interface consists of the following signals:  
OCLK/ECLK – Odd/Even Column Driver bus clock. OCLK and ECLK have a programmable  
phase control (0-7ns) and programmable polarities. Even output data bus (ERGB) can be skewed  
½ clock (early) to reduce the number of outputs switching simultaneously.  
OSP/ESP – Odd/Even Starting Pulse. OSP and ESP have programmable positioning before valid  
data. They also have programmable polarities.  
ORGB[24]/ERGB[24] – Odd/Even 24 bits data bus supports 24 or 18 bits per pixel in 1 or 2  
pixels per clock. These signals support even/odd, red/blue and data bit swap. They also have  
programmable group and inter-group delays (0-7ns).  
OPOL/EPOL – Odd/Even polarity. With programmable position of OPOL/EPOL, the  
OPOL/EPOL can be switched when LP is active or before or after LP.  
OINV/EINV – Odd/Even data transition inversion. These signals provide data inversion  
capability to reduce electromagnetic interference (EMI). One INV signal can be used (either  
EINV or OINV), or both.  
LP – Load/Latch pulse. The Load/Latch pulse has a programmable width and polarity.  
SHC – Output circuit control. This signal has programmable timing similar to OPOL/EPOL. It is  
optionally available on GPIO6.  
TDIV – Horizontal timing. This signal rises with LP and has a programmable falling edge. It is  
optionally available on GPIO7.  
All signals OCLK, ECLK, ORGB, ERGB, OSP, ESP, OPOL, EPOL, OINV, EINV have  
programmable drive strengths and can be disabled.  
Clocks (OCLK/ECLK), Polarities (EPOL/OPOL) and Data (ERGB/ORGB, ESP/OSP) can be  
blanked separately, during horizontal and/or vertical blanking period (programmable) to reduce  
power. Clocks and Polarities are forced to zero and Data (ERGB/ORGB) is forced to either white  
or black during blanking period.  
31  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Refer to Figure 23 for the column driver interface timing. See the gm5115/25 programming guide  
(C5115-DSR-01) for details regarding column driver programming.  
Figure 23.  
Column Driver Interface Timing  
32  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.13.2 Programmable Row Driver Interface  
The gm5115/25 row driver interface supports 2 and 3 voltage row drivers.  
The row driver interface consists of the following signals. The starting time and pulse-width of  
each are fully programmable.  
RSP2 – Row Starting Pulse for 2 voltage Row Driver  
RSP3 – Row Starting Pulse for 3 voltage Row Driver  
ROWCLK – Row/Vertical shift clock  
ROE – Row Output Enable or Row Blank Time or Gate Driver Output Enable. This signal is  
used to control RC discharge time. Note that some vendors support three ROE’s for this function  
to avoid 2 lines being activated at the same time (ROE2 and ROE3 are optionally available on  
pins GPIO9 and GPIO10). The polarities of ROE, ROE2 and ROE3 are programmable. These  
signals can be blanked during horizontal and/or vertical blanking to reduce power. In addition,  
ROE, ROE2 and ROE3 may be staggered.  
ROWCLK, ROE, ROE2 and ROE3 have programmable polarities and can be blanked during  
horizontal and/or vertical blanking period (programmable) to reduce power. Note that ROE2 and  
ROE3 can be used to drive GV and GVOFF signals required by some row driver ICs.  
See the gm5115/25 programming guide (C5115-DSR-01) for details regarding row driver  
programming.  
33  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Figure 24.  
Row Driver Interface Timing  
34  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.14 OSD  
The gm5115/25 has a fully programmable, high-quality OSD controller. The graphics are divided  
into “cells” 12 by 18 pixels in size. The cells are stored in an on-chip static RAM (4096 words by  
24 bits) and can be stored as 1-bit per pixel data, 2-bit per pixel data or 4-bit per pixel data. This  
permits a good compression ratio while allowing more than 16 colors in the image.  
Some general features of the gm5115/25 OSD controller include:  
OSD Position – The OSD menu can be positioned anywhere on the display region. The reference  
point is Horizontal and Vertical Display Background Start (DH_BKGND_START and  
DV_BKGND_START in Figure 19).  
OSD Stretch – The OSD image can be stretched horizontally and/or vertically by a factor of two,  
three, or four. Pixel and line replication is used to stretch the image.  
OSD Blending – Sixteeen levels of blending are supported for the character-mapped and  
bitmapped images. One host register controls the blend levels for pixels with LUT values of 128  
and greater, while another host register controls the blend levels for pixels with LUT values of  
127 and lower. OSD color LUT value 0 is reserved for transparency and is unaffected by the  
blend attribute.  
4.14.1 On-Chip OSD SRAM  
The on-chip static RAM (4096 words by 24 bits) stores the cell map and the cell definitions.  
In memory, the cell map is organized as an array of words, each defining the attributes of one  
visible character on the screen starting from upper left of the visible character array. These  
attributes specify which character to display, whether it is stored as 1, 2 or 4 bits per pixel, the  
foreground and background colors, blinking, etc.  
Registers CELLMAP_XSZ and CELLMAP_YSZ are used to define the visible area of the OSD  
image. For example, Figure 25 shows a cell map for which CELLMAP_XSZ =25 and  
CELLMAP_YSZ =10.  
35  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Address 1:  
Address 25:  
Attributes for  
Cell Attributes for  
upper-left hand cell  
upper-right hand cell  
CELLMAP_XSZ  
Address26:  
Cell attributes for  
1st cell, 2nd row  
Brightness  
Contrast  
CELLMAP_YSZ  
Figure 25.  
OSD Cell Map  
Cell definitions are stored as bit map data. On-chip registers point to the start of 1-bit per pixel  
definitions, 2-bit per pixel definitions and 4-bit per pixel definitions respectively. 1, 2 and 4-bit  
per pixel cell definitions require 9, 18 and 36 words of the OSD RAM respectively.  
Note that the cell map and the cell definitions share the same on-chip RAM. Thus, the size of the  
cell map can be traded off against the number of different cell definitions. In particular, the size  
of the OSD image and the number of cell definitions must fit in OSD SRAM. That is, the  
following inequality must be satisfied. (Note, the ROUND operation rounds 3.5 to 4).  
(CELLMAP_XSZ+1) * CELLMAP_YSZ +  
18 * ROUND(Number of 1-bit per pixel fonts / 2) +  
18 * (Number of 2-bit per pixel fonts) +  
36 * (Number of 4-bit per pixel fonts)  
<= 4096  
For example, an OSD menu 360 pixels wide by 360 pixels high is 30 cells in width and 20 cells  
in height. Many of these cells would be the same (e.g. empty). In this case, the menu could  
contain more than 32 1-bit per pixel cells, 100 2-bit per pixel cells, and 16 4-bit per pixel cells.  
Of course, different numbers of each type can also be used.  
4.14.2 Color Look-up Table (LUT)  
Each pixel of a displayed cell is resolved to an 8-bit color code. This selected color code is then  
transformed to a 24-bit value using a 256 x 24-bit look up table. This LUT is stored in an on-chip  
RAM that is separate from the OSD RAM. Color index value 0x00 is reserved for transparent  
OSD pixels.  
36  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.15 On-Chip Microcontroller (OCM)  
The gm5115/25 on-chip microcontroller (OCM) serves as the system microcontroller. It  
programs the gm5115/25 and manages other devices in the system such as the keypad, the back  
light and non-volatile RAM (NVRAM) using general-purpose input/output (GPIO) pins.  
The OCM can operate in two configurations, Standalone configuration and Full-Custom  
configuration, as illustrated in Figure 26.  
Factory  
Port  
Factory  
Port  
Analog  
RGB  
Analog  
RGB  
gm5115/25  
gm5115/25  
Input  
Input  
Output to  
Output to  
OCM  
OCM  
LCD Panel  
LCD Panel  
DVI  
DVI  
ROM  
On-chip ROM:  
Input  
Input  
Auto mode detection  
Auto-configuration  
Standard high-quality OSD menus  
Factory test / calibration functions  
NVRAM  
NVRAM  
PROM  
Configuration settings in NVRAM:  
OSD Colors, Logo and other configuration  
Panel Parameters  
User settings in NVRAM:  
Brightness/contrast settings, etc Contains firmware code and data  
for all firmware functions  
External ROM:  
On mode-by-mode basis  
Additional input modes  
Code patches  
(No external ROM)  
Figure 26A - Standalone Configuration  
Figure 26B - Full-Custom Configuration  
(Program and Data stored in external ROM)  
4.15.1 Standalone Configuration  
Standalone configuration offers the most simple and inexpensive system solution for generic  
LCD monitors. In this configuration the OCM executes firmware stored internally in gm5115/25.  
This is illustrated in Figure 26A. The on-chip firmware provides all the standard functions  
required in a high-quality generic LCD monitor. This includes mode-detection, auto-  
configuration and a high-quality standard OSD menu system. No external ROM is required  
(which reduces BOM cost) and no firmware development effort is required (which reduces time-  
to-market).  
In Standalone configuration many customization parameters are stored in NVRAM. These  
include the LCD panel timing parameters (including TCON programming), the color scheme and  
logos used in the OSD menus, the functions provided by the OSD menus, and arbitrary firmware  
modifications. These customization parameters are described in the Standalone User’s Guide  
(B0108-SUG-01). Based on the customization parameters, G-Wizard (a GUI-based development  
tool used to program Genesis devices) produces the hex image file for NVRAM. G-Probe is then  
used to download the NVRAM image file into the NVRAM device. This is illustrated in Figure  
27 below.  
37  
June 2002  
C5115-DAT-01H  
 
 
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Specify Configurable Parameters  
(See Standalone Users Guide)  
G-Wizard  
NVRAM  
Image File  
(.nvram_image. hex)  
G-Probe  
NVRAM  
LCD  
Controller  
Board  
gm5115/25  
OCM  
Figure 27.  
Programming OCM in Standalone Configuration  
4.15.2 Full-Custom Configuration  
In full-custom configuration the OCM executes a firmware program running from external ROM.  
This is illustrated in Figure 26B. A parallel port with separate address and data busses is available  
for this purpose. This port connects directly to standard, commercially available ROM or  
programmable Flash ROM devices. Normally 64KB or 128KB of ROM is required.  
Both instructions and data are fetched from external ROM on a cycle-by-cycle basis. The speed  
of the accesses on the parallel port is determined by the gm5115/25 internal OCM_CLK. This in  
turn determines the speed of the external ROM device. For example, if a 14.3 MHz crystal is  
being used to produce TCLK, and the OCM_CLK is derived from TCLK, then a 45ns ROM can  
be used.  
To program gm5115/25 in full-custom configuration the content of the external ROM is  
generated using Genesis software development tools G-Wizard and OSD-Workbench. This is  
illustrated in Figure 28. G-Wizard is a GUI-based tool for capturing system information such as  
panel timing, support modes, system configuration, etc. OSD-Workbench is a GUI based tool for  
defining OSD menus and functionality.  
38  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
G-Wizard  
gm5115/25 Driver  
OSD Workbench  
gm5115/25 Driver  
Firmware source files (*.c *.h)  
Keil Compiler  
External ROM  
Image File (.hex)  
ROM Programmer  
ROM  
LCD  
Controller  
Board  
gm5115/25  
OCM  
Figure 28.  
Programming the OCM in Full-Custom Configuration  
Genesis recommends using Keil compiler (http://www.keil.com/) to compile the firmware source  
code into a hex file. This hex file is then downloaded into the external ROM using commercially  
available ROM programmers.  
4.15.3 In-System-Programming (ISP) of FLASH ROM Devices  
gm5115/25 has hardware to program FLASH ROM devices. In particular, the  
GPIO11/ROM_WEn pin can be connected to the write enable of the FLASH ROM. Firmware is  
then used to perform the writes using the gm5115/25 host registers.  
4.15.4 UART Interface  
The gm5115/25 OCM has an integrated Universal Asynchronous Remote Terminal (UART) port  
that can be used as a factory debug port. In particular, the UART can be used to 1) read / write  
chip registers (see section 4.17 below), 2) read / write to NVRAM (see section 4.15.1 above), and  
3) read / write to FLASH ROM (see section 4.15.3 above).  
39  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
The UART is connected to pins GPIO4/UART_DI and GPIO5/UART_DO. gm5115/25 has  
serial-to-parallel conversion hardware which is accessed by firmware. The baud rate for serial  
communication is determined by a gm5115/25 host register.  
4.15.5 DDC2Bi Interface  
The gm5115/25 also features hardware support for DDC2Bi communication over the DDC  
channel of either the analog or DVI input ports. The specification for the DDC2Bi standard can  
be obtained from VESA (www.vesa.org). The DDC2Bi port can be used as a factory debug port  
or for field programming. In particular, the DDC2Bi port can be used to 1) read / write chip  
registers (see section 4.17 below), 2) read / write to NVRAM (see section 4.15.1 above), and 3)  
read / write to FLASH ROM (see section 4.15.3 above).  
Two pairs of pins are available for DDC2Bi communication. For DDC2Bi communication over  
the analog VGA connector pins GPIO22/HCLK and GPIO16/HFSn should be connected to the  
DDC clock and data pins of the analog DSUB15 VGA connector. For DDC2Bi communication  
over the DVI connector pins GPIO14/DDC_SCL and GPIO15/DDC_SDA should be connected  
to the DDC clock and data pins of the DVI connector. gm5115/25 contains serial to parallel  
conversion hardware, that is then accessed by firmware for interpretation and execution of the  
DDC2Bi command set.  
4.15.6 General Purpose Inputs and Outputs (GPIO)  
The gm5115/25 has 21 general-purpose input/output (GPIO) pins. These are used by the OCM to  
communicate with other devices in the system such as keypad buttons, NVRAM, LEDs, audio  
DAC, etc. Each GPIO has independent direction control, open drain enable, for reading and  
writing. Note that the GPIO pins have alternate functionality as described in Table 17 below.  
40  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Pin Name  
Pin Number Alternate function  
GPIO0/PWM0  
40  
41  
42  
43  
44  
45  
46  
47  
39  
48  
49  
50  
51  
52  
6
PWM0, PWM1 and PWM2 back light intensity controls, as described in section 4.18.2 below.  
GPIO1/PWM1  
GPIO2/PWM2  
GPIO3/TIMER1  
GPIO4/UART_DI  
GPIO5/UARD_D0  
GPIO6/TCON_SHC  
GPIO7/TCON_TDIV  
GPIO8/IRQINn  
GPIO9/TCON_ROE2  
GPIO10/TCON_ROE3  
GPIO11/ROM_WEn  
GPIO12/NVRAM_SDA  
GPIO13/NVRAM_SCL  
GPIO14/DDC_SCL  
GPIO15/DDC_SDA  
GPIO16/HFSn  
Timer1 input of the OCM.  
OCM UART data in/out signals respectively (section 4.15.3 above).  
Horizontal timing signals in the TCON column driver interface.  
OCM external interrupt source (IRQINn).  
Row output enables ROE2 and ROE3 in the TCON row driver interface.  
Write enable for external ROM if programmable FLASH device is used (section 4.15.3 above).  
Data and clock lines for master 2-wire serial interface to NVRAM when gm5115/25 is used in  
standalone configuration (section Figure 26).  
Clock and data lines for 2-wire serial interface connected to the Direct Data Channel (DDC) of the DVI  
input, for passing HDCP keys (see 4.4.3 above) or for DDC2Bi communication (see 4.15.5 above).  
7
205  
1
Serial data line for 2-wire host interface or for DDC2Bi communication (see 4.15.5 above).  
No alternative function.  
GPIO17  
GPIO18  
208  
207  
206  
4
GPIO19  
GPIO20  
GPIO21/IRQn  
OCM interrupt output pin.  
Serial input clock for 2-wire host interface or for DDC2Bi communication (see 4.15.5 above).  
GPIO22/HCLK  
204  
Table 17. gm5115/25 GPIOs and Alternate Functions  
4.16 Bootstrap Configuration Pins  
During hardware reset, the external ROM address pins ROM_ADDR[15:0] are configured as  
inputs. On the negating edge of RESETn, the value on these pins is latched and stored. This  
value is readable by the on-chip microcontroller (or an external microcontroller via the host  
interface). Install a 10K pull-up resistor to indicate a ‘1’, otherwise a ‘0’ is indicated because  
ROM_ADDR[15:0] have a 60Kinternal pull-down resistor.  
Signal Name  
Pin Name  
Description  
HOST_ADDR(4:0)  
USER_BITS(4:0)  
ROM_ADDR(4:0)  
If using 2-wire host protocol, these are bits 4:0 of the serial bus device address.  
Otherwise, these settings are available for reading from a status register but are otherwise unused by the  
gm5115/25. Used for “soft” configuration settings.  
HOST_ADDR(5)  
HOST_ADDR(6)  
ROM_ADDR5  
ROM_ADDR6  
If using 2-wire host protocol, this is bit 5 of serial the bus device address.  
Otherwise, program this bit to 0.  
If using 2-wire host protocol, this is bit 6 of the serial bus device address.  
Otherwise, program this bit to 0.  
HOST_PROTOCOL  
HOST_PORT_EN  
OCM_START  
ROM_ADDR7  
ROM_ADDR8  
ROM_ADDR9  
Program this bit to 0 for 2-wire host protocol operation.  
Program this bit to 0 for 2-wire host protocol operation.  
Determines the operating condition of the OCM after HW reset:  
0 = OCM remains in reset until enabled by register bit.  
1 = OCM becomes active after OCM_CLK is stable.  
USER_BITS(7:5)  
OSC_SEL  
ROM_ADDR(12:10)  
ROM_ADDR13  
These settings are available for reading from a status register but are otherwise unused by the gm5115/25.  
Selects reference clock source:  
0 = XTAL and TCLK pins are connected to a crystal oscillator (see Figure 4).  
1 = TCLK input is driven with a single-ended TTL/CMOS clock oscillator (see Figure 7).  
OCM_ROM_CNFG(1)  
ROM_ADDR14  
Together with OCM_CONTROL register (0x22) bit 4, this bit selects internal/external ROM configuration.  
0 = All 48K of ROM is internal.  
1 = All 48K of ROM is in external ROM using ROM_ADDR15:0 address outputs if  
register 0x22 bit 4 is 0. If register 0x22 bit 4 is 1, 0-32K ROM is internal, and  
32K~48K ROM is external using ROM_ADDR13:0 address outputs.  
Table 18. Bootstrap Signals  
41  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
4.17 Host Interface  
gm5115/25 contains many internal registers that control its operation. These are described in the  
gm5115 Family Register Listing (C5115-DSL-01).  
A serial host interface is provided to allow an external device to peek and poke registers in the  
gm5115/25. This is done using a 2-wire serial protocol. Note that 2-wire host interface requires  
bootstrap settings as described in Table 18.  
An arbitration mechanism ensures that register accesses from the OCM and the 2-wire host  
interface port are always serviced (time division multiplexing).  
4.17.1 Host Interface Command Format  
Transactions on the 2-wire host protocol occurs in integer multiples of bytes (i.e. 8 bits or two  
nibbles respectively). These form an instruction byte, a device register address and/or one or  
more data bytes. This is described in Table 19.  
The first byte of each transfer indicates the type of operation to be performed by the gm5115/25.  
The table below lists the instruction codes and the type of transfer operation. The content of bytes  
that follow the instruction byte will vary depending on the instruction chosen. By utilizing these  
modes effectively, registers can be quickly configured.  
The two LSBs of the instruction code, denoted ‘A9’ and ‘A8’ in Table 19 below, are bits 9 and 8  
of the internal register address respectively. Thus, they should be set to ‘00’ to select a starting  
register address of less than 256, ‘01’ to select an address in the range 256 to 511, and ‘10’ to  
select an address in the range 512 to 767. These bits of the address increment in Address  
Increment transfers. The unused bits in the instruction byte, denoted by ‘x’, should be set to ‘1’.  
Table 19. Instruction Byte Map  
Bit  
0 0 0 1 x x A9 A8  
0 0 1 0 x x A9 A8  
Operation Mode  
Description  
7 6 5 4 3 2  
1 0  
Write Address Increment  
Allows the user to write a single or multiple bytes to a specified starting  
address location. A Macro operation will cause the internal address pointer to  
increment after each byte transmission. Termination of the transfer will cause  
the address pointer to increment to the next address location.  
Write Address No Increment  
(for table loading)  
1 0 0 1 x x A9 A8  
1 0 1 0 x x A9 A8  
Reserved  
Allows the user to read multiple bytes from a specified starting address  
location. A Macro operation will cause the internal address pointer to  
increment after each read byte. Termination of the transfer will cause the  
address pointer to increment to the next address location.  
Read Address No Increment  
(for table reading)  
0 0 1 1 x x A9 A8  
0 1 0 0 x x A9 A8  
1 0 0 0 x x A9 A8  
1 0 1 1 x x A9 A8  
1 1 0 0 x x A9 A8  
0 0 0 0 x x A9 A8  
0 1 0 1 x x A9 A8  
0 1 1 0 x x A9 A8  
0 1 1 1 x x A9 A8  
1 1 0 1 x x A9 A8  
1 1 1 0 x x A9 A8  
1 1 1 1 x x A9 A8  
Reserved  
Spare  
No operation will be performed  
4.17.2 2-wire Serial Protocol  
The 2-wire protocol consists of a serial clock HCLK (pin number 204) and bi-directional serial  
data line HFSn (pin number 205). The bus master drives HCLK and either the master or slave  
42  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
can drive the HFSn line (open drain) depending on whether a read or write operation is being  
performed. The gm5115/25 operates as a slave on the interface.  
The 2-wire protocol requires each device be addressable by a 7-bit identification number. The  
gm5115/25 is initialized on power-up to 2-wire mode by asserting bootstrap pins  
HOST_PROTOCOL=0 and the device identification number on HOST_ADDR(6:0) on the rising  
edge of RESETn (see Table 18). This provides flexibility in system configuration with multiple  
devices that can have the same address.  
A 2-wire data transfer consists of a stream of serially transmitted bytes formatted as shown in the  
figure below. A transfer is initiated (START) by a high-to-low transition on HFSn while HCLK  
is held high. A transfer is terminated by a STOP (a low-to-high transition on HFSn while HCLK  
is held high) or by a START (to begin another transfer). The HFSn signal must be stable when  
HCLK is high, it may only change when HCLK is low (to avoid being misinterpreted as START  
or STOP).  
HCLK  
HFSn  
1
2
3
4
5
6
7
8
9
1
2
8
9
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W ACK  
D7  
D6  
D0  
ACK  
STOP  
ADDRESS BYTE  
Receiver acknowledges by holding SDA low  
DATA BYTE  
START  
Figure 29.  
2-Wire Protocol Data Transfer  
Each transaction on the HFSn is in integer multiples of 8 bits (i.e. bytes). The number of bytes  
that can be transmitted per transfer is unrestricted. Each byte is transmitted with the most  
significant bit (MSB) first. After the eight data bits, the master releases the HFSn line and the  
receiver asserts the HFSn line low to acknowledge receipt of the data. The master device  
generates the HCLK pulse during the acknowledge cycle. The addressed receiver is obliged to  
acknowledge each byte that has been received.  
The Write Address Increment and the Write Address No Increment operations allow one or  
multiple registers to be programmed with only sending one start address. In Write Address  
Increment, the address pointer is automatically incremented after each byte has been sent and  
written. The transmission data stream for this mode is illustrated in Figure 30 below. The  
highlighted sections of the waveform represent moments when the transmitting device must  
release the HFSn line and wait for an acknowledgement from the gm5115/25 (the slave receiver).  
1
2
3
4
5
6
7
8
9
1
2
9
1
2
3
4
5
6
7
8
9
HCLK  
HFSn  
1
2
3
4
5
6
7
8
9
DEVICE ADDRESS  
R/W ACK  
OPERATION CODE  
REGISTER ADDRESS  
DATA  
DATA  
A9 A8  
ACK  
ACK  
ACK  
Two MSBs of register address  
START  
STOP  
Figure 30.  
2-Wire Write Operations (0x1x & 0x2x)  
43  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
The Read Address No Increment (0xA0) operation is illustrated in Figure 31. The highlighted  
sections of the waveform represent moments when the transmitting device must release the HFSn  
line and waits for an acknowledgement from the master receiver.  
Note that on the last byte read, no acknowledgement is issued to terminate the transfer.  
HCLK  
DEVICE ADDRESS  
R/W ACK  
OPERATION CODE  
REGISTERADDRESS  
DEVICE ADDRESS  
R/W ACK  
DATA  
DATA  
ACK  
DATA  
HFSn  
ACK  
ACK  
START  
START  
STOP  
Figure 31.  
2-Wire Read Operation (0xAx)  
Please note that in all the above operations the operation code includes two address bits, as  
described in Table 19.  
4.18 Miscellaneous Functions  
4.18.1 Power Down Operation  
The gm5115/25 provides a low power state in which the clocks to selected parts of the chip may be  
disabled (see Table 21).  
4.18.2 Pulse Width Modulation (PWM) Back Light Control  
Many of today’s LCD back light inverters require both a PWM input and variable DC voltage to  
minimize flickering (due to the interference between panel timing and inverter’s AC timing), and  
adjust brightness. Most LCD monitor manufacturers currently use a microcontroller to provide  
these control signals. To minimize the burden on the external microcontroller, the gm5115/25  
generates these signals directly.  
There are three pins available for controlling the LCD back light, PWM0 (GPIO0), PWM1  
(GPIO1) and PWM2 (GPIO2). The duty cycle of these signals is programmable. They may be  
connected to an external RC integrator to generate a variable DC voltage for a LCD back light  
inverter. Panel HSYNC is used as the clock for a counter generating this output signal.  
44  
June 2002  
C5115-DAT-01H  
 
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
5. ELECTRICAL SPECIFICATIONS  
The following targeted specifications have been derived by simulation.  
5.1 Preliminary DC Characteristics  
Table 20. Absolute Maximum Ratings  
PARAMETER  
SYMBOL  
VVDD_3.3  
VVDD_2.5  
VIN5Vtol  
VIN  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
TYP  
MAX  
3.6  
2.75  
5.5  
UNITS  
3.3V Supply Voltages (1,2)  
2.5V Supply Voltages (1.2)  
Input Voltage (5V tolerant inputs) (1,2)  
Input Voltage (non 5V tolerant inputs) (1,2)  
Electrostatic Discharge  
V
V
V
V
kV  
mA  
°C  
°C  
°C  
3.6  
VESD  
ILA  
±2.0  
±100  
70  
125  
125  
Latch-up  
Ambient Operating Temperature  
Storage Temperature  
TA  
TSTG  
TJ  
0
-40  
0
Operating Junction Temp.  
Thermal Resistance (Junction to Air) Natural Convection (3)  
θ
θ
JA_5115  
gm5115  
gm5125  
32.4  
22.0  
°C/W  
JA_5125  
Thermal Resistance (Junction to Case) Convection (4)  
gm5115  
gm5125  
Soldering Temperature (30 sec.)  
θ
θ
JC_5115  
13.9  
10.1  
220  
220  
°C/W  
JC_5125  
TSOL  
TVAP  
°C  
°C  
Vapor Phase Soldering (30 sec.)  
NOTE (1): All voltages are measured with respect to GND  
NOTE (2): Absolute maximum voltage ranges are for transient voltage excursions.  
NOTE (3): Package thermal resistance is based on a PCB with one signal plane and two power planes. Package θJA is improved on a PCB with  
four or more layers  
NOTE (4): Based on the figures for the Operating Junction Temperature, θJC and Power Consumption in Table 21, the typical case temperature  
is calculated as TC = TJ - P5115 x θJC. This equals 104 degrees Celsius for gm5115 and 106 degrees Celsius for gm5125.  
45  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
Table 21. DC Characteristics  
PARAMETER  
SYMBOL  
POWER  
MIN  
TYP  
MAX  
UNITS  
Power Consumption @ 96 MHz (gm5115)  
Power Consumption @ 135 MHz (gm5125)  
Power Consumption @ Low Power Mode (1)  
3.3V Supply Voltages (AVDD and RVDD)  
2.5V Supply Voltages (VDD and CVDD)  
Supply Current @ CLK = 96 MHz (gm5115)  
2.5V digital supply (2)  
P5115  
P5125  
PLP  
1.5  
1.8  
0.15  
3.3  
2.5  
400  
W
W
W
V
V
mA  
VVDD_3.3  
VVDD_2.5  
I5115  
I5115_2.5_VDD  
I5115_2.5_AVDD  
I5115_3.3_VDD  
I5115_3.3_AVDD  
3.15  
2.35  
3.45  
2.65  
360(6)  
40(6)  
2.5V analog supply (3)  
50(6)  
3.3V digital supply (4)  
150(6)  
3.3V analog supply (5)  
Supply Current @ CLK =135MHz (gm5125)  
I5125  
500  
50  
mA  
mA  
500(6)  
50(6)  
2.5V digital supply (2)  
I5125_2.5_VDD  
I5125_2.5_AVDD  
I5125_3.3_VDD  
I5125_3.3_AVDD  
2.5V analog supply (3)  
60(6)  
3.3V digital supply (4)  
150(6)  
3.3V analog supply (5)  
Supply Current @ Low Power Mode*  
ILP  
INPUTS  
VIH  
VIL  
VIHC  
VILC  
IIH  
IIL  
CIN  
High Voltage  
2.0  
GND  
2.4  
GND  
-25  
VDD  
0.8  
VDD  
0.4  
25  
25  
8
V
V
Low Voltage  
Clock High Voltage  
Clock Low Voltage  
High Current (VIN = 5.0 V)  
Low Current (VIN = 0.8 V)  
Capacitance (VIN = 2.4 V)  
V
V
µA  
µA  
pF  
-25  
OUTPUTS  
High Voltage (IOH = 7 mA)  
Low Voltage (IOL = -7 mA)  
Tri-State Leakage Current  
VOH  
VOL  
IOZ  
2.4  
GND  
-25  
VDD  
0.4  
25  
V
V
µA  
NOTE (1): Low power figures result from setting the ADC, DVI, and clock power down bits so that only the micro-controller is running.  
NOTE (2): Includes pins CVDD_2.5, VDD1_ADC_2.5, VDD2_ADC_2.5, VDD_RX0_2.5, VDD_RX1_2.5 and VDD_RX2_2.5.  
NOTE (3): Includes only VDD_RXPLL_2.5.  
NOTE (4): Includes pins VDD_DPLL, VDD_SDDS, VDD_DDDS and RVDD.  
NOTE (5): Includes pins AVDD_RED, AVDD_GREEN, AVDD_BLUE, AVDD_IMB, AVDD_RX0, AVDD_RX1, AVDD_RX2,  
AVDD_RXC, AVDD_RPLL, AVDD_SDDS and AVDD_DDDS.  
NOTE (6): Maximum current figures are provided for the purposes of selecting an appropriate power supply circuit.  
46  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
5.2 Preliminary AC Characteristics  
All timing is measured to a 1.5V logic-switching threshold. The minimum and maximum  
operating conditions used were: TDIE = 0 to 125° C, Vdd = 2.35 to 2.65V, Process = best to worst, CL =  
16pF for all outputs.  
Table 22. Maximum Speed of Operation  
Clock Domain  
Max Speed of Operation  
24 MHz (14.3MHz recommended)  
165 MHz  
Main Input Clock (TCLK)  
DVI Differential Input Clock  
ADC Clock (ACLK)  
162.5 MHz  
HCLK Host Interface Clock (2-wire protocol)  
Input Format Measurement Clock (IFM_CLK)  
Reference Clock (RCLK)  
On-Chip Microcontroller Clock (OCM_CLK)  
Display Clock (DCLK)  
5 MHz  
50MHz (14.3MHz recommended)  
200MHz (200MHz recommended)  
100 MHz  
135 MHz  
Table 23. Display Timing and DCLK Adjustments  
DP_TIMING ->  
Tap 0 (default)  
Tap 1  
Tap 2  
Tap 3  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
(ns)  
(ns)  
(ns)  
0.5  
0.5  
0.0  
0.5  
(ns)  
(ns)  
-0.5  
-0.5  
-1.0  
-0.5  
(ns)  
(ns)  
-1.5  
-1.5  
-2.0  
-1.5  
(ns)  
Propagation delay from DCLK to DA*/DB*  
1.0  
1.0  
0.5  
1.0  
4.5  
4.5  
4.5  
4.5  
3.5  
3.5  
3.5  
3.5  
2.5  
2.5  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
Propagation delay from DCLK to DHS  
Propagation delay from DCLK to DVS  
Propagation delay from DCLK to DEN  
Note: DCLK Clock Adjustments are the amount of additional delay that can be inserted in the DCLK path, in order to reduce the propagation  
delay between DCLK and its related signals.  
Table 24. 2-Wire Host Interface Port Timing  
Parameter  
Symbol  
MIN  
TYP  
MAX  
Units  
SCL HIGH time  
SCL LOW time  
SDA to SCL Setup  
SDA from SCL Hold  
Propagation delay from SCL to SDA  
TSHI  
TSLO  
TSDIS  
TSDIH  
TSDO3  
1.25  
1.25  
30  
20  
10  
us  
us  
ns  
ns  
ns  
150  
Note: The above table assumes OCM_CLK = R_CLK / 2 = 100 MHz (default) (ie 10ns / clock)  
47  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
6. ORDERING INFORMATION  
Order Code  
Application  
Package  
Temperature  
Range  
gm5115  
gm5115-H (1)  
gm5125  
XGA  
XGA  
SXGA  
SXGA  
208-pin PQFP  
208-pin PQFP  
208-pin PQFP  
208-pin PQFP  
0-70°C  
0-70°C  
0-70°C  
0-70°C  
gm5125-H (1)  
Note (1): gm5115-H and gm5125-H versions will be sold only to HDCP-licensed customers.  
48  
June 2002  
C5115-DAT-01H  
 
*** Genesis Microchip Confidential ***  
gm5115/25 Preliminary Data Sheet  
7. MECHANICAL SPECIFICATIONS  
Figure 32.  
gm5115/25 208-pin PQFP Mechanical Drawing  
D
H
D
208  
157  
156  
1
105  
52  
53  
104  
e
b
c
See Detail A  
L
y
Seating Plane  
1
L
Detail A  
Dimension in mm  
Min Nom Max  
Symbol  
3.92  
0.25  
3.15  
0.18  
0.13  
4.07  
A
A1  
3.23  
3.30  
0.28  
0.23  
A2  
b
c
27.90 28.00 28.10  
D
28.10  
28.00  
27.90  
E
0.50 BSC  
e
D
31.20 31.45  
H
30.95  
31.45  
0.95  
30.95 31.20  
E
H
L
0.65  
0.80  
1.60 REF  
L1  
0.10  
7
y
0
0
49  
June 2002  
C5115-DAT-01H  
 
配单直通车
GM5120产品参数
型号:GM5120
生命周期:Transferred
IHS 制造商:GENESIS MICROCHIP
Reach Compliance Code:unknown
风险等级:5.63
Is Samacsys:N
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!