欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HA12155NT图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HA12155NT
  • 数量42843 
  • 厂家HITACHI 
  • 封装DIP64 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HA12155NT图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • HA12155NT
  • 数量6500 
  • 厂家JIT 
  • 封装DIP-64 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • HA12155NTE图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HA12155NTE
  • 数量40187 
  • 厂家RENESAS 
  • 封装 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • HA12155图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HA12155
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HA12155NT图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • HA12155NT
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号HA12155的Datasheet PDF文件预览

HA12155NT/HA12157NT  
Audio Signal Processor for Cassette Deck (Dolby B/C-type NR  
with Recording System)  
ADE-207-115C (Z)  
4th Edition  
June 1997  
Description  
HA12155NT/HA12157NT is silicon monolithic bipolar IC providing Dolby noise reduction system*,  
electrical volume system, REC equalizer system and level meter system in one chip.  
Functions  
REC equalizer  
Dolby B/C NR  
Electronic volume  
Level Meter  
× 2 channel  
× 2 channel  
× 2 channel  
× 2 channel  
Features  
Inductor less REC equalizer is adjustable of its characteristics by external resistor  
Rec level is adjustable automatically with electrical volume which is built-in  
3 type of input selection is available (one is by way of electrical volume)  
Separate input selection SW and REC/PB SW  
Dolby noise reduction with dubbing cassette decks  
(Unprocessed signal output available from recording out terminals during PB mode)  
Log-compressed level meter output is range from 0 V to 5 V  
(Usable as music search switchable gain of 0 dB and 20 dB respectivily)  
Normal-speed/high-speed (Double), normal/metal/chrome fully electronic control switching built-in  
NR-ON/OFF, Dolby B/C, MPX ON/OFF fully electronic control switching built-in  
(Controllable from micro-controller directly)  
Reduction of number of pin by transfered serial data to electronic volume control switching and another  
control switching  
(Controllable from micro-controller directly)  
Low external parts count  
HA12155NT/HA12157NT  
*
Dolby is a trademark of Dolby Laboratories Licensing Corporation.  
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.  
Ordering Information  
Operating voltage  
Type  
Package  
Dolby Level  
REC-OUT Level PB-OUT Level Min  
Max  
16 V  
16 V  
HA12155NT  
HA12157NT  
DP-64S  
300 mVrms  
300 mVrms  
580 mVrms  
775 mVrms  
9.5 V  
12 V  
Rev.4, Jun. 1997, page 2 of 57  
HA12155NT/HA12157NT  
Block Diagram  
Rev.4, Jun. 1997, page 3 of 57  
HA12155NT/HA12157NT  
Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Ratings  
16  
Unit  
V
Supply voltage  
Power dissipation*1  
Operating temperature  
Storage temperature  
Note: 1. Value at Ta 75°C  
Pd  
770  
mW  
°C  
Topr  
Tstg  
–30 to +75  
–55 to +125  
°C  
Electrical Characteristics (Ta = 25°C VCC = 14 V Dolby level 300 mVrms)  
Item  
Symbol  
IQ  
Min Typ Max Unit  
— 29.0 37.0 mA  
Test conditions  
no signal  
Notes  
Quiescent current  
Input amp gain  
GVIA RPI  
GVIA PBI  
18.5 20.0 21.5 dB  
18.5 20.0 21.5  
Vin = 0 dB, f = 1 kHz  
B-type NR Encode Boost B-ENC-2K  
B-ENC-5K  
2.8  
1.7  
4.3  
3.2  
5.9  
5.8  
4.7  
7.9  
dB  
Vin = –20 dB, f = 2 kHz  
Vin = –20 dB, f = 5 kHz  
Vin = –20 dB, f = 1 kHz  
Vin = –60 dB, f = 1 kHz  
Vin = –30 dB, f = 700 Hz  
f = 1 kHz, THD = 1%,  
C-type NR Encode Boost C-ENC-1K(1) 3.9  
dB  
C-ENC-1K(2) 18.1 19.6 21.6  
C-ENC-700  
Vomax  
9.8  
11.8 13.8  
Signal handling  
12.0 13.0  
dB  
*1  
VCC = 12 V  
Signal to noise ratio  
S/N  
60.0 63.0  
dB  
%
Rg = 5.1 k, CCIR/ARM  
Vin = 0 dB, f = 1 kHz  
Vin = 0 dB, f = 1 kHz  
Total harmonic distortion THD  
0.08 0.3  
Crosstalk  
CT (RL)  
–85.0 –79.0 dB  
–80.0 –74.0  
CT (RPIPBI) —  
CT (VRIRPI) —  
–77.0 –71.0  
Control  
Hi level  
Lo level  
Hi level  
Lo level  
VcH  
VcL  
VsH  
VsL  
3.5  
5.3  
1.0  
5.3  
1.0  
V
V
MPX ON/OFF, NR  
ON/OFF C-NR/B-NR  
CLK, DATA, STB  
voltage  
–0.2  
3.5  
Serial data  
voltage  
–0.2  
PB-out level HA12155 Vout  
HA12157  
500 580 670 mVrms Vin = 0 dB, f = 1 kHz  
665 775 900  
PB-offset  
Vofs  
–100 0.0  
–1.0 0.0  
+100 mV  
1.0 dB  
no signal  
Channel balance  
Volume gain  
GV  
Vin = 0 dB, f = 1 kHz  
Vin = 100 mVrms, f =1 kHz  
Vin = 3 Vrms, f = 1 kHz  
GVVR (MAX)  
GVVR (MIN)  
17.5 19.3 21.5 dB  
–55.0  
Rev.4, Jun. 1997, page 4 of 57  
HA12155NT/HA12157NT  
Electrical Characteristics (Ta = 25°C VCC = 14 V Dolby level 300 mVrms) (cont)  
Item  
Symbol  
Min Typ Max Unit  
–80.0 dB  
Test conditions  
Notes  
Volume mute  
GVVR (MUT)  
Vin = 3 Vrms, f = 1 kHz  
f = 1 kHz, THD = 1%,  
Max-input level to volume Vin max (VR) 11.0 12.6  
dBs  
VCC = 12 V  
Volume S/N  
Volume THD  
Equalizer gain  
S/N (VR)  
THD (VR)  
GV EQ (500)  
GV EQ (1K)  
78.0 84.0  
dB  
%
Vin = 100 mVrms, f = 1  
kHz, A-WTG  
0.04 0.3  
Vin = 100 mVrms, f = 1  
kHz  
13.0 15.0 17.0 dB  
13.0 15.0 17.0  
14.5 16.5 18.5  
18.5 20.5 22.5  
29.5 32.0 34.5  
Vin = 77.5 mVrms,  
f = 500 Hz  
Vin = 77.5 mVrms,  
f = 1 kHz  
GV EQ (5K)  
Vin = 77.5 mVrms,  
f = 5 kHz  
GV EQ (10K)  
GV EQ (20K)  
Equalizer maximum input Vin max (EQ) –8.0 –7.0  
Vin = 77.5 mVrms,  
f = 10 kHz  
Vin = 77.5 mVrms,  
f = 20 kHz  
dBs  
f = 1 kHz, THD = 1%,  
VCC = 12 V  
*1  
Equalizer S/N  
Equalizer THD  
S/N (EQ)  
THD (EQ)  
57.0 62.0  
0.2  
dB  
%
Rg = 5.1 k, A-WTG  
0.5  
Vin = 77.5 mVrms,  
f = 1 kHz  
Equalizer offset  
Vofs (EQ)  
LM (0 dB)  
LM (12 dB)  
–400 0.0  
+400 mV  
no signal  
Level meter output  
2.60 2.85 3.10  
3.60 3.90 4.20  
V
V
V
V
Vin = 0 dB, f = 1 kHz  
Vin = 12 dB, f = 1 kHz  
Vin = –20 dB, f = 1 kHz  
*2  
*2  
Level meter output  
Level meter offset  
LM (–20 dB)1 0.80 1.10 1.40  
LM (–20 dB)2 2.55 3.0 3.15  
Vin = –20 dB, f = 1 kHz,  
–20 dB range  
LMofs 1  
LMofs 2  
150 300 mV  
200 350  
no signal  
no signal, –20 dB range  
Notes: 1. HA12155 VCC = 9.5 V, HA12157 VCC = 12 V  
2. 0 dB = PB-OUT level  
Rev.4, Jun. 1997, page 5 of 57  
HA12155NT/HA12157NT  
Test Circuit  
Rev.4, Jun. 1997, page 6 of 57  
HA12155NT/HA12157NT  
Example of Split Supply Circuit  
Rev.4, Jun. 1997, page 7 of 57  
HA12155NT/HA12157NT  
Mode Controller  
Rev.4, Jun. 1997, page 8 of 57  
HA12155NT/HA12157NT  
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical  
value)  
Pin No.  
DP-64S  
7
Terminal  
name  
RPI  
DC  
Zin  
voltage  
VCC/2  
Equivalent circuit  
Description  
100 kΩ  
Recording input  
58  
9
PBI  
Play back input  
56  
21  
LM IN  
HA12155  
Level meter input  
---75 kΩ  
44  
HA12157  
---100 kΩ  
24  
41  
5
EQ IN  
VRI  
100 kΩ  
100 kΩ  
Equalyzer input  
Volume input  
VCC/2  
+0.7 V  
VCC  
60  
4
VCC  
Power supply  
Ripple filter  
8
REF  
NR IN  
VCC/2  
VCC/2  
12  
53  
NR processor input  
15  
50  
SS 1  
VCC/2  
Spectral skewing amp  
input  
Rev.4, Jun. 1997, page 9 of 57  
HA12155NT/HA12157NT  
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical  
value) (cont)  
Pin No.  
DP-64S  
17  
Terminal  
name  
DC  
Zin  
voltage  
VCC/2  
Equivalent circuit  
Description  
CCR  
Current controled  
resistor output  
48  
11  
54  
IA OUT  
VCC/2  
Input amp output  
VCC  
GND  
13  
52  
14  
51  
16  
49  
20  
45  
26  
39  
VREF  
Reference voltage  
buffer output  
PB OUT  
SS 2  
Play back (Decode)  
output  
Spectral skewing  
amp. output  
REC OUT  
EQ OUT  
Recording (Encode)  
output  
Equalyzer output  
Rev.4, Jun. 1997, page 10 of 57  
HA12155NT/HA12157NT  
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical  
value) (cont)  
Pin No.  
DP-64S  
18  
Terminal  
name  
DC  
Zin  
voltage  
2.3 V  
Equivalent circuit  
Description  
Time constant pin for  
rectifier  
HLS DET  
47  
19  
46  
57  
LLS DET  
BIAS  
0.28 V  
1.2 V  
Dolby NR Reference  
current input  
GND  
25  
IREF  
EQ Reference current  
input  
27  
28  
29  
30  
31  
32  
FM  
fQ  
EQ Parameter current  
input  
f/Q  
GH  
GL  
GP  
Rev.4, Jun. 1997, page 11 of 57  
HA12155NT/HA12157NT  
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical  
value) (cont)  
Pin No.  
DP-64S  
33  
Terminal  
name  
HM  
DC  
Zin  
voltage  
Equivalent circuit  
Description  
EQ Parameter  
selector  
GND  
34  
35  
36  
37  
38  
6
HC  
HN  
NM  
NC  
NN  
CNT  
5.2 kΩ  
VCC/2-  
DAC output Volume  
control input  
59  
1.5 V to  
VCC/2  
VCC/ 2  
DAC  
out  
22  
43  
LMD  
0.2 V  
Time constant Pin for  
level meter  
LM OUT  
GND  
LMD  
23  
42  
LM OUT  
0.2 V  
Level meter output  
Rev.4, Jun. 1997, page 12 of 57  
HA12155NT/HA12157NT  
Pin Description (VCC = 14 V, Ta = 25°C, No signal, the value in the table show typical  
value) (cont)  
Pin No.  
DP-64S  
1
Terminal  
name  
DC  
Zin  
voltage  
Equivalent circuit  
Description  
NR  
100 kΩ  
Mode control input  
ON/OFF  
D - GND  
GND  
2
3
C/B  
MPX  
ON/OFF  
62  
63  
64  
10  
STB  
CLK  
DATA  
INJ  
0.7 V  
Injection current input  
for I2L  
55  
40  
61  
D-GND  
GND  
0.0 V  
0.0 V  
Digital (Logic) ground  
Ground  
Application Note  
Power Supply Range  
HA12155NT/HA12157NT are designed to operate on either single supply or split supply.  
The operating range of the supply voltage is shown in table 1.  
Table 1  
Supply Voltage  
Type No.  
Single supply  
9.5 V to 16 V  
12 V to 16 V  
Split supply  
±6 V to 8 V  
±6 V to 8 V  
HA12155NT  
HA12157NT  
The lower limit of supply voltage depends on the line output reference level.  
Rev.4, Jun. 1997, page 13 of 57  
HA12155NT/HA12157NT  
The minimum value of the headroom margin is specified as 12 dB by Dolby Laboratories. HA12155 series  
are provided with two line output level, which will permit an optimum headroom margin for power supply  
conditions.  
Reference Voltage  
For the single supply operation these devices provide the reference voltage of half the supply voltage that is  
the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about  
1/100 compared with their usual value. The Reference voltage are provided for the left channel and the  
right channel separately. The block diagram is shown as figure 1.  
52  
VCC  
+
L channel  
reference  
R channel  
reference  
8
+
+
1 µF  
13  
Figure 1 The Block Diagram of Reference Voltage Supply  
Operating Mode Control  
HA12155NT/HA12157NT provides fully electronic switching circuits. NR-ON/OFF, C/B, and MPX  
ON/OFF switches are controlled by parallel data (DC voltage) and other switches are controlled by serial  
data.  
Rev.4, Jun. 1997, page 14 of 57  
HA12155NT/HA12157NT  
Table 2  
Threshold Voltage (VTH)  
Pin No.  
1, 2, 3  
Lo  
Hi  
Unit  
V
0.2 to 1.0  
0.2 to 1.0  
3.5 to 5.3  
3.5 to 5.3  
62, 63, 64  
V
Notes: 1. Voltages shown above are determined by internal circuits of LSI when take pin 55 (DGND pin) as  
reference pin. On split supply use, same VTH can be offered by connecting DGND pin to GND  
pin.  
This means that it can be controlled directly by micro processor.  
2. Each pins are on pulled down with 100 kinternal resistor.  
Therefore, it will be low-level when each pins ar open.  
3. Note on serial data inputting  
(a) The clock frequency on CLK must be less than 500 kHz.  
(b) Over shoot level and under shoot level of input signal must be the value shown below.  
(c) The serial input pins (pins 62, 63, and 64) are extremely sensitive to undershoot, overshoot,  
ringing, and noise. This can result in malfunctions due to problems with the wiring pattern.  
We recommend attaching capacitors in parallel with the serial input pins to ameliorate this  
problem.  
Figure 2-b shows an example of this circuit appropriate when the clock frequency is 500  
kHz. The value of the capacitor should be set in accordance with the clock frequency  
actually used.  
4. NR Mode Switching  
In actual use, pop noises may accompany NR on/off switching in C mode. To avoid these  
noises, use the following sequences to turn NR on and off.  
From C mode NR off to C mode NR on:  
(C mode, NR off) (B mode, NR off) (B mode, NR on) (C mode, NR on).  
From C mode NR on to C mode NR off:  
(C mode, NR on) (B mode, NR on) (B mode, NR off) (C mode, NR off).  
Table 3  
Switching Truth Table  
Lo  
Pin No.  
Hi  
1
2
3
NR-OFF  
B-NR  
NR-ON  
C-NR  
MPX-ON  
MPX-OFF  
Notes: 1. Low level will be offered when each pins are open.  
2. Please refer to next term as for the serial data for formatting.  
When connecting microcomputer or Logic-IC with HA12155NT/HA12157NT directly, there is  
apprehension of rash-current under some transition timming of raising voltage or falling voltage at VCC  
ON/OFF.  
For this countermeasure, connect 10 kto 20 kresistor with each pins. It is shown in test circuit.  
Rev.4, Jun. 1997, page 15 of 57  
HA12155NT/HA12157NT  
under 5.3 V  
0
within 0.2 V  
Figure 2 Input Level  
Serial Data Formatting  
8 bit shift register is employed. CLK and DATA are stored during STB being high and data is ratched  
when STB goes high to low. The clock frequency on CLK must be less than 500 kHz.  
5 V  
CLK  
0 V  
5 V  
DATA  
STB  
0
1
2
3
4
5
6
7
0 V  
5 V  
0 V  
latch of data  
Figure 3 Serial Data Timming Chart  
Rev.4, Jun. 1997, page 16 of 57  
HA12155NT/HA12157NT  
Table 4  
Serial Data Formatting  
Bit Control  
No. register  
Volume register  
0
TAPE  
H
DAC0  
SELECT 1  
L
TS1  
TS2  
bit No.  
H
L
gain  
5
L
L
L
L
4
L
L
L
L
3
L
L
L
L
2
L
L
L
L
1
L
0
L
TAPE IV  
TAPE  
TAPE  
I
I
H
increase  
L
H
L
TAPE II  
L
H
H H  
H H H H  
L
H
L
decrese  
mute  
H H H H H  
H H H H H H  
1
2
3
4
TAPE  
H
L
DAC1  
*mute is implemented when all  
bits are high.  
SELECT 2  
TAPE  
H
L
High (double) speed selection DAC2  
Normal speed selection  
SPEED  
METER  
SENSITIVITY  
INPUT  
H
L
Meter sensitivity 20 dB up  
Meter sensitivity normal  
DAC3  
H
L
DAC4  
SELECT 1  
IS1  
H
PB  
RP  
L
VR  
VR  
IS2  
I
I
I
I
H
L
5
6
7
INPUT  
H
L
DAC 5  
SELECT 2  
REC/PB  
H
L
PB mode selection  
REC mode selection  
R/L SELECT H Rch register selection  
L
L
Lch register selection  
REGISTER  
SELECT  
H
Control register selection  
REGISTER  
SELECT  
Volume register selection  
Note: TAPE I: Normal tape, TAPE II: Chrome tape, TAPE IV: Metal tape  
Rev.4, Jun. 1997, page 17 of 57  
HA12155NT/HA12157NT  
Input Block Diagram and Level Diagram  
3 dB  
PB - OUT  
NR  
lN  
IA  
OUT  
MPX  
Filter  
HA12155  
580 mVrms  
RPI PBI  
(2.5 dBs)  
HA12157  
775 mVrms  
(0 dBs)  
43 mVrms  
(25.2 dBs)  
426 mVrms 300 mVrms  
43 mVrms  
(25.2 dBs)  
(5.2 dBs)  
(8.2 dBs)  
MPX ON  
Input  
Amp  
MA  
NR  
circuit  
VRI  
Elect-  
rical  
VR  
MPX OFF  
3 dB  
47 mVrms  
(24.3 dBs)  
The each level shown above is typical value when  
offering Dolby level to test point pin (NR IN) with  
the gain of electrical volume is under the condition  
of max.  
b) REC mode  
PB - OUT  
NR  
IA  
OUT  
MPX  
Filter  
HA12155  
lN  
580 mVrms  
(2.5 dBs)  
RPI PBI  
HA12157  
775 mVrms  
(0 dBs)  
30 mVrms  
(28.2 dBs)  
30 mVrms  
(28.2 dBs)  
300 mVrms  
(8.2 dBs)  
Input  
Amp  
NR  
circuit  
MA  
VRI  
Elect-  
rical  
VR  
33 mVrms  
(27.4 dBs)  
NR circuit  
The each level shown above is typical value when  
offering Dolby level to test point pin (IA OUT) with  
the gain of electrical volume is under the condition  
of max.  
a) PB mode  
Figure 4 Input Block Diagram  
Rev.4, Jun. 1997, page 18 of 57  
HA12155NT/HA12157NT  
MPX ON/OFF Switch  
MPX-OFF mode means that signal from input amp doesn’t go through the MPX filter, but signal goes  
through the SS circuit after being attenuated 3 dB by internal resistor. Refer to figure 5. For not cause any  
level difference between MPX-ON mode and MPX-OFF mode, it is requested to use MPX-filter which has  
definitely 3 dB attenuated. MPX-OFF mode offer totally flat frequency response and no bias-trap effect.  
And when applying other usage except figure 5, take consideration to give bias voltage to NR-IN terminal  
by resistor or so on because internal of NR-IN terminal hsa no bias resistor.  
5.6 k  
MPX  
2.4 kΩ  
IA OUT  
NR IN  
VREF  
Vref  
+
MPX ON  
INPUT amp  
NR  
PROCESSER  
+
MPX OFF  
3 dB ATT.  
Vref  
Figure 5 MPX ON/OFF Switch Block Diagram  
Application as for the Dubbing Cassette Deck  
HA12155NT/HA12157NT series has unprocessor signal from recording out terminals during plyaback  
mode. So, it is simply applied for dubbing cassette decks.  
And HA12155NT/HA12157NT has three input terminal. So, it is applicable to switch the signal from PB-  
EQ as shown below.  
Rev.4, Jun. 1997, page 19 of 57  
HA12155NT/HA12157NT  
A deck  
PB EQ  
B deck  
PB EQ  
Compensation  
of low  
frequency  
region  
REC  
PB  
RPI PBI  
REC OUT  
EQ IN  
REC IN  
VRI  
HA12155 / 7  
EQ OUT  
PB OUT  
Figure 6 Application for Dubbing Deck  
Injector Current  
HA12155NT/HA12157NT has logic circuit which is fabricated by I2L into IC. To operate this circuit, it is  
required enough injector current. Injector current goes into from the INJ pin (pin 10) and external resistor  
is required to connect to this pin for adequate current. The value of external resistor is obtained by using  
following equations. And put them with ±10% tolerance value which is calculated. VINJ can allow to  
connect to VCC shown below. Under the condition of high temperature, the mis-operation of logic is caused  
by large injector current. Also, under the condition of low temperature, the stop of logic is caused by small  
injector current. Therefore, pay attention to have good stability of VINJ.  
VINJ – 0.7  
RINJ  
=
=
[k] ---- Single supply  
[k] ---- Split supply  
3.6  
VINJ +VEE – 0.7  
RINJ  
3.6  
RINJ  
3.6 mA  
VINJ  
RINJ  
10  
10  
HA12155 / 7  
HA12155 / 7  
3.6 mA  
VINJ  
40  
61  
40  
61  
VEE  
a) Single supply use  
b) Split supply use  
Figure 7 Injector Current Application  
Rev.4, Jun. 1997, page 20 of 57  
HA12155NT/HA12157NT  
Gain Control of Electronic Volume  
HA12155NT/HA12157NT is designed in order to change the gain by 6 bit DAC fabricated into IC. To  
reduce the click noise when changing volume gain instantaneously, required to connect the capacitor (CR  
time constant) to CNT pin (pin 6,59). These terminals are also be used as output pin of DAC. Therefore,  
by forcing voltage or current to these terminals, it is applicable to control volume gain directly. But,  
voltage forced to these terminals must be from VCC/2 –2 V to VCC/2 (for split supply use, –2 V to 0 V) in this  
case. In case of forcing the current these pins, voltage must be the value mentioned above even it is ±20%  
distributed of internal resistor (5.2 k) of CNT pin. And, these case, change of a gain depending on a  
temperature gets large.  
The Tolerances of External Components for Dolby NR-Block  
For adequate Dolby NR tracking response, take external components shown below.  
For smooth capacitors of C13, C14, C25 and C26, please employ a few object of the leak, though you can  
be useful for an electrolytic capacitor.  
C28  
C29  
2200 p  
2200 p  
±
±
5%  
5%  
R29  
18 k  
R24  
22 k  
R23  
560  
C27  
C26  
C25  
±
2200 p 0.1 µ  
0.1 µ  
2%  
±
2%  
±
±
10%  
±
10%  
5%  
±
2%  
57  
51  
50  
49  
48  
47  
46  
BIAS  
PB OUT  
(L)  
SS1  
(L)  
SS2  
(L)  
CCR  
(L)  
HLS  
DET(L) DET(L)  
LLS  
HA12155/7 (REC 1 Chip)  
PB OUT  
(R)  
SS1  
(R)  
SS2  
(R)  
CCR  
(R)  
HLS  
LLS  
DET(R) DET(R)  
14  
15  
16  
17  
18 19  
R11  
R13  
560  
C12  
C13  
C14  
22 k  
2200 p 0.1 µ  
0.1µ  
±
2%  
±
2%  
±
±
10%  
±
10%  
5%  
C9  
C10  
2200 p  
2200 p  
Unit R :  
±
±
5%  
5%  
C : F  
Figure 8 Tolerances of External Components  
Level Meter  
The coupling capacitor of LMIN pin (21 pin and 44 pin).  
For these capacitors please employ a small object of the leak.  
Rev.4, Jun. 1997, page 21 of 57  
HA12155NT/HA12157NT  
The Application of Equalizer Frequency Response  
F / Q  
EQ  
IN  
_
_
OP5  
+
GP  
+
+
Gm2  
+
R6  
+
OP1  
OP2  
_
_
Gm1  
C1  
R7  
_
R1  
R5  
R3  
R4  
+
R2  
+
Gm3  
_
OP6  
_
C2  
R10  
FM  
EQ  
OUT  
GL  
+
_
_
+
Gm4  
OP3  
_
+
_
Gm5  
R9  
OP4  
_
+
+
OP7  
C3  
GH  
_
R8  
Gm6  
+
Figure 9 REC Equalizer Block Diagram  
Transfer Function:  
C3 Gm6  
C2  
+
1
S
S
R 2 + R3  
R8 R10  
R4 R10  
Vout  
Vin  
Gm4 Gm5  
C3  
Gm3  
=
=
Gm5  
+ Gm1  
R4  
R4  
C1 C2  
R7  
C2  
R2  
R9  
R6 + R7  
1+  
S
1+  
S +  
S2  
Gm4  
R5 R6 + R7 Gm3  
R5 Gm2 Gm3  
R FM RGH  
1+ 6.67 ×10−  
S
10  
10  
×
3.0 10  
RFQ  
S
4.16  
RGL  
+
RGL  
RGP  
1+ 6.67× 10−  
R
S
1+ 4.5 ×10RFQ S + 2.5× 10R FQ RF/ QS2  
10  
11  
20  
R REF  
FM  
*RREF-----25 pin bias resistance  
Rev.4, Jun. 1997, page 22 of 57  
HA12155NT/HA12157NT  
Gain  
g1  
3dB  
BW  
g2  
g3  
f1 f2  
f3  
f
Figure 10 REC Equalizer Frequency Response  
6.67 ×R + R  
4.16  
gl =  
g2 =  
g3 =  
f1 =  
(
)
GP  
GH  
R
REF  
4.16× R  
GL  
GH  
R
REF  
4.16× R  
R
REF  
1
10  
2π ×6.67 ×10  
× R  
FM  
FM  
R
GL  
10  
f 2 =  
f3 =  
2π ×6.67 ×10  
× R  
× R  
GH  
1
0.3  
21  
2π  
2.25 ×10  
×R ×R  
FQ F / Q  
1
BW =  
Q =  
10  
4π ×2.78×10  
× R  
F / Q  
R
f3  
F / Q  
= 3.51×  
BW  
R
F / Q  
Rev.4, Jun. 1997, page 23 of 57  
HA12155NT/HA12157NT  
Quiescent Current vs. Supply Voltage  
35  
30  
REC C  
REC B  
REC OFF  
PB C  
PB B  
REC : VRI in (DAC Step 0)  
LM : Normal  
PB : PBI in (DAC Step 0)  
LM : Normal  
PB OFF  
25  
8
10  
12  
14  
16  
18  
Supply voltage Vcc (V)  
Rev.4, Jun. 1997, page 24 of 57  
HA12155NT/HA12157NT  
Encode Boost vs. Frequency (HA12155)  
12  
10  
8
NRB RPI in RECOUT out  
: Vin = 0 dB  
: Vin = 10 dB  
: Vin = 20 dB  
: Vin = 30 dB  
: Vin = 40 dB  
16 V  
14 V  
6
9 V  
4
2
0
100  
200  
500  
1 k  
2 k  
5 k  
10 k  
20 k  
50 k  
100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 25 of 57  
HA12155NT/HA12157NT  
Encode Boost vs. Frequency (HA12155)  
25  
NR-C RPI in RECOUT out  
20  
15  
10  
5
: Vin = 0 dB  
: Vin = 20 dB  
: Vin = 30 dB  
: Vin = 40 dB  
: Vin = 60 dB  
16 V  
14 V  
9 V  
0
5  
10  
100  
200  
500  
1 k  
2 k  
5 k  
10 k  
20 k  
50 k  
100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 26 of 57  
HA12155NT/HA12157NT  
Encode Boost vs. Frequency (HA12157)  
12  
10  
8
NR-B RPI in RECOUT out  
: Vin = 0 dB  
: Vin = 10 dB  
: Vin = 20 dB  
: Vin = 30 dB  
: Vin = 40 dB  
16 V  
14 V  
6
11 V  
4
2
0
100  
200  
500  
1 k  
2 k  
5 k  
10 k  
20 k  
50 k  
100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 27 of 57  
HA12155NT/HA12157NT  
Encode Boost vs. Frequency (HA12157)  
25  
NR-C RPI in RECOUT out  
: Vin = 0 dB  
: Vin = 20 dB  
: Vin = 30 dB  
: Vin = 40 dB  
: Vin = 60 dB  
20  
15  
16 V  
14 V  
11 V  
10  
5
0
5  
10  
100  
200  
500  
1 k  
2 k  
5 k  
10 k  
20 k  
50 k  
100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 28 of 57  
HA12155NT/HA12157NT  
Output Gain vs. Frequency (HA12155)  
26  
22  
18  
14  
10  
6
PB OUT  
REC OUT  
(NR OFF, RPI) Vcc = 14 V  
REC mode  
10  
30  
60 100  
300  
600 1 k  
Frequency (Hz)  
3 k  
6 k 10 k  
30 k 60 k 100 k  
Rev.4, Jun. 1997, page 29 of 57  
HA12155NT/HA12157NT  
Output Gain vs. Frequency (HA12155)  
PB OUT  
28  
24  
20  
16  
12  
8
REC OUT  
PB mode (NR OFF, RPI) Vcc = 14 V  
10  
30  
60 100  
300 600 1 k  
3 k  
6 k 10 k  
30 k 60 k 100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 30 of 57  
HA12155NT/HA12157NT  
Output Gain vs. Frequency (HA12157)  
28  
24  
20  
16  
12  
8
PB OUT  
REC OUT  
(NR OFF, RPI) Vcc = 14 V  
REC mode  
10  
30  
60 100  
300 600 1 k  
3 k  
6 k 10 k  
30 k 60 k 100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 31 of 57  
HA12155NT/HA12157NT  
Output Gain vs. Frequency (HA12157)  
30  
26  
22  
18  
14  
10  
PB OUT  
REC OUT  
PB mode (NR OFF, PBI) Vcc = 14 V  
10  
30  
60 100  
300 600 1 k  
Frequency (Hz)  
3 k  
6 k 10 k  
30 k 60 k 100 k  
Rev.4, Jun. 1997, page 32 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. Output Level (HA12155)  
10  
RPI in RECOUT out REC mode  
f = 100 Hz  
VCC = 14 V  
0 dB = 300 mVrms  
3.0  
1.0  
NR-C  
0.3  
0.1  
NR-B  
0.03  
0.01  
NR-OFF  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Total Harmonic Distortion vs. Output Level (HA12155)  
10  
RPI in RECOUT out REC mode  
f = 1 kHz  
VCC = 14 V  
0 dB = 300 mVrms  
3.0  
1.0  
NR-C  
NR-B  
0.3  
0.1  
0.03  
0.01  
NR-OFF  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Rev.4, Jun. 1997, page 33 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. Output Level (HA12155)  
10  
3.0  
1.0  
RPI in RECOUT out REC mode  
f = 10 kHz  
VCC = 14 V  
0 dB = 300 mVrms  
0.3  
0.1  
NR-C  
NR-B  
0.03  
0.01  
NR-OFF  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Total Harmonic Distortion vs. Output Level (HA12155)  
10  
PBI in PBOUT out PB mode  
f = 100 Hz  
VCC = 14 V  
0 dB = 580 mVrms  
3.0  
1.0  
NR-C  
0.3  
0.1  
NR-OFF  
0.03  
0.01  
NR-B  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Rev.4, Jun. 1997, page 34 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. Output Level (HA12155)  
10  
3.0  
1.0  
PBI in PBOUT out PB mode  
f = 1 kHz  
VCC = 14 V  
0 dB = 580 mVrms  
0.3  
0.1  
NR-C  
NR-OFF  
0.03  
0.01  
NR-B  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Total Harmonic Distortion vs. Output Level (HA12155)  
10  
PBI in PBOUT out PB mode  
f = 10 kHz  
VCC = 14 V  
0 dB = 580 mVrms  
3.0  
1.0  
0.3  
NR-C  
0.1  
NR-OFF  
0.03  
NR-B  
0.01  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Rev.4, Jun. 1997, page 35 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. Output Level (HA12157)  
10  
3.0  
1.0  
RPI in RECOUT out REC mode  
f = 100 Hz  
VCC = 14 V  
NR-C  
0.3  
0.1  
NR-B  
0.03  
0.01  
NR-OFF  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Total Harmonic Distortion vs. Output Level (HA12157)  
10  
RPI in RECOUT out REC mode  
f = 1 kHz  
VCC = 14 V  
3.0  
1.0  
0.3  
NR-C  
0.1  
0.03  
NR-B  
NR-OFF  
0.01  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Rev.4, Jun. 1997, page 36 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. Output Level (HA12157)  
10  
3.0  
1.0  
RPI in RECOUT out REC mode  
f = 10 kHz  
VCC = 14 V  
0.3  
0.1  
NR-C  
NR-B  
0.03  
0.01  
NR-OFF  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Total Harmonic Distortion vs. Output Level (HA12157)  
10  
RBI in RBOUT out PB mode  
f = 100 Hz  
VCC = 14 V  
3.0  
1.0  
NR-C  
0.3  
0.1  
NR-OFF  
0.03  
0.01  
NR-B  
5  
Output level Vout (dB)  
15 10  
0
5
10  
15  
Rev.4, Jun. 1997, page 37 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. Output Level (HA12157)  
10  
3.0  
1.0  
PBI in PBOUT out REC mode  
f = 10 kHz  
VCC = 14 V  
0.3  
0.1  
NR-C  
NR-OFF  
NR-B  
0.03  
0.01  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Total Harmonic Distortion vs. Output Level (HA12157)  
10  
PBI in PBOUT out PB mode  
f = 10 kHz  
VCC = 14 V  
3.0  
1.0  
NR-C  
0.3  
0.1  
NR-OFF  
0.03  
0.01  
NR-B  
15 10  
5  
0
5
10  
15  
Output level Vout (dB)  
Rev.4, Jun. 1997, page 38 of 57  
HA12155NT/HA12157NT  
Max. Output Level vs. Supply Voltage (HA12155)  
20  
15  
10  
5
OFF  
B
C
T.H.D. = 1%  
0 dB = 300 mVrms  
f = 1 kHz REC mode RPI in RECOUT out  
0
8
9
10 11 12 13 14 15 16  
Supply voltage VCC (V)  
Max. Output Level vs. Supply Voltage (HA12155)  
20  
15  
10  
5
T.H.D. = 1%  
0 dB = 580 mVrms  
f = 1 kHz PB mode PBI in PBOUT out  
0
8
9
10 11 12 13 14 15 16  
Supply voltage VCC (V)  
Rev.4, Jun. 1997, page 39 of 57  
HA12155NT/HA12157NT  
Max. Output Level vs. Supply Voltage (HA12157)  
20  
15  
10  
5
OFF  
B
C
T.H.D. = 1%  
0 dB = 300 mVrms  
f = 1 kHz REC mode  
RPI in RECOUT out  
0
9
10  
11 12 13 15 16  
Supply voltage VCC(V)  
Max. Output Level vs. Supply Voltage (HA12157)  
20  
15  
10  
OFF  
B
C
5
T.H.D. = 1%  
0 dB = 775 mVrms  
f = 1 kHz PB mode  
PBI in PBOUT out  
0
10 11  
12 13 14 15 16  
Supply voltage VCC (V)  
Rev.4, Jun. 1997, page 40 of 57  
HA12155NT/HA12157NT  
Signal-to-Noise Ratio vs. Supply Voltage (HA12155)  
PB-C  
90  
80  
70  
60  
50  
PB-B  
REC-OFF RPI  
REC-OFF VRI  
PB-OFF  
REC-B RPI  
REC-B VRI  
REC-C RPI  
REC-C VRI  
E Vol : DAC Step No.18  
Vin = 100 mVrms  
CCIR/ARM  
9
10 11 12 13 14  
Supply voltage Vcc (V)  
15  
16  
Rev.4, Jun. 1997, page 41 of 57  
HA12155NT/HA12157NT  
Signal-to-Noise Ratio vs. Supply Voltage (HA12157)  
PB-C  
90  
80  
70  
60  
50  
PB-B  
REC-OFF RPI  
REC-OFF VRI  
RB-OFF  
PB-B RPI  
REC-B VRI  
REC-C RPI  
REC-C VRI  
VRI : DAC Step No.18  
Vin = 100 mVrms  
CCIR/ARM  
10 11 12 13 14  
15  
16  
Supply voltage VCC (V)  
Crosstalk vs. Frequency (R L)  
20  
40  
REC mode RPI in RECOUT out  
Vin = +6 dB  
VCC = 14 V  
60  
C
B
80  
100  
OFF  
120  
10  
100  
1 k  
Frequency (Hz)  
10 k  
100 k  
Rev.4, Jun. 1997, page 42 of 57  
HA12155NT/HA12157NT  
Crosstalk vs. Frequency (R L)  
20  
40  
PB mode RPI in PBOUT out  
Vin = +6 dB  
V= 14 V  
60  
C
80  
OFF  
100  
B
120  
10  
100  
1 k  
10 k  
100 k  
Frequency (Hz)  
Crosstalk vs. Frequency  
0
20  
VCC = 14 V  
40  
RPI PBI  
60  
80  
RPI VRI  
100  
10  
30 60 100  
300 600 1 k  
3 k 6 k 10 k  
30 k 60 k 100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 43 of 57  
HA12155NT/HA12157NT  
Crosstalk vs. Frequency  
0
20  
VCC = 14 V  
40  
60  
PBI RPI  
80  
PBI VRI  
100  
10  
30 60 100  
300 600 1 k  
3 k 6 k 10 k  
30 k 60 k 100 k  
Frequency (Hz)  
Crosstalk vs. Frequency  
0
VCC = 14 V  
20  
40  
60  
VRI RPI  
80  
VRI PBI  
100  
10  
30 60 100  
300 600 1 k  
3 k 6 k 10 k  
30 k 60 k 100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 44 of 57  
HA12155NT/HA12157NT  
Ripple Rejection Ratio vs. Frequency (REC mode)  
0
10  
20  
30  
VCC = 14 V RECOUT out  
C
B
40  
50  
OFF  
10  
50 100  
500 1 k  
Frequency (Hz)  
5 k 10 k  
50 k 100 k  
Ripple Rejection Ratio vs. Frequency (PB mode)  
10  
20  
30  
40  
OFF  
B
C
50  
60  
VCC = 14 V PBOUT out  
5 k 10 k 50 k 100 k  
10  
50 100  
500 1 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 45 of 57  
HA12155NT/HA12157NT  
Gain, S/N and Vomax vs. DAC Step  
Gv.Vin  
25  
20  
100  
90  
80  
70  
60  
20  
15  
10  
5  
0
10  
S/N  
(JIS A filter)  
0
20  
16  
12  
Vo max  
5
10  
20  
8
4
10  
VCC = 14 V f = 1 kHz  
VRI in IAOUT out  
0
2
15  
0
10  
20  
30  
40  
DAC Step No.  
Rev.4, Jun. 1997, page 46 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. DAC Step  
10  
0 dB = 5.2 dBs  
Vcc = 14 V  
f = 100 Hz  
3.0  
1.0  
IAOUT output level = const  
+10 dB  
0 dB  
10 dB  
0.3  
0.1  
0.03  
0.01  
0
10  
20  
30  
40  
50  
DAC Step  
Total Harmonic Distortion vs. DAC Step  
10  
0 dB = 5.2 dBs  
Vcc = 14 V  
f = 1 kHz  
3.0  
1.0  
IAOUT output level = const  
+ 10 dB  
0 dB  
10 dB  
0.3  
0.1  
0.03  
0.01  
0
10  
20  
30  
40  
50  
DAC Step  
Rev.4, Jun. 1997, page 47 of 57  
HA12155NT/HA12157NT  
Total Harmonic Distortion vs. DAC Step  
10  
0 dB = 5.2 dBs  
Vcc = 14 V  
f = 10 kHz  
3.0  
1.0  
IAOUT output level = const  
+ 10 dB  
0 dB  
10 dB  
0.3  
0.1  
0.03  
0.01  
0
10  
20  
30  
40  
50  
DAC Step  
E. Vol Max. Input Level vs. Supply Voltage  
16  
14  
12  
10  
8
6
4
2
0
f = 1 kHz  
IAOUT out DAC Step No.= 42  
8
10  
12  
14  
16  
18  
Supply voltage VCC (V)  
Rev.4, Jun. 1997, page 48 of 57  
HA12155NT/HA12157NT  
Electronic Volume Gain vs. Frequency  
VRI in IAOUT out VCC = 14 V V in = 12 dBs  
30  
20  
10  
0
DAC Step0  
DAC Step20  
DAC Step29  
DAC Step36  
DAC Step42  
DAC Step47  
DAC Step51  
10  
20  
30  
40  
DAC Step56  
DAC Step62  
50  
60  
70  
10  
100  
1 k  
10 k  
100 k  
Frequency (Hz)  
Level Meter Output vs. Input Level (HA12155)  
4.0  
3.0  
20 dB Range  
2.0  
0 dB Range  
1.0  
0 dB = 580 mVrms  
VCC = 14 V  
f = 1 kHz  
0
80 60 40 20  
0
20 40  
Input level Vin (dB)  
Rev.4, Jun. 1997, page 49 of 57  
HA12155NT/HA12157NT  
Level Meter Output vs. Input Level (HA12157)  
4.0  
3.0  
2.0  
1.0  
0
20 dB Range  
0 dB Range  
0 dB = 775 mVrms  
VCC = 14 V  
f = 1 kHz  
80 60 40 20  
0
20 40  
Input level Vin (dB)  
Level Meter Output vs. Frequency  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
VCC = 14 V  
0 dB Range  
Vin = 0 dB  
20 dB Range Vin = 20 dB  
20 30  
100  
300  
1 k  
3 k  
10 k  
30 k  
100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 50 of 57  
HA12155NT/HA12157NT  
Level Meter Output vs. Supply Voltage  
4.0  
3.0  
2.0  
1.0  
0
0 dB Range Vin = 12 dB  
0 dB Range Vin = 0 dB  
20 dB Range Vin = 20 dB  
0 dB Range Vin = 20 dB  
f = 1 kHz  
8
10 12 14 16 18  
Supply voltage VCC (V)  
Equalizer Gain vs. Frequency  
40  
25  
10  
(6)  
(4)  
(5)  
(3)  
(5)  
(1) (2) (3) (4)  
(6)  
NN HN NC HC NM HM  
33 k 33 k 33 k 33 k 47 k 47 k  
33 k 33 k 51 k 51 k 51 k 51 k  
RGP  
RGL  
RGH  
RF/Q  
RFQ  
RFM  
33 k  
33 k 51 k 51 k 51 k 51 k  
51 k 20 k 51 k 20 k 51 k 20 k  
27 k 51 k 27 k 51 k 27 k  
51 k  
100 k100 k100 k100 k100 k100 k  
VCC = 14 V Vin = 20 dBs  
(1)  
(2)  
10  
300  
1 k  
3 k  
10 k  
30 k  
100 k  
Frequency (Hz)  
Rev.4, Jun. 1997, page 51 of 57  
HA12155NT/HA12157NT  
Equalizer Total Harmonic Distortion vs. Output Level  
30  
10  
VCC = 14 V  
: 15 kHz  
: 10 kHz  
: 6.3 kHz  
: 3.15 kHz  
: 1 kHz  
0 dB = 5 dBs  
Rload = 10 k  
RGL = 33 kΩ  
RGH = 33 kΩ  
RFM = 100 kΩ  
RGP = 33 kΩ  
RF/Q = 51 kΩ  
RFQ = 51 kΩ  
: 315 Hz  
3.0  
1.0  
0.3  
0.1  
10  
5  
0
5
10  
15  
20  
Output level Vout (dB)  
Equalizer Amplifier Gain (GL) vs. RGL  
35  
30  
25  
20  
15  
10  
5
VCC= 14V  
RGH = RGP = 33 k  
RFQ = RF/Q = 51 kΩ  
RFM = 100 kΩ  
f = 315 Hz  
f = 1 kHz  
at RGL = 33 k Ω  
V out = Ð5 dBs  
300 k  
5k 10 k  
30 k  
100 k  
RGL ()  
1 M  
Rev.4, Jun. 1997, page 52 of 57  
HA12155NT/HA12157NT  
Equalizer Amplifier Gain (GH) vs. RGH  
35  
30  
25  
20  
15  
10  
5
VCC = 14 V  
RGL = 33 kΩ  
RGP = 16 kΩ  
RFQ = RF/Q = 24 kΩ  
RFM = 390 kΩ  
f = 6.3 kHz  
at RGH = 33 kΩ  
Vout = Ð5 dBs  
300 k  
5k 10 k  
30 k  
100 k  
RGH ( )  
1 M  
Equalizer Amplifier Gain (GP) vs. RGP  
VCC = 14 V  
50  
45  
40  
35  
30  
25  
20  
RGH = RGP = 33 k  
RFQ = RF/Q = 51 k Ω  
RFM = 100 kΩ  
f = 19 kHz  
300 k  
5k 10 k  
30 k  
100 k  
RGP ()  
1 M  
Rev.4, Jun. 1997, page 53 of 57  
HA12155NT/HA12157NT  
Equalizer Cut off Frequency (FM) vs. RFM  
100 k  
30 k  
10 k  
VCC = 14 V  
RGL = 120 k  
RGH = 7.5 kΩ  
RFQ = RF/Q = 24 kΩ  
RGP = 16 kΩ  
3 k  
1 k  
300  
5 k 10 k  
30 k  
100 k  
RFM ()  
300 k  
1 M  
Equalizer Peak Frequency vs. RFQ  
300 k  
100 k  
30 k  
10 k  
RF/Q  
=
12 k  
24 k Ω  
51 k Ω  
100 k Ω  
200 k Ω  
390 k Ω  
3 k  
2 k  
5 k 10 k  
30 k  
100 k  
RFQ ()  
300 k  
1 M  
Rev.4, Jun. 1997, page 54 of 57  
HA12155NT/HA12157NT  
Equalizer Q vs. RFQ  
15  
10  
5
0
RF/Q  
=
390 k  
200 kΩ  
100 kΩ  
51 kΩ  
24 kΩ  
12 kΩ  
5 k 10 k  
30 k  
100 k  
RFQ ( )  
300 k  
1 M  
Rev.4, Jun. 1997, page 55 of 57  
HA12155NT/HA12157NT  
Package Dimensions  
Unit: mm  
57.6  
58.5 Max  
64  
33  
32  
1
1.0  
19.05  
1.46 Max  
+ 0.11  
0.05  
0.25  
1.78 ± 0.25  
0.48 ± 0.10  
0˚ – 15˚  
Hitachi Code  
JEDEC Code  
EIAJ Code  
Weight  
DP-64S  
SC-553-64A  
8.8 g  
Rev.4, Jun. 1997, page 56 of 57  
HA12155NT/HA12157NT  
Disclaimer  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Sales Offices  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
Asia  
: http://semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
: http://sicapac.hitachi-asia.com  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower,  
Hitachi Semiconductor  
(America) Inc.  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Hitachi Europe GmbH  
Hitachi Asia Ltd.  
Hitachi Tower  
16 Collyer Quay #20-00,  
Singapore 049318  
Tel : <65>-538-6533/538-8577  
Fax : <65>-538-6933/538-3877  
URL : http://www.hitachi.com.sg  
Electronic Components Group  
Dornacher Straße 3  
World Finance Centre,  
D-85622 Feldkirchen, Munich  
Germany  
Harbour City, Canton Road  
Tsim Sha Tsui, Kowloon,  
Hong Kong  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
Tel : <852>-(2)-735-9218  
Fax : <852>-(2)-730-0281  
URL : http://www.hitachi.com.hk  
Hitachi Asia Ltd.  
(Taipei Branch Office)  
4/F, No. 167, Tun Hwa North Road,  
Hung-Kuo Building,  
Taipei (105), Taiwan  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Tel : <886>-(2)-2718-3666  
Fax : <886>-(2)-2718-8180  
Telex : 23222 HAS-TP  
URL : http://www.hitachi.com.tw  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 585160  
Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.  
Colophon 2.0  
Rev.4, Jun. 1997, page 57 of 57  
配单直通车
HA12155NT产品参数
型号:HA12155NT
生命周期:Transferred
零件包装代码:DIP
包装说明:DP-64S
针数:64
Reach Compliance Code:compliant
风险等级:5.09
商用集成电路类型:DOLBY NOISE REDUCTION IC
JESD-30 代码:R-PDIP-T64
长度:57.6 mm
端子数量:64
封装主体材料:PLASTIC/EPOXY
封装代码:SDIP
封装形状:RECTANGULAR
封装形式:IN-LINE, SHRINK PITCH
认证状态:Not Qualified
座面最大高度:5.08 mm
表面贴装:NO
端子形式:THROUGH-HOLE
端子节距:1.778 mm
端子位置:DUAL
宽度:19.05 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!