欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HAF3841CN图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • HAF3841CN
  • 数量73745 
  • 厂家INTERSIL 
  • 封装TQFP128 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • HAF3841CN图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • HAF3841CN
  • 数量865000 
  • 厂家INTERSIL 
  • 封装TQFP128 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • HAF3841CN图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HAF3841CN
  • 数量65000 
  • 厂家INTERSIL 
  • 封装TQFP128 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HAF3841CN图
  • 深圳市晨豪科技有限公司

     该会员已使用本站12年以上
  • HAF3841CN
  • 数量89630 
  • 厂家INTERSIL 
  • 封装TQFP-128 
  • 批号23+ 
  • 当天发货全新原装现货
  • QQ:1743149803QQ:1743149803 复制
    QQ:1852346906QQ:1852346906 复制
  • 0755-82732291 QQ:1743149803QQ:1852346906
  • HAF3841CN图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • HAF3841CN
  • 数量75350 
  • 厂家INTERSIL 
  • 封装TQFP128 
  • 批号24+ 
  • 体验愉快问购元件!!就找我吧!
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • HAF3841CN图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HAF3841CN
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HAF3841CN96图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • HAF3841CN96
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号HAF70009的Datasheet PDF文件预览

HAF70009  
Data Sheet  
August 1999  
File Number 4770  
56A, 100V, 0.025 Ohm, N-Channel  
UltraFET Power MOSFET  
Features  
• 56A, 100V  
This N-Channel power MOSFET is  
manufactured using the innovative  
UltraFET™ process. This advanced  
• Simulation Models  
©
- Temperature Compensated PSPICE® and SABER  
Electrical Models  
process technology achieves the  
- Spice and Saber Thermal Impedance Models  
- www.intersil.com  
lowest possible on-resistance per silicon area, resulting in  
outstanding performance. This device is capable of  
withstanding high energy in the avalanche mode and the  
diode exhibits very low reverse recovery time and stored  
charge. It was designed for use in applications where power  
efficiency is important, such as switching regulators,  
switching converters, motor drivers, relay drivers, low-  
voltage bus switches, and power management in portable  
and battery-operated products.  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Symbol  
Formerly developmental type TA75639.  
D
Ordering Information  
G
o
PART NUMBER  
PACKAGE  
TEMP. RANGE ( C)  
HAF70009  
TO-220AB  
-55 to 175  
S
Packaging  
JEDEC TO-220AB  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
HAF70009  
100  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
GS  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
100  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Drain Current  
±20  
GS  
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
56  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Figure 4  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Figures 6, 14, 15  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
200  
1.35  
W
D
o
o
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999. SABER is a Copyright of Analogy, Inc.  
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.  
4-1  
HAF70009  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 11)  
100  
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 90V, V  
= 80V, V  
= ±20V  
= 0V  
= 0V, T = 150 C  
-
-
-
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 56A, V  
= 10V (Figure 9)  
0.021  
0.025  
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
(Figure 3)  
TO-220  
-
-
-
-
0.74  
62  
C/W  
θJC  
o
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
GS  
t
V
R
R
= 50V, I  
D
56A,  
= 10V,  
-
-
-
-
-
-
-
110  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
= 0.89, V  
L
GS  
Turn-On Delay Time  
Rise Time  
t
15  
60  
20  
25  
-
-
-
d(ON)  
= 5.1Ω  
GS  
(Figures 18,19)  
t
r
Turn-Off Delay Time  
Fall Time  
t
-
d(OFF)  
t
-
f
Turn-Off Time  
t
70  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
DD  
= 50V,  
56A,  
-
-
-
-
-
110  
57  
130  
75  
4.5  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
I
D
Gate Charge at 10V  
Q
g(10)  
g(TH)  
R
= 0.89Ω  
L
I
= 1.0mA  
Threshold Gate Charge  
Q
g(REF)  
(Figures 13, 16, 17)  
3.7  
9.8  
24  
Gate to Source Gate Charge  
Reverse Transfer Capacitance  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
2000  
500  
65  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
110  
UNITS  
V
V
I
I
I
= 56A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 56A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 56A, dI /dt = 100A/µs  
SD  
320  
nC  
RR  
4-2  
HAF70009  
Typical Performance Curves  
1.2  
1.0  
0.8  
60  
50  
40  
30  
20  
10  
0
0.6  
0.4  
0.2  
0
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
125  
o
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R + T  
θJC C  
J
DM  
θJC  
0.01  
-4  
-3  
-2  
10  
-1  
10  
0
1
-5  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
1000  
100  
10  
o
T
= 25 C  
FOR TEMPERATURES  
o
C
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
-5  
10  
-4  
10  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
4-3  
HAF70009  
Typical Performance Curves (Continued)  
300  
100  
If R = 0  
= (L)(I )/(1.3*RATED BV  
1000  
t
- V )  
DD  
AV  
If R 0  
AS  
DSS  
T
= MAX RATED  
J
o
t
AV  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
- V ) +1]  
DSS DD  
T
= 25 C  
C
100  
o
STARTING T = 25 C  
J
100µs  
o
STARTING T = 150 C  
J
10  
1
1ms  
OPERATION IN THIS  
AREA MAY BE  
10ms  
V
= 100V  
LIMITED BY r  
DS(ON)  
DSS(MAX)  
10  
0.001  
0.01  
0.1  
1
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
DS  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
100  
80  
60  
40  
20  
0
100  
V
= 6V  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
GS  
175 C  
V
= 15V  
80  
60  
40  
20  
0
DD  
V
= 20V  
GS  
= 10V  
V
GS  
V
= 7V  
GS  
V
= 5V  
GS  
PULSE DURATION = 80µs  
o
o
25 C  
DUTY CYCLE = 0.5% MAX  
-55 C  
o
T
= 25 C  
C
0
1
2
3
4
5
6
7
0
1.5  
3.0  
4.5  
6.0  
7.5  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 8. TRANSFER CHARACTERISTICS  
3.0  
1.2  
PULSE DURATION = 80µs  
V
= V , I = 250µA  
DS  
GS  
D
DUTY CYCLE = 0.5% MAX  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 10V, I = 56A  
D
GS  
1.0  
0.8  
0.6  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
RESISTANCE vs JUNCTION TEMPERATURE  
4-4  
HAF70009  
Typical Performance Curves (Continued)  
1.2  
3000  
2500  
2000  
1500  
1000  
500  
V
= 0V, f = 1MHz  
GS  
ISS  
I
= 250µA  
D
C
C
C
= C + C  
GS GD  
= C  
GD  
RSS  
OSS  
C + C  
DS  
GD  
1.1  
1.0  
0.9  
C
ISS  
C
OSS  
C
RSS  
0
0
10  
20  
30  
40  
50  
60  
-80  
-40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
J
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
8
6
4
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
= 56A  
= 37A  
= 18A  
D
D
D
2
V
= 50V  
DD  
0
0
10  
20  
30  
40  
50  
60  
Qg, GATE CHARGE (nC)  
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
4-5  
HAF70009  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
G(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORM  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
4-6  
HAF70009  
PSPICE Electrical Model  
SUBCKT HUF75639 2 1 3 ;  
rev Oct. 98  
CA 12 8 2.8e-9  
CB 15 14 2.65e-9  
CIN 6 8 1.9e-9  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
EBREAK 11 7 17 18 110  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
+
RSLC2  
5
51  
ESLC  
11  
-
50  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
IT 8 17 1  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LDRAIN 2 5 2e-9  
LGATE 1 9 1e-9  
LSOURCE 3 7 0.47e-9  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE 1 9 10  
RLDRAIN 2 5 20  
RLSOURCE 3 7 4.69  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
RLSOURCE  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 1.3e-2  
RGATE 9 20 0.7  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 4.5e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
8
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*115),4))}  
.MODEL DBODYMOD D (IS = 1.4e-12 RS = 3.3e-3 XTI = 4.7 TRS1 = 2e-3 TRS2 = 0.1e-5 CJO = 3.3e-9 TT = 6.1e-8 M = 0.7)  
.MODEL DBREAKMOD D (RS = 3.5e-1 TRS1 = 1e-3 TRS2 = 1e-6)  
.MODEL DPLCAPMOD D (CJO = 2.2e-9 IS = 1e-30 N = 10 M = 0.95 vj = 1.0)  
.MODEL MMEDMOD NMOS (VTO = 3.5 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Rg = 0.7)  
.MODEL MSTROMOD NMOS (VTO = 3.97 KP = 56.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO =3.11 KP = 0.085 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 0.8e-3 TC2 = 1e-6)  
.MODEL RDRAINMOD RES (TC1 = 1e-2 TC2 = 1.75e-5)  
.MODEL RSLCMOD RES (TC1 = 2.8e-3 TC2 = 14e-6)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC = -2.0e-3 TC2 = -1.75e-5)  
.MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0.05e-9)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.0 VOFF = -3.5)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.5 VOFF = -6.0)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF = 4.95)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.95 VOFF = -2.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
4-7  
HAF70009  
SABER Electrical Model  
nom temp=25 deg c 100v Ultrafet  
REV Oct. 98  
template huf75639 n2,n1,n3  
electrical n2,n1,n3  
{
LDRAIN  
RLDRAIN  
RDBODY  
var i iscl  
DPLCAP  
DRAIN  
2
5
d..model dbodymod = (is=1.4e-12, xti=4.7, cjo=33e-10,tt=6.1e-8, m=0.7)  
d..model dbreakmod = ()  
10  
d..model dplcapmod = (cjo=22e-10,is=1e-30,n=10,m=0.95, vj=1.0)  
m..model mmedmod = (type=_n,vto=3.5,kp=4.8,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=3.97,kp=56.5,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=3.11,kp=0.085,is=1e-30, tox=1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.0,voff=-3.5)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-6.0)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2.5,voff=4.95)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=4.95,voff=-2.5)  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
ISCL  
50  
-
71  
RDRAIN  
6
8
ESG  
c.ca n12 n8 = 28.5e-10  
c.cb n15 n14 = 26.5e-10  
c.cin n6 n8 = 19e-10  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
MMED  
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
i.it n8 n17 = 1  
7
RSOURCE  
l.ldrain n2 n5 = 2.0e-9  
l.lgate n1 n9 = 1e-9  
l.lsource n3 n7 = 4.69e-10  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
res.rbreak n17 n18 = 1, tc1=0.8e-3,tc2=-1e-6  
res.rdbody n71 n5 = 3.3e-3, tc1=2.0e-3, tc2=0.1e-5  
res.rdbreak n72 n5 = 3.5e-1, tc1=1e-3, tc2=1e-6  
res.rdrain n50 n16 = 13e-3, tc1=1e-2,tc2=1.75e-5  
res.rgate n9 n20 = 0.7  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rldrain n2 n5 = 20  
res.rlgate n1 n9 = 10  
RVTHRES  
res.rlsource n3 n7 = 4.69  
res.rslc1 n5 n51 = 1e-6, tc1=2.8e-3,tc2=14e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 4.5e-3, tc1=0,tc2=0  
res.rvtemp n18 n19 = 1, tc1=-2.75e-3,tc2=0.05e-9  
res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1.75e-5  
spe.ebreak n11 n7 n17 n18 = 110  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/115))** 4))  
}
}
4-8  
HAF70009  
Spice Thermal Model  
JUNCTION  
TH  
REV APRIL 1998  
HUF75639  
CTHERM1 TH 6 5.0e-3  
CTHERM2 6 5 1.9e-2  
CTHERM3 5 4 7.95e-3  
CTHERM4 4 3 9.0e-3  
CTHERM5 3 2 2.95e-2  
CTHERM6 2 TL 12.55  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 5.04e-3  
RTHERM2 6 5 1.25e-2  
RTHERM3 5 4 3.54e-2  
RTHERM4 4 3 1.98e-1  
RTHERM5 3 2 2.99e-1  
RTHERM6 2 TL 3.97e-2  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
Saber Thermal Model  
Saber thermal model HUF75639  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 5.0e-3  
ctherm.ctherm2 6 5 = 1.9e-2  
ctherm.ctherm3 5 4 = 7.95e-3  
ctherm.ctherm4 4 3 = 9.0e-3  
ctherm.ctherm5 3 2 = 2.95e-2  
ctherm.ctherm6 2 tl = 12.55  
4
3
2
rtherm.rtherm1 th 6 = 5.04e-3  
rtherm.rtherm2 6 5 = 1.25e-2  
rtherm.rtherm3 5 4 = 3.54e-2  
rtherm.rtherm4 4 3 = 1.98e-1  
rtherm.rtherm5 3 2 = 2.99e-1  
rtherm.rtherm6 2 tl = 3.97e-2  
}
TL  
CASE  
4-9  
HAF70009  
TO-220AB  
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
E
ØP  
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
0.019  
0.610  
0.160  
0.410  
0.030  
MIN  
4.32  
1.22  
0.77  
1.15  
0.36  
14.99  
-
MAX  
4.57  
NOTES  
A
1
A
0.170  
0.048  
0.030  
0.045  
0.014  
0.590  
-
-
Q
H
1
A
1.32  
-
1
b
0.86  
3, 4  
TERM. 4  
D
b
1.39  
2, 3  
1
o
45  
E
1
c
0.48  
2, 3, 4  
D
1
D
15.49  
4.06  
-
-
L
1
D
1
b1  
b
E
0.395  
-
10.04  
-
10.41  
0.76  
-
L
E
-
c
1
e
0.100 TYP  
0.200 BSC  
0.235  
2.54 TYP  
5.08 BSC  
5
5
-
o
60  
e
1
2
e
3
1
J
1
H
0.255  
0.110  
0.550  
0.150  
0.153  
0.112  
5.97  
6.47  
2.79  
13.97  
3.81  
3.88  
2.84  
1
1
e1  
J
0.100  
0.530  
0.130  
0.149  
0.102  
2.54  
13.47  
3.31  
6
-
L
L
2
-
1
ØP  
Q
3.79  
2.60  
-
NOTES:  
1. These dimensions are within allowable dimensions of Rev. J of  
JEDEC TO-220AB outline dated 3-24-87.  
2. Lead dimension and finish uncontrolled in L .  
1
3. Lead dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder coating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bot-  
tom of dimension D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bot-  
tom of dimension D.  
7. Controlling dimension: Inch.  
8. Revision 2 dated 7-97.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
4-10  

    HAF3841CN相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504