欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • HCNR201-300E
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • HCNR201-300E图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCNR201-300E 现货库存
  • 数量4500 
  • 厂家Broadcom 
  • 封装 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HCNR201-300E图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • HCNR201-300E 现货库存
  • 数量29500 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • HCNR201-300E图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • HCNR201-300E 现货库存
  • 数量4198 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • HCNR201-300E图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • HCNR201-300E
  • 数量5300 
  • 厂家Avago(安华高) 
  • 封装 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • HCNR201-300E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • HCNR201-300E
  • 数量4500 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • HCNR201-300E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • HCNR201-300E
  • 数量4500 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • HCNR201-300E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCNR201-300E
  • 数量31 
  • 厂家AVAGO/安华高 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HCNR201-300E图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • HCNR201-300E
  • 数量60000 
  • 厂家AGILE 
  • 封装SMD-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • HCNR201-300E图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • HCNR201-300E
  • 数量5500 
  • 厂家AVAGO 
  • 封装SMD 
  • 批号2019+ 
  • AVAGO一级代理原装现货假一罚十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • HCNR201-300E图
  • 集好芯城

     该会员已使用本站13年以上
  • HCNR201-300E
  • 数量16854 
  • 厂家AVAGO/安华高 
  • 封装SOP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HCNR201-300E图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • HCNR201-300E
  • 数量15372 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • HCNR201-300E图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • HCNR201-300E
  • 数量
  • 厂家AVAGO 
  • 封装雅维特电子全新正品 
  • 批号83000 
  • QQ:767621813QQ:767621813 复制
    QQ:1152937841QQ:1152937841 复制
  • 0755-83975781 QQ:767621813QQ:1152937841
  • HCNR201-300E图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • HCNR201-300E
  • 数量32222 
  • 厂家AVAGO/安华高 
  • 封装SOP8 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • HCNR201-300E图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • HCNR201-300E
  • 数量26700 
  • 厂家Avago(安华高) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • HCNR201-300E图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • HCNR201-300E
  • 数量7787 
  • 厂家Avago 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • HCNR201-300E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCNR201-300E
  • 数量98500 
  • 厂家AVA 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • HCNR201-300E图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • HCNR201-300E
  • 数量7528 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • HCNR201-300E图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • HCNR201-300E
  • 数量6328 
  • 厂家BROADCOM-博通 
  • 封装DIP-8.直插 
  • 批号▉▉:2年内 
  • ▉▉¥40.3元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • HCNR201-300E图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HCNR201-300E
  • 数量13500 
  • 厂家AVAGO TECHNOLOGIES 
  • 封装42 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HCNR201-300E图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • HCNR201-300E
  • 数量68868 
  • 厂家AVAGO/安华高 
  • 封装DIPSOP8 
  • 批号19+ 
  • ▉原装正品▉低价力挺实单全系列可订
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • HCNR201-300E图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • HCNR201-300E
  • 数量38200 
  • 厂家Avago(安华高) 
  • 封装 
  • 批号1年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • HCNR201-300E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCNR201-300E
  • 数量85000 
  • 厂家AGILE 
  • 封装SMD-8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HCNR201-300E图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • HCNR201-300E
  • 数量9000 
  • 厂家AGILENT 
  • 封装SMD-8 
  • 批号2021+ 
  • 港瑞电子是实报/实单可以来谈价
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • HCNR201-300E图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HCNR201-300E
  • 数量3685 
  • 厂家AGILENT 
  • 封装SMD-8 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • HCNR201-300E图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • HCNR201-300E
  • 数量29500 
  • 厂家Broadcom Limited 
  • 封装OPTOISO 5KV LINEAR PHVOLT 8DIPGW 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • HCNR201-300E图
  • 深圳威尔运电子有限公司

     该会员已使用本站10年以上
  • HCNR201-300E
  • 数量27785 
  • 厂家N/A 
  • 封装N/A 
  • 批号16+ 
  • 正品原装,假一罚十!
  • QQ:276537593QQ:276537593 复制
  • 86-0755-83826550 QQ:276537593
  • HCNR201-300E图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • HCNR201-300E
  • 数量5300 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • HCNR201-300E图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • HCNR201-300E
  • 数量10000 
  • 厂家Broadcom 
  • 封装SOP8 
  • 批号24+ 
  • 原装进口现货 假一罚十
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-13686833545 QQ:1902134819QQ:2881689472
  • HCNR201-300E图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • HCNR201-300E
  • 数量23000 
  • 厂家原厂 
  • 封装8-DIP 鸥翼 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305

产品型号HCNR201-300E的概述

HCNR201-300E 概述 HCNR201-300E 是一款高性能的光耦合器,属于光隔离器的范畴,广泛应用于信号传输和电路隔离。该光耦合器通过光学耦合的方式实现输入信号与输出信号之间的隔离,其设计旨在提高数据传输的可靠性和稳定性。这种芯片特别适用于要求高共模抑制比的应用环境,比如在工业控制、数据采集、信号调理以及医疗设备中。 HCNR201-300E 的核心结构通常包括一个发光二极管(LED)和一个光敏晶体管,二者通过透明的陶瓷封装隔离,发光二极管的光线照射到光敏晶体管上,驱动其通断状态,实现信号的传送,而不直接接触,从而确保电气隔离的效果。 HCNR201-300E 详细参数 在电气性能方面,HCNR201-300E 通常具有以下参数: - 输入电压范围:典型为 1.5 V 至 6 V - 输出电流范围:可达 50 mA - 传输延迟:一般在 10-20μs 之间,具体时间视输入...

产品型号HCNR201-300E的Datasheet PDF文件预览

HCNR200 and HCNR201  
High-Linearity Analog Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Low nonlinearity: 0.01%  
K3 (IPD2/IPD1) transfer gain  
HCNR200: 1ꢀ%  
HCNR201: ꢀ%  
Low gain temperature coefficient: -6ppm/°C  
Wide bandwidth – DC to >1 MHz  
Worldwide safety approval  
– UL 1ꢀ77 recognized (ꢀ kV rms/1 min rating)  
– CSA approved  
The HCNR200/201 high-linearity analog optocoupler  
consists of a high-performance AlGaAs LED that illumi-  
nates two closely matched photodiodes. The input pho-  
todiode can be used to monitor, and therefore stabilize,  
the light output of the LED. As a result, the non-linearity  
and drift characteristics of the LED can be virtually elimi-  
nated. The output photodiode produces a photocurrent  
that is linearly related to the light output of the LED. The  
close matching of the photo-diodes and advanced de-  
sign of the package ensure the high linearity and stable  
gain characteristics of the optocoupler.  
– IEC/EN/DIN EN 60747-ꢀ-2 approved  
VIORM = 1414 V peak (option #0ꢀ0)  
The HCNR200/201 can be used to isolate analog signals  
in a wide variety of applications that require good stabil-  
ity, linearity, bandwidth and low cost. The HCNR200/201  
is very flexible and, by appropriate design of the appli-  
cation circuit, is capable of operating in many different  
modes, including: unipolar/bipolar, ac/dc and inverting/  
non-inverting. The HCNR200/201 is an excellent solution  
for many analog isolation problems.  
Surface mount option available (Option #300)  
8-Pin DIP package - 0.400spacing  
Allows flexible circuit design  
Applications  
Low cost analog isolation  
Telecom: Modem, PBX  
Industrial process control:  
Transducer isolator  
Schematic  
Isolator for thermocouples 4mA to 20 mA loop isola-  
tion  
SMPS feedback loop, SMPS feedforward  
Monitor motor supply voltage  
Medical  
1
8
LED CATHODE  
NC  
NC  
-
V
F
I
+
F
LED ANODE  
2
3
7
6
PD1 CATHODE  
PD1 ANODE  
PD2 CATHODE  
PD2 ANODE  
I
I
PD2  
PD1  
4
5
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
HCNR200/HCNR201 is UL Recognized with ꢀ000 Vrms for 1 minute per UL1ꢀ77.  
Option  
IEC/EN/DIN EN  
Part  
Number  
RoHS  
non RoHS  
Surface Gull  
Tape  
UL 5000 Vrms/ 60747-5-2  
1 Minute rating VIORM = 1414 Vpeak  
Compliant Compliant Package  
Mount  
Wing & Reel  
Quantity  
-000E  
-300E  
no option 400 mil  
X
X
X
42 per tube  
42 per tube  
7ꢀ0 per reel  
42 per tube  
42 per tube  
7ꢀ0 per reel  
#300  
#ꢀ00  
#0ꢀ0  
#3ꢀ0  
#ꢀꢀ0  
Widebody  
DIP-8  
X
X
X
HCNR200 -ꢀ00E  
HCNR201 -0ꢀ0E  
-3ꢀ0E  
X
X
X
X
X
X
X
X
X
X
X
X
-ꢀꢀ0E  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCNR200-ꢀꢀ0E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/  
DIN EN 60747-ꢀ-2 VIORM = 1414 Vpeak Safety Approval and UL ꢀ000 Vrms for 1 minute rating and RoHS compliant.  
Example 2:  
HCNR201 to order product of 8-Pin Widebody DIP package in Tube packaging with UL ꢀ000 Vrms for 1 minute rating  
and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXXis used for existing products, while (new) products launched since July 1ꢀ, 2001 and  
RoHS compliant will use ‘–XXXE.’  
2
Package Outline Drawings  
0.20 (0.008)  
0.30 (0.012)  
11.30 (0.445)  
MAX.  
8
7
6
5
MARKING  
9.00  
(0.354)  
TYP.  
A
10.16  
(0.400)  
TYP.  
HCNR200  
XXX  
yyww  
11.00  
(0.433)  
MAX.  
z
0°  
15°  
*
2
3
4
1
PIN  
ONE  
1.50  
(0.059)  
MAX.  
1
2
8
7
NC  
NC  
5.10 (0.201) MAX.  
LED  
K
K
2
1
0.51 (0.021) MIN.  
3
4
6
5
3.10 (0.122)  
3.90 (0.154)  
PD1  
PD2  
1.70 (0.067)  
1.80 (0.071)  
0.40 (0.016)  
0.56 (0.022)  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
MARKING :  
2.54 (0.100) TYP.  
XXX = 050 ONLY if option #050,#350,#550 (or -050,-350,-550)  
ordered (otherwise blank)  
yy  
- Year  
ww  
- Work Week  
Marked with black dot - Designates Lead Free option E  
*
- Designates pin 1  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Figure 1a. 8 PIN DIP  
3
Gull Wing Surface Mount Option #300  
11.15 0.15  
(0.442 0.006)  
LAND PATTERN RECOMMENDATION  
6
7
5
8
9.00 0.15  
(0.354 0.006)  
13.56  
(0.534)  
1
3
2
4
2.29  
(0.09)  
1.3  
(0.051)  
12.30 0.30  
1.55  
(0.061)  
MAX.  
(0.484 0.012)  
11.00  
MAX.  
(0.433)  
4.00  
(0.158)  
MAX.  
1.78 0.15  
(0.070 0.006)  
1.00 0.15  
(0.039 0.006)  
0.75 0.25  
(0.030 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Figure 1b. 8 PIN Gull Wing Surface Mount Option #300  
4
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3 °C + 1 °C/–0.5 °C/SEC.  
REFLOW HEATING RATE 2.5 °C 0.5 °C/SEC.  
PEAK  
TEMP.  
245 °C  
PEAK  
TEMP.  
240 °C  
PEAK  
TEMP.  
230 °C  
200  
100  
0
2.5 C 0.5 °C/SEC.  
SOLDERING  
30  
TIME  
160 °C  
150 °C  
140 °C  
SEC.  
200 °C  
30  
SEC.  
3 °C + 1 °C/–0.5 °C  
PREHEATING TIME  
150 °C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL PEAK TEMPERATURE  
tp  
15 SEC.  
* 245 +0/-5 °C  
RAMP-UP  
Tp  
217 °C  
TL  
RAMP-DOWN  
6 °C/SEC. MAX.  
3 °C/SEC. MAX.  
150 - 200 °C  
Tsmax  
Tsmin  
NOTES:  
ts  
THE TIME FROM 25 °C to PEAK  
TEMPERATURE = 8 MINUTES MAX.  
smax = 200 °C, Tsmin = 150 °C  
tL  
PREHEAT  
60 to 180 SEC.  
60 to 150 SEC.  
T
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
25  
t 25 °C to PEAK  
TIME  
Regulatory Information  
The HCNR200/201 optocoupler features a 0.400wide, eight pin DIP package. This package was specifically designed  
to meet worldwide regulatory requirements. The HCNR200/201 has been approved by the following organizations:  
IEC/EN/DIN EN 60747-5-2  
UL  
Approved under  
Recognized under UL 1ꢀ77, Component Recognition  
Program, FILE Eꢀꢀ361  
IEC 60747-ꢀ-2:1997 + A1:2002  
EN 60747-ꢀ-2:2001 + A1:2002  
DIN EN 60747-ꢀ-2 (VDE 0884 Teil 2):2003-01  
(Option 0ꢀ0 only)  
CSA  
Approved under CSA Component Acceptance Notice  
#ꢀ, File CA 88324  
Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value  
Units  
Conditions  
Min. External Clearance  
(External Air Gap)  
L(IO1)  
9.6  
mm  
Measured from input terminals to output  
terminals, shortest distance through air  
Min. External Creepage  
(External Tracking Path)  
L(IO2)  
10.0  
1.0  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Min. Internal Clearance  
(Internal Plastic Gap)  
Through insulation distance conductor to  
conductor, usually the direct distance  
between the photoemitter and photodetector  
inside the optocoupler cavity  
Min. Internal Creepage  
(Internal Tracking Path)  
4.0  
mm  
V
The shortest distance around the border  
between two different insulating materials  
measured between the emitter and detector  
Comparative Tracking Index  
Isolation Group  
CTI  
200  
IIIa  
DIN IEC 112/VDE 0303 PART 1  
Material group (DIN VDE 0110)  
Option 300 – surface mount classification is Class A in accordance with CECC 00802.  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics (Option #050 Only)  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
For rated mains voltage ≤600 V rms  
For rated mains voltage ≤1000 V rms  
I-IV  
I-III  
Climatic Classification (DIN IEC 68 part 1)  
Pollution Degree (DIN VDE 0110 Part 1/1.89)  
Maximum Working Insulation Voltage  
ꢀꢀ/100/21  
2
V
1414  
26ꢀ1  
V peak  
V peak  
IORM  
Input to Output Test Voltage, Method b*  
VPR  
VPR = 1.87ꢀ x VIORM, 100% Production Test with  
tm = 1 sec, Partial Discharge < ꢀ pC  
Input to Output Test Voltage, Method a*  
VPR = 1.ꢀ x VIORM, Type and sample test, tm = 60 sec,  
Partial Discharge < ꢀ pC  
VPR  
2121  
8000  
V peak  
Highest Allowable Overvoltage*  
VIOTM  
V peak  
(Transient Overvoltage, tini = 10 sec)  
Safety-Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 11)  
Case Temperature  
Current (Input Current IF, PS = 0)  
Output Power  
TS  
IS  
PS,OUTPUT  
1ꢀ0  
400  
700  
°C  
mA  
mW  
Insulation Resistance at TS, VIO = ꢀ00 V  
RS  
>109  
Ω
*Refer to the front of the Optocoupler section of the current catalog for a more detailed description of IEC/EN/DIN EN 60747-ꢀ-2 and other prod-  
uct safety regulations.  
Note: Optocouplers providing safe electrical separation per IEC/EN/DIN EN 60747-ꢀ-2 do so only within the safety-limiting values to which they  
are qualified. Protective cut-out switches must be used to ensure that the safety limits are not exceeded.  
6
Absolute Maximum Ratings  
Storage Temperature ..............................................................................................-ꢀꢀ°C to +12ꢀ°C  
Operating Temperature (T )................................................................................. -ꢀꢀ°C to +100°C  
A
Junction Temperature (TJ) ......................................................................................................... 12ꢀ°C  
Reflow Temperature Profile ..............................................See Package Outline Drawings Section  
Lead Solder Temperature ............................................................................................260°C for 10s  
(up to seating plane)  
Average Input Current - IF ........................................................................................................ 2ꢀ mA  
Peak Input Current - IF ............................................................................................................... 40 mA  
(ꢀ0 ns maximum pulse width)  
Reverse Input Voltage - VR ............................................................................................................2.ꢀ V  
(IR = 100 μA, Pin 1-2)  
Input Power Dissipation....................................................................................60 mW @ T = 8ꢀ°C  
A
(Derate at 2.2 mW/°C for operating temperatures above 8ꢀ°C)  
Reverse Output Photodiode Voltage ........................................................................................30 V  
(Pin 6-ꢀ)  
Reverse Input Photodiode Voltage............................................................................................30 V  
(Pin 3-4)  
Recommended Operating Conditions  
Storage Temperature .................................................................................................-40°C to +8ꢀ°C  
Operating Temperature ............................................................................................-40°C to +8ꢀ°C  
Average Input Current - IF .................................................................................................. 1 - 20 mA  
Peak Input Current - IF ............................................................................................................... 3ꢀ mA  
(ꢀ0% duty cycle, 1 ms pulse width)  
Reverse Output Photodiode Voltage ..................................................................................0 - 1ꢀ V  
(Pin 6-ꢀ)  
Reverse Input Photodiode Voltage......................................................................................0 - 1ꢀ V  
(Pin 3-4)  
7
Electrical Specifications  
T = 2ꢀ°C unless otherwise specified.  
A
Parameter  
Symbol  
Device  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Transfer Gain  
K3  
HCNR200  
0.8ꢀ  
1.00  
1.1ꢀ  
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
2,3  
1
HCNR201  
HCNR201  
0.9ꢀ  
0.93  
1.00  
1.00  
1.0ꢀ  
1.07  
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
1
1
-40°C < T < 8ꢀ°C,  
A
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
Temperature  
Coefficient of  
Transfer Gain  
ΔK3/ΔT  
-6ꢀ  
ppm/°C -40°C < T < 8ꢀ°C,  
2,3  
A
A
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
DC NonLinearity  
(Best Fit)  
NLBF  
HCNR200  
HCNR201  
HCNR201  
0.01  
0.01  
0.01  
0.2ꢀ  
0.0ꢀ  
0.07  
%
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
4,ꢀ,  
6
2
2
2
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
-40°C < T < 8ꢀ°C,  
A
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
DC Nonlinearity  
(Ends Fit)  
NLEF  
K1  
0.016  
ꢀ nA < IPD < ꢀ0 μA,  
0 V < VPD < 1ꢀ V  
3
%
%
Input Photo-  
diode Current  
Transfer Ratio  
(IPD1/IF)  
HCNR200  
HCNR201  
0.2ꢀ  
0.36  
0.ꢀ0  
0.48  
0.7ꢀ  
0.72  
IF = 10 mA,  
0 V < VPD1 < 1ꢀ V  
7
Temperature  
Coefficient  
of K1  
ΔK1/ΔT  
-0.3  
%/°C  
-40°C < T < 8ꢀ°C,  
IF = 10 mA  
0 V < VPD1 < 1ꢀ V  
7
8
A
A
Photodiode  
Leakage Current  
ILK  
0.ꢀ  
2ꢀ  
nA  
V
IF = 0 mA,  
0 V < VPD < 1ꢀ V  
Photodiode  
BVRPD  
30  
1ꢀ0  
IR = 100 μA  
Reverse Break-  
down Voltage  
Photodiode  
Capacitance  
CPD  
VF  
22  
pF  
V
VPD = 0 V  
LED Forward  
Voltage  
1.3  
1.2  
1.6  
1.6  
1.8ꢀ  
1.9ꢀ  
IF = 10 mA  
IF = 10 mA,  
9,  
10  
-40°C < T < 8ꢀ°C  
A
LED Reverse  
Breakdown  
Voltage  
BVR  
2.ꢀ  
9
V
mV/°C  
pF  
IF = 100 μA  
IF = 10 mA  
f = 1 MHz,  
Temperature  
Coefficient of  
Forward Voltage  
ΔV /ΔT  
-1.7  
80  
F
A
LED Junction  
Capacitance  
CLED  
V = 0 V  
F
8
AC Electrical Specifications  
T = 2ꢀ°C unless otherwise specified.  
A
Test  
Conditions  
Parameter  
Symbol  
Device  
Min.  
Typ. Max. Units  
Fig. Note  
LED Bandwidth  
f -3dB  
9
MHz  
IF = 10 mA  
Application Circuit Bandwidth:  
High Speed  
High Precision  
1.ꢀ  
10  
MHz  
kHz  
16  
17  
6
6
Application Circuit: IMRR  
High Speed  
9ꢀ  
dB  
freq = 60 Hz  
16  
6, 7  
Package Characteristics  
T = 2ꢀ°C unless otherwise specified.  
A
Test  
Conditions  
Parameter  
Symbol  
Device  
Min.  
Typ.  
1013  
0.4  
Max.  
Units  
Fig.  
Note  
Input-Output  
Momentary-Withstand  
Voltage*  
V
ꢀ000  
V rms  
RH ≤ꢀ0%,  
t = 1 min.  
4, ꢀ  
ISO  
Resistance  
(Input-Output)  
RI-O  
1012  
1011  
Ω
VO = ꢀ00 VDC  
TA = 100°C,  
4
4
4
V
IO = ꢀ00 VDC  
Capacitance  
CI-O  
0.6  
pF  
f = 1 MHz  
(Input-Output)  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety  
specification, or Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”  
Notes:  
1. K3 is calculated from the slope of the best fit line of IPD2 vs. IPD1 with eleven equally distributed data points from nA to ꢀ0 μA. This is approxi-  
mately equal to IPD2/IPD1 at IF = 10 mA.  
2. BEST FIT DC NONLINEARITY (NLBF) is the maximum deviation expressed as a percentage of the full scale output of a “best fitstraight line from  
a graph of IPD2 vs. IPD1 with eleven equally distributed data points from ꢀ nA to ꢀ0μA. IPD2 error to best fit line is the deviation below and above  
the best fit line, expressed as a percentage of the full scale output.  
3. ENDS FIT DC NONLINEARITY (NLEF) is the maximum deviation expressed as a percentage of full scale output of a straight line from the ꢀ nA to  
the ꢀ0 μA data point on the graph of IPD2 vs. IPD1  
.
4. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and pins ꢀ, 6, 7, and 8 shorted together.  
ꢀ. In accordance with UL 1ꢀ77, each optocoupler is proof tested by applying an insulation test voltage of ≥6000 V rms for ≥1 second (leakage  
detection current limit, II-O of ꢀ μA max.). This test is performed before the 100% production test for partial discharge (method b) shown in the  
IEC/EN/DIN EN 60747-ꢀ-2 Insulation Characteris-tics Table (for Option #0ꢀ0 only).  
6. Specific performance will depend on circuit topology and components.  
7. IMRR is defined as the ratio of the signal gain (with signal applied to VIN of Figure 16) to the isolation mode gain (with VIN connected to input  
common and the signal applied between the input and output commons) at 60 Hz, expressed in dB.  
9
0.03  
0.02  
0.01  
0.00  
-0.01  
1.06  
1.04  
1.02  
1.00  
0.98  
0.02  
0.015  
0.01  
= ERROR MEAN  
= ERROR MEAN 2 ꢀ STD DEV  
= NORM K3 MEAN  
= NORM K3 MEAN 2 ꢀ STD DEV  
0 V < V  
PD  
< 15 V  
0.005  
0.0  
-0.005  
-0.01  
-0.015  
-0.02  
-0.02  
-0.03  
0.96  
0.94  
= DELTA K3 MEAN  
= DELTA K3 MEAN 2 ꢀ STD DEV  
NORMALIZED TO BEST-FIT K3 AT T = 25°C,  
A
T
= 25 °C, 0 V < V  
< 15 V  
50.0 60.0  
– INPUT PHOTODIODE CURRENT – µA  
A
PD  
0 V < V  
< 15 V  
40.0  
– INPUT PHOTODIODE CURRENT – µA  
PD  
0.0  
10.0  
20.0  
30.0  
40.0  
0.0  
10.0  
20.0  
30.0  
50.0 60.0  
-55  
-25  
5
35  
T – TEMPERATURE – °C  
A
65  
95  
125  
I
I
PD1  
PD1  
Figure 2. Normalized K3 vs. input IPD  
.
Figure 3. K3 drift vs. temperature.  
Figure 4. IPD2 error vs. input IPD (see note 4).  
0.035  
0.03  
1.2  
0.02  
-55°C  
= NL 50TH PERCENTILE  
BF  
0 V < V  
5 nA < I  
< 15 V  
< 50 µA  
= NL 90TH PERCENTILE  
BF  
PD  
PD  
1.1  
-40°C  
0.015  
0.01  
25°C  
1.0  
0.025  
0.02  
0.9  
0.8  
0.7  
0.6  
85°C  
100°C  
0.005  
0.0  
0.015  
0.01  
-0.005  
-0.01  
-0.015  
-0.02  
0.5  
0.4  
0.3  
0.2  
NORMALIZED TO K1 CTR  
AT I = 10 mA, T = 25°C  
0 V < V  
5 nA < I  
< 15 V  
< 50 µA  
F
A
PD  
PD  
0.005  
0 V < V  
< 15 V  
PD1  
= DELTA NL MEAN  
BF  
= DELTA NL MEAN 2 ꢀ STD DEV  
BF  
0.00  
-55  
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0  
-25  
5
35  
65  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
I
F
– LED INPUT CURRENT – mA  
A
A
Figure 6. NLBF drift vs. temperature.  
Figure 7. Input photodiode CTR vs. LED input  
current.  
Figure 5. NLBF vs. temperature.  
10.0  
100  
1.8  
T
= 25°C  
V
= 15 V  
A
I = 10 mA  
F
PD  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
10  
1
8.0  
6.0  
4.0  
0.1  
0.01  
2.0  
0.0  
0.001  
0.0001  
-55  
-25  
5
35  
65  
95  
125  
1.20  
1.30  
1.40  
1.50  
1.60  
-55  
-25  
5
35  
65  
95  
125  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
V
– FORWARD VOLTAGE – VOLTS  
A
A
F
Figure 8. Typical photodiode leakage vs.  
temperature.  
Figure 10. LED forward voltage vs. temperature.  
Figure 9. LED input current vs. forward voltage.  
10  
1000  
900  
800  
700  
600  
500  
400  
300  
P
I
OUTPUT POWER – mV  
INPUT CURRENT – mA  
S
S
200  
100  
0
0
25  
T
50  
75  
100 125 150 175  
– CASE TEMPERATURE – °C  
S
Figure 11. Thermal derating curve dependence of safety limiting value  
with case temperature per IEC/EN/DIN EN 60747-5-2.  
R2  
R1  
V
IN  
+
-
V
A1  
A2  
+
I
PD1  
I
PD2  
OUT  
PD1  
PD2  
-
LED  
I
F
A) BASIC TOPOLOGY  
V
R2  
CC  
C2  
C1  
R1  
LED  
R3  
V
IN  
-
-
V
A1  
A2  
PD1  
PD2  
PD2  
OUT  
+
+
B) PRACTICAL CIRCUIT  
Figure 12. Basic isolation amplifier.  
V
CC  
V
IN  
-
-
V
OUT  
+
+
A) POSITIVE INPUT  
B) POSITIVE OUTPUT  
V
IN  
-
-
V
OUT  
+
+
C) NEGATIVE INPUT  
D) NEGATIVE OUTPUT  
Figure 13. Unipolar circuit topologies.  
11  
V
V
CC2  
CC1  
V
IOS1  
CC1  
IOS2  
V
IN  
-
-
V
OUT  
+
+
A) SINGLE OPTOCOUPLER  
V
CC  
-
+
V
IN  
-
V
OUT  
+
-
+
B) DUAL OPTOCOUPLER  
Figure 14. Bipolar circuit topologies.  
R2  
+I  
IN  
R1  
D1  
-
-
V
PD2  
PD1  
+
OUT  
+
LED  
R3  
-I  
IN  
A) RECEIVER  
V
CC  
R1  
LED  
+I  
OUT  
V
IN  
R2  
-
PD1  
+
-
D1  
Q1  
PD2  
+
R3  
-I  
OUT  
B) TRANSMITTER  
Figure 15. Loop-powered 4-20 mA current loop circuits.  
12  
V
+5 V  
CC2  
V
+5 V  
CC1  
R5  
10 K  
R7  
470  
LED  
R2  
68 K  
R3  
10 K  
V
OUT  
Q2  
Q4  
R1  
2N3904  
2N3904  
68 K  
Q1  
2N3906  
Q3  
2N3906  
V
IN  
R4  
10  
R6  
10  
PD1  
PD2  
Figure 16. High-speed low-cost analog isolator.  
V
+15 V  
V
+15 V  
CC1  
CC2  
C3  
0.1µ  
C5  
0.1µ  
R4  
2.2 K  
R5  
270  
Q1  
2N3906  
R6  
6.8 K  
C1  
P
C2  
33  
R2  
R1  
200 K  
47  
174 K  
50 K  
P
INPUT  
BNC  
OUTPUT  
BNC  
1%  
1 %  
7
4
7
4
-
-
2
3
2
3
6
6
PD1  
PD2  
A1  
A2  
LT1097  
LT1097  
+
+
C6  
0.1µ  
C4  
0.1µ  
R3  
33 K  
D1  
1N4150  
V
-15 V  
LED  
V
-15 V  
EE2  
EE1  
Figure 17. Precision analog isolation amplifier.  
C3 10 pf  
C1 10 pf  
R6  
180 K  
R7  
50 K  
R2  
180 K  
D1  
R4  
680  
-
GAIN  
OC1  
PD2  
+
OC1  
PD1  
OC1  
LED  
-
V
MAG  
R1  
50 K  
V
+
IN  
BALANCE  
OC2  
LED  
OC2  
PD1  
OC2  
PD2  
+
-
R5  
680  
R3  
180 K  
D2  
C2 10 pf  
V
V
= +15 V  
= -15 V  
CC1  
EE1  
Figure 18. Bipolar isolation amplifier.  
13  
C3 10 pf  
C1 10 pf  
R5  
180 K  
R6  
50 K  
D1  
D3  
-
GAIN  
+
OC1  
PD2  
-
R4  
680  
V
R1  
220 K  
MAG  
+
V
OC1  
PD1  
IN  
R2  
10 K  
R3  
4.7 K  
OC1  
LED  
+
D2  
-
D4  
-
V
+
CC  
C2 10 pf  
+
-
R7  
6.8 K  
R8  
2.2 K  
V
SIGN  
OC2  
6N139  
V
V
= +15 V  
= -15 V  
CC1  
EE1  
Figure 19. Magnitude/sign isolation amplifier.  
Figure 20. SPICE model listing.  
14  
0.001 µF  
+ILOOP  
HCNR200  
LED  
R5  
80 kΩ  
R1  
10 kΩ  
Z1  
5.1 V  
R4  
100 Ω  
V
CC  
5.5 V  
0.1 µF  
HCNR200  
PD1  
LM158  
+
-
-
2N3906  
V
OUT  
+
R2  
10 kΩ  
LM158  
HCNR200  
PD2  
0.001 µF  
-ILOOP  
R3  
25 Ω  
2
Design Equations:  
VOUT / ILOOP = K3 (Rꢀ R3) / R1 + R3)  
K3 = K2 / K1 = Constant = 1  
Note:  
The two OP-AMPS shown are two separate LM1ꢀ8, and not two channels in a single dual package,  
otherwise the loop side and output side will not be properly isolated.  
Figure 21. 4 to 20 mA HCNR200 receiver circuit.  
+I  
LOOP  
R8  
100kΩ  
12V~40V  
4 ~ 20mA  
Q3  
2N3904  
4mA (Vin=0.8V)  
20mA(Vin=4V)  
Vcc  
5.5V  
R2  
150 Ω  
Q2  
C1  
1nF  
IC3  
2N3904  
C3  
5V1  
+
Q4  
-
LM158  
R6  
LED/IC1  
HCNR200  
R1  
80k Ω  
150 Ω  
R7  
3k2Ω  
Vin  
0.8V~4V  
“0” @ 2200Hz  
“1” @ 1200Hz  
IC2  
R4  
1nF  
-
Q1  
2N3906  
10k Ω C2  
LM158  
PD1/IC1  
+
R5  
25 Ω  
PD2/IC1  
R3  
10k Ω  
- I  
LOOP  
Design Equations:  
(ILOOP/Vin)=K3(Rꢀ+R3)/(RꢀR1)  
K3 = K2/K1 = Constant ≈ 1  
Note:  
The two OP-AMPS shown are two separate LM1ꢀ8 IC’s, and NOT dual channels in a  
single package, otherwise, the LOOP side and input side will not be properly isolated;  
The ꢀV1 Zener should be properly selected to ensure that it conducts at 187μA;  
Figure 22. 4 to 20 mA HCNR200 transmitter circuit.  
1ꢀ  
Theory of Operation  
Figure 1 illustrates how the HCNR200/201 high-linearity  
optocoupler is configured. The basic optocoupler con-  
sists of an LED and two photodiodes. The LED and one of  
the photodiodes (PD1) is on the input leadframe and the  
other photodiode (PD2) is on the output leadframe. The  
package of the optocoupler is constructed so that each  
photodiode receives approximately the same amount of  
light from the LED.  
Notice that IPD1 depends ONLY on the input voltage and  
the value of R1 and is independent of the light output  
characteristics of the LED. As the light output of the  
LED changes with temperature, amplifier A1 adjusts IF  
to compensate and maintain a constant current in PD1.  
Also notice that IPD1 is exactly proportional to V , giving  
IN  
a very linear relationship between the input voltage and  
the photodiode current.  
An external feedback amplifier can be used with PD1 to  
monitor the light output of the LED and automatically  
adjust the LED current to compensate for any non-linear-  
ities or changes in light output of the LED. The feedback  
amplifier acts to stabilize and linearize the light output  
of the LED. The output photodiode then converts the  
stable, linear light output of the LED into a current, which  
can then be converted back into a voltage by another  
amplifier.  
The relationship between the input optical power and  
the output current of a photodiode is very linear. There-  
fore, by stabilizing and linearizing IPD1, the light output of  
the LED is also stabilized and linearized. And since light  
from the LED falls on both of the photodiodes, IPD2 will be  
stabilized as well.  
The physical construction of the package determines the  
relative amounts of light that fall on the two photodiodes  
and, therefore, the ratio of the photodiode currents. This  
results in very stable operation over time and tempera-  
ture. The photodiode current ratio can be expressed as a  
constant, K, where  
Figure 12a illustrates the basic circuit topology for  
implementing a simple isolation amplifier using the  
HCNR200/201 optocoupler. Besides the optocoupler,  
two external op-amps and two resistors are required.  
This simple circuit is actually a bit too simple to function  
properly in an actual circuit, but it is quite useful for ex-  
plaining how the basic isolation amplifier circuit works (a  
few more components and a circuit change are required  
to make a practical circuit, like the one shown in Figure  
12b).  
K = IPD2/IPD1  
.
Amplifier A2 and resistor R2 form a trans-resistance am-  
plifier that converts IPD2 back into a voltage, VOUT, where  
VOUT = IPD2*R2.  
Combining the above three equations yields an overall  
expression relating the output voltage to the input volt-  
age,  
The operation of the basic circuit may not be immedi-  
ately obvious just from inspecting Figure 12a, particu-  
larly the input part of the circuit. Stated briefly, amplifier  
A1 adjusts the LED current (IF), and therefore the current  
in PD1 (IPD1), to maintain its “+” input terminal at 0 V. For  
example, increasing the input voltage would tend to in-  
crease the voltage of the “+” input terminal of A1 above  
0 V. A1 amplifies that increase, causing IF to increase, as  
well as IPD1. Because of the way that PD1 is connected,  
IPD1 will pull the “+” terminal of the op-amp back toward  
ground. A1 will continue to increase IF until its “+” termi-  
nal is back at 0 V. Assuming that A1 is a perfect op-amp,  
no current flows into the inputs of A1; therefore, all of the  
current flowing through R1 will flow through PD1. Since  
the “+” input of A1 is at 0 V, the current through R1, and  
therefore IPD1 as well, is equal to VIN/R1.  
VOUT/V = K*(R2/R1).  
IN  
Therefore the relationship between V and VOUT is con-  
IN  
stant, linear, and independent of the light output  
characteristics of the LED. The gain of the basic isolation  
amplifier circuit can be adjusted simply by adjusting the  
ratio of R2 to R1. The parameter K (called K3 in the electri-  
cal specifications) can be thought of as the gain of the  
optocoupler and is specified in the data sheet.  
Remember, the circuit in Figure12a is simplified in order  
to explain the basic circuit operation. A practical circuit,  
more like Figure 12b, will require a few additional compo-  
nents to stabilize the input part of the circuit, to limit the  
LED current, or to optimize circuit performance. Example  
application circuits will be discussed later in the data  
sheet.  
Essentially, amplifier A1 adjusts IF so that  
IPD1 = V /R1.  
IN  
16  
Circuit Design Flexibility  
Circuit design with the HCNR200/201 is very flexible  
because the LED and both photodiodes are accessible  
to the designer. This allows the designer to make perf-  
ormance trade-offs that would otherwise be difficult to  
make with commercially available isolation amplifiers  
(e.g., bandwidth vs. accuracy vs. cost). Analog isolation  
circuits can be designed for applications that have either  
unipolar (e.g., 0-10 V) or bipolar (e.g., 10 V) signals, with  
positive or negative input or output voltages. Several  
simplified circuit topologies illustrating the design flex-  
ibility of the HCNR200/201 are discussed below.  
to worry about. However, the second circuit requires two  
optocouplers, separate gain adjustments for the posi-  
tive and negative portions of the signal, and can exhibit  
crossover distortion near zero volts. The correct circuit to  
choose for an application would depend on the require-  
ments of that particular application. As with the basic  
isolation amplifier circuit in Figure 12a, the circuits in Fig-  
ure 14 are simplified and would require a few additional  
components to function properly. Two example circuits  
that operate with bipolar input signals are discussed in  
the next section.  
The circuit in Figure 12a is configured to be non-invert-  
ing with positive input and output voltages. By simply  
changing the polarity of one or both of the photodiodes,  
the LED, or the op-amp inputs, it is possible to implement  
other circuit configurations as well. Figure 13 illustrates  
how to change the basic circuit to accommodate both  
positive and negative input and output voltages. The in-  
put and output circuits can be matched to achieve any  
combination of positive and negative voltages, allowing  
for both inverting and non-inverting circuits.  
As a final example of circuit design flexibility, the simpli-  
fied schematics in Figure 1ꢀ illustrate how to implement  
4-20 mA analog current-loop transmitter and receiver  
circuits using the HCNR200/201 optocoupler. An impor-  
tant feature of these circuits is that the loop side of the  
circuit is powered entirely by the loop current, eliminat-  
ing the need for an isolated power supply.  
The input and output circuits in Figure 1ꢀa are the same  
as the negative input and positive output circuits shown  
in Figures 13c and 13b, except for the addition of R3 and  
zener diode D1 on the input side of the circuit. D1 regu-  
lates the supply voltage for the input amplifier, while R3  
forms a current divider with R1 to scale the loop current  
down from 20 mA to an appropriate level for the input  
circuit (<ꢀ0 μA).  
All of the configurations described above are unipolar  
(single polarity); the circuits cannot accommodate a sig-  
nal that might swing both positive and negative. It is pos-  
sible, however, to use the HCNR200/201 optocoupler to  
implement a bipolar isolation amplifier. Two topologies  
that allow for bipolar operation are shown in Figure 14.  
As in the simpler circuits, the input amplifier adjusts the  
LED current so that both of its input terminals are at the  
same voltage. The loop current is then divided  
The circuit in Figure14a uses two current sources to  
offset the signal so that it appears to be unipolar to the  
optocoupler. Current source IOS1 provides enough offset  
to ensure that IPD1 is always positive. The second current  
source, IOS2, provides an offset of opposite polarity to ob-  
tain a net circuit offset of zero. Current sources IOS1 and  
IOS2 can be implemented simply as resistors connected to  
suitable voltage sources.  
between R1 and R3. IPD1 is equal to the current in R1 and  
is given by the following equation:  
IPD1 = ILOOP*R3/(R1+R3).  
Combining the above equation with the equations used  
for Figure 12a yields an overall expression relating the  
output voltage to the loop current,  
The circuit in Figure14b uses two optocouplers to obtain  
bipolar operation. The first optocoupler handles the pos-  
itive voltage excursions, while the second optocoupler  
handles the negative ones. The output photodiodes are  
connected in an antiparallel configuration so that they  
produce output signals of opposite polarity.  
VOUT/ILOOP = K*(R2*R3)/(R1+R3).  
Again, you can see that the relationship is constant, lin-  
ear, and independent of the characteristics of the LED.  
The 4-20 mA transmitter circuit in Figure 1ꢀb is a little dif-  
ferent from the previous circuits, particularly the output  
circuit. The output circuit does not directly generate an  
output voltage which is sensed by R2, it instead uses Q1  
to generate an output current which flows through R3.  
This output current generates a voltage across R3, which  
is then sensed by R2. An analysis similar to the one above  
yields the following expression relating output current  
to input voltage:  
The first circuit has the obvious advantage of requiring  
only one optocoupler; however, the offset performance  
of the circuit is dependent on the matching of IOS1 and  
IOS2 and is also dependent on the gain of the optocoupler.  
Changes in the gain of the optocoupler will directly af-  
fect the offset of the circuit.  
The offset performance of the second circuit, on the  
other hand, is much more stable; it is independent of  
optocoupler gain and has no matched current sources  
ILOOP/V = K*(R2+R3)/(R1*R3).  
IN  
17  
The preceding circuits were presented to illustrate the  
flexibility in designing analog isolation circuits using the  
HCNR200/201. The next section presents several com-  
The circuit operates in the same way as the others. The  
only major differences are the two compensation capaci-  
tors and additional LED drive circuitry. In the high-speed  
plete schematics to illustrate practical applications of the circuit discussed above, the input and output circuits are  
HCNR200/201.  
stabilized by reducing the local loop gains of the input  
and output circuits. Because reducing the loop gains  
would decrease the accuracy of the circuit, two compen-  
sation capacitors, C1 and C2, are instead used to improve  
circuit stability. These capacitors also limit the bandwidth  
of the circuit to about 10 kHz and can be used to reduce  
the output noise of the circuit by reducing its bandwidth  
even further.  
Example Application Circuits  
The circuit shown in Figure 16 is a high-speed low-cost  
circuit designed for use in the feedback path of switch-  
mode power supplies. This application requires good  
bandwidth, low cost and stable gain, but does not re-  
quire very high accuracy. This circuit is a good example  
of how a designer can trade off accuracy to achieve  
improvements in bandwidth and cost. The circuit has a  
bandwidth of about 1.ꢀ MHz with stable gain character-  
istics and requires few external components.  
The additional LED drive circuitry (Q1 and R3 through  
R6) helps to maintain the accuracy and bandwidth of the  
circuit over the entire range of input voltages. Without  
these components, the transconductance of the LED  
driver would decrease at low input voltages and LED  
currents. This would reduce the loop gain of the input  
circuit, reducing circuit accuracy and bandwidth. D1 pre-  
vents excessive reverse voltage from being applied to  
the LED when the LED turns off completely.  
Although it may not appear so at first glance, the circuit  
in Figure 16 is essentially the same as the circuit in Fig-  
ure 12a. Amplifier A1 is comprised of Q1, Q2, R3 and R4,  
while amplifier A2 is comprised of Q3, Q4, Rꢀ, R6 and R7.  
The circuit operates in the same manner as well; the only  
difference is the performance of amplifiers A1 and A2.  
The lower gains, higher input currents and higher offset  
voltages affect the accuracy of the circuit, but not the  
way it operates. Because the basic circuit operation has  
not changed, the circuit still has good gain stability. The  
use of discrete transistors instead of op-amps allowed  
the design to trade off accuracy to achieve good band-  
width and gain stability at low cost.  
No offset adjustment of the circuit is necessary; the gain  
can be adjusted to unity by simply adjusting the ꢀ0 kohm  
potentiometer that is part of R2. Any OP-97 type of op-  
amp can be used in the circuit, such as the LT1097 from  
Linear Technology or the AD70ꢀ from Analog Devices,  
both of which offer pA bias currents, μV offset voltages  
and are low cost. The input terminals of the op-amps and  
the photodiodes are connected in the circuit using Kelvin  
connections to help ensure the accuracy of the circuit.  
To get into a little more detail about the circuit, R1 is se-  
lected to achieve an LED current of about 7-10 mA at the  
nominal input operating voltage according to the fol-  
lowing equation:  
The next two circuits illustrate how the HCNR200/201 can  
be used with bipolar input signals. The isolation amplifier  
in Figure18 is a practical implementation of the circuit  
shown in Figure 14b. It uses two optocouplers, OC1 and  
OC2; OC1 handles the positive portions of the input sig-  
nal and OC2 handles the negative portions.  
IF = (V /R1)/K1,  
IN  
where K1 (i.e., IPD1/IF) of the optocoupler is typically about  
0.ꢀ%. R2 is then selected to achieve the desired output  
voltage according to the equation,  
Diodes D1 and D2 help reduce crossover distortion by  
keeping both amplifiers active during both positive and  
negative portions of the input signal. For example, when  
the input signal positive, optocoupler OC1 is active while  
OC2 is turned off. However, the amplifier controlling OC2  
is kept active by D2, allowing it to turn on OC2 more rap-  
idly when the input signal goes negative, thereby reduc-  
ing crossover distortion.  
VOUT/V = R2/R1.  
IN  
The purpose of R4 and R6 is to improve the dynamic re-  
sponse (i.e., stability) of the input and output circuits by  
lowering the local loop gains. R3 and Rꢀ are selected to  
provide enough current to drive the bases of Q2 and Q4.  
And R7 is selected so that Q4 operates at about the same  
collector current as Q2.  
Balance control R1 adjusts the relative gain for the posi-  
tive and negative portions of the input signal, gain con-  
trol R7 adjusts the overall gain of the isolation amplifier,  
and capacitors C1-C3 provide compensation to stabilize  
the amplifiers.  
The next circuit, shown in Figure17, is designed to achieve  
the highest possible accuracy at a reasonable cost. The  
high accuracy and wide dynamic range of the circuit is  
achieved by using low-cost precision op-amps with very  
low input bias currents and offset voltages and is limited  
by the performance of the optocoupler. The circuit is de-  
signed to operate with input and output voltages from  
1 mV to 10 V.  
18  
The final circuit shown in Figure19 isolates a bipolar  
analog signal using only one optocoupler and generates  
two output signals: an analog signal proportional to the  
magnitude of the input signal and a digital signal cor-  
responding to the sign of the input signal. This circuit is  
especially useful for applications where the output of  
the circuit is going to be applied to an analog-to-digital  
converter. The primary advantages of this circuit are very  
good linearity and offset, with only a single gain adjust-  
ment and no offset or balance adjustments.  
HCNR200/201 SPICE Model  
Figure 20 is the net list of a SPICE macro-model for the  
HCNR200/201 high-linearity optocoupler. The macro-  
model accurately reflects the primary characteristics of  
the HCNR200/201 and should facilitate the design and  
understanding of circuits using the HCNR200/201 opto-  
coupler.  
To achieve very high linearity for bipolar signals, the  
gain should be exactly the same for both positive and  
negative input polarities. This circuit achieves excellent  
linearity by using a single optocoupler and a single input  
resistor, which guarantees identical gain for both posi-  
tive and negative polarities of the input signal. This pre-  
cise matching of gain for both polarities is much more  
difficult to obtain when separate components are used  
for the different input polarities, such as is the previous  
circuit.  
The circuit in Figure19 is actually very similar to the pre-  
vious circuit. As mentioned above, only one optocoupler  
is used. Because a photodiode can conduct current in  
only one direction, two diodes (D1 and D2) are used to  
steer the input current to the appropriate terminal of  
input photodiode PD1 to allow bipolar input currents.  
Normally the forward voltage drops of the diodes would  
cause a serious linearity or accuracy problem. However,  
an additional amplifier is used to provide an appropriate  
offset voltage to the other amplifiers that exactly cancels  
the diode voltage drops to maintain circuit accuracy.  
Diodes D3 and D4 perform two different functions; the  
diodes keep their respective amplifiers active indepen-  
dent of the input signal polarity (as in the previous cir-  
cuit), and they also provide the feedback signal to PD1  
that cancels the voltage drops of diodes D1 and D2.  
Either a comparator or an extra op-amp can be used to  
sense the polarity of the input signal and drive an inex-  
pensive digital optocoupler, like a 6N139.  
It is also possible to convert this circuit into a fully bipolar  
circuit (with a bipolar output signal) by using the output  
of the 6N139 to drive some CMOS switches to switch the  
polarity of PD2 depending on the polarity of the input  
signal, obtaining a bipolar output voltage swing.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. Obsoletes AV01-0567EN  
AV02-0886EN - December 10, 2011  
配单直通车
HCNR201-300E产品参数
型号:HCNR201-300E
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
包装说明:0.4 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8541.40.80.00
风险等级:0.49
配置:DUAL, SIMULTANEOUS OPERATION
最大正向电流:0.025 A
最大正向电压:1.85 V
最大绝缘电压:5000 V
JESD-609代码:e3
安装特点:THROUGH HOLE MOUNT
元件数量:1
功能数量:1
最高工作温度:85 °C
最低工作温度:-40 °C
光电设备类型:OPTOELECTRONIC DEVICE
子类别:Optocoupler - Transistor Outputs
表面贴装:NO
端子面层:Matte Tin (Sn)
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!