欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HCPL-3120-000E图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • HCPL-3120-000E 现货库存
  • 数量69850 
  • 厂家AVAGO/博通 
  • 封装DIP 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • HCPL-3120-500E图
  • 北京罗彻斯特电子科技有限公司

     该会员已使用本站18年以上
  • HCPL-3120-500E 现货库存
  • 数量10000 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号1549+ 
  • ▊真实原装现货▊可出售样品及配套服务
  • QQ:674627925QQ:674627925 复制
    QQ:372787046QQ:372787046 复制
  • 13261827936军工芯片优势 QQ:674627925QQ:372787046
  • HCPL-3120-500E图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • HCPL-3120-500E 现货库存
  • 数量500 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号20+ 
  • 绝对全新原装现货,欢迎来电查询
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • HCPL-3120图
  • 集好芯城

     该会员已使用本站13年以上
  • HCPL-3120 现货库存
  • 数量24630 
  • 厂家HP WINNER(HPWINNER) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HCPL-3120图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • HCPL-3120 现货库存
  • 数量1958 
  • 厂家AVAGO 
  • 封装原包 
  • 批号2021+ 
  • 现货特价来电准没错
  • QQ:1220294187QQ:1220294187 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-89345486 QQ:1220294187QQ:1017582752
  • HCPL-3120-500E图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • HCPL-3120-500E 现货库存
  • 数量38455 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024
  • HCPL-3120-500E图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-3120-500E 现货库存
  • 数量7620 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HCPL-3120图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • HCPL-3120 现货库存
  • 数量5000 
  • 厂家 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • HCPL-3120图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • HCPL-3120 现货库存
  • 数量5000 
  • 厂家 
  • 封装 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • HCPL-3120图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HCPL-3120 现货库存
  • 数量3550 
  • 厂家AGILENT 
  • 封装DIP-8 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • HCPL-3120-500E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • HCPL-3120-500E 现货库存
  • 数量8000 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号23+ 
  • 原装现货公司特价销售!
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • HCPL-3120-500E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • HCPL-3120-500E 现货库存
  • 数量9503 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • HCPL-3120-000E图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • HCPL-3120-000E 现货库存
  • 数量25500 
  • 厂家AVAGO/博通 
  • 封装DIP 
  • 批号 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • HCPL-3120图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • HCPL-3120 现货库存
  • 数量4075 
  • 厂家AVAGO 
  • 封装SOP 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • HCPL-3120-500E图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • HCPL-3120-500E 现货库存
  • 数量18500 
  • 厂家Avago(安华高) 
  • 封装SMD-8_6.3mm 
  • 批号24+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • HCPL-3120-000E图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • HCPL-3120-000E 现货库存
  • 数量7500 
  • 厂家AVAGO/安华高 
  • 封装DIP8 
  • 批号22+/23+ 
  • 绝对原装正品,可开专票!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • HCPL-3120-000E图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • HCPL-3120-000E 现货库存
  • 数量8000 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • HCPL-3120-000E图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • HCPL-3120-000E 现货库存
  • 数量9000 
  • 厂家AVAGO/安华高 
  • 封装DIP8 
  • 批号23+ 
  • 绝对原装正品,可开专票!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • HCPL-3120图
  • 深圳市英信达电子有限公司

     该会员已使用本站14年以上
  • HCPL-3120 现货库存
  • 数量7695 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号2016+ 
  • 全新原装现货
  • QQ:429657504QQ:429657504 复制
    QQ:147087677QQ:147087677 复制
  • 755-82539350 QQ:429657504QQ:147087677
  • HCPL-3120图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • HCPL-3120 现货库存
  • 数量8000 
  • 厂家HP WINNER(HPWINNER) 
  • 封装 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • HCPL-3120-500E图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • HCPL-3120-500E 现货热卖
  • 数量6800 
  • 厂家AVAGO/安华高 
  • 封装DIP-8 
  • 批号20+ 
  • 只做原装正品, 假一罚十,
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • HCPL-3120-500E图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • HCPL-3120-500E 优势库存
  • 数量4268 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号2120+ 
  • 只做原装,深圳现货
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • HCPL-3120-000E图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • HCPL-3120-000E 优势库存
  • 数量8000 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号23+ 
  • 一级代理原装现货
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • HCPL-3120-000E图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • HCPL-3120-000E 热卖库存
  • 数量6800 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号20+ 
  • 授权代理,做好每个客户是我们宗旨,欢迎来电
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • HCPL-3120-000E图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • HCPL-3120-000E 热卖库存
  • 数量
  • 厂家AVAGO 
  • 封装DIP 
  • 批号1705+ 
  • ?专注AVAGO!实单可谈!
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • HCPL-3120图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • HCPL-3120
  • 数量5300 
  • 厂家Agilent Technologies Inc 
  • 封装 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • HCPL-3120-000E图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • HCPL-3120-000E
  • 数量1500 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 0755-83950895 QQ:3003818780QQ:3003819484
  • HCPL-3120-060E图
  • 首天国际(深圳)集团有限公司

     该会员已使用本站17年以上
  • HCPL-3120-060E
  • 数量5000 
  • 厂家Avago Technologies 
  • 封装标准封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807088 QQ:528164397QQ:1318502189
  • HCPL-3120-000E.图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • HCPL-3120-000E.
  • 数量
  • 厂家专营AVAGO 
  • 封装长期收购 
  • 批号12+ 
  • 长期收购此型号/专收AVAGO全系列
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • HCPL-3120图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • HCPL-3120
  • 数量10000 
  • 厂家AVAGO/安华高 
  • 封装SOP-8 
  • 批号24+ 
  • 原装进口现货 假一罚十
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-13686833545 QQ:1902134819QQ:2881689472
  • HCPL-3120-500E图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • HCPL-3120-500E
  • 数量30000 
  • 厂家TI 
  • 封装SOT563 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • HCPL-3120-000E图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • HCPL-3120-000E
  • 数量35000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号22+ 
  • 原装现货,优势库存,当天可发货
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857

产品型号HCPL-3120的概述

芯片HCPL-3120的概述 HCPL-3120是一款广泛应用于电气隔离和信号传输的光耦合器,通常用于将数字信号与高压系统隔离开来,以提供人机安全和设备保护。该组件属于Avago(现为Broadcom)公司生产的重要光耦合器系列。HCPL-3120特别适合中高频开关电源、电机驱动控制及其他高频电气隔离应用。 本系列光耦合器的设计宗旨是能够在高电压环境下安全地传递信号,从而避免潜在的电气冲击。其核心构造是通过光耦合引发电流的光发射二极管与光电接收器的配合,实现信号的传递。这种结构不仅可以确保信号的准确传递,还可以有效地隔离高频噪声。 芯片HCPL-3120的详细参数 HCPL-3120的详细技术参数如下: - 输入电压(V_DD):4.5V至30V - 输出电压(V_O):0V至15V - 输入电流(I_F):10 mA(典型值) - 输出电流(I_C):最大 50 mA - 传输延迟:...

产品型号HCPL-3120的Datasheet PDF文件预览

H
2.0 Amp Output Current IGBT  
Gate Drive Optocoupler  
Technical Data  
HCPL-3120  
Features  
• 2.0 A Minimum Peak Output  
Current  
• 15 kV/µs Minimum Common  
Mode Rejection (CMR) at  
VCM = 1500 V  
• 0.5 V Maximum Low Level  
Output Voltage (VOL)  
Eliminates Need for  
Negative Gate Drive  
• ICC = 5 mA Maximum Supply  
Current  
• Under Voltage Lock-Out  
Protection (UVLO) with  
Hysteresis  
• Industrial Inverters  
• Switch Mode Power Supplies  
(SMPS)  
motor control inverter applica-  
tions. The high operating voltage  
range of the output stage pro-  
vides the drive voltages required  
by gate controlled devices. The  
voltage and current supplied by  
this optocoupler makes it ideally  
suited for directly driving IGBTs  
with ratings up to 1200 V/100 A.  
For IGBTs with higher ratings,  
the HCPL-3120 can be used to  
drive a discrete power stage  
Description  
The HCPL-3120 consists of a  
GaAsP LED optically coupled to  
an integrated circuit with a power  
output stage. This optocoupler is  
ideally suited for driving power  
IGBTs and MOSFETs used in  
which drives the IGBT gate.  
Functional Diagram  
• Wide Operating VCC Range:  
15 to 30 Volts  
• 500 ns Maximum Switching  
Speeds  
• Industrial Temperature  
Range: -40°C to 100°C  
• Safety Approval  
UL Recognized - 2500 V rms  
for 1 minute per UL1577  
CSA Approval  
N/C  
ANODE  
CATHODE  
N/C  
1
8
V
V
V
V
CC  
2
3
4
7
6
5
O
O
EE  
SHIELD  
VDE 0884 Approved with  
TRUTH TABLE  
VIORM = 630 V peak  
VCC - VEE  
VCC - VEE  
(Option 060 only)  
“POSITIVE GOING” “NEGATIVE GOING”  
LED  
OFF  
ON  
(i.e., TURN-ON)  
0 - 30 V  
(i.e., TURN-OFF)  
0 - 30 V  
VO  
LOW  
Applications  
• Isolated IGBT/MOSFET  
Gate Drive  
• AC and Brushless DC Motor  
Drives  
0 - 11 V  
0 - 9.5 V  
LOW  
ON  
11 - 13.5 V  
13.5 - 30 V  
9.5 - 12 V  
12 - 30 V  
TRANSITION  
HIGH  
ON  
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component  
to prevent damage and/or degradation which may be induced by ESD.  
5965-4779E  
1-182  
Ordering Information  
Specify Part Number followed by Option Number (if desired)  
Example  
HCPL-3120#XXX  
No Option = Standard DIP Package, 50 per tube.  
060 = VDE 0884 VIORM = 630 Vpeak Option, 50 per tube.  
300 = Gull Wing Surface Mount Option, 50 per tube.  
500 = Tape and Reel Packaging Option, 1000 per reel.  
Option data sheets available. Contact Hewlett-Packard sales representative or authorized distributor.  
9.40 (0.370)  
9.90 (0.390)  
Package Outline Drawings  
Standard DIP Package  
8
1
7
6
5
0.20 (0.008)  
0.33 (0.013)  
OPTION CODE*  
DATE CODE  
6.10 (0.240)  
6.60 (0.260)  
HP 3120Z  
YYWW  
7.36 (0.290)  
7.88 (0.310)  
5° TYP.  
2
3
4
PIN ONE  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
4.70 (0.185) MAX.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
*MARKING CODE LETTER FOR OPTION NUMBERS.  
PIN ONE  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
0.76 (0.030)  
1.40 (0.055)  
0.65 (0.025) MAX.  
2.28 (0.090)  
2.80 (0.110)  
Gull Wing Surface Mount Option 300  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
1.194 (0.047)  
7
6
5
8
4.826  
TYP.  
(0.190)  
HP 3120Z  
YYWW  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.398 (0.370)  
9.906 (0.390)  
1
3
2
4
MOLDED  
0.381 (0.015)  
0.635 (0.025)  
1.194 (0.047)  
1.778 (0.070)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
7.62 ± 0.25  
(0.047)  
MAX.  
(0.300 ± 0.010)  
0.20 (0.008)  
0.33 (0.013)  
4.19  
MAX.  
(0.165)  
0.635 ± 0.25  
(0.025 ± 0.010)  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.130  
(0.025 ± 0.005)  
12° NOM.  
2.540  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
TOLERANCES (UNLESS OTHERWISE SPECIFIED): xx.xx = 0.01  
xx.xxx = 0.005  
LEAD COPLANARITY  
MAXIMUM: 0.102 (0.004)  
1-183  
Reflow Temperature Profile  
Regulatory Information  
The HCPL-3120 has been  
approved by the following  
organizations:  
260  
240  
220  
T = 145°C, 1°C/SEC  
T = 115°C, 0.3°C/SEC  
200  
180  
160  
140  
120  
100  
UL  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
80  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
CSA  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
VDE (Option 060 Only)  
MAXIMUM SOLDER REFLOW THERMAL PROFILE  
(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS RECOMMENDED.)  
Approved under VDE 0884/06.92  
with VIORM = 630 V peak.  
VDE 0884 Insulation Characteristics (Option 060 Only)  
Description  
Symbol  
Characteristic Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V rms  
for rated mains voltage 450 V rms  
I-IV  
I-III  
Climatic Classification  
Pollution Degree (DIN VDE 0110/1.89)  
55/100/21  
2
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
630  
Vpeak  
Vpeak  
IORM  
V
IORM  
x 1.875 = V , 100% Production Test with t = 1 sec,  
V
PR  
1181  
PR  
m
Partial discharge <5 pC  
Input to Output Test Voltage, Method a*  
V
x 1.5 = V , Type and Sample Test, t = 60 sec,  
V
PR  
945  
Vpeak  
Vpeak  
IORM  
PR  
m
Partial discharge <5 pC  
Highest Allowable Overvoltage*  
V
IOTM  
6000  
(Transient Overvoltage t = 10 sec)  
ini  
Safety Limiting Values–Maximum Values Allowed in the Event  
of a Failure, Also See Figure 37, Thermal Derating Curve.  
Case Temperature  
Input Current  
Output Power  
T
175  
230  
600  
°C  
mA  
mW  
S
I
P
S, INPUT  
S, OUTPUT  
9
Insulation Resistance at T , V = 500 V  
R
S
10  
S
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, (VDE 0884) for a  
detailed description of Method a and Method b partial discharge test profiles.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
1-184  
Insulation and Safety Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Minimum External Air  
Gap (External  
Clearance)  
Minimum External  
Tracking (External  
Creepage)  
Minimum Internal Plastic  
Gap (Internal Clearance)  
L(101)  
7.1  
mm  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
L(102)  
7.4  
Measured from input terminals to output terminals,  
shortest distance path along body.  
0.08  
200  
Insulation thickness between emitter and detector;  
also known as distance through insulation.  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
Volts DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
IIIa  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Average Input Current  
Symbol  
TS  
TA  
IF(AVG)  
Min.  
-55.  
-40  
Max.  
125  
100  
25  
Units  
°C  
°C  
Note  
mA  
1
Peak Transient Input Current  
(<1 µs pulse width, 300 pps)  
Reverse Input Voltage  
“High” Peak Output Current  
“Low” Peak Output Current  
Supply Voltage  
IF(TRAN)  
VR  
IOH(PEAK)  
IOL(PEAK)  
(VCC - VEE)  
VO  
1.0  
5
2.5  
2.5  
35  
VCC  
250  
295  
A
Volts  
A
2
2
A
0
0
Volts  
Volts  
mW  
mW  
Output Voltage  
Output Power Dissipation  
Total Power Dissipation  
Lead Solder Temperature  
Solder Reflow Temperature Profile  
PO  
PT  
3
4
260°C for 10 sec., 1.6 mm below seating plane  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
(VCC - VEE)  
IF(ON)  
VF(OFF)  
TA  
Min.  
15  
7
-3.0  
-40  
Max.  
30  
16  
0.8  
100  
Units  
Volts  
mA  
V
Power Supply Voltage  
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
°C  
1-185  
Electrical Specifications (DC)  
Over recommended operating conditions (TA = -40 to 100°C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.0 to 0.8 V,  
VCC = 15 to 30 V, VEE = Ground) unless otherwise specified.  
Parameter  
High Level  
Output Current  
Symbol  
Min.  
0.5  
2.0  
0.5  
2.0  
Typ.* Max. Units  
Test Conditions  
VO = (VCC - 4 V)  
VO = (VCC - 15 V)  
VO = (VEE + 2.5 V)  
VO = (VEE + 15V)  
IO = -100 mA  
Fig.  
2, 3,  
17  
5, 6,  
18  
1, 3,  
19  
4, 6,  
20  
Note  
5
2
5
2
IOH  
1.5  
A
A
A
A
V
Low Level  
Output Current  
IOL  
2.0  
High Level Output  
Voltage  
Low Level Output  
Voltage  
High Level Supply  
Current  
Low Level Supply  
Current  
VOH  
VOL  
(VCC - 4) (VCC - 3)  
6, 7  
0.1  
2.0  
2.0  
2.3  
0.5  
5.0  
5.0  
5.0  
V
IO = 100 mA  
ICCH  
ICCL  
IFLH  
mA  
mA  
mA  
Output Open,  
IF = 7 to 16 mA  
Output Open,  
VF = -3.0 to +0.8 V  
IO = 0 mA,  
VO > 5 V  
7, 8  
Threshold Input  
Current Low to High  
9, 15,  
21  
Threshold Input  
Voltage High to Low  
Input Forward  
Voltage  
VFHL  
VF  
0.8  
1.2  
V
V
1.5  
1.8  
IF = 10 mA  
16  
Temperature  
VF/TA  
-1.6  
mV/°C IF = 10 mA  
Coefficient  
of Forward Voltage  
Input Reverse  
BVR  
5
V
Ir = 10 µA  
Breakdown Voltage  
Input Capacitance  
UVLO Threshold  
CIN  
VUVLO+  
VUVLO–  
60  
pF  
V
f = 1 MHz, VF = 0 V  
VO > 5 V, IF = 10 mA 22, 36  
11.0  
9.5  
12.3  
10.7  
1.6  
13.5  
12.0  
UVLO Hysteresis  
UVLOHYS  
* All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted.  
1-186  
Switching Specifications (AC)  
Over recommended operating conditions (TA = -40 to 100°C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.0 to 0.8 V,  
VCC = 15 to 30 V, VEE = Ground) unless otherwise specified.  
Parameter  
Symbol  
Min. Typ.* Max. Units  
Test Conditions  
Fig.  
Note  
Propagation Delay  
Time to High  
Output Level  
tPLH  
0.10  
0.30  
0.50  
µs  
Rg = 10 ,  
Cg = 10 nF,  
f = 10 kHz,  
10, 11,  
12, 13  
14, 23  
14  
Duty Cycle = 50%  
Propagation Delay  
Time to Low  
tPHL  
0.10  
0.27  
0.50  
µs  
Output Level  
Pulse Width  
Distortion  
Propagation Delay (tPHL - tPLH) -0.35  
PWD  
0.3  
µs  
µs  
15  
10  
0.35  
34,35  
Difference Between  
Any Two Parts  
PDD  
Rise Time  
Fall Time  
UVLO Turn On  
Delay  
UVLO Turn Off  
Delay  
Output High Level  
Common Mode  
Transient  
tr  
tf  
0.1  
0.1  
0.8  
µs  
µs  
µs  
23  
22  
tUVLO ON  
VO > 5 V, IF = 10 mA  
VO < 5 V, IF = 10 mA  
tUVLO OFF  
|CMH|  
0.6  
30  
15  
15  
kV/µs TA = 25°C,  
IF = 10 to 16 mA,  
24  
11, 12  
11, 13  
VCM = 1500 V,  
VCC = 30 V  
Immunity  
Output Low Level  
Common Mode  
Transient  
|CML|  
30  
kV/µs TA = 25°C,  
VCM = 1500 V,  
VF = 0 V,  
Immunity  
VCC = 30 V  
*All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted.  
Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max. Units  
Test Conditions  
Fig.  
Note  
Input-Output  
V
ISO  
2500  
VRMS RH < 50%,  
8, 9  
Momentary  
t = 1 min.,  
Withstand Voltage**  
Resistance  
(Input - Output)  
Capacitance  
(Input - Output)  
LED-to-Case  
Thermal Resistance  
LED-to-Detector  
TA = 25°C  
RI-O  
CI-O  
θLC  
θLD  
θDC  
1012  
0.6  
VI-O = 500 VDC  
9
pF  
f = 1 MHz  
467  
442  
126  
°C/W Thermocoupler  
28  
located at center  
underside of  
package  
°C/W  
°C/W  
Thermal Resistance  
Detector-to-Case  
Thermal Resistance  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to your equipment level safety specification or HP Application Note  
1074 entitled “Optocoupler Input-Output Endurance Voltage.”  
1-187  
Notes:  
loads VOH will approach VCC as IOH  
approaches zero amps.  
10. The difference between tPHL and tPLH  
between any two HCPL-3120 parts  
under the same test condition.  
11. Pins 1 and 4 need to be connected to  
LED common.  
12. Common mode transient immunity in  
the high state is the maximum  
tolerable dVCM/dt of the common  
mode pulse, VCM, to assure that the  
output will remain in the high state  
(i.e., VO > 15.0 V).  
13. Common mode transient immunity in  
a low state is the maximum tolerable  
dVCM/dt of the common mode pulse,  
VCM, to assure that the output will  
remain in a low state (i.e., VO < 1.0 V).  
14. This load condition approximates the  
gate load of a 1200V/75A IGBT.  
15. Pulse Width Distortion (PWD) is  
defined as |tPHL-tPLH| for any given  
device.  
1. Derate linearly above 70°C free-air  
temperature at a rate of 0.3 mA/°C.  
2. Maximum pulse width = 10 µs,  
maximum duty cycle = 0.2%. This  
value is intended to allow for  
component tolerances for designs  
with IO peak minimum = 2.0 A. See  
Applications section for additional  
details on limiting IOH peak.  
3. Derate linearly above 70°C free-air  
temperature at a rate of 4.8 mW/°C.  
4. Derate linearly above 70°C free-air  
temperature at a rate of 5.4 mW/°C.  
The maximum LED junction tempera-  
ture should not exceed 125°C.  
5. Maximum pulse width = 50 µs,  
maximum duty cycle = 0.5%.  
7. Maximum pulse width = 1 ms,  
maximum duty cycle = 20%.  
8. In accordance with UL1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
3000 Vrms for 1 second (leakage  
detection current limit, II-O 5 µA).  
This test is performed before the  
100% production test for partial  
discharge (method b) shown in the  
VDE 0884 Insulation Characteristic  
Table, if applicable.  
9. Device considered a two-terminal  
device: pins 1, 2, 3, and 4 shorted  
together and pins 5, 6, 7, and 8  
shorted together.  
6. In this test VOH is measured with a dc  
load current. When driving capacitive  
0
-1  
2.0  
I
I
V
V
= 7 to 16 mA  
= -100 mA  
I
= 7 to 16 mA  
F
OUT  
F
V
V
V
= (V  
- 4 V)  
OUT  
CC  
100 °C  
25 °C  
-40 °C  
= 15 to 30 V  
= 0 V  
= 15 to 30 V  
= 0 V  
CC  
EE  
CC  
EE  
1.8  
1.6  
1.4  
-2  
-3  
-4  
-1  
-2  
I
V
V
= 7 to 16 mA  
= 15 to 30 V  
F
CC  
-3  
-4  
1.2  
1.0  
-5  
-6  
= 0 V  
EE  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
I
– OUTPUT HIGH CURRENT – A  
OH  
A
A
Figure 1. VOH vs. Temperature.  
Figure 2. IOH vs. Temperature.  
Figure 3. VOH vs. IOH  
.
0.25  
4
4
V
I
= -3.0 to 0.8 V  
V
V
V
V
= -3.0 to 0.8 V  
V
V
V
= -3.0 to 0.8 V  
= 15 to 30 V  
= 0 V  
F(OFF)  
= 100 mA  
F(OFF)  
= 2.5 V  
F(OFF)  
CC  
EE  
OUT  
OUT  
V
= 15 to 30 V  
= 0 V  
= 15 to 30 V  
= 0 V  
CC  
EE  
0.20  
0.15  
0.10  
CC  
EE  
V
3
2
3
2
1
0
1
0
0.05  
0
100 °C  
25 °C  
-40 °C  
-40 -20  
0
20 40 60 80 100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
-40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
I
– OUTPUT LOW CURRENT – A  
T
– TEMPERATURE – °C  
A
OL  
A
Figure 4. VOL vs. Temperature.  
Figure 5. IOL vs. Temperature.  
Figure 6. VOL vs. IOL.  
1-188  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
5
4
3
2
V
V
= 15 TO 30 V  
= 0 V  
CC  
EE  
I
I
I
I
CCH  
CCL  
CCH  
CCL  
OUTPUT = OPEN  
V
V
= 30 V  
= 0 V  
= 10 mA for I  
CC  
EE  
I
I
T
= 10 mA for I  
CCH  
F
F
2.0  
1.5  
2.0  
1.5  
= 0 mA for I  
CCL  
1
0
I
I
F
F
CCH  
= 25 °C  
A
EE  
= 0 mA for I  
CCL  
V
= 0 V  
15  
20  
– SUPPLY VOLTAGE – V  
25  
30  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
T
V
A
A
CC  
Figure 7. ICC vs. Temperature.  
Figure 8. ICC vs. VCC  
.
Figure 9. IFLH vs. Temperature.  
500  
500  
500  
I
T
= 10 mA  
V
= 30 V, V  
= 0 V  
I = 10 mA  
F
CC  
Rg = 10 , Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
F
CC  
Rg = 10 , Cg = 10 nF  
= 25 °C  
EE  
T
T
PLH  
PHL  
= 25 °C  
V
= 30 V, V  
= 0 V  
EE  
A
Rg = 10 W  
Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
T
A
400  
300  
400  
300  
400  
300  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
200  
100  
200  
100  
T
T
T
T
PLH  
PHL  
PLH  
PHL  
6
8
10  
12  
14  
16  
15  
20  
25  
30  
-40 -20  
0
20 40 60 80 100  
I
– FORWARD LED CURRENT – mA  
V
– SUPPLY VOLTAGE – V  
T
– TEMPERATURE – °C  
F
CC  
A
Figure 10. Propagation Delay vs. VCC  
.
Figure 11. Propagation Delay vs. IF.  
Figure 12. Propagation Delay vs.  
Temperature.  
500  
500  
30  
V
T
= 30 V, V  
= 25 °C  
= 10 mA  
= 0 V  
EE  
V
T
= 30 V, V  
= 25 °C  
= 10 mA  
= 0 V  
EE  
CC  
A
CC  
A
25  
20  
15  
10  
I
I
F
F
400  
300  
Cg = 10 nF  
400  
300  
Rg = 10 Ω  
DUTY CYCLE = 50%  
f = 10 kHz  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
200  
100  
5
0
T
T
T
T
PLH  
PHL  
PLH  
PHL  
0
20  
40  
60  
80  
100  
0
I
1
2
3
4
5
0
10  
20  
30  
40  
50  
Cg – LOAD CAPACITANCE – nF  
– FORWARD LED CURRENT – mA  
Rg – SERIES LOAD RESISTANCE – Ω  
F
Figure 13. Propagation Delay vs. Rg.  
Figure 14. Propagation Delay vs. Cg.  
Figure 15. Transfer Characteristics.  
1-189  
1000  
T
= 25°C  
A
100  
10  
I
F
1
2
3
4
8
+
V
F
0.1 µF  
+
1.0  
0.1  
4 V  
7
6
5
I
= 7 to  
16 mA  
F
V
= 15  
+
CC  
to 30 V  
0.01  
I
OH  
0.001  
1.10 1.20  
1.30  
1.40  
1.50  
1.60  
V
– FORWARD VOLTAGE – VOLTS  
F
Figure 16. Input Current vs. Forward  
Voltage.  
Figure 17. IOH Test Circuit.  
1
2
3
4
8
1
8
0.1 µF  
0.1 µF  
I
OL  
V
OH  
2
7
6
5
7
6
5
V
= 15  
+
CC  
to 30 V  
I
= 7 to  
16 mA  
F
V
= 15  
+
CC  
to 30 V  
2.5 V  
+
3
4
100 mA  
Figure 18. IOL Test Circuit.  
Figure 19. VOH Test Circuit.  
1
2
3
4
8
1
2
8
0.1 µF  
0.1 µF  
100 mA  
7
6
5
7
6
5
V
= 15  
V
= 15  
+
+
CC  
to 30 V  
CC  
I
F
V
> 5 V  
to 30 V  
O
3
4
V
OL  
Figure 21. IFLH Test Circuit.  
Figure 20. VOL Test Circuit.  
1
2
8
0.1 µF  
7
+
I
= 10 mA  
V
F
CC  
V
> 5 V  
O
3
4
6
5
Figure 22. UVLO Test Circuit.  
1-190  
1
2
3
4
8
7
6
5
I
0.1 µF  
F
I
= 7 to 16 mA  
F
V
= 15  
CC  
to 30 V  
+
t
t
f
r
500 Ω  
+
V
O
90%  
10 KHz  
50% DUTY  
CYCLE  
10 Ω  
10 nF  
50%  
10%  
V
OUT  
t
t
PHL  
PLH  
Figure 23. tPLH, tPHL, tr, and tf Test Circuit and Waveforms.  
V
CM  
δV  
δt  
V
CM  
1
2
3
4
8
7
6
5
=
t  
I
F
0.1 µF  
A
B
0 V  
t  
+
+
V
O
5 V  
V
= 30 V  
CC  
V
V
OH  
V
O
SWITCH AT A: I = 10 mA  
F
V
O
OL  
SWITCH AT B: I = 0 mA  
F
+
V
= 1500 V  
CM  
Figure 24. CMR Test Circuit and Waveforms.  
IGBT collector or emitter traces  
close to the HCPL-3120 input as  
this can result in unwanted  
coupling of transient signals into  
the HCPL-3120 and degrade  
performance. (If the IGBT drain  
must be routed near the HCPL-  
3120 input, then the LED should  
be reverse-biased when in the off  
state, to prevent the transient  
signals coupled from the IGBT  
drain from turning on the  
Applications Information  
Eliminating Negative IGBT  
Gate Drive  
To keep the IGBT firmly off, the  
HCPL-3120 has a very low  
maximum VOL specification of  
0.5 V. The HCPL-3120 realizes  
this very low VOL by using a  
DMOS transistor with 1 Ω  
gate is shorted to the emitter by  
Rg + 1 . Minimizing Rg and the  
lead inductance from the HCPL-  
3120 to the IGBT gate and  
emitter (possibly by mounting the  
HCPL-3120 on a small PC board  
directly above the IGBT) can  
eliminate the need for negative  
IGBT gate drive in many applica-  
tions as shown in Figure 25. Care  
should be taken with such a PC  
board design to avoid routing the  
(typical) on resistance in its pull  
down circuit. When the HCPL-  
3120 is in the low state, the IGBT  
HCPL-3120.)  
HCPL-3120  
+5 V  
1
2
3
4
8
V
= 18 V  
CC  
+ HVDC  
270 Ω  
0.1 µF  
+
7
Rg  
Q1  
3-PHASE  
AC  
CONTROL  
INPUT  
6
5
74XXX  
OPEN  
COLLECTOR  
Q2  
- HVDC  
Figure 25. Recommended LED Drive and Application Circuit.  
1-191  
Selecting the Gate Resistor  
(Rg) to Minimize IGBT  
Switching Losses.  
Step 1: Calculate Rg Minimum  
from the IOL Peak Specifica-  
tion. The IGBT and Rg in Figure  
26 can be analyzed as a simple  
RC circuit with a voltage supplied  
by the HCPL-3120.  
The VOL value of 2 V in the pre-  
vious equation is a conservative  
value of VOL at the peak current  
of 2.5A (see Figure 6). At lower  
Rg values the voltage supplied by  
the HCPL-3120 is not an ideal  
voltage step. This results in lower  
peak currents (more margin)  
than predicted by this analysis.  
When negative gate drive is not  
used VEE in the previous equation  
is equal to zero volts.  
PT = PE + PO  
PE = IF V Duty Cycle  
F
PO = PO(BIAS) + PO (SWITCHING)  
= ICC (VCC - VEE)  
+ ESW(RG, QG) f  
For the circuit in Figure 26 with IF  
(worst case) = 16 mA, Rg = 8 ,  
Max Duty Cycle = 80%, Qg = 500  
nC, f = 20 kHz and TA max = 85C:  
(V – VEE - V )  
Rg ––CC–––––––––OL––  
IOLPEAK  
PE = 16 mA 1.8 V 0.8 = 23 mW  
(V – VEE - 2 V)  
= ––CC––––––––––––  
IOLPEAK  
Step 2: Check the HCPL-3120  
Power Dissipation and  
PO = 4.25 mA 20 V  
+ 5.2 µJ 20 kHz  
= 85 mW + 104 mW  
= 189 mW  
Increase Rg if Necessary. The  
HCPL-3120 total power dissipa-  
tion (PT) is equal to the sum of  
the emitter power (PE) and the  
output power (PO):  
(15 V + 5 V - 2 V)  
= ––––––––––––––––––  
2.5 A  
> 178 mW (PO(MAX) @ 85C  
= 250 mW15C*4.8 mW/C)  
= 7.2 8 Ω  
HCPL-3120  
+5 V  
1
2
3
4
8
V
= 15 V  
CC  
+ HVDC  
270 Ω  
0.1 µF  
+
7
Rg  
Q1  
= -5 V  
3-PHASE  
AC  
CONTROL  
INPUT  
6
5
V
EE  
+
74XXX  
OPEN  
COLLECTOR  
Q2  
- HVDC  
Figure 26. HCPL-3120 Typical Application Circuit with Negative IGBT Gate Drive.  
PO Parameter  
Description  
Supply Current  
Positive Supply Voltage  
Negative Supply Voltage  
PE  
Parameter  
Description  
LED Current  
LED On Voltage  
ICC  
VCC  
VEE  
IF  
VF  
Duty Cycle  
Maximum LED  
Duty Cycle  
ESW(Rg,Qg)  
Energy Dissipated in the HCPL-3120 for each  
IGBT Switching Cycle (See Figure 27)  
f
Switching Frequency  
1-192  
The value of 4.25 mA for ICC in  
the previous equation was  
obtained by derating the ICC max  
of 5 mA (which occurs at -40°C)  
to ICC max at 85C (see Figure 7).  
shown in Figure 29. The HCPL-  
3120 improves CMR performance  
by using a detector IC with an  
optically transparent Faraday  
shield, which diverts the capaci-  
tively coupled current away from  
the sensitive IC circuitry. How  
From the thermal mode in Figure  
28 the LED and detector IC  
junction temperatures can be  
expressed as:  
TJE = P (θLC||(θLD + θDC) + θCA)  
E
Since PO for this case is greater  
than PO(MAX), Rg must be  
increased to reduce the HCPL-  
3120 power dissipation.  
θLC * θDC  
θLC + θDC + θLD  
+ PD  
(
–––––––––––––––– + θCA  
)
+ T  
A ever, this shield does not  
eliminate the capacitive coupling  
between the LED and optocoup-  
ler pins 5-8 as shown in  
θLC  
θ
TJD = PE  
(
–––––––––DC––––– + θCA  
)
θLC + θDC + θLD  
PO(SWITCHING MAX)  
= PO(MAX) - PO(BIAS)  
= 178 mW - 85 mW  
= 93 mW  
Figure 30. This capacitive  
coupling causes perturbations in  
the LED current during common  
mode transients and becomes the  
major source of CMR failures for  
a shielded optocoupler. The main  
design objective of a high CMR  
LED drive circuit becomes  
keeping the LED in the proper  
state (on or off) during common  
mode transients. For example,  
the recommended application  
circuit (Figure 25), can achieve  
15 kV/µs CMR while minimizing  
component complexity.  
+ P (θDC||(θLD + θLC) + θCA) + T  
D
A
Inserting the values for θLC and  
θDC shown in Figure 28 gives:  
PO(SWITCHINGMAX)  
ESW(MAX) = –––––––––––––––  
f
93 mW  
TJE = P (256°C/W + θCA)  
E
= ––––––– = 4.65 µW  
+ P (57°C/W + θCA) + TA  
D
20 kHz  
TJD = P (57°C/W + θCA)  
E
+ P (111°C/W + θCA) + TA  
D
For Qg = 500 nC, from Figure  
27, a value of ESW = 4.65 µW  
gives a Rg = 10.3 .  
For example, given PE = 45 mW,  
PO = 250 mW, TA = 70°C and θCA  
= 83°C/W:  
Thermal Model  
The steady state thermal model  
for the HCPL-3120 is shown in  
Figure 28. The thermal resistance  
values given in this model can be  
used to calculate the tempera-  
tures at each node for a given  
operating condition. As shown by  
the model, all heat generated  
flows through θCA which raises  
the case temperature TC  
accordingly. The value of θCA  
depends on the conditions of the  
board design and is, therefore,  
determined by the designer. The  
value of θCA = 83°C/W was  
obtained from thermal measure-  
ments using a 2.5 x 2.5 inch PC  
board, with small traces (no  
ground plane), a single HCPL-  
3120 soldered into the center of  
the board and still air. The  
absolute maximum power  
dissipation derating specifications  
assume a θCAvalue of 83°C/W.  
TJE = PE 339°C/W + PD 140°C/W + T  
A
Techniques to keep the LED in  
the proper state are discussed in  
the next two sections.  
= 45 mW339°C/W + 250 mW  
140°C/W + 70°C = 120°C  
TJD = PE 140°C/W + PD 194°C/W + T  
A
= 45 mW140C/W + 250 mW  
194°C/W + 70°C = 125°C  
14  
Qg = 100 nC  
12  
TJE and TJD should be limited to  
125C based on the board layout  
and part placement (θCA) specific  
to the application.  
Qg = 500 nC  
Qg = 1000 nC  
10  
V
V
= 19 V  
= -9 V  
CC  
EE  
8
6
4
LED Drive Circuit  
Considerations for Ultra  
2
0
High CMR Performance.  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive  
coupling from the input side of  
the optocoupler, through the  
package, to the detector IC as  
0
10  
20  
30  
40  
50  
Rg – GATE RESISTANCE Ω  
Figure 27. Energy Dissipated in the  
HCPL-3120 for Each IGBT Switching  
Cycle.  
1-193  
θ
= 442 °C/W  
LD  
TJE = LED junction temperature  
TJD = detector IC junction temperature  
T
T
JD  
JE  
TC = case temperature measured at the center of the package bottom  
θLC = LED-to-case thermal resistance  
θLD = LED-to-detector thermal resistance  
θ
= 467 °C/W  
θ
= 126 °C/W  
DC  
LC  
T
C
θDC = detector-to-case thermal resistance  
θ
= 83 °C/W*  
CA  
θCA = case-to-ambient thermal resistance  
θCA will depend on the board design and the placement of the part.  
T
A
Figure 28. Thermal Model.  
CMR with the LED On  
(CMRH).  
A high CMR LED drive circuit  
must keep the LED on during  
common mode transients. This is  
achieved by overdriving the LED  
current beyond the input  
threshold so that it is not pulled  
below the threshold during a  
transient. A minimum LED cur-  
rent of 10 mA provides adequate  
margin over the maximum IFLH of  
5 mA to achieve 15 kV/µs CMR.  
The open collector drive circuit,  
shown in Figure 32, cannot keep  
the LED off during a +dVcm/dt  
transient, since all the current  
flowing through CLEDN must be  
supplied by the LED, and it is not  
recommended for applications  
requiring ultra high CMRL  
performance. Figure 33 is an  
alternative drive circuit which,  
like the recommended application  
circuit (Figure 25), does achieve  
ultra high CMR performance by  
shunting the LED in the off state.  
coupler output will go into the  
low state with a typical delay,  
UVLO Turn Off Delay, of 0.6 µs.  
When the HCPL-3120 output is in  
the low state and the supply  
voltage rises above the HCPL-  
3120 VUVLO+ threshold (11.0 <  
VUVLO+ < 13.5) the optocoupler  
output will go into the high state  
(assumes LED is “ON”) with a  
typical delay, UVLO Turn On  
Delay of 0.8 µs.  
CMR with the LED Off  
(CMRL).  
IPM Dead Time and  
Propagation Delay  
Specifications.  
Under Voltage Lockout  
Feature.  
The HCPL-3120 contains an  
A high CMR LED drive circuit  
must keep the LED off (VF ≤  
VF(OFF)) during common mode  
transients. For example, during a  
-dVcm/dt transient in Figure 31,  
the current flowing through CLEDP  
also flows through the RSAT and  
VSAT of the logic gate. As long as  
the low state voltage developed  
across the logic gate is less than  
VF(OFF), the LED will remain off  
and no common mode failure will  
occur.  
The HCPL-3120 includes a  
under voltage lockout (UVLO)  
feature that is designed to protect  
the IGBT under fault conditions  
which cause the HCPL-3120  
supply voltage (equivalent to the  
fully-charged IGBT gate voltage)  
to drop below a level necessary to  
keep the IGBT in a low resistance  
state. When the HCPL-3120  
output is in the high state and the  
supply voltage drops below the  
HCPL-3120 VUVLO– threshold  
(9.5 < VUVLO– < 12.0) the opto-  
Propagation Delay Difference  
(PDD) specification intended to  
help designers minimize “dead  
time” in their power inverter  
designs. Dead time is the time  
period during which both the  
high and low side power  
transistors (Q1 and Q2 in Figure  
25) are off. Any overlap in Q1  
and Q2 conduction will result in  
large currents flowing through  
the power devices between the  
high and low voltage motor rails.  
1-194  
C
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
LEDO1  
C
C
C
C
LEDP  
LEDP  
C
LEDO2  
LEDN  
LEDN  
SHIELD  
Figure 29. Optocoupler Input to Output  
Capacitance Model for Unshielded Optocouplers.  
Figure 30. Optocoupler Input to Output  
Capacitance Model for Shielded Optocouplers.  
+5 V  
1
2
3
4
8
7
6
5
0.1  
µF  
+
C
I
LEDP  
V
= 18 V  
CC  
+
1
2
3
4
8
7
6
5
LEDP  
V
SAT  
+5 V  
C
LEDP  
• • •  
• • •  
C
LEDN  
Rg  
SHIELD  
C
I
LEDN  
Q1  
LEDN  
* THE ARROWS INDICATE THE DIRECTION  
OF CURRENT FLOW DURING –dV /dt.  
SHIELD  
CM  
+
V
CM  
Figure 31. Equivalent Circuit for Figure 25 During  
Common Mode Transient.  
Figure 32. Not Recommended Open  
Collector Drive Circuit.  
which is specified to be 350 ns  
over the operating temperature  
range of -40°C to 100°C.  
To minimize dead time in a given  
design, the turn on of LED2  
should be delayed (relative to the  
turn off of LED1) so that under  
worst-case conditions, transistor  
Q1 has just turned off when  
transistor Q2 turns on, as shown  
in Figure 34. The amount of delay  
necessary to achieve this condi-  
tions is equal to the maximum  
value of the propagation delay  
1
2
3
4
8
7
6
5
+5 V  
C
C
LEDP  
Delaying the LED signal by the  
maximum propagation delay  
difference ensures that the  
minimum dead time is zero, but it  
does not tell a designer what the  
maximum dead time will be. The  
maximum dead time is equivalent  
to the difference between the  
LEDN  
SHIELD  
difference specification, PDDMAX  
,
Figure 33. Recommended LED Drive  
Circuit for Ultra-High CMR.  
1-195  
Note that the propagation delays  
used to calculate PDD and dead  
time are taken at equal tempera-  
tures and test conditions since  
the optocouplers under consider-  
ation are typically mounted in  
close proximity to each other and  
are switching identical IGBTs.  
maximum and minimum propaga-  
tion delay difference specifica-  
tions as shown in Figure 35. The  
maximum dead time for the  
HCPL-3120 is 700 ns (= 350 ns -  
(-350 ns)) over an operating  
temperature range of -40°C to  
100°C.  
14  
12  
I
LED1  
V
OUT1  
(12.3, 10.8)  
Q1 ON  
10  
8
(10.7, 9.2)  
Q1 OFF  
Q2 ON  
6
Q2 OFF  
V
OUT2  
4
I
LED2  
2
0
t
PHL MAX  
(10.7, 0.1)  
(12.3, 0.1)  
15  
t
PLH MIN  
0
5
10  
20  
PDD* MAX = (t - t  
)
= t  
- t  
PHL MAX PLH MIN  
PHL PLH MAX  
(V  
- V  
) – SUPPLY VOLTAGE – V  
EE  
CC  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS  
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 34. Minimum LED Skew for Zero Dead Time.  
Figure 36. Under Voltage Lock Out.  
I
800  
LED1  
P
(mW)  
(mA)  
S
700  
600  
500  
400  
300  
I
S
V
OUT1  
Q1 ON  
Q1 OFF  
Q2 ON  
Q2 OFF  
V
OUT2  
200  
100  
0
I
LED2  
t
PHL MIN  
t
PHL MAX  
t
PLH  
MIN  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
T
S
t
PLH MAX  
(t  
t
)
PHL- PLH MAX  
Figure 37. Thermal Derating Curve,  
Dependence of Safety Limiting Value  
with Case Temperature per VDE 0884.  
PDD* MAX  
MAXIMUM DEAD TIME  
(DUE TO OPTOCOUPLER)  
= (t  
- t  
) + (t  
- t )  
PLH MAX PLH MIN  
PHL MAX PHL MIN  
= (t  
- t  
) – (t  
- t  
)
PHL MAX PLH MIN PHL MIN PLH MAX  
= PDD* MAX – PDD* MIN  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION  
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 35. Waveforms for Dead Time.  
1-196  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  

    HCPL-3120相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504