欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HCPL-3180-000E图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • HCPL-3180-000E 现货库存
  • 数量29500 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • HCPL-3180-500E图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • HCPL-3180-500E 现货库存
  • 数量4132 
  • 厂家AVAGO 
  • 封装SOP8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • HCPL-3180图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • HCPL-3180
  • 数量968 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:43元
  • QQ:97671959QQ:97671959 复制
  • 171-4729-9698(微信同号) QQ:97671959
  • HCPL-3180图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • HCPL-3180
  • 数量968 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:43元
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805
  • HCPL-3180图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • HCPL-3180
  • 数量5800 
  • 厂家AVAGO 
  • 封装DIP/SOP 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • HCPL-3180-000E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCPL-3180-000E
  • 数量15196 
  • 厂家AVAGO/安华高 
  • 封装DIP 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • HCPL-3180图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • HCPL-3180
  • 数量6890000 
  • 厂家Agilent 
  • 封装SOP8 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • HCPL-3180图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCPL-3180
  • 数量196 
  • 厂家AVAGO/安华高 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HCPL-3180#300图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • HCPL-3180#300
  • 数量5000 
  • 厂家AGILENT 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • HCPL-3180V图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • HCPL-3180V
  • 数量17898 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • HCPL-3180V-000E图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • HCPL-3180V-000E
  • 数量10008 
  • 厂家√ 欧美㊣品 
  • 封装贴◆插 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • HCPL-3180-000E图
  • 深圳市誉兴微科技有限公司

     该会员已使用本站4年以上
  • HCPL-3180-000E
  • 数量12600 
  • 厂家AVAGO/安华高 
  • 封装DIP 
  • 批号22+ 
  • 深圳原装现货,支持实单
  • QQ:2252757071QQ:2252757071 复制
  • 0755-82579431 QQ:2252757071
  • HCPL-3180-500NE图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • HCPL-3180-500NE
  • 数量2400 
  • 厂家AVAGO 
  • 封装SOP-8 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • HCPL-3180图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • HCPL-3180
  • 数量10000 
  • 厂家agilent 
  • 封装DIP8 
  • 批号16+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • HCPL-3180-000E图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • HCPL-3180-000E
  • 数量660000 
  • 厂家AVAGO(安华高) 
  • 封装DIP-8 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • HCPL-3180图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCPL-3180
  • 数量98500 
  • 厂家Agilent 
  • 封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • HCPL-3180-000E图
  • 北京杰创宏达电子有限公司

     该会员已使用本站12年以上
  • HCPL-3180-000E
  • 数量1600 
  • 厂家AVAGO 
  • 封装光藕 
  • 批号2024+ 
  • 授权代理商
  • QQ:2355548602QQ:2355548602 复制
    QQ:2355548609QQ:2355548609 复制
  • 010-61190909 QQ:2355548602QQ:2355548609
  • HCPL-3180图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCPL-3180
  • 数量85000 
  • 厂家AVAGO/安华高 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HCPL-3180-000E图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HCPL-3180-000E
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HCPL-3180-000E图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • HCPL-3180-000E
  • 数量32000 
  • 厂家Avago(安华高) 
  • 封装DIP 
  • 批号2年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • HCPL-3180图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • HCPL-3180
  • 数量12000 
  • 厂家AGILENT 
  • 封装SOP-8 
  • 批号19+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • HCPL-3180图
  • 深圳市力拓辉电子有限公司

     该会员已使用本站13年以上
  • HCPL-3180
  • 数量50 
  • 厂家AVAGO 
  • 封装 
  • 批号21+ 
  • 全新原装正品鄙视假货
  • QQ:2881140004QQ:2881140004 复制
    QQ:2881140005QQ:2881140005 复制
  • 755-82787180 QQ:2881140004QQ:2881140005
  • HCPL-3180图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • HCPL-3180
  • 数量
  • 厂家AVAGO 
  • 封装雅维特电子全新正品 
  • 批号83000 
  • QQ:767621813QQ:767621813 复制
    QQ:1152937841QQ:1152937841 复制
  • 0755-83975781 QQ:767621813QQ:1152937841
  • HCPL-3180图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • HCPL-3180
  • 数量26700 
  • 厂家Avago(安华高) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • HCPL-3180-000E图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • HCPL-3180-000E
  • 数量29500 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • HCPL-3180图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • HCPL-3180
  • 数量865000 
  • 厂家AVAGO/安华高 
  • 封装SOP8 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • HCPL-3180-360E图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • HCPL-3180-360E
  • 数量8800 
  • 厂家AVAGO/安华高 
  • 封装SOP8 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:840638855QQ:840638855 复制
  • 0755-84876394 QQ:840638855
  • HCPL-3180图
  • 深圳市晨豪科技有限公司

     该会员已使用本站12年以上
  • HCPL-3180
  • 数量89630 
  • 厂家AGILENT 
  • 封装DIP-8 
  • 批号23+ 
  • 当天发货全新原装现货
  • QQ:1743149803QQ:1743149803 复制
    QQ:1852346906QQ:1852346906 复制
  • 0755-82732291 QQ:1743149803QQ:1852346906
  • HCPL-3180-000E图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • HCPL-3180-000E
  • 数量7536 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号23+ 
  • 高速光耦合器绝对进口原装现货
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • HCPL-3180图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • HCPL-3180
  • 数量3200 
  • 厂家Agilent 
  • 封装DIP8 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • HCPL-3180图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • HCPL-3180
  • 数量68000 
  • 厂家AGILENT 
  • 封装DIP8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • HCPL-3180图
  • 集好芯城

     该会员已使用本站13年以上
  • HCPL-3180
  • 数量16562 
  • 厂家AVAGO/安华高 
  • 封装DIP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HCPL-3180-360E图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • HCPL-3180-360E
  • 数量5000 
  • 厂家Avago Technologies 
  • 封装标准封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189
  • HCPL-3180-000E图
  • 深圳市芯达科技有限公司

     该会员已使用本站9年以上
  • HCPL-3180-000E
  • 数量15000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号2018+ 
  • 一级代理AVAGO品牌价格绝对优势
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • HCPL-3180-360E图
  • 首天国际(深圳)集团有限公司

     该会员已使用本站17年以上
  • HCPL-3180-360E
  • 数量5000 
  • 厂家Avago Technologies 
  • 封装标准封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807088 QQ:528164397QQ:1318502189
  • HCPL-3180图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • HCPL-3180
  • 数量16210 
  • 厂家Agilent 
  • 封装DIP8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • HCPL-3180-500E图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-3180-500E
  • 数量2000 
  • 厂家AVAGO 
  • 封装SOP-8 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084

产品型号HCPL-3180的概述

芯片HCPL-3180的概述 HCPL-3180是一种光耦合器,通常用于电气隔离和信号传输。该芯片能够在两个电路之间提供高隔离的信号传输,广泛应用于工业、医疗和消费电子设备中。芯片的核心功能是在不同电压域之间安全传输信号,保护微处理器和其他敏感元件免受高电压干扰。在数字通信和控制系统中,HCPL-3180以其优良的线性特性和高带宽,成为了工程师设计方案的重要选择。 HCPL-3180通过发光二极管(LED)和光电晶体管相结合的方式工作。当LED接收到电流时,它会发出与输入电压成比例的光信号,光信号被对侧的光电晶体管接收,并转换为输出电流。这种技术使得HCPL-3180能够在隔离环境中实现可靠的信号传输。 芯片HCPL-3180的详细参数 HCPL-3180的主要规格参数包括: 1. 工作电压: - 输入侧:4.5V至20V - 输出侧:15V至30V 2. 隔离电压: ...

产品型号HCPL-3180的Datasheet PDF文件预览

Agilent HCPL-3180 2 Amp Output  
Current, High Speed IGBT/MOSFET Gate  
Drive Optocoupler  
Data Sheet  
Features  
2 A minimum peak output current  
250 KHz maximum switching  
speed  
Description  
High speed response: 200 ns max  
This family of devices consists of  
a GaAsP LED. The LED is  
optically coupled to an  
integrated circuit with a power  
stage. These optocouplers are  
ideally suited for high frequency  
driving of power IGBT and  
MOSFETs used in Plasma  
Display Panels, high  
Propagation delay over  
temperature range  
VCC  
VO  
N/C  
1
2
3
4
8
7
6
5
ANODE  
10 KV/us minimum common mode  
rejection (CMR) at V =1500 V  
CM  
CATHODE  
Under voltage lockout protection  
VO  
(UVLO) with hysteresis  
VEE Wide operating temperature  
N/C  
°
range: -40 °C to +100 C  
Wide V operating range:  
CC  
performance DC/DC convertors  
and motor control invertor  
applications.  
Functional Diagram  
10 V to 20 V  
20 ns typ pulse width distortion  
Safety Approvals:  
UL approval pending  
Ordering Information  
Specify part number followed by  
option number (if desired):  
3750 V  
CSA approval  
for 1 minute.  
RMS  
DIN EN 60747-5-2 approval  
pending  
Example : HCPL-3180-XXX  
No option = Standard DIP  
package, 50 per tube.  
Applications  
300 = Gull Wing Surface Mount  
Option, 50 per tube.  
Plasma Display Panel (PDP)  
Distributed power architecture  
(DPA)  
Switch mode rectifier (SMR)  
High performance DC/DC  
convertor  
High performance switch mode  
power supply (SMPS)  
High performance uninterruptible  
power supply (UPS)  
500 = Tape and Reel Packaging  
Option.  
060 = DIN EN 60747-5-2 Option,  
VIORM=630 Vpeak (pending  
approval)  
Isolated IGBT/Power MOSFET  
gate drive  
A 0.1 uF bypass capacitor must be connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/  
or degradation which may be induced by ESD.  
HCPL-3180 Standard DIP Package  
HCPL-3180 Gull Wing Surface Mount Option 300  
2
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3˚C + 1˚C/–0.5˚C/SEC.  
REFLOW HEATING RATE 2.5˚C 0.5˚C/SEC.  
PEAK  
TEMP.  
245˚C  
PEAK  
TEMP.  
240˚C  
PEAK  
TEMP.  
230˚C  
200  
100  
2.5˚C 0.5˚C/SEC.  
SOLDERING  
TIME  
30  
160˚C  
150˚C  
140˚C  
200˚C  
SEC.  
30  
SEC.  
3˚C + 1˚C/–0.5˚C  
PREHEATING TIME  
150˚C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Regulatory Information  
The HCPL-3180 is pending  
approval by the following  
organizations:  
DIN EN 60747-5-2  
Pending approval under DIN  
EN-60747-5-2 with V  
= 630  
IORM  
V
PEAK  
UL  
Approval under UL 1577,  
component recognition program  
up to V = 2500 V Pending  
ISO  
RMS.  
3750 V  
RMS.  
CSA  
Approval under CSA  
Component.  
3
DIN EN 60747-5-2 Insulation Characteristics (HCPL-3180 Option 060)  
Description  
Symbol  
HCPL-3180  
Unit  
Installation classification per DIN EN 0110 1997-04  
for rated mains voltage 150 Vrms  
for rated mains voltage 300 Vrms  
for rated mains voltage 600 Vrms  
Climatic Classification  
I - IV  
I - III  
I - II  
55/100/21  
2
Pollution Degree (DIN EN 0110 1997 -04)  
Maximum Working Insulation Voltage  
VIORM  
VPR  
630  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b*  
1181  
VIORM x 1.875=VPR, 100% Production Test withtm=1 sec, Partial discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5=VPR, Type and Sample Test, tm=60 sec,Partial discharge < 5 pC  
VPR  
945  
Vpeak  
Vpeak  
Highest Allowable Overvoltage (Transient Overvoltage tini = 10 sec)  
Safety-limiting values - maximum values allowed in the event of a failure.  
Case Temperature  
VIOTM  
6000  
TS  
175  
230  
600  
>109  
°C  
Input Current**  
IS, INPUT  
PS, OUTPUT  
RS  
mA  
mW  
W
Output Power**  
Insulation Resistance at TS, VIO = 500 V  
*
Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (DIN) for a  
detailed description of Method A and Method B partial discharge test profiles.  
** Refer to the following figure for dependence of P and I on ambient temperature.  
S
S
800  
700  
600  
500  
400  
300  
P
(mW)  
S
I
S
(mA)  
200  
100  
0
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – ˚C  
T
S
4
Insulation and Safety Related Specifications  
Parameter  
Symbol HCPL-3180 Units Conditions  
Minimum External Air Gap (Clearance)  
L(101)  
7.1  
mm  
mm  
mm  
Measured from input terminals to output terminals, shortest  
distance through air.  
Minimum External Tracking (Creepage)  
L(102)  
7.4  
Measured from input terminals to output terminals, shortest  
distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
Through insulation distance conductor to conductor, usually  
the straight line distance thickness between the emitter and  
detector.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Units Note  
Storage Temperature  
TS  
-55  
+125  
°C  
Junction Temperature  
Average Input Current  
Tj  
-40  
+125  
25  
°C  
IF(AVG)  
IF(TRAN)  
VR  
mA  
A
1
Peak Transient Input Current (<1s pulse width, 300 pps)  
Reverse Input Voltage  
1.0  
5
V
"High" Peak Output Current  
"Low" Peak Output Current  
Supply Voltage  
IOH(PEAK)  
IOL(PEAK)  
VCC - VEE  
VO(PEAK)  
PO  
2.5  
2.5  
25  
A
2
2
A
-0.5  
0
V
Output Voltage  
VCC  
250  
295  
V
Output Power Dissipation  
Total Power Dissipation  
mW  
mW  
3
4
PT  
Lead Solder Temperature  
Solder Reflow Temperature Profile  
+260 °C for 10 sec., 1.6 mm below seating plane  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Max  
Units Note  
Power Supply  
VCC - VEE  
10  
20  
V
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
IF(ON)  
VF(OFF)  
TA  
10  
16  
mA  
V
- 3.0  
- 40  
0.8  
100  
°C  
5
Electrical Specifications (DC)  
Over recommended operating conditions unless otherwise specified.  
Parameter  
Symbol  
Min  
0.5  
Typ  
Max Units Test Conditions Fig Note  
High Level Output Current  
IOH  
A
A
A
A
V
VO = (VCC -4 V)  
VO = (VCC -10 V)  
VO = (VEE+2.5 V)  
VO = (VEE + 10 V)  
IO = -100 mA  
2, 3  
17  
5
2
5
2
2.0  
Low Level Output Current  
IOL  
0.5  
5, 6  
18  
2.0  
High Level Output Voltage  
Low Level Output Voltage  
High Level Supply Current  
Low Level Supply Current  
VOH  
VOL  
ICCH  
ICCL  
VCC - 4  
1, 3 6, 7  
19  
0.5  
6.0  
6.0  
V
IO = 100 mA  
4, 6  
20  
3.0  
3.0  
mA  
mA  
Output Open  
IF = 10 to 16 mA  
7, 8  
Output Open  
9,  
VIF = -3.0 to 0.8 V  
15,  
21  
Threshold Input Current Low to High  
IFLH  
8.0  
1.8  
mA  
IO = 0 mA  
VO > 5 V  
Threshold Input Voltage High to Low  
Input Forward Voltage  
VFHL  
0.8  
1.2  
V
IF - 10 mA  
16  
VF  
1.5  
-1.6  
7.9  
7.4  
0.5  
V
D VF/ TA  
VUVLO+  
Temperature Coefficient of Forward Voltage  
UVLO Threshold  
mV/°C  
V
V
VO > 5 V  
IF = 10 mA  
22,  
34  
VUVLO-  
UVLO Hysteresis  
UVLOHYST  
BVR  
V
Input Reverse Breakdown Voltage  
Input Capacitance  
5
V
IR = 10 uA  
CIN  
60  
pF  
f = 1 MHz,  
VF = 0 V  
6
Switching Specifications (AC)  
Over recommended operating conditions unless otherwise specified.  
Parameter  
Symbol  
Min  
Typ  
Max Units Test Conditions Fig Note  
Propagation Delay Time to High Output Level  
tPLH  
50  
150  
200  
ns  
IF = 10 mA  
Rg = 10 W  
f = 250 kHz  
Duty Cycle = 50%  
Cg = 10 nF  
10,  
11,  
12,  
13,  
14,  
23  
16  
Propagation Delay Time to Low Output Level  
Pulse Width Distortion  
tPHL  
50  
150  
20  
200  
ns  
PWD  
PDD  
65  
90  
ns  
12  
17  
Propagation Delay Difference Between Any Two  
Parts  
-90  
ms  
35,  
36  
(tPHL - tPLH  
)
Rise Time  
tr  
25  
ns  
CL = 1 nF  
23  
Rg = 0 W  
Fall Time  
tf  
25  
ns  
UVLO Turn On Delay  
UVLO Turn Off Delay  
tUVLO ON  
tUVLO OFF  
|CMH|  
2.0  
0.3  
us  
22  
24  
us  
Output High Level Common Mode Transient  
Immunity  
10  
10  
kV/µs  
TA = +25 °C  
If = 10 to 16 mA  
VCM = 1.5 kV  
VCC = 20 V  
13, 14  
13, 15  
Output Low Level Common Mode Transient  
Immunity  
|CML|  
kV/µs  
TA = +25 °C  
Vf = 0 V  
VCM = 1.5 kV  
VCC = 20 V  
VCM = 1.5 kV  
Package Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max Units Test Conditions Fig Note  
Input-Output Momentary Withstand Voltage  
VISO  
2500  
Vrms  
TA = +25 °C,  
RH < 50%  
8, 9  
W
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
1011  
1
VI-O = 500 V  
9
pF  
Freq = 1 MHz  
Notes:  
1. Derate linearly above +70 °C free air temperature at a rate of 0.3 mA/°C.  
2. Maximum pulse width = 10 us, maximum duty cycle = 0.2%. This value is intended to allow for component tolerances for designs with I peak  
O
minimum = 2.0 A. See Application section for additional details on limiting I peak.  
OL  
3. Derate linearly above +70 °C, free air temperature at the rate of 4.8 mW/°C.  
4. Derate linearly above +70 °C, free air temperature at the rate of 5.4 mW/°C. The maximum LED junction temperature should not exceed +125 °C.  
5. Maximum pulse width = 50 us, maximum duty cycle = 0.5%.  
6. In this test, V is measured with a dc load current. When driving capacitive load V will approach V as I approaches zero amps.  
OH  
OH  
CC  
OH  
7. Maximum pulse width = 1 ms, maximum duty cycle = 20%.  
8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage > 3000 V for 1 second (leakage detection  
rms  
current limit I < 5 uA).  
I-O  
9. Device considered a two-terminal device: pins on input side shorted together and pins on output side shorted together.  
10. t  
propagation delay is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V signal. t  
O PLH  
PHL  
propagation delay is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the V signal  
O
11. t is equal to the magnitude of the worst case difference in t  
and/or t  
that will be seen between units at any given temperature within the  
PLH  
PSK  
PHL  
recommended operating conditions  
12. PWD is defined as |t  
- t  
| for any given device.  
PHL PLH  
13. Pin 1 and 4 need to be connected to LED common.  
7
14. Common mode transient immunity in the high state is the maximum tolerable dV /dt of the common mode pulse V to assure that the output will  
CM  
CM  
remain in the high state (i.e. V > 10.0 V).  
O
15. Common mode transient immunity in a low state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the output will  
CM  
CM  
remain in a low state (i.e. V < 1.0 V).  
O
16. t  
propagation delay is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V signal. t  
O PLH  
PHL  
propagation delay is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the V signal  
O
17. The difference between t  
and t  
between any two HCPL-3180 parts under same test conditions.  
PLH  
PHL  
0
-1  
-2  
-3  
-4  
IF=10 to 16mA  
OUT=-100mA  
100 C  
-0.5  
-1  
I
-40 C  
25 C  
VCC=10 to 20V  
V
EE
=0V  
-1.5  
-2  
-2.5  
-3  
IF=10mA to 16mA  
-5  
-6  
VCC=10 to 20 V  
VEE=0V  
-40  
-20  
0
20  
40  
60  
80  
100  
0
1
2
3
4
TA  
IOH - OUTPUT HIGH CURRENT - A  
Figure 1. V Vs Temperature  
OH  
Figure 3. V Vs I  
OH  
OH  
2.5  
2
0.3  
VF(OFF) = -3.0 TO 0.8V  
IOUT = 100mA  
VCC = 10 to 20V  
VEE = 0  
0.25  
0.2  
1.5  
1
0.15  
0.1  
IF= 10 to16mA  
VOUT=(VCC-4)  
VCC=10 to 20V  
0.5  
0
VEE=0V  
60  
0.05  
0
-40  
10  
TA  
-40  
-20  
0
20  
40  
60  
80  
100  
TA - TEMPERATURE - °C  
Figure 2. I Vs Temperature  
OH  
Figure 4. V Vs Temperature  
OL  
8
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
3
2.5  
2
VF(OFF) = -3.0 TO 0.8V  
ICCL  
ICCH  
VOUT = 2.5V  
VCC = 10 to 20V  
VEE = 0  
1.5  
1
IF=10mA for ICC  
H
IF=0mA for ICC  
TA=25°C  
L
0.5  
0
VEE=0V  
10  
12  
14  
16  
18  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
V
CC - SUPPLY VOLTAGE - V  
TA  
Figure 8. I Vs V  
Figure 5. I Vs Temperature  
CC  
CC  
OL  
4
5
VF(OFF) = -3 to0.8V  
VCC=10 to 20 V  
VCC= 10 to20V  
VEE= 0V  
Output= Open  
3
4
3
2
1
0
VEE=0V  
2
1
0
25 C  
0 C  
100 C  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0.5  
1
1.5  
2
2.5  
TA - TEMPERATURE - °C  
IOL - OUTPUT LOW CURRENT - A  
Figure 9. IFLH Vs Temperature  
Figure 6. V Vs I  
OL  
OL  
250  
4
3.5  
3
IF=10mA  
TA=25°C  
200  
Rg=10ohm  
Cg=10nF  
Duty Cycle=50%  
f=250KHZ  
2.5  
2
150  
1.5  
VCC=20V  
VEE=0V  
100  
50  
1
0.5  
0
ICCH  
TPLH  
TPHL  
IF=10mA for ICC  
IF=0mA for ICC  
H
ICCL  
L
10  
15  
20  
25  
-40  
-20  
0
20  
40  
60  
80  
100  
VCC- SUPPLY VOLTAGE -V  
TA - TEMPERATURE - oC  
Figure 10. Propagation Delay Vs V  
Figure 7. I Vs Temperature  
CC  
CC  
9
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
VCC=20V, VEE=0V  
Rg=10 ohm,  
Cg=10nF  
Duty Cycle = 50%  
f=250KHz  
IF=10mA  
TA=25°C  
Rg=10ohm  
Duty Cycle=50%  
f=250KHZ  
TA=25°C  
TPLH  
TPHL  
Tplh  
Tphl  
6
8
10  
12  
14  
16  
5
10  
15  
20  
25  
IF - FORWARD LED CURRENT - mA  
Cg - LOAD CAPACITANCE - nF  
Figure 11. Propagation Delay Vs IF  
Figure 14. Propagation Delay Vs Cg  
250  
20  
15  
10  
5
IF=10mA  
VCC=20V, VEE=0V  
200 Rg=10 ohm, Cg=10nF  
Duty Cycle = 50%  
f=250KHz  
150  
100  
50  
TPHL  
TPLH  
0
0
1
2
3
4
5
-40  
-20  
0
20  
40  
60  
80  
100  
IF - FORWARD LED CURRENT - mA  
TA - TEMPERATURE - °C  
Figure 12. Propagation Delay Vs Temperature  
Figure 15. Transfer Characteristics  
1000  
100  
250  
T
= 25˚C  
A
IF=10mA  
TA=25°C  
Cg=10nF  
200  
I
F
Duty Cycle=50%  
f=250KHZ  
+
10  
1.0  
0.1  
V
F
150  
100  
50  
TPLH  
TPHL  
0.01  
10  
20  
30  
40  
50  
0.001  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
Rg - SERIES LOAD RESISTANCE - ohm  
V
– FORWARD VOLTAGE – VOLTS  
F
Figure 13. Propagation Delay Vs Rg  
Figure 16. Input Current Vs Forward Voltage  
10  
1
2
3
4
8
7
4V/10V  
VCC=10 to 20V  
+
-
+
-
IF=10mA to  
16mA  
0,1 µF  
6
IoH  
5
Shield  
Figure 17. IOH Test Circuit  
1
8
VCC=10 to 20V  
+
-
2
3
7
0,1 µF  
6
IoL  
+
-
2.5V/10V  
4
5
Shield  
Figure 18. IOL Test Circuit  
1
2
3
4
8
7
VCC=10 to 20V  
+
-
IF=10mA to  
16mA  
0,1 µF  
6
VOH  
100mA  
5
Shield  
Figure 19. VOH Test Circuit  
11  
1
2
3
4
8
7
+
-
100mA  
0,1 µF  
6
VOL  
5
Shield  
Figure 20. VOL Test Circuit  
1
2
3
4
8
7
VCC=10 to 20V  
+
-
0,1 µF  
IF  
VO > 5V  
6
5
Shield  
Figure 21. IFLH Test Circuit  
1
8
7
VCC  
+
-
2
3
4
+-  
0,1 µF  
IF=10mA  
VO > 5V  
6
5
Shield  
Figure 22. UVLO Test Circuit  
12  
If= 10 to 16mA  
1
2
3
4
8
7
Vcc=+20V  
500  
If  
+
-
+
Tf  
Tr  
-
250KHz  
50% Duty  
Cycle  
0,1 µF  
6
90%  
50%  
10%  
10Ω  
10nF  
Vout  
5
GND  
Shield  
Tplh  
Tphl  
Figure 23. TPLH, TPHL, Tr and Tf Test Circuit and Waveform  
IF  
VCM  
1
8
7
dv/dt= Vcm/dt  
Vcc =+20V  
0V  
+
-
5V  
+
dt  
-
2
3
4
0,1  
µF  
VO  
VO  
VOH  
6
5
Switching at A  
IF=10mA  
VO  
Shield  
VOL  
Switching at B  
IF=0mA  
+
-
Vcm =1500V  
Figure 24. CMR Test Circuit and Waveform  
13  
Applications Information Eliminating  
Negative IGBT Gate Drive  
case) = 16 mA, R ~ 10 W, Max  
Selecting the Gate Resistor (R ) for  
HCPL-3180  
g
g
Duty Cycle = 80%, Q = 100 nC, f  
g
To keep the IGBT firmly off, the  
HCPL-3180 has a very low  
= 200 kHz and T  
= +75 °C:  
Step 1: Calculate R minimum  
g
AMAX  
from the I peak specification.  
OL  
maximum V specification of  
0.4 V. The HCPL-3180 realizes  
The IGBT and R in Figure 25  
OL  
g
PE =16mA 1.8V 0.8 = 23mW  
PO = 4.5mA 20V + 0.85µJ •  
200kHz  
can be analyzed as a simple RC  
circuit with a voltage supplied  
by the HCPL-3180.  
the very low V by using a  
OL  
DMOS transistor with 1 W  
P
@
O
(
MAX  
)
(typical) on resistance in its pull  
down circuit. When the HCPL-  
3180 is in the low state, the  
IGBT gate is shorted to the  
emitter by Rg + 1 W. Minimizing  
Rg and the lead inductance from  
the HCPL-3180 to the IGBT gate  
and emitter (possibly by  
75°C  
= 260mW 226mW = 250mW  
VCC VOL  
Rg ≥  
(5°C *  
IOLPEAK  
4.8mW /°C)  
20 3  
=
2
= 8.5  
The value of 4.5 mA for I in  
CC  
the previous equation was  
obtained by derating the I max  
The V value of 3 V in the  
CC  
OL  
mounting HCPL-3180 on a small  
PC board directly above the  
IGBT) can eliminate the need for  
negative IGBT gate drive in  
many applications as shown in  
Figure 25. Care should be taken  
with such a PC board design to  
avoid routing the IGBT collector  
or emitter traces close to the  
HCPL-3180 input as this can  
result in unwanted coupling of  
transient signals into the input  
of HCPL-3180 and degrade  
performance.  
of 6 mA to I max at +75 °C.  
previous equation is the V at  
the peak current of 2 A. (See  
Figure 6).  
CC  
OL  
Since P for this case is greater  
O
than the P  
, Rg must be  
O(max)  
increased to reduce the HCPL-  
3180 power dissipation.  
Step 2: Check the HCPL-3180  
power dissipation and increase  
R if necessary. The HCPL-3180  
g
Po (SwitchingMAx)  
= P0 (Max) PO (Bias)  
= 226mW 90mW  
=136mW  
total power dissipation (P ) is  
T
equal to the sum of the emitter  
power (P ) and the output  
E
power (P ).  
O
ESW(Max)  
= PO(Sitching Max) / f  
=136mW /200KHz  
= 0.68µW  
PT = PE + PO  
PE = IF VF DutyCycle  
PO = PO(BIAS) + PO(SWITCHING)  
(If the IGBT drain must be  
routed near the HCPL-3180  
input, then the LED should be  
reverse biased when in the off  
state, to prevent the transient  
signals coupled from the IGBT  
drain from turning on the HCPL-  
3180)  
= ICC VCC + ESW  
ICC  
(
Rg ;Qg  
)
f  
=
(
)
VCC + ESW  
(Rg;Qg  
)
f  
For Qg = 100 nC a Value of Esw =  
0.68 UW gives a Rg = 15 ohm  
For the circuit in Figure 25 with  
the circuit in with I (worst  
F
+HVDC  
+5 V  
1
8
VCC=+15V  
270  
+
-
GND  
2
7
Rg  
0,1 µF  
3
6
74XXX  
Open  
Collector  
5
4
Shield  
GND  
- HVDC  
Figure 25. Recommended LED Drive and Application Circuit for HCPL-3180  
14  
2
1.8  
1.6  
1.4  
1.2  
1
θ
= 442 ˚C/W  
LD  
Qg = 100nC  
T
T
JD  
JE  
θ
= 467 ˚C/W  
θ
= 126 ˚C/W  
DC  
LC  
T
C
θ
= 83 ˚C/W*  
CA  
0.8  
0.6  
0.4  
0.2  
0
T
A
Figure 28. Thermal Model  
0
10  
20  
30  
40  
50  
Rg(ohm)  
Figure 27. Energy Dissipated in the HCPL-3180 for each IGBT  
Thermal Model  
(Discussion applies to HCPL-3180)  
The steady state thermal model for the HCPL-3180 is shown in Figure 28. The thermal resistance values  
given in this model can be used to calculate the temperatures at each node for a given operating  
condition. As shown by the model, all heat generated flows through Q which raises the case  
CA  
temperature T accordingly. The value of Q depends on the conditions of the board design and is,  
C
CA  
therefore, determined by the designer. The value of Q = +83 °C/W was obtained from thermal  
CA  
measurements using a 2.5 x 2.5 inch PC board, with small traces (no ground plane), a single HCPL- 3180  
soldered into the center of the board and still air. The absolute maximum power dissipation derating  
specifications assume a Q value of +83 °C/W From the thermal mode in Figure 28 the LED and  
CA  
detector IC junction temperatures can be expressed as:  
θLC *θDC  
θLC +θDC +θLD  
TJE = PE *(θLC //(θLD +θDC ) +θCA + PD *(  
+θCA ) +TA  
θ
LC *θDC  
TJD = PE *(  
+θCA ) + PD *(θDC //(θLD +θLC ) +θCA ) +TA  
θLC +θDC +θLD  
Inserting the values for Q and Q shown in Figure 28 gives:  
LC  
DC  
T
T
= PE·(+256 °C/W + Q )+ PD·(+57 °C/W + Q ) + T  
CA CA A  
JE  
JD  
= PE·(+57 °C/W + Q )+ PD·(+111 °C/W + Q ) + T  
CA  
CA  
A
For example, given P = 45 mW,  
E
P = 250 mW, T = +70 °C and QCA= +83 °C/W:  
O
A
T
= PE·(+339 °C/W + PD·(+140 °C/W +T  
JE  
A
= 45 mW·+339 °C/W + 250 mW·+140 °C/W + +70 °C  
= +120 °C  
T
= PE·(+140 °C/W + PD·+194 °C/W +T  
JD  
A
= 45 mW·+140 °C/W + 250 mW·+194 °C/W + +70 °C  
= +125 °C  
T
and T should be limited to +125 °C based on the board layout and part placement (QCA) specific  
JD  
JE  
to the application.  
TJE = LED junction temperature  
TJD = detector IC junction temperature  
TC = case temperature measured at the center of the package bottom  
Q
Q
Q
Q
= LED-to-case thermal resistance  
= LED-to-detector thermal resistance  
= detector-to-case thermal resistance  
= case-to-ambient thermal resistance  
LC  
LD  
DC  
CA  
*Q will depend on the board design and the placement of the part.  
CA  
15  
LED Drive Circuit Considerations for  
Ultra High CMR Performance  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive  
coupling from the input side of  
the optocoupler, through the  
package, to the detector IC as  
shown in Figure 29. The HCPL-  
3180 improves CMR  
performance by using a detector  
IC with an optically transparent  
Faraday shield, which diverts  
the capacitively coupled current  
away from the sensitive IC  
Figure 29. Optocoupler Input to Output  
Capacitance Model for Unshielded  
Optocouplers.  
Figure 30. Optocoupler Input to Output  
Capacitance Model for Shielded  
Optocouplers.  
circuitry. However, this shield  
does not eliminate the capacitive  
coupling between the LED and  
optocoupler pins 5-8 as shown  
in Figure 30. This capacitive  
coupling causes perturbations in  
the LED current during common  
mode transients and becomes  
the major source of CMR failures  
for a shielded optocoupler. The  
main design objective of a high  
CMR LED drive circuit becomes  
keeping the LED in the proper  
state (on or off ) during common  
mode transients. For example,  
the recommended application  
circuit (Figure 25), can achieve  
10 kV/us CMR while minimizing  
component complexity.  
Vcc= 20V  
Figure 31. Equivalent Circuit for Figure 25  
During Common Mode Transient.  
Techniques to keep the LED in  
the proper state are discussed in  
the next two sections.  
Figure 32. Not Recommended Open Collector  
Drive Circuit.  
Figure 33. Recommended LED Drive Circuit for  
Ultra-High CMR  
16  
CMR with the LED On (CMR )  
in the high state and the supply  
voltage drops below the HCPL-  
IPM Dead Time and Propagation  
Delay Specifications  
H
A high CMR LED drive circuit  
must keep the LED on during  
common mode transients. This  
is achieved by over-driving the  
LED current beyond the input  
threshold so that it is not pulled  
below the threshold during a  
transient. A minimum LED  
current of 10 mA provides  
3180 U  
threshold (typ 7.5 V)  
The HCPL-3180 includes a  
Propagation Delay Difference  
(PDD) specification intended to  
help designers minimize “dead  
time” in their power invertor  
designs. Dead time is the time  
during which the high and low  
side power transistors are off.  
Any overlap in Q1 and Q2  
conduction will result in large  
currents flowing through the  
power devices from the high  
voltage to the low-voltage motor  
rails.  
VLO-  
the optocoupler output will go  
into the low state. When the  
HCPL-3180 output is in the low  
state and the supply voltage  
rises above the HCPL-3180  
V
threshold (typ 8.5 V) the  
UVLO+  
optocoupler output will go into  
the high state (assume LED is  
“ON”).  
adequate margin over the  
maximum I  
of 8 mA to  
FLH  
achieve 10 kV/us CMR.  
CMR with the LED Off (CMR )  
L
A high CMR LED drive circuit  
must keep the LED off (V   
F
V ) during common mode  
F(OFF)  
transients. For example, during  
20  
18  
16  
14  
12  
10  
8
a -dV /dt transient in Figure  
31, the current flowing through  
CM  
C
R
also flows through the  
LEDP  
and V  
of the logic gate.  
SAT  
SAT  
As long as the low state voltage  
developed across the logic gate  
is less than V  
the LED will  
F(OFF)  
remain off and no common  
mode failure will occur.  
6
4
The open collector drive circuit,  
shown in Figure 32, cannot keep  
2
0
the LED off during a +dV /dt  
CM  
0
5
10  
15  
20  
transient, since all the current  
(VCC-VEE) - SUPPLY VOLTAGE - V  
flowing through C  
must be  
LEDN  
supplied by the LED, and it is  
not recommended for  
Figure 34. Under Voltage Lock Out  
applications requiring ultra high  
CMR performance. Figure 33 is  
L
an alternative drive circuit,  
which like the recommended  
application circuit (Figure 25),  
does achieve ultra high CMR  
performance by shunting the  
LED in the off state.  
Under Voltage Lockout Feature  
The HCPL-3180 contains an  
under voltage lockout (UVLO)  
feature that is designed to  
protect the IGBT under fault  
conditions which cause the  
HCPL-3180 supply voltage  
(equivalent to the fully charged  
IGBT gate voltage) to drop below  
a level necessary to keep the  
IGBT in a low resistance state.  
When the HCPL-3180 output is  
Figure 35. Minimum LED Skew for Zero Dead  
Time  
17  
To minimize dead time in a  
given design, the turn on of  
LED2 should be delayed  
(relative to the turn off of LED1)  
so that under worst-case  
conditions, transistor Q1 has  
just turned off when transistor  
Q2 turns on, as shown in Figure  
35. The amount of delay  
necessary to achieve this  
condition is equal to the  
maximum value of the  
propagation delay difference  
specification, PDD  
, which is  
MAX  
specified to be 90 ns over the  
operating temperature range of  
-40 °C to +100 °C.  
Delaying the LED signal by the  
maximum propagation delay  
difference ensures that the  
minimum dead time is zero, but  
it does not tell a designer what  
the maximum dead time will be.  
The maximum dead time is  
equivalent to the difference  
between the maximum and  
minimum propagation delay  
difference specification as  
shown in Figure 36. The  
Figure 36. Waveforms for Dead Time  
maximum dead time for the  
HCPL-3180 is 180 ns (= 90 ns-(-  
90 ns)) over the operating  
temperature range of –40 °C to  
+100 °C.  
Note that the propagation delays  
used to calculate PDD and dead  
time are taken at equal  
temperatures and test  
conditions since the  
optocouplers under  
consideration are typically  
mounted in close proximity to  
each other and are switching  
identical IGBTs.  
18  
www.agilent.com/  
semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916)788-6763  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6756 2394  
India, Australia, New Zealand: (+65) 6755 1939  
Japan: (+81 3) 3335-8152(Domestic/International), or  
0120-61-1280(DomesticOnly)  
Korea: (+65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand, Philippines,  
Indonesia: (+65) 6755 2044  
Taiwan: (+65) 6755 1843  
Data subject to change.  
Copyright © 2003 Agilent Technologies, Inc.  
August 11, 2003  
5988-9921EN  
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!