欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • HCPL-7800-000E
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • HCPL-7800-000E图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • HCPL-7800-000E 热卖库存
  • 数量2508 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号1803+ 
  • ?专注AVAGO!实单可谈!
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • HCPL-7800-000E图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • HCPL-7800-000E
  • 数量5300 
  • 厂家Agilent Technologies Inc 
  • 封装 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • HCPL-7800-000E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCPL-7800-000E
  • 数量85000 
  • 厂家AVAGO/安华高 
  • 封装DIP-8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HCPL-7800-000E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCPL-7800-000E
  • 数量98500 
  • 厂家Avago 
  • 封装8-DIP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • HCPL-7800-000E图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • HCPL-7800-000E
  • 数量3253 
  • 厂家AVAGO/安华高 
  • 封装DIP 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • HCPL-7800-000E图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • HCPL-7800-000E
  • 数量3200 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • HCPL-7800-000E图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • HCPL-7800-000E
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • HCPL-7800-000E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800-000E
  • 数量3400 
  • 厂家AVAGO/安华高 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HCPL-7800-000E图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • HCPL-7800-000E
  • 数量5500 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号2019+ 
  • AVAGO一级代理原装现货假一罚十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • HCPL-7800-000E图
  • 集好芯城

     该会员已使用本站13年以上
  • HCPL-7800-000E
  • 数量19799 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HCPL-7800-000E图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • HCPL-7800-000E
  • 数量11530 
  • 厂家Avago Technologies US Inc. 
  • 封装8-DIP (300 mil) 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • HCPL-7800-000E图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • HCPL-7800-000E
  • 数量
  • 厂家AVAGO 
  • 封装雅维特电子全新正品 
  • 批号83000 
  • QQ:767621813QQ:767621813 复制
    QQ:1152937841QQ:1152937841 复制
  • 0755-83975781 QQ:767621813QQ:1152937841
  • HCPL-7800-000E图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • HCPL-7800-000E
  • 数量30000 
  • 厂家AVAGO/安华高 
  • 封装DIP 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • HCPL-7800-000E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800-000E
  • 数量15548 
  • 厂家AVAGO/安华高 
  • 封装DIP 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • HCPL-7800-000E图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • HCPL-7800-000E
  • 数量32222 
  • 厂家AVAGO/安华高 
  • 封装DIP 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • HCPL-7800-000E图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • HCPL-7800-000E
  • 数量26700 
  • 厂家Avago(安华高) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • HCPL-7800-000E图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • HCPL-7800-000E
  • 数量12568 
  • 厂家AVAGO 
  • 封装DIP8 
  • 批号▊ NEW ▊ 
  • ★◆█◣【100%原装正品】★价格最低,不要错过★!量大可定!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • HCPL-7800-000E图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • HCPL-7800-000E
  • 数量12500 
  • 厂家AVAGO/安华高 
  • 封装NA 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • HCPL-7800-000E图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • HCPL-7800-000E
  • 数量5600 
  • 厂家Avago Technologies US Inc. 
  • 封装8-DIP 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • HCPL-7800-000E图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HCPL-7800-000E
  • 数量5000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,低价出售,欢迎询购★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HCPL-7800-000E图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • HCPL-7800-000E
  • 数量865000 
  • 厂家AVAGO/安华高 
  • 封装DIP-8 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • HCPL-7800-000E图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • HCPL-7800-000E
  • 数量6328 
  • 厂家BROADCOM-博通 
  • 封装DIP-8.直插 
  • 批号▉▉:2年内 
  • ▉▉¥73.1元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • HCPL-7800-000E图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HCPL-7800-000E
  • 数量13500 
  • 厂家AVAGO TECHNOLOGIES 
  • 封装50 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HCPL-7800-000E图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • HCPL-7800-000E
  • 数量3850 
  • 厂家Agilent(安捷伦) 
  • 封装原装原封REEL 
  • 批号23+ 
  • ▉原装现货▉可含税可订货
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • HCPL-7800-000E图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • HCPL-7800-000E
  • 数量
  • 厂家AGILENT 
  • 封装原厂指定分销商,有意请来电或QQ洽谈 
  • 批号17+ 
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • HCPL-7800-000E图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • HCPL-7800-000E
  • 数量38200 
  • 厂家Avago(安华高) 
  • 封装 
  • 批号2年内 
  • 原厂渠道 正品保障 长期供应
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • HCPL-7800-000E图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • HCPL-7800-000E
  • 数量8500 
  • 厂家AVAGO(安华高) 
  • 封装DIP-8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • HCPL-7800-000E图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • HCPL-7800-000E
  • 数量99000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • HCPL-7800-000E图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • HCPL-7800-000E
  • 数量5800 
  • 厂家AVAGO 
  • 封装DIP-8 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • HCPL-7800-000E图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • HCPL-7800-000E
  • 数量1268 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • HCPL-7800-000E图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HCPL-7800-000E
  • 数量4035 
  • 厂家AVAGO 
  • 封装SOP-8 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • HCPL-7800-000E图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • HCPL-7800-000E
  • 数量9000 
  • 厂家AVAGOTECHNOLOGIES 
  • 封装 
  • 批号2021+ 
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • HCPL-7800-000E图
  • 深圳市和谐世家电子有限公司

     该会员已使用本站13年以上
  • HCPL-7800-000E
  • 数量142 
  • 厂家Broadcom Limited 
  • 封装8-DIP(0.300",7.62mm) 
  • 批号IC OPAMP ISOLATION 100KHZ 8DIP 
  • 只做进口原装
  • QQ:1158840606QQ:1158840606 复制
  • 0755+84501032 QQ:1158840606
  • HCPL-7800-000E图
  • 深圳市婷轩实业有限公司

     该会员已使用本站6年以上
  • HCPL-7800-000E
  • 数量5000 
  • 厂家Avago Technologies US Inc. 
  • 封装8-DIP 
  • 批号23+ 
  • 进口原装现货热卖
  • QQ:2881943288QQ:2881943288 复制
    QQ:3026548067QQ:3026548067 复制
  • 0755-89608519 QQ:2881943288QQ:3026548067
  • HCPL-7800-000E图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • HCPL-7800-000E
  • 数量1619 
  • 厂家AVAGO 
  • 封装 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • HCPL-7800-000E图
  • 深圳市中福国际管理有限公司

     该会员已使用本站1年以上
  • HCPL-7800-000E
  • 数量21000 
  • 厂家Broadcom Limited 
  • 封装8-DIP(0.300,7.62mm) 
  • 批号22+ 
  • 大量现货库存,2小时内发货
  • QQ:1664127491QQ:1664127491 复制
    QQ:2115067904QQ:2115067904 复制
  • 0755-82571134 QQ:1664127491QQ:2115067904
  • HCPL-7800-000E图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • HCPL-7800-000E
  • 数量600 
  • 厂家AVAGO光耦 
  • 封装DIP/SOP 
  • 批号2017+ 
  • 浩兴电子,专业光耦,力求最全,力求低价,全新原装现货【82532799】
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • HCPL-7800-000E图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • HCPL-7800-000E
  • 数量20000 
  • 厂家AVAGO 
  • 封装DIP 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003

产品型号HCPL-7800-000E的概述

芯片HCPL-7800-000E的概述 HCPL-7800-000E是一款高度集成的光耦合器。它主要用于电气隔离和信号传递的应用,在工业和消费电子市场中广泛使用。该芯片通过光信号实现输入和输出之间的隔离,具有良好的防干扰能力,非常适合高压和高频的控制电路。HCPL-7800-000E的内部结构包括发光二极管(LED)和光电晶体管,前者负责产生光信号,后者则对光信号进行接收和转换。 这种器件的设计使其能够在一定的温度范围内稳定工作,具有较高的耐压能力和可靠性。同时,HCPL-7800-000E的设计使其在电路板上占用较小的空间,这对于现代紧凑型电子设备至关重要。 芯片HCPL-7800-000E的详细参数 HCPL-7800-000E的主要技术参数包括: - 输入电压范围:2.5V至5V。 - 输出电压范围:30V最大输出电压。 - 工作温度范围:-40℃至100℃。 - 隔离电压:高达...

产品型号HCPL-7800-000E的Datasheet PDF文件预览

HCPL-7800A/HCPL-7800  
Isolation Amplifer  
Datasheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
15 kV/µs Common-Mode Rejection at V = 1000 V  
Compact, Auto-Insertable Standard 8-pin DIP Pack-  
age  
0.00025 V/V/°C Gain Drift vs. Temperature  
0.3 mV Input Offset Voltage  
100 kHz Bandwidth  
0.004% Nonlinearity  
WorldwideSafetyApproval:UL1577(3750Vrms/1min.)  
and CSA, IEC/EN/DIN EN 60747-5-2  
Advanced Sigma-Delta (Σ−∆) A/D Converter Technol-  
ogy  
CM  
The HCPL-7800(A) isolation amplifier family was designed  
for current sensing in electronic motor drives. In a typical  
implementation, motor currents flow through an external  
resistor and the resulting analog voltage drop is sensed  
by the HCPL-7800(A). A differential output voltage is  
created on the other side of the HCPL-7800(A) optical  
isolation barrier. This differential output voltage is pro-  
portional to the motor current and can be converted to  
a single-ended signal by using an op-amp as shown in  
the recommended application circuit. Since common-  
mode voltage swings of several hundred volts in tens of  
nanoseconds are common in modern switching inverter  
motor drives, the HCPL-7800(A) was designed to ignore  
very high common-mode transient slew rates (of at least  
10 kV/µs).  
Fully Differential Circuit Topology  
The high CMR capability of the HCPL-7800(A) isolation  
amplifier provides the precision and stability needed to  
accurately monitor motor current in high noise motor  
control environ-ments, providing for smoother control  
(less “torque ripple”) in various types of motor control  
applications.  
Applications  
Motor Phase and Rail Current Sensing  
Inverter Current Sensing  
Switched Mode Power Supply Signal Isolation  
General Purpose Current Sensing and Monitoring  
General Purpose Analog Signal Isolation  
The product can also be used for general analog signal  
isolation applications requiring high accuracy, stability,  
and linearity under similarly severe noise con-ditions.  
For general applications, we recommend the HCPL-7800  
(gain tolerance of 3%). For precision applications Avago  
Technologies offers the HCPL-7800A with part-to-part  
gain tolerance of 1%. The HCPL-7800(A) utilizes sigma  
delta (Σ−∆) analog-to-digital converter technology,  
chopper stabilized amplifiers, and a fully differential  
circuit topology.  
Functional Diagram  
IDD1  
IDD2  
VDD1  
VIN+  
VIN-  
8
7
VDD2  
1
2
VOUT+  
+
-
+
-
Together, these features deliver unequaled isolation-  
mode noise rejection, as well as excellent offset and  
gain accuracy and stability over time and temperature.  
This performance is delivered in a compact, auto-insert-  
able, industry standard 8-pin DIP package that meets  
worldwide regulatory safety standards. (A gull-wing  
surface mount option #300 is also available).  
3
4
6
5
VOUT-  
GND1  
GND2  
SHIELD  
NOTE: A 0.1 μF bypass capacitor must be connected  
between pins 1 and 4 and between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and /or degradation which may be induced by ESD.  
Ordering Information  
HCPL-7800A/HCPL-7800 is UL Recognized with 3750 Vrms for 1 minute per UL1577.  
Option  
RoHS  
Compliant  
Non-RoHS  
Compliant  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
IEC/EN/DIN EN  
60747-5-2  
Part number  
Package  
Quantity  
-000E  
-300E  
-500E  
No option  
#300  
X
X
X
50 per tube  
50 per tube  
1000 per reel  
HCPL-7800A  
HCPL-7800  
300 mil  
DIP-8  
X
X
X
X
#500  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-7800A-500E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with  
IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
HCPL-7800 to order product of 300 mil DIP package in tube packaging and non-RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and  
RoHS compliant option will use ‘-XXXE.  
Package Outline Drawings  
Standard DIP Package  
9.80 0.ꢀ2  
(0.386 0.0ꢁ0ꢂ  
DIMENSIONS IN MILLIMETERS AND (INCHESꢂ.  
8
7
6
2
NOTE:  
FLOATING LEAD PROTRUSION IS 0.2 mm (ꢀ0 milsꢂ MAX.  
DATE CODE  
A 7800  
YYWW  
3
4
7.6ꢀ 0.ꢀ2  
(0.300 0.0ꢁ0ꢂ  
ꢁ.78 (0.070ꢂ MAX.  
ꢁ.ꢁ9 (0.047ꢂ MAX.  
6.32 0.ꢀ2  
(0.ꢀ20 0.0ꢁ0ꢂ  
3.26 0.ꢁ3  
(0.ꢁ40 0.002ꢂ  
4.70 (0.ꢁ82ꢂ MAX.  
0.2ꢁ (0.0ꢀ0ꢂ MIN.  
ꢀ.9ꢀ (0.ꢁꢁ2ꢂ MIN.  
0.ꢀ0 (0.008  
0.33 (0.0ꢁ3  
2˚ TYP.  
ꢁ.080 0.3ꢀ0  
0.62 (0.0ꢀ2ꢂ MAX.  
(0.043 0.0ꢁ3ꢂ  
ꢀ.24 0.ꢀ2  
(0.ꢁ00 0.0ꢁ0ꢂ  
Note:  
Initial or continued variation in the color of the HCPL-7800(A)’s white mold compound is normal and does not affect device performance or  
reliability.  
Gull Wing Surface Mount Option 300  
LAND PATTERN RECOMMENDATION  
ꢁ.0ꢁ6 (0.040ꢂ  
9.80 0.ꢀ2  
(0.386 0.0ꢁ0ꢂ  
6
8
7
2
A 7800  
YYWW  
6.320 0.ꢀ2  
(0.ꢀ20 0.0ꢁ0ꢂ  
ꢁ0.9 (0.430ꢂ  
ꢀ.0 (0.080ꢂ  
3
4
ꢁ.ꢀ7 (0.020ꢂ  
9.62 0.ꢀ2  
(0.380 0.0ꢁ0ꢂ  
ꢁ.780  
(0.070ꢂ  
MAX.  
ꢁ.ꢁ9  
(0.047ꢂ  
MAX.  
7.6ꢀ 0.ꢀ2  
(0.300 0.0ꢁ0ꢂ  
0.ꢀ0 (0.008ꢂ  
0.33 (0.0ꢁ3ꢂ  
3.26 0.ꢁ3  
(0.ꢁ40 0.002ꢂ  
ꢁ.080 0.3ꢀ0  
(0.043 0.0ꢁ3ꢂ  
0.632 0.ꢀ2  
(0.0ꢀ2 0.0ꢁ0ꢂ  
ꢁꢀ˚ NOM.  
0.632 0.ꢁ30  
(0.0ꢀ2 0.002ꢂ  
ꢀ.24  
(0.ꢁ00ꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
TOLERANCES (UNLESS OTHERWISE SPECIFIEDꢂ:  
LEAD COPLANARITY  
MAXIMUM: 0.ꢁ0ꢀ (0.004ꢂ  
xx.xx = 0.0ꢁ  
xx.xxx = 0.002  
NOTE: FLOATING LEAD PROTRUSION IS 0.2 mm (ꢀ0 milsꢂ MAX.  
Maximum Solder Reflow Thermal Profile  
300  
PREHEATING RATE 3˚C + 1˚Cꢀ–0.5˚CꢀSEC.  
REFLOW HEATING RATE 2.5˚C 0.5˚CꢀSEC.  
PEAK  
TEMP.  
245˚C  
PEAK  
TEMP.  
240˚C  
PEAK  
TEMP.  
230˚C  
200  
2.5˚C 0.5˚CꢀSEC.  
SOLDERING  
TIME  
200˚C  
30  
160˚C  
150˚C  
140˚C  
SEC.  
30  
SEC.  
3˚C + 1˚Cꢀ–0.5˚C  
100  
PREHEATING TIME  
150˚C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
0
0
50  
100  
150  
200  
250  
ROOM TEMPERATURE  
TIME (SECONDS)  
Note: Use of non-chlorine-activated fluxes is highly recommended.  
Recommended Pb-Free IR Profile  
TIME WITHIN 5 ˚C of ACTUAL  
PEAK TEMPERATURE  
t
p
20-40 SEC.  
260 +0ꢀ-5 ˚C  
T
p
217 ˚C  
T
L
RAMP-UP  
3 ˚CꢀSEC. MAX.  
150 - 200 ˚C  
RAMP-DOWN  
6 ˚CꢀSEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60to180SEC.  
25  
t 25 ˚C to PEAK  
TIME (SECONDS)  
NOTES:  
THE TIME FROM 25 ˚C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 ˚C, T = 150 ˚C  
T
smax  
smin  
Note: Use of non-chlorine-activated fluxes is highly recommended.  
Regulatory Information  
The HCPL-7800(A) has been approved by the following organizations:  
UL  
IEC/EN/DIN EN 60747-5-2  
Approved under UL 1577, component  
Approved under:  
recognition program up to V = 3750 Vrms.  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01.  
ISO  
CSA  
Approved under CSA Component Acceptance  
Notice #5, File CA 88324.  
[1]  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 Vrms  
for rated mains voltage 600 Vrms  
I-IV  
I-III  
Climatic Classification  
55/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
2
Maximum Working Insulation Voltage  
VIORM  
VPR  
891  
VPEAK  
VPEAK  
Input to Output Test Voltage, Method b[2]  
VIORM x 1.875 = VPR, 100% Production Test with  
tm = 1 sec, Partial discharge < 5 pC  
1670  
Input to Output Test Voltage, Method a[2]  
VIORM x 1.5 = VPR, Type and Sample Test,  
tm = 60 sec, Partial discharge < 5 pC  
VPR  
1336  
6000  
VPEAK  
VPEAK  
Highest Allowable Overvoltage  
VIOTM  
(Transient Overvoltage tini = 10 sec)  
Safety-limiting values—maximum values  
allowed in the event of a failure.  
Case Temperature  
TS  
175  
400  
600  
°C  
mA  
mW  
Input Current[3]  
IS,INPUT  
PS,OUTPUT  
Output Power[3]  
Insulation Resistance at TS, VIO = 500 V  
Notes:  
RS  
>109  
800  
700  
600  
500  
400  
300  
1. Insulation characteristics are guaranteed only within the safety maximum ratings which  
must be ensured by protective circuits within the application. Surface Mount Classification is  
Class A in accordance with CECC00802.  
P
I
(mW)  
S
(mA)  
S
2. Refer to the optocoupler section of the Isolation and Control Components Designer’s Cata-  
log, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2) for a detailed descrip-  
tion of Method a and Method b partial discharge test profiles.  
3. Refer to the following figure for dependence of PS and IS on ambient temperature.  
200  
100  
0
0
25  
50  
75 100 125 150 175 200  
T
- CASE TEMPERATURE - o  
C
A
Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value  
Unit  
Conditions  
Minimum External Air Gap  
(Clearance)  
L(101)  
7.4  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking  
(Creepage)  
L(102)  
CTI  
8.0  
0.5  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
Through insulation distance conductor to  
conductor, usually the straight line distance  
thickness between the emitter and detector.  
Tracking Resistance  
(Comparative Tracking Index)  
>175  
III a  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group  
(DIN VDE 0110, 1/89, Table 1)  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
- 40  
0
Max.  
Unit  
Note  
Storage Temperature  
Operating Temperature  
Supply Voltage  
TS  
125  
°C  
TA  
100  
VDD1, VDD2  
VIN+, VIN-  
5.5  
V
Steady-State Input Voltage  
2 Second Transient Input Voltage  
-2.0  
-6.0  
VDD1 +0.5  
Output Voltage  
VOUT  
-0.5  
VDD2 +0.5  
Solder Reflow Temperature Profile  
See Maximum Solder Reflow Thermal Profile Section  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
-40  
4.5  
Max.  
85  
Unit  
°C  
Note  
Ambient Operating Temperature  
Supply Voltage  
TA  
VDD1, VDD2  
VIN+, VIN-  
VIN+, VIN-  
5.5  
200  
2
V
Input Voltage (accurate and linear)  
Input Voltage (functional)  
-200  
-2  
mV  
V
1
DC Electrical Specifications  
Unless otherwise noted, all typicals and figures are at the nominal operating conditions of V = 0, V = 0 V, V =  
DD1  
IN+  
IN-  
V
DD2  
= 5 V and T = 25°C; all Min./Max. specifications are within the Recommended Operating Conditions.  
A
Parameter  
Symbol  
Min. Typ.  
Max. Unit  
Test Conditions  
Fig. Note  
Input Offset Voltage  
VOS  
-2.0  
0.3  
2.0  
mV  
TA = 25°C  
1,2  
-3.0  
3.0  
-40°C < TA < +85°C,  
-4.5 V < (VDD1, VDD2) < 5.5 V  
Magnitude of Input Offset  
Change vs. Temperature  
|DVOS/DTA|  
G1  
3.0  
10.0  
µV/°C  
V/V  
3
2
3
Gain (HCPL-7800A)  
7.92 8.00  
7.76 8.00  
8.08  
8.24  
-200 mV < VIN+ < 200 mV,  
TA = 25°C,  
4,5,6  
Gain (HCPL-7800)  
G3  
Magnitude of VOUT  
Gain Change vs.Temperature  
|DG/DTA|  
0.00025  
V/V/°C  
4
5
VOUT 200 mV Nonlinearity  
NL200  
0.0037  
0.0002  
0.35  
0.2  
%
-200 mV < VIN+ < 200 mV  
-100 mV < VIN+ < 100 mV  
7,8  
Magnitude of VOUT  
200 mV Nonlinearity  
Change vs. Temperature  
|dNL200/dT|  
% / °C  
VOUT 100 mV Nonlinearity  
NL100  
0.0027  
308.0  
%
6
Maximum Input Voltage  
before VOUT Clipping  
|VIN+|MAX  
mV  
9
Input Supply Current  
Output Supply Current  
IDD1  
IDD2  
10.86  
11.56  
16.0  
16.0  
mA  
VIN+ = 400 mV  
VIN+ = -400 mV  
10  
7
8
Input Current  
IIN+  
-0.5  
5.0  
2.8  
µA  
11  
9
Magnitude of Input  
Bias Current vs.  
Temperature Coefficient  
|dIIN/dT|  
0.45  
nA/°C  
Output Low Voltage  
Output High Voltage  
VOL  
1.29  
3.80  
2.545  
V
V
V
10  
VOH  
VOCM  
Output Common-Mode  
Voltage  
2.2  
Output Short-Circuit  
Current  
|IOSC  
|
18.6  
mA  
11  
12  
Equivalent Input Impedance RIN  
500  
15  
kW  
W
VOUT Output Resistance  
ROUT  
Input DC Common-Mode  
Rejection Ratio  
CMRRIN  
76  
dB  
AC Electrical Specifications  
Unless otherwise noted, all typicals and figures are at the nominal operating conditions of V = 0, V = 0 V, V =  
DD1  
IN+  
IN-  
V
= 5 V and T = 25°C; all Min./Max. specifications are within the Recommended Operating Conditions.  
DD2  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Fig.  
Note  
VOUT Bandwidth  
(-3 dB) sine wave.  
BW  
50  
100  
kHz  
VIN+ = 200 mVpk-pk  
12,13  
VOUT Noise  
NOUT  
tPD10  
31.5  
2.03  
mVrms  
µs  
VIN+ = 0.0 V  
13  
VIN to VOUT  
Signal Delay  
(50 – 10%)  
3.3  
VIN+ = 0 mV to 150 mV  
step.  
Measured at output of  
MC34081 on Figure 15.  
14,15  
VIN to VOUT  
Signal Delay  
(50 – 50%)  
tPD50  
tPD90  
tR/F  
3.47  
4.99  
2.96  
5.6  
9.9  
6.6  
VIN to VOUT  
Signal Delay  
(50 – 90%)  
VOUT  
Rise/ Fall Time  
(10 – 90%)  
Common Mode  
Transient  
Immunity  
CMTI  
PSR  
10.0  
15.0  
170  
kV/µs  
VCM = 1 kV, TA = 25°C  
16  
14  
15  
Power Supply  
Rejection  
mVrms  
With recommended  
application circuit.  
Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Test Condition  
Fig.  
Note  
Input-Output  
Momentary Withstand  
Voltage  
VISO  
3750  
Vrms  
RH < 50%,  
t = 1 min.  
TA = 25°C  
16,17  
Resistance  
(Input-Output)  
RI-O  
CI-O  
>109  
1.2  
VI-O = 500 VDC  
18  
18  
Capacitance  
pF  
ƒ = 1 MHz  
(Input-Output)  
Notes:  
12. CMRR is defined as the ratio of the differential signal  
gain (signal applied differentially between pins and 3)  
General Note: Typical values represent the mean value of all char-  
acterization units at the nominal operating conditions. Typical drift  
specifications are determined by calculating the rate of change of the  
specified parameter versus the drift pa-rameter (at nominal operat-  
ing conditions) for each characterization unit, and then averaging the  
individual unit rates. The corresponding drift figures are normalized  
to the nominal operating conditions and show how much drift occurs  
as the par-ticular drift parameter is varied from its nominal value, with  
all other parameters held at their nominal operating values. Note that  
the typical drift specifications in the tables below may differ from the  
slopes of the mean curves shown in the corresponding figures.  
2
to the common-mode gain (input pins tied together and the signal  
applied to both inputs at the same time), expressed in dB.  
13. Output noise comes from two primary sources: chopper noise  
and sigma-delta quantization noise. Chopper noise results from  
chopper stabilization of the output op-amps. It occurs at a specific  
frequency (typically 400 kHz at room temperature), and is not at-  
tenuated by the internal output filter. A filter circuit can be easily  
added to the external post-amplifier to reduce the total rms output  
noise. The internal output filter does eliminate most, but not all, of  
the sigma-delta quantization noise. The magnitude of the output  
quantization noise is very small at lower frequencies (below 10 kHz)  
and increases with increasing frequency.  
1. Avago Technologies recommends operation with V = 0 V (tied to  
IN-  
GND1). Limiting V to 100 mV will improve DC nonlinearity and  
IN+  
14. CMTI (Common Mode Transient Immunity or CMR, Common Mode  
Rejection) is tested by applying an exponentially rising/falling volt-  
age step on pin 4 (GND1) with respect to pin 5 (GND2). The rise time  
of the test waveform is set to approximately 50 ns. The amplitude  
nonlinearity drift. If V is brought above V  
– 2 V, an internal test  
IN-  
DD1  
mode may be activated. This test mode is for testing LED coupling  
and is not intended for customer use.  
2. This is the Absolute Value of Input Offset Change vs. Temperature.  
3. Gain is defined as the slope of the best-fit line of differential output  
of the step is adjusted until the differential output (V  
–V  
)
OUT+ OUT-  
exhibits more than a 200 mV deviation from the average output  
voltage for more than 1µs. The HCPL-7800(A) will continue to func-  
tion if more than 10 kV/µs common mode slopes are applied, as  
long as the breakdown voltage limitations are observed.  
voltage (V  
–V  
) vs. differential input voltage (V –V ) over  
OUT+ OUT- IN+ IN-  
the specified input range.  
4. This is the Absolute Value of Gain Change vs. Temperature.  
5. Nonlinearity is defined as half of the peak-to-peak output deviation  
from the best-fit gain line, expressed as a percentage of the full-  
scale differential output voltage.  
15. Data sheet value is the differential amplitude of the transient at the  
output of the HCPL-7800(A) when a 1 V  
, 1 MHz square wave  
pk-pk  
with 40 ns rise and fall times is applied to both V  
and V  
.
DD1  
DD2  
6. NL  
is the nonlinearity specified over an input voltage range of  
16. In accordance with UL 1577, each optocoupler is proof tested by ap-  
100  
100 mV.  
plying an insulation test voltage ≥4500 V for 1 second (leakage  
rms  
detection current limit, I ≤ 5 µA). This test is performed before  
7. The input supply current decreases as the differential input voltage  
I-O  
the 100% production test for partial discharge (method b) shown in  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristic Table.  
(V –V ) decreases.  
IN+ IN-  
8. The maximum specified output supply current occurs when the  
17. The Input-Output Momentary Withstand Voltage is a dielectric  
voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer  
to the IEC/EN/DIN EN 60747-5-2 insulation characteristics table and  
your equipment level safety specification.  
differential input voltage (V –V ) = -200 mV, the maximum rec-  
IN+ IN-  
ommended operat-ing input voltage. However, the out-put sup-  
ply current will continue to rise for differential input voltages up to  
approximately -300 mV, beyond which the output supply current  
remains constant.  
18. This is a two-terminal measurement: pins 1–4 are shorted together  
and pins 5–8 are shorted together.  
9. Because of the switched-capacitor nature of the input sigma-delta  
con-verter, time-averaged values are shown.  
10. When the differential input signal exceeds approximately 308 mV,  
the outputs will limit at the typical values shown.  
11. Short circuit current is the amount of output current generated  
when either output is shorted to V  
or ground.  
DD2  
VDDꢁ  
VDDꢀ  
+ꢁ2 V  
0.ꢁ µF  
8
7
0.ꢁ µF  
ꢁ0 K  
+
V
HCPL-7800  
OUT  
0.ꢁ µF  
ꢁ0 K  
-
6
2
3
4
AD6ꢀ4CD  
GAIN = ꢁ00  
0.ꢁ µF  
0.47  
µF  
0.47  
µF  
-ꢁ2 V  
Figure 1. Input Offset Voltage Test Circuit.  
0.8  
0.7  
8.032  
8.03  
0.39  
0.38  
0.37  
0.36  
0.32  
vs. VDDꢁ  
vs. VDDꢀ  
0.6  
0.2  
0.4  
8.0ꢀ2  
8.0ꢀ  
8.0ꢁ2  
8.0ꢁ  
0.3  
0.ꢀ  
0.34  
0.33  
-22 -ꢀ2  
2
32  
62  
92  
ꢁꢀ2  
-22 -32 -ꢁ2  
2
ꢀ2 42 62 82 ꢁ02 ꢁꢀ2  
4.2  
4.72  
2.0  
2.ꢀ2  
2.2  
TA - TEMPERATURE - ˚C  
TA - TEMPERATURE - ¡C  
VDD - SUPPLY VOLTAGE - V  
Figure 2. Input Offset Voltage vs. Temperature.  
Figure 3. Input Offset vs. Supply.  
Figure 4. Gain vs. Temperature.  
VDDꢁ  
VDDꢀ  
+ꢁ2 V  
+ꢁ2 V  
0.ꢁ µF  
0.ꢁ µF  
8
0.ꢁ µF  
0.ꢁ µF  
ꢁ0 K  
7
404  
VIN  
+
+
-
V
HCPL-7800  
OUT  
ꢁ3.ꢀ  
ꢁ0 K  
-
6
2
3
AD6ꢀ4CD  
GAIN = 4  
AD6ꢀ4CD  
GAIN = ꢁ0  
0.0ꢁ µF  
0.ꢁ µF  
0.ꢁ µF  
4
0.47  
µF  
0.47  
µF  
-ꢁ2 V  
-ꢁ2 V  
ꢁ0 K  
0.47  
µF  
Figure 5. Gain and Nonlinearity Test Circuit.  
ꢀ0  
8.03ꢀ  
0.03  
0.002  
0.0ꢀ2  
8.03  
8.0ꢀ8  
8.0ꢀ6  
8.0ꢀ4  
0.004  
0.003  
0.00ꢀ  
0.0ꢀ  
0.0ꢁ2  
0.0ꢁ  
vs. VDDꢁ  
vs. VDDꢀ  
vs. VDDꢁ  
vs. VDDꢀ  
0.002  
0
4.2  
4.72  
2.0  
2.ꢀ2  
2.2  
-22 -ꢀ2  
2
32  
62  
92  
ꢁꢀ2  
4.2  
4.72  
2.0  
2.ꢀ2  
2.2  
VDD - SUPPLY VOLTAGE - V  
TA - TEMPERATURE - ¡C  
VDD - SUPPLY VOLTAGE - V  
Figure 6. Gain vs. Supply.  
Figure 7. Nonlinearity vs. Temperature.  
Figure 8. Nonlinearity vs. Supply.  
0
-ꢁ  
-ꢀ  
-3  
4.ꢀ  
3.4  
ꢁ3  
ꢁ0  
ꢀ.6  
ꢁ.8  
ꢁ.0  
7
-4  
-2  
IDDꢁ  
IDDꢀ  
VOP  
VOR  
4
-0.2  
-0.6 -0.4 -0.ꢀ  
0
0.ꢀ  
0.4  
0.6  
-0.2  
-0.3  
-0.ꢁ  
0.ꢁ  
0.3  
0.2  
-0.3  
-0.ꢁ  
0.ꢁ  
0.3  
0.2  
VIN - INPUT VOLTAGE - V  
VIN - INPUT VOLTAGE - V  
VIN - INPUT VOLTAGE - V  
Figure 9. Output Voltage vs. Input Voltage.  
Figure 10. Supply Current vs. Input Voltage. Figure 11. Input Current vs. Input Voltage.  
0
20  
2.2  
4.7  
3.9  
3.ꢁ  
0
-20  
Tpd ꢁ0  
Tpd 20  
Tpd 90  
Trise  
-ꢁ  
-ꢀ  
-ꢁ00  
-ꢁ20  
-ꢀ00  
-3  
-4  
ꢀ.3  
ꢁ.2  
-ꢀ20  
-300  
ꢁ0  
ꢁ00  
ꢁ000 ꢁ0000 ꢁ00000  
FREQUENCY (Hzꢂ  
ꢁ0  
ꢁ00  
ꢁ000 ꢁ0000 ꢁ00000  
FREQUENCY (Hzꢂ  
-22 -ꢀ2  
2
32  
62  
92  
ꢁꢀ2  
TA - TEMPERATURE - ˚C  
Figure 12. Gain vs. Frequency.  
Figure 13. Phase vs. Frequency.  
Figure 14. Propagation Delay vs. Temperature.  
ꢀꢀ  
ꢁ0 K  
V
V
DDꢀ  
DDꢁ  
+ꢁ2 V  
0.ꢁ µF  
8
7
0.ꢁ µF  
0.ꢁ µF  
ꢀ K  
ꢀ K  
V
IN  
-
V
HCPL-7800  
OUT  
+
6
2
3
4
MC3408ꢁ  
0.ꢁ µF  
0.0ꢁ µF  
ꢁ0 K  
-ꢁ2 V  
V
IMPEDANCE LESS THAN ꢁ0 .  
IN  
Figure 15. Propagation Delay Test Circuits.  
ꢁ0 K  
ꢁ20 pF  
+ꢁ2 V  
V
DDꢀ  
78L02  
IN OUT  
0.ꢁ µF  
8
7
0.ꢁ  
µF  
0.ꢁ  
µF  
0.ꢁ µF  
ꢀ K  
ꢀ K  
-
V
HCPL-7800  
9 V  
OUT  
+
6
2
3
4
MC3408ꢁ  
0.ꢁ µF  
ꢁ0 K  
ꢁ20  
pF  
PULSE GEN.  
-ꢁ2 V  
-
+
V
CM  
Figure 16. CMTI Test Circuits.  
ꢀꢁ  
Application Information  
Power Supplies and Bypassing  
The recommended supply con-nections are shown in  
Figure 17. A floating power supply (which in many ap-  
plications could be the same supply that is used to drive  
the high-side power transistor) is regulated to 5 V using  
a simple zener diode (D1); the value of resistor R4 should  
be chosen to supply sufficient current from the existing  
floating supply. The voltage from the current sensing  
resistor (Rsense) is applied to the input of the HCPL-  
7800(A) through an RC anti-aliasing filter (R2 and C2).  
Although the application circuit is relatively simple, a few  
recommendations should be followed to ensure optimal  
performance.  
The power supply for the HCPL -7800(A) is most often  
obtained from the same supply used to power the  
power transistor gate drive circuit. If a dedicated supply  
is required, in many cases it is possible to add an ad-  
ditional winding on an existing transformer. Otherwise,  
some sort of simple isolated supply can be used, such as  
a line powered transformer or a high-frequency DC-DC  
converter.  
An inexpensive 78L05 three-terminal regulator can also  
be used to reduce the floating supply voltage to 5 V. To  
help attenuate high-frequency power supply noise or  
ripple, a resistor or inductor can be used in series with  
the input of the regulator to form a low-pass filter with  
the regulator’s input bypass capacitor.  
+
HV+  
FLOATING  
POWER  
SUPPLY  
GATE DRIVE  
CIRCUIT  
* * *  
-
Dꢁ  
2.ꢁ V  
Cꢁ  
0.ꢁ µF  
Rꢀ  
39  
Cꢀ  
0.0ꢁ µF  
HCPL-7800  
MOTOR  
Rꢁ  
+
R
-
* * *  
SENSE  
* * *  
HV-  
Figure 17. Recommended Supply and Sense Resistor Connections.  
ꢀꢂ  
As shown in Figure 18, 0.1 µF bypass capacitors (C1, C2)  
should be located as close as possible to the pins of the  
HCPL-7800(A). The bypass capacitors are required because  
of the high-speed digital nature of the signals inside the  
HCPL-7800(A). A 0.01 µF bypass capacitor (C2) is also rec-  
ommended at the input due to the switched-capacitor  
nature of the input circuit. The input bypass capacitor  
also forms part of the anti-aliasing filter, which is recom-  
mended to prevent high-frequency noise from aliasing  
down to lower frequencies and interfering with the input  
signal. The input filter also performs an important reliabil-  
ity function—it reduces transient spikes from ESD events  
flowing through the current sensing resistor.  
PC Board Layout  
The design of the printed circuit board (PCB) should follow  
good layout practices, such as keeping bypass capacitors  
close to the supply pins, keeping output signals away  
from input signals, the use of ground and power planes,  
etc. In addition, the layout of the PCB can also affect the  
isolation transient immunity (CMTI) of the HCPL-7800(A),  
due primarily to stray capacitive coupling between the  
input and the output circuits. To obtain optimal CMTI  
performance, the layout of the PC board should minimize  
any stray coupling by maintaining the maximum possible  
distance between the input and output sides of the circuit  
and ensuring that any ground or power plane on the PC  
board does not pass directly below or extend much wider  
than the body of the HCPL-7800(A).  
POSITIVE  
FLOATING  
SUPPLY  
C2  
ꢁ20 pF  
HV+  
GATE DRIVE  
CIRCUIT  
R3  
* * *  
ꢁ0.0 K  
Uꢁ  
78L02  
+2 V  
+ꢁ2 V  
C8  
IN OUT  
0.ꢁ µF  
Cꢁ  
Cꢀ  
8
C4  
0.ꢁ  
µF  
0.ꢁ  
µF  
0.ꢁ µF  
R2  
68  
Rꢁ  
7
-
ꢀ.00 K  
C3  
U3  
V
Uꢀ  
OU  
0.0ꢁ  
µF  
Rꢀ  
+
6
2
3
4
MC3408ꢁ  
ꢀ.00 K  
MOTOR  
C7  
+
-
* * *  
C6  
ꢁ20 pF  
R4  
ꢁ0.0 K  
RSENSE  
0.ꢁ µF  
HCPL-7800  
-ꢁ2 V  
* * *  
HV-  
Figure 18: Recommended Application Circuit.  
C4  
Cꢀ  
R2  
C3  
TO VDDꢁ  
TO VDDꢀ  
VOUT+  
VOUT-  
TO RSENSE+  
TO RSENSE-  
Figure 19. Example Printed Circuit Board Layout.  
ꢀꢃ  
Current Sensing Resistors  
The current sensing resistor should have low resistance (to  
minimize power dissipation), low inductance (to minimize  
di/dt induced voltage spikes which could adversely affect  
operation), and reasonable tolerance (to maintain overall  
circuit accuracy). Choosing a particular value for the  
resistor is usually a compro-mise between minimizing  
power dissipation and maximizing accu-racy. Smaller  
sense resistance decreases power dissipation, while larger  
sense resistance can improve circuit accuracy by utilizing  
the full input range of the HCPL -7800(A).  
become a larger percentage of the signal amp-litude. The  
selected value of the sense resistor will fall somewhere  
between the minimum and maximum values, depending  
on the particular requirements of a specific design.  
When sensing currents large enough to cause significant  
heating of the sense resistor, the temperature coefficient  
(tempco) of the resistor can introduce nonlinearity due to  
the signal dependent temperature rise of the resistor. The  
effect increases as the resistor-to-ambient thermal resis-  
tance increases. This effect can be minimized by reducing  
the thermal resistance of the current sensing resistor or  
by using a resistor with a lower tempco. Lowering the  
thermal resistance can be accomplished by repositioning  
the current sensing resistor on the PC board, by using  
larger PC board traces to carry away more heat, or by  
using a heat sink.  
The first step in selecting a sense resistor is determining  
how much current the resistor will be sensing. The graph  
in Figure 20 shows the RMS current in each phase of a  
three-phase induction motor as a function of average  
motor output power (in horsepower, hp) and motor  
drive supply voltage. The maximum value of the sense  
re-sistor is determined by the current being measured  
and the maxi-mum recommended input voltage of the  
isolation amplifier. The maximum sense resistance can  
be calculated by taking the maxi-mum recommended  
input voltage and dividing by the peak current that the  
sense resistor should see during normal operation. For  
example, if a motor will have a maximum RMS current  
of 10 A and can experience up to 50% overloads during  
normal op-eration, then the peak current is 21.1 A (=10 x  
1.414 x 1.5). Assuming a maximum input voltage of 200  
mV, the maximum value of sense resistance in this case  
would be about 10 mΩ.  
For a two-terminal current sensing resistor, as the value  
of resistance decreases, the re-sistance of the leads  
become a significant percentage of the total resistance.  
This has two primary effects on resistor accuracy. First,  
the effective resistance of the sense resistor can become  
dependent on factors such as how long the leads are, how  
they are bent, how far they are inserted into the board,  
and how far solder wicks up the leads during assembly  
(these issues will be discussed in more detail shortly).  
Second, the leads are typically made from a material, such  
as copper, which has a much higher tempco than the  
material from which the resistive element itself is made,  
resulting in a higher tempco overall.  
40  
440 V  
380 V  
ꢀꢀ0 V  
ꢁꢀ0 V  
Both of these effects are eliminated when a four-terminal  
current sensing resistor is used. A four- terminal resistor  
has two additional terminals that are Kelvin-connected  
directly across the resistive element itself; these two  
terminals are used to monitor the voltage across the  
resistive element while the other two terminals are used  
to carry the load current. Because of the Kelvin connection,  
any voltage drops across the leads carrying the load current  
should have no impact on the measured voltage.  
32  
30  
ꢀ2  
ꢀ0  
ꢁ2  
ꢁ0  
2
0
0
2
ꢁ0  
ꢁ2  
ꢀ0 ꢀ2  
30 32  
When laying out a PC board for the current sensing  
resistors, a couple of points should be kept in mind. The  
Kelvin connections to the resistor should be brought  
together under the body of the resistor and then run very  
close to each other to the input of the HCPL-7800(A); this  
minimizes the loop area of the connection and reduces  
the possibility of stray magnetic fields from interfering  
with the measured signal. If the sense resistor is not  
located on the same PC board as the HCPL-7800(A) circuit,  
a tightly twisted pair of wires can accomplish the same  
thing.  
MOTOR PHASE CURRENT - A (rmsꢂ  
Figure 20. Motor Output Horsepower vs. Motor Phase Current and Supply  
The maximum average power dissipation in the sense  
resistor can also be easily calculated by multiplying the  
sense resistance times the square of the maximum RMS  
current, which is about 1 W in the previous example. If  
the power dissipation in the sense resistor is too high, the  
resistance can be decreased below the maximum value  
to decrease power dissipation. The minimum value of the  
sense resistor is limited by precision and accuracy require-  
ments of the design. As the resistance value is reduced,  
the output voltage across the resistor is also reduced,  
which means that the offset and noise, which are fixed,  
Also, multiple layers of the PC board can be used to  
increase current carrying capacity. Numerous plated-  
through vias should surround each non-Kelvin terminal of  
ꢀꢄ  
the sense resistor to help distribute the current between  
the layers of the PC board. The PC board should use 2 or  
4 oz. copper for the layers, resulting in a current carrying  
capacity in excess of 20 A. Making the current carrying  
traces on the PC board fairly large can also improve the  
sense resistor’s power dissipation capability by acting as a  
heat sink. Liberal use of vias where the load current enters  
and exits the PC board is also recommended.  
Output Side  
The op-amp used in the external post-amplifier circuit  
should be of sufficiently high precision so that it does not  
contribute a significant amount of offset or offset drift  
relative to the contribution from the isolation amplifier.  
Generally, op-amps with bipolar input stages exhibit  
better offset performance than op-amps with JFET or  
MOSFET input stages.  
Note: Please refer to Avago Technologies Application Note 1078 for  
additional information on using Isolation Amplifiers.  
In addition, the op-amp should also have enough  
bandwidth and slew rate so that it does not adversely  
affect the response speed of the overall circuit. The post-  
amplifier circuit includes a pair of capacitors (C5 and C6)  
that form a single-pole low-pass filter; these capacitors  
allow the bandwidth of the post-amp to be adjusted  
independently of the gain and are useful for reducing  
the output noise from the isola-tion amplifier. Many  
different op-amps could be used in the circuit, including:  
MC34082A (Motorola), TLO32A, TLO52A, and TLC277  
(Texas Instruments), LF412A (National Semiconductor).  
Sense Resistor Connections  
The recommended method for connecting the HCPL-  
7800(A) to the current sensing resistor is shown in Figure  
18. V (pin 2 of the HPCL-7800(A)) is connected to the  
IN+  
positive terminal of the sense resistor, while V (pin  
IN-  
3) is shorted to GND1 (pin 4), with the power-supply  
return path functioning as the sense line to the negative  
terminal of the current sense resistor. This allows a single  
pair of wires or PC board traces to connect the HCPL-  
7800(A) circuit to the sense resistor. By referencing the  
input circuit to the negative side of the sense resistor,  
any load current induced noise transients on the resistor  
are seen as a common-mode signal and will not interfere  
with the current-sense signal. This is important because  
the large load currents flowing through the motor drive,  
along with the parasitic inductances inherent in the  
wiring of the circuit, can generate both noise spikes and  
offsets that are relatively large compared to the small  
voltages that are being measured across the current  
sensing resistor.  
The gain-setting resistors in the post-amp should have a  
tolerance of 1% or better to ensure adequate CMRR and  
adequate gain toler-ance for the overall circuit. Resistor  
networks can be used that have much better ratio toler-  
ances than can be achieved using discrete resistors. A  
resistor network also reduces the total number of compo-  
nents for the circuit as well as the required board space.  
If the same power supply is used both for the gate  
drive circuit and for the current sensing circuit, it is very  
important that the connection from GND1 of the HCPL-  
7800(A) to the sense resistor be the only return path for  
supply current to the gate drive power supply in order  
to eliminate potential ground loop problems. The only  
direct connection between the HCPL-7800(A) circuit  
and the gate drive circuit should be the positive power  
supply line.  
ꢀꢅ  
FREQUENTLY ASKED QUESTIONS ABOUT  
THE HCPL-7800(A)  
1. THE BASICS  
2. Filter resistor: The equivalent input resistance for  
HCPL-7800(A) is around 500 kΩ. It is therefore best  
to ensure that the filter resistance is not a significant  
percentage of this value; otherwise the offset voltage  
will be increased through the resistor divider effect.  
1.1: Why should I use the HCPL-7800(A) for sensing cur-  
rent when Hall-effect sensors are available which don’t  
need an isolated supply voltage?  
[As an example, if R = 5.5 kΩ, then V = (Vin * 1%)  
filt  
OS  
Available in an auto-insertable, 8-pin DIP package, the  
HCPL-7800(A) is smaller than and has better linearity,  
offset vs. temperature and Common Mode Rejection  
(CMR) performance than most Hall-effect sensors. Ad-  
ditionally, often the required input-side power supply  
can be derived from the same supply that powers the  
gate-drive optocoupler.  
= 2 mV for a maximum 200 mV input and V will  
OS  
vary with respect to Vin.]  
3. The input bandwidth is changed as a result of this  
different R-C filter configuration. In fact this is one  
of the main reasons for changing the input-filter R-C  
time constant.  
4. Filter capacitance: The input capacitance of the  
HCPL-7800(A) is approximately 1.5 pF. For proper  
operation the switching input-side sampling  
2. SENSE RESISTOR AND INPUT FILTER  
2.1: Where do I get 10 mresistors? I have never seen one  
that low.  
capacitors must be charged from a relatively fixed  
(low impedance) voltage source. Therefore, if a filter  
capacitor is used it is best for this capacitor to be a  
Although less common than values above 10 Ω, there  
are quite a few manufacturers of resistors suitable for  
measuring currents up to 50 A when combined with  
the HCPL-7800(A). Example product information may be  
found at Dale’s web site (http://www.vishay.com/vishay/  
dale) and Isotek’s web site (http://www.isotekcorp.com).  
few orders of magnitude greater than the C  
value of at least 100 pF works well.)  
(A  
INPUT  
2.4: How do I ensure that the HCPL-7800(A) is not de-  
stroyed as a result of short circuit conditions which cause  
voltage drops across the sense resistor that exceed the rat-  
ings of the HCPL-7800(A)’s inputs?  
2.2: Should I connect both inputs across the sense resistor  
instead of grounding V directly to pin 4?  
IN-  
Select the sense resistor so that it will have less than 5 V  
drop when short circuits occur. The only other require-  
ment is to shut down the drive before the sense resistor  
is damaged or its solder joints melt. This ensures that the  
input of the HCPL-7800(A) can not be damaged by sense  
resistors going open-circuit.  
This is not necessary, but it will work. If you do, be sure  
to use an RC filter on both pin 2 (V ) and pin 3 (V ) to  
IN+  
IN-  
limit the input voltage at both pads.  
2.3: Do I really need an RC filter on the input? What is it  
for? Are other values of R and C okay?  
The input anti-aliasing filter (R=39 Ω, C=0.01 µF) shown  
in the typical application circuit is recommended for  
filtering fast switching voltage transients from the input  
signal. (This helps to attenuate higher signal frequencies  
which could otherwise alias with the input sampling rate  
and cause higher input offset voltage.)  
3. ISOLATION AND INSULATION  
3.1: How many volts will the HCPL-7800(A) withstand?  
The momentary (1 minute) withstand voltage is 3750 V  
rms per UL 1577 and CSA Component Acceptance Notice  
#5.  
Some issues to keep in mind using different filter resistors  
or capacitors are:  
4. ACCURACY  
1. Filter resistor: Input bias current for pins 2 and 3: This  
is on the order of 500 nA. If you are using a single  
filter resistor in series with pin 2 but not pin 3 the IxR  
drop across this resistor will add to the offset error of  
the device. As long as this IR drop is small compared  
to the input offset voltage there should not be a  
problem. If larger-valued resistors are used in series,  
it is better to put half of the resistance in series with  
pin 2 and half the resistance in series with pin 3. In  
this case, the offset voltage is due mainly to resistor  
mismatch (typically less than 1% of the resistance  
design value) multiplied by the input bias.  
4.1: Can the signal to noise ratio be improved?  
Yes. Some noise energy exists beyond the 100 kHz  
bandwidth of the HCPL-7800(A). Additional filtering  
using different filter R,C values in the post-amplifier  
application circuit can be used to improve the signal  
to noise ratio. For example, by using values of R3 = R4  
= 10 kΩ, C5 = C6 = 470 pF in the application circuit  
the rms output noise will be cut roughly by a factor of  
2. In applications needing only a few kHz bandwidth  
even better noise performance can be obtained. The  
noise spectral density is roughly 500 nV/š Hz below  
20 kHz (input referred).  
ꢀꢆ  
4.2: Does the gain change if the internal LED light output  
degrades with time?  
No. The LED is used only to transmit a digital pattern.  
Avago Technologies has accounted for LED degradation  
in the design of the product to ensure long life.  
5. POWER SUPPLIES AND START-UP  
5.1: What are the output voltages before the input side  
power supply is turned on?  
V
is close to 1.29 V and V is close to 3.80 V. This is  
O+  
O-  
equivalent to the output response at the condition that  
LED is completely off.  
5.2: How long does the HCPL-7800(A) take to begin work-  
ing properly after power-up?  
Within 1 ms after V  
and V  
powered the device  
DD1  
DD2  
starts to work. But it takes longer time for output to settle  
down completely. In case of the offset measurement  
while both inputs are tied to ground there is initially V  
OS  
adjustment (about 60 ms). The output completely settles  
down in 100 ms after device powering up.  
6. MISCELLANEOUS  
6.1: How does the HCPL-7800(A) measure negative signals  
with only a +5 V supply?  
The inputs have a series resistor for protection against  
large negative inputs. Normal signals are no more than  
200 mV in amplitude. Such signals do not forward bias  
any junctions sufficiently to interfere with accurate  
operation of the switched capacitor input circuit.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © ꢁ00ꢄ-ꢁ00ꢇ Avago Technologies Limited. All rights reserved. Obsoletes ꢄꢈꢇꢈ-ꢁꢀꢅꢀEN  
AV0ꢁ-0ꢃꢀ0EN - May ꢁꢅ, ꢁ00ꢇ  
配单直通车
HCPL-7800-000E产品参数
型号:HCPL-7800-000E
是否Rohs认证: 符合
生命周期:Transferred
IHS 制造商:AGILENT TECHNOLOGIES INC
包装说明:DIP, DIP8,.3
Reach Compliance Code:unknown
风险等级:5.83
放大器类型:ISOLATION AMPLIFIER
JESD-30 代码:R-PDIP-T8
湿度敏感等级:1
功能数量:1
端子数量:8
最高工作温度:100 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装等效代码:DIP8,.3
封装形状:RECTANGULAR
封装形式:IN-LINE
电源:5 V
认证状态:Not Qualified
子类别:Isolation Amplifiers
最大压摆率:16 mA
标称供电电压 (Vsup):5 V
表面贴装:NO
温度等级:INDUSTRIAL
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!