欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • HCS515-I/SL
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • HCS515-I/SL图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • HCS515-I/SL 现货库存
  • 数量8800 
  • 厂家Microchip 
  • 封装14SOIC.150inTUBE 
  • 批号23+ 
  • 原装进口特价现货!
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • HCS515-I/SL图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HCS515-I/SL 现货库存
  • 数量12500 
  • 厂家Microchip 
  • 封装57 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HCS515-I/SL图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • HCS515-I/SL 现货库存
  • 数量26890 
  • 厂家MICROCHIP 
  • 封装SOP14 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • HCS515-I/SL图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • HCS515-I/SL 现货库存
  • 数量50 
  • 厂家MICROCHIP 
  • 封装SOP14 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • HCS515-I/SL图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • HCS515-I/SL
  • 数量8652 
  • 厂家Microchip Technology 
  • 封装14-SOIC 
  • 批号23+ 
  • 专用 IC,进口原装现货
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • HCS515-I/SL图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • HCS515-I/SL
  • 数量12245 
  • 厂家MICROCHIP/微芯 
  • 封装SOIC-14 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • HCS515-I/SL图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • HCS515-I/SL
  • 数量38000 
  • 厂家MICROCHI 
  • 封装SOP8 
  • 批号24+ 
  • 只做原装进口现货假一赔十!公司原装现货!
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • HCS515-I/SL图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HCS515-I/SL
  • 数量15 
  • 厂家MROCHIP/微芯 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HCS515-I/SL图
  • 集好芯城

     该会员已使用本站13年以上
  • HCS515-I/SL
  • 数量14622 
  • 厂家MICROCHIP/微芯 
  • 封装SOP14 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HCS515-I/SL图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • HCS515-I/SL
  • 数量30000 
  • 厂家MICROCHIP/微芯 
  • 封装sopdipqfp 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • HCS515-I/SL图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • HCS515-I/SL
  • 数量22185 
  • 厂家MICROCHIP/微芯 
  • 封装14SOIC.150inTUBE 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • HCS515-I/SL图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • HCS515-I/SL
  • 数量8800 
  • 厂家MICROCHIP/微芯 
  • 封装SOP14 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • HCS515-I/SL图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HCS515-I/SL
  • 数量3550 
  • 厂家Microchip 
  • 封装14-SOIC(0.154,3.90mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • HCS515-I/SL图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • HCS515-I/SL
  • 数量10000 
  • 厂家MICROCHIP 
  • 封装dip sop 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • HCS515-I/SL图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCS515-I/SL
  • 数量6800 
  • 厂家Microchip 
  • 封装原装现货 
  • 批号最新批号 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • HCS515-I/SL图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • HCS515-I/SL
  • 数量865000 
  • 厂家MICROCHIP/微芯 
  • 封装2020+ 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • HCS515-I/SL图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • HCS515-I/SL
  • 数量2243 
  • 厂家MICROCIHIP 
  • 封装SOP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • HCS515-I/SL图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • HCS515-I/SL
  • 数量9328 
  • 厂家MICROCHIP-微芯 
  • 封装SOP-14 
  • 批号▉▉:2年内 
  • ▉▉¥17.6元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • HCS515-I/SL图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HCS515-I/SL
  • 数量12500 
  • 厂家Microchip 
  • 封装57 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HCS515-I/SL图
  • 深圳市中福国际管理有限公司

     该会员已使用本站14年以上
  • HCS515-I/SL
  • 数量21000 
  • 厂家MICROCHIP/微芯 
  • 封装SOP14 
  • 批号21+ 
  • 大量现货库存,2小时内发货
  • QQ:184363262QQ:184363262 复制
  • 0755-83502530 QQ:184363262
  • HCS515-I/SL图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • HCS515-I/SL
  • 数量8000 
  • 厂家Microchip 
  • 封装14SOIC.15 
  • 批号17+ 
  • 全新原装现货,有意请来电或QQ联系
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • HCS515-I/SL图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • HCS515-I/SL
  • 数量5000 
  • 厂家MICROCHIP 
  • 封装dip sop 
  • 批号NEW 
  • 原装正品可售样版可大量供货
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • HCS515-I/SL图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HCS515-I/SL
  • 数量85000 
  • 厂家MICROCHIP/微芯 
  • 封装2020+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HCS515-I/SL图
  • 深圳市芳益电子科技有限公司

     该会员已使用本站10年以上
  • HCS515-I/SL
  • 数量10800 
  • 厂家MICROCHI 
  • 封装sop dip 
  • 批号2023+ 
  • 原装现货库存 MICRCHI全系列配套 欢迎加Q详谈
  • QQ:498361569QQ:498361569 复制
    QQ:389337416QQ:389337416 复制
  • 0755-13631573466 QQ:498361569QQ:389337416
  • HCS515-I/SL图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HCS515-I/SL
  • 数量3785 
  • 厂家MICROCHIP 
  • 封装SOP14 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • HCS515-I/SL图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • HCS515-I/SL
  • 数量68000 
  • 厂家MICROCHIP 
  • 封装SOP14 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • HCS515-I/SL图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • HCS515-I/SL
  • 数量20000 
  • 厂家MICROCHIP 
  • 封装SOIC-14 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • HCS515-I/SL图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • HCS515-I/SL
  • 数量8560 
  • 厂家MICROCH 
  • 封装SOP14 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • HCS515-I/SL图
  • 深圳市鹏睿康科技有限公司

     该会员已使用本站16年以上
  • HCS515-I/SL
  • 数量1200 
  • 厂家MICROCHIP 
  • 封装只做原装 
  • 批号23+ 
  • 原装现货假一赔万,原包原标,支持实单
  • QQ:2885392746QQ:2885392746 复制
    QQ:2885392744QQ:2885392744 复制
  • 0755-83192793 QQ:2885392746QQ:2885392744
  • HCS515-I/SL图
  • 深圳市思诺康科技有限公司

     该会员已使用本站16年以上
  • HCS515-I/SL
  • 数量1000 
  • 厂家Microchip Technology 
  • 封装14-SOIC 
  • 批号23+ 
  • IC-专用IC
  • QQ:2881281130QQ:2881281130 复制
    QQ:2881281133QQ:2881281133 复制
  • 0755-83286481 QQ:2881281130QQ:2881281133
  • HCS515-I/SL图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • HCS515-I/SL
  • 数量20005 
  • 厂家MICROCHIP/微芯 
  • 封装 
  • 批号24+ 
  • MIC/微芯优势分销 实单必成 可开13点增值税
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • HCS515-I/SL图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • HCS515-I/SL
  • 数量50 
  • 厂家MICROCHIP 
  • 封装SOP14 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • HCS515-I/SL图
  • 深圳市世鹏电子科技有限公司

     该会员已使用本站13年以上
  • HCS515-I/SL
  • 数量24807 
  • 厂家MICROCHIP 
  • 封装14SOP 
  • 批号2022+ 
  • 原装优势现货
  • QQ:80034248QQ:80034248 复制
    QQ:100633298QQ:100633298 复制
  • 0755-83987638 88877298 QQ:80034248QQ:100633298
  • HCS515-I/SL图
  • 深圳威尔运电子有限公司

     该会员已使用本站10年以上
  • HCS515-I/SL
  • 数量228 
  • 厂家N/A 
  • 封装N/A 
  • 批号16+ 
  • 正品原装,假一罚十!
  • QQ:276537593QQ:276537593 复制
  • 86-0755-83826550 QQ:276537593
  • HCS515-I/SL图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • HCS515-I/SL
  • 数量660000 
  • 厂家MICROCHIP(美国微芯) 
  • 封装SOIC-14 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • HCS515-I/SL图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • HCS515-I/SL
  • 数量10000 
  • 厂家MICROCHIP 
  • 封装SOP14 
  • 批号24+ 
  • 原装进口现货 假一罚十
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-13686833545 QQ:1902134819QQ:2881689472
  • HCS515-I/SL图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • HCS515-I/SL
  • 数量23000 
  • 厂家Microchip 
  • 封装14-SOIC 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305

产品型号HCS515-I/SL的概述

HCS515-I/SL芯片概述 HCS515-I/SL是一款集成电路,常用于高性能的电子应用中。该芯片以其高灵敏度、高稳定性以及多功能性而闻名,广泛应用于遥控器、汽车电子、智能家居等多个领域。其设计目标主要是针对短距离无线通信,因此在信息传输的可靠性和处理速度方面具有显著优势。 HCS515-I/SL采用了高效的编码和调制技术,使得其能够在相对较低的功率下,实现长距离的信号传输。这种特性使得它非常适合用于需要长时间运行的电池供电设备。此外,其内部集成的滤波器和解码器能够有效减少外部噪声的影响,从而提高信号的清晰度和准确性。 HCS515-I/SL详细参数 HCS515-I/SL的主要技术参数包括: - 工作电压范围:2.5V至5.5V - 工作频率:315MHz、433MHz(可选) - 灵敏度:-105dBm - 数据传输速率:1kbps至200kbps - 调制方式:FSK/GFS...

产品型号HCS515-I/SL的Datasheet PDF文件预览

HCS515  
KEELOQ® Code Hopping Decoder  
FEATURES  
Security  
DESCRIPTION  
The Microchip Technology Inc. HCS515 is a code hop-  
ping decoder designed for secure Remote Keyless  
Entry (RKE) systems. The HCS515 utilizes the pat-  
ented code hopping system and high security learning  
mechanisms to make this a canned solution when used  
with the HCS encoders to implement a unidirectional  
remote and access control systems. The HCS515 can  
be used as a stand-alone decoder or in conjunction  
with a microcontroller.  
• Encrypted storage of manufacturer’s code  
• Encrypted storage of encoder decryption keys  
• Up to seven transmitters can be learned code  
hopping technology  
• Normal and secure learning mechanisms  
Operating  
PACKAGE TYPE  
• 4.5V – 5.5V operation  
• Internal oscillator  
PDIP, SOIC  
• Auto bit rate detection  
NC  
NC  
VDD  
S1  
1
2
3
4
5
14 NC  
13 NC  
12 Vss  
Other  
• Stand-alone decoder  
• Internal EEPROM for transmitter storage  
• Synchronous serial interface  
• 1 Kbit user EEPROM  
RF_IN  
11  
10  
S0  
S_CLK  
S_DAT  
• 14-pin DIP/SOIC package  
MCLR  
6
7
9
8
Typical Applications  
NC  
NC  
• Automotive remote entry systems  
• Automotive alarm systems  
• Automotive immobilizers  
• Gate and garage openers  
• Electronic door locks  
BLOCK DIAGRAM  
RFIN  
Reception Register  
• Identity tokens  
• Burglar alarm systems  
DECRYPTOR  
EE_DAT  
EE_CLK  
Internal  
S_DAT  
S_CLK  
S0  
S1  
MCLR  
CONTROL  
Compatible Encoders  
EEPROM  
All encoders and transponders configured for the fol-  
lowing setting:  
OSCILLATOR  
• PWM modulation format (1/3-2/3)  
TE in the range from 100 μs to 400 μs  
• 10 x TE Header  
The manufacturer’s code, encoder decryption keys,  
and synchronization information are stored in  
encrypted form in internal EEPROM. The HCS515  
uses the S_DATand S_CLKinputs to communicate  
with a host controller device.  
• 28-bit Serial Number  
• 16-bit Synchronization counter  
• Discrimination bits equal to Serial Number 8 LSbs  
• 66- to 69-bit length code word.  
The HCS515 operates over a wide voltage range of  
4.5V – 5.5V. The decoder employs automatic bit rate  
detection, which allows it to compensate for wide vari-  
© 2011 Microchip Technology Inc.  
DS40183E-page 1  
HCS515  
ations in transmitter data rate. The decoder contains  
sophisticated error checking algorithms to ensure only  
valid codes are accepted.  
- Secure Learn  
The transmitter is activated through a special  
button combination to transmit a stored 60-bit  
seed value used to generate the transmitter’s  
crypt key. The receiver uses this seed value  
to derive the same crypt key and decrypt the  
received code word’s encrypted portion.  
1.0  
SYSTEM OVERVIEW  
Key Terms  
Manufacturer’s code – A unique and secret 64-  
bit number used to generate unique encoder crypt  
keys. Each encoder is programmed with a crypt  
key that is a function of the manufacturer’s code.  
Each decoder is programmed with the manufac-  
turer code itself.  
The following is a list of key terms used throughout this  
data sheet. For additional information on KEELOQ® and  
Code Hopping, refer to Technical Brief 3 (TB003).  
RKE - Remote Keyless Entry  
Button Status - Indicates what button input(s)  
activated the transmission. Encompasses the 4  
button status bits S3, S2, S1 and S0 (Figure 7-2).  
1.1  
HCS Encoder Overview  
Code Hopping - A method by which a code,  
viewed externally to the system, appears to  
change unpredictably each time it is transmitted.  
The HCS encoders have a small EEPROM array which  
must be loaded with several parameters before use.  
The most important of these values are:  
Code word - A block of data that is repeatedly  
transmitted upon button activation (Figure 7-1).  
• A crypt key that is generated at the time of pro-  
duction  
Transmission - A data stream consisting of  
repeating code words (Figure 7-1).  
• A 16-bit synchronization counter value  
• A 28-bit serial number which is meant to be  
unique for every encoder  
Crypt key - A unique and secret 64-bit number  
used to encrypt and decrypt data. In a symmetri-  
cal block cipher such as the KEELOQ algorithm,  
the encryption and decryption keys are equal and  
will therefore be referred to generally as the crypt  
key.  
The manufacturer programs the serial number for each  
encoder at the time of production, while the ‘Key Gen-  
eration Algorithm’ generates the crypt key (Figure 1-1).  
Inputs to the key generation algorithm typically consist  
of the encoder’s serial number and a 64-bit manufac-  
turer’s code, which the manufacturer creates.  
Encoder - A device that generates and encodes  
data.  
Encryption Algorithm - A recipe whereby data is  
scrambled using a crypt key. The data can only be  
interpreted by the respective decryption algorithm  
using the same crypt key.  
Note: The manufacturer code is a pivotal part of  
the system’s overall security. Conse-  
quently, all possible precautions must be  
taken and maintained for this code.  
Decoder - A device that decodes data received  
from an encoder.  
Decryption algorithm - A recipe whereby data  
scrambled by an encryption algorithm can be  
unscrambled using the same crypt key.  
Learn – Learning involves the receiver calculating  
the transmitter’s appropriate crypt key, decrypting  
the received hopping code and storing the serial  
number, synchronization counter value and crypt  
key in EEPROM. The KEELOQ product family facil-  
itates several learning strategies to be imple-  
mented on the decoder. The following are  
examples of what can be done.  
- Simple Learning  
The receiver uses a fixed crypt key, common  
to all components of all systems by the same  
manufacturer, to decrypt the received code  
word’s encrypted portion.  
- Normal Learning  
The receiver uses information transmitted  
during normal operation to derive the crypt  
key and decrypt the received code word’s  
encrypted portion.  
DS40183E-page 2  
© 2011 Microchip Technology Inc.  
 
HCS515  
FIGURE 1-1:  
CREATION AND STORAGE OF CRYPT KEY DURING PRODUCTION  
Production  
Programmer  
HCS515  
Transmitter  
Serial Number  
EEPROM Array  
Serial Number  
Crypt Key  
Sync Counter  
.
Key  
Crypt  
Key  
.
.
Manufacturer’s  
Code  
Generation  
Algorithm  
The 16-bit synchronization counter is the basis behind  
the transmitted code word changing for each transmis-  
sion; it increments each time a button is pressed. Due  
to the code hopping algorithm’s complexity, each incre-  
ment of the synchronization value results in greater  
than 50% of the bits changing in the transmitted code  
word.  
A receiver may use any type of controller as a decoder,  
but it is typically a microcontroller with compatible firm-  
ware that allows the decoder to operate in conjunction  
with an HCS515 based transmitter. Section 3.0  
provides detail on integrating the HCS515 into a sys-  
tem.  
A transmitter must first be ‘learned’ by the receiver  
before its use is allowed in the system. Learning  
includes calculating the transmitter’s appropriate crypt  
key, decrypting the received hopping code and storing  
the serial number, synchronization counter value and  
crypt key in EEPROM.  
Figure 1-2 shows how the key values in EEPROM are  
used in the encoder. Once the encoder detects a button  
press, it reads the button inputs and updates the syn-  
chronization counter. The synchronization counter and  
crypt key are input to the encryption algorithm and the  
output is 32 bits of encrypted information. This data will  
change with every button press, its value appearing  
externally to ‘randomly hop around’, hence it is referred  
to as the hopping portion of the code word. The 32-bit  
hopping code is combined with the button information  
and serial number to form the code word transmitted to  
the receiver. The code word format is explained in  
greater detail in Section 7.2.  
In normal operation, each received message of valid  
format is evaluated. The serial number is used to deter-  
mine if it is from a learned transmitter. If from a learned  
transmitter, the message is decrypted and the synchro-  
nization counter is verified. Finally, the button status is  
checked to see what operation is requested. Figure 1-3  
shows the relationship between some of the values  
stored by the receiver and the values received from  
the transmitter.  
FIGURE 1-2:  
EEPROM Array  
BUILDING THE TRANSMITTED CODE WORD (ENCODER)  
®
KEELOQ  
Encryption  
Algorithm  
Crypt Key  
Sync Counter  
Serial Number  
Button Press  
Information  
32 Bits  
Encrypted Data  
Serial Number  
Transmitted Information  
© 2011 Microchip Technology Inc.  
DS40183E-page 3  
 
HCS515  
FIGURE 1-3:  
BASIC OPERATION OF RECEIVER (DECODER)  
1
Received Information  
Serial Number  
EEPROM Array  
32 Bits of  
Encrypted Data  
Button Press  
Information  
Manufacturer Code  
Check for  
Match  
Serial Number  
2
Sync Counter  
Crypt Key  
3
®
KEELOQ  
Decryption  
Algorithm  
Decrypted  
Synchronization  
Counter  
Check for  
Match  
4
Perform Function  
Indicated by  
5
button press  
NOTE: Circled numbers indicate the order of execution.  
2.0  
PIN ASSIGNMENT  
Buffer  
Type(1)  
Decoder  
Function  
I/O(1)  
PIN  
Description  
1
2
NC  
NC  
O
O
I
No connection  
No connection  
3
VDD  
S1  
Power connection  
S1 function output  
S0 function output  
Master clear input  
No connection  
4
TTL  
TTL  
ST  
5
S0  
6
MCLR  
NC  
7
I/O  
I
8
NC  
No connection  
9
S_DAT  
S_CLK  
RF_IN  
GND  
NC  
TTL  
TTL  
TTL  
Synchronous data from controller  
Synchronous clock from controller  
Input from RF receiver  
Ground connection  
10  
11  
12  
13  
14  
I
No connection  
NC  
No connection  
Note: P = power, I = in, O = out, and ST = Schmitt Trigger input.  
DS40183E-page 4  
© 2011 Microchip Technology Inc.  
HCS515  
3: Learning a transmitter with an encoder  
decryption key that is identical to a  
transmitter already in memory  
replaces the existing transmitter. In  
practice, this means that all transmit-  
ters should have unique encoder  
decryption keys. Learning a previously  
learned transmitter does not use any  
additional memory slots.  
3.0  
3.1  
DECODER OPERATION  
Learning a Transmitter to a  
Receiver (Normal or Secure Learn)  
Before the transmitter and receiver can work together,  
the receiver must first ‘learn’ and store the following  
information from the transmitter in EEPROM:  
• A check value of the serial number  
• The encoder decryption key  
The following checks are performed by the decoder to  
determine if the transmission is valid during learn:  
• The current synchronization counter value  
• The first code word is checked for bit integrity.  
• The second code word is checked for bit integrity.  
The decoder must also store the manufacturer’s code  
(Section 1.1) in protected memory. This code will  
typically be the same for all of the decoders in a sys-  
tem.  
• The encoder decryption key is generated accord-  
ing to the selected algorithm.  
• The hopping code is decrypted.  
The HCS515 has seven memory slots, and, conse-  
quently, can store up to seven transmitters. During the  
learn procedure, the decoder searches for an empty  
memory slot for storing the transmitter’s information.  
When all of the memory slots are full, the decoder will  
overwrite the last transmitter’s information. To erase all  
of the memory slots at once, use the ERASE_ALL  
command (C3H).  
• The discrimination value is checked.  
• If all the checks pass, the key, serial number  
check value, and synchronization counter values  
are stored in EEPROM memory.  
Figure 3-1 shows a flow chart of the learn sequence.  
FIGURE 3-1: LEARN SEQUENCE  
3.1.1  
LEARNING PROCEDURE  
is initiated by sending  
Enter Learn  
Mode  
Learning  
the  
ACTIVATE_LEARN(D2H) command to the decoder.  
The decoder acknowledges reception of the command  
by pulling the data line high.  
Wait for Reception  
of a Valid Code  
For the HCS515 decoder to learn a new transmitter, the  
following sequence is required:  
Wait for Reception  
of Second  
Non-Repeated  
Valid Code  
1. Activate the transmitter once.  
2. Activate the transmitter a second time. (In  
Secure Learning mode, the seed transmission  
must be transmitted during the second stage of  
learn by activating the appropriate buttons on  
the transmitter.)  
Generate Key  
from Serial Number/  
Seed Value  
Use Generated Key  
to Decrypt  
3. The HCS515 will transmit a learn-status string,  
indicating that the learn was successful.  
4. The decoder has now learned the transmitter.  
Compare Discrimination  
Value with Serial Number  
5. Repeat steps 1-3 to learn up to seven  
transmitters  
Note 1: Learning will be terminated if two  
nonsequential codes were received or  
if two acceptable codes were not  
decoded within 30 seconds.  
No  
Equal?  
Yes  
Learn  
Unsuccessful  
Learn Successful Store:  
2: If more than seven transmitters are  
learned, the new transmitter will  
replace the last transmitter learned. It  
is, therefore, not possible to erase lost  
transmitters by repeatedly learning  
new transmitters. To remove lost or  
Serial Number Check Value  
Encoder Decryption Key  
Sync. Counter Value  
Exit  
stolen  
transmitters,  
ERASE_ALL  
transmitters and relearn all available  
transmitters.  
© 2011 Microchip Technology Inc.  
DS40183E-page 5  
 
HCS515  
FIGURE 3-2: DECODER OPERATION  
3.2  
Validation of Codes  
Start  
The decoder waits for a transmission and checks the  
serial number to determine if it is a learned transmitter.  
If it is, it takes the code hopping portion of the transmis-  
sion and decrypts it, using the encoder decryption key.  
It uses the discrimination value to determine if the  
decryption was valid. If everything up to this point is  
valid, the synchronization counter value is evaluated.  
No  
Transmission  
Received?  
Yes  
3.3  
Validation Steps  
Does  
Ser # Check Val  
Match?  
No  
Validation consists of the following steps:  
1. Search EEPROM to find the Serial Number  
Check Value Match  
Yes  
Decrypt Transmission  
2. Decrypt the Hopping Code  
3. Compare the 10 bits of the discrimination value  
with the lower 10 bits of serial number  
Is  
No  
decryption  
valid?  
4. Check if the synchronization counter value falls  
within the first synchronization window.  
Yes  
5. Check if the synchronization counter value falls  
within the second synchronization window.  
Execute  
Command  
and  
Update  
Counter  
Is  
Counter within  
16?  
Yes  
6. If a valid transmission is found, update the  
synchronization counter, else use the next  
transmitter block, and repeat the tests.  
No  
Is  
No  
Counter within  
16K?  
Yes  
Save Counter  
in Temp Location  
DS40183E-page 6  
© 2011 Microchip Technology Inc.  
HCS515  
A "Double Operation" (resynchronization) window fur-  
ther exists from the Single Operation window up to 32K  
codes forward of the currently stored counter value. It  
is referred to as "Double Operation" because a trans-  
mission with synchronization counter value in this win-  
dow will require an additional, sequential counter  
transmission prior to executing the intended function.  
Upon receiving the sequential transmission the  
decoder executes the intended function and stores the  
synchronization counter value. This resynchronization  
occurs transparently to the user as it is human nature  
to press the button a second time if the first was unsuc-  
cessful.  
3.4  
Synchronization with Decoder  
(Evaluating the Counter)  
The KEELOQ technology patent scope includes a  
sophisticated synchronization technique that does not  
require the calculation and storage of future codes. The  
technique securely blocks invalid transmissions while  
providing transparent resynchronization to transmitters  
inadvertently activated away from the receiver.  
Figure 3-3 shows a 3-partition, rotating synchronization  
window. The size of each window is optional but the  
technique is fundamental. Each time a transmission is  
authenticated, the intended function is executed and  
the transmission's synchronization counter value is  
stored in EEPROM. From the currently stored counter  
value there is an initial "Single Operation" forward win-  
dow of 16 codes. If the difference between a received  
synchronization counter and the last stored counter is  
within 16, the intended function will be executed on the  
single button press and the new synchronization coun-  
ter will be stored. Storing the new synchronization  
counter value effectively rotates the entire synchroniza-  
tion window.  
The third window is a "Blocked Window" ranging from  
the double operation window to the currently stored  
synchronization counter value. Any transmission with  
synchronization counter value within this window will  
be ignored. This window excludes previously used,  
perhaps code-grabbed transmissions from accessing  
the system.  
FIGURE 3-3:  
SYNCHRONIZATION WINDOW  
Entire Window  
rotates to eliminate  
use of previously  
used codes  
Blocked  
Window  
(32K Codes)  
Stored  
Synchronization  
Counter Value  
Double Operation  
(resynchronization)  
Window  
Single Operation  
Window  
(32K Codes)  
(16 Codes)  
© 2011 Microchip Technology Inc.  
DS40183E-page 7  
 
HCS515  
edge by taking the clock line high. The decoder then  
takes the data line low. The microcontroller can then  
begin clocking a data stream out of the HCS515. The  
data stream consists of:  
4.0  
INTERFACING TO A  
MICROCONTROLLER  
The HCS515 interfaces to a microcontroller via a syn-  
chronous serial interface. A clock and data line are  
used to communicate with the HCS515. The microcon-  
troller controls the clock line. There are two groups of  
data transfer messages. The first is from the decoder  
whenever the decoder receives a valid transmission.  
The decoder signals reception of a valid code by taking  
the data line high (maximum of 500 ms) The microcon-  
troller then services the request by clocking out a data  
string from the decoder. The data string contains the  
function code, the status bit, and block indicators. The  
second is from the controlling microcontroller to the  
decoder in the form of a defined command set.  
• START bit ‘0’.  
• 2 status bits [REPEAT, Vlow].  
• 4-bit function code [S3 S2 S1 S0].  
• STOP bit ‘1’.  
• 4 bits indicating the number of transmitters  
learned into the decoder [CNT3…CNT0].  
• 4 bits indicating which block was used  
[TX3…TX0].  
• 64 bits of the received transmission with the hop-  
ping code decrypted.  
Note: Data is always clocked in/out Least  
Significant bit (LSb) first.  
Figure 4-1 shows the HCS515 decoder and the I/O  
interface lines necessary to interface to a microcon-  
troller.  
The decoder will terminate the transmission of the data  
stream at any point where the clock is kept low for lon-  
ger than 1 ms. Therefore, the microcontroller can only  
clock out the required bits. A maximum of 80 bits can  
be clocked out of the decoder.  
4.1  
Valid Transmission Message  
The decoder informs the microcontroller of a valid  
transmission by taking the data line high for up to  
500 ms. The controlling microcontroller must acknowl-  
FIGURE 4-1: HCS515 DECODER AND I/O INTERFACE LINES  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
RF DATA  
SYNC CLOCK  
SYNC DATA  
MICRO RESET  
S0 OUTPUT  
S1 OUTPUT  
X
X
X
X
NC  
NC  
NC  
NC  
VCC  
VSS  
VDD  
S1  
RF_IN  
S_CLK  
S_DAT  
NC  
S0  
MCLR  
NC  
8
X
X
HCS515  
FIGURE 4-2: DECODER VALID TRANSMISSION MESSAGE  
TACK  
TACT  
TCLKL  
TCLKH  
TDS  
S_CLK  
S_DAT  
TCLKH  
TCLA  
TDHI  
0
REPT VLOW S0  
S1  
S2  
S3  
1
CNT0  
CNT3 TX0  
TX3 RX0 RX1  
RX62 RX63  
Decoder Signal Valid  
Transmission  
Information  
Received String  
A
B
Ci  
Cii  
DS40183E-page 8  
© 2011 Microchip Technology Inc.  
 
HCS515  
4.2.2  
COLLISION DETECTION  
4.2  
Command Mode  
The HCS515 uses collision detection to prevent  
clashes between the decoder and microcontroller.  
Whenever the decoder receives a valid transmission  
the following sequence is followed:  
4.2.1  
MICROCONTROLLER COMMAND  
MODE ACTIVATION  
The microcontroller command consists of four parts.  
The first part activates the Command mode, the sec-  
ond part is the actual command, the third is the address  
accessed, and the fourth part is the data. The micro-  
controller starts the command by taking the clock line  
high for up to 500 ms. The decoder acknowledges the  
start-up sequence by taking the data line high. The  
microcontroller takes the clock line low, after which the  
decoder will take the data line low, tri-state the data line  
and wait for the command to be clocked in. The data  
must be set up on the rising edge and will be sampled  
on the falling edge of the clock line.  
• The decoder first checks to see if the clock line is  
high. If the clock line is high, the valid transmis-  
sion notification is aborted, and the microcon-  
troller Command mode request is serviced.  
• The decoder takes the data line high and checks  
that the clock line doesn’t go high within 50 μs. If  
the clock line goes high, the valid transmission  
notification is aborted and the Command mode  
request is serviced.  
• If the clock line goes high after 50 μs but before  
500 ms, the decoder will acknowledge by taking  
the data line low.  
• The microcontroller can then start to clock out the  
80-bit data stream of the received transmission.  
FIGURE 4-3: MICROCONTROLLER COMMAND MODE ACTIVATION  
TCLKL  
TADDR  
TDATA  
TCMD  
TREQ  
TCLKH  
TSTART  
TDS  
CLK  
μC  
Data  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
TACK  
TRESP  
HCS515  
Data  
START Command  
Command Byte  
Address Byte  
Data Byte  
A
B
C
E
D
© 2011 Microchip Technology Inc.  
DS40183E-page 9  
HCS515  
service the command request. The response time  
depends on the state of the decoder when the Com-  
mand mode is requested.  
4.2.3  
COMMAND ACTIVATION TIMES  
The command activation time (Table 4-1) is defined as  
the maximum time the microcontroller has to wait for a  
response from the decoder. The decoder will abort and  
TABLE 4-1:  
COMMAND ACTIVATION TIMES  
Decoder State  
Min  
Max  
While receiving transmissions  
During the validation of a received transmission  
During the update of the sync counters  
During learn  
2.5 ms BPWMAX = 2.7 ms  
3 ms  
40 ms  
170 ms  
4.2.4  
DECODER COMMANDS  
The command byte specifies the operation required by  
the controlling microcontroller. Table 4-2 lists the com-  
mands.  
TABLE 4-2:  
DECODER COMMANDS  
Command Byte  
Instruction  
Operation  
F0 HEX  
E1 HEX  
D2 HEX  
C3 HEX  
B4 HEX  
Read a byte from user EEPROM  
READ  
Write a byte to user EEPROM  
WRITE  
Activate a learn sequence on the decoder  
Activate an erase all function on the decoder  
Program manufacturer’s code and configuration byte  
ACTIVATE_LRN  
ERASE_ALL  
PROGRAM  
DS40183E-page 10  
© 2011 Microchip Technology Inc.  
 
 
HCS515  
4.2.5  
READ BYTE/S FROM USER  
EEPROM  
4.2.6  
WRITE BYTE/S TO USER EEPROM  
The read command (Figure 4-4) is used to read bytes  
from the user EEPROM. The offset in the user  
EEPROM is specified by the address byte, which is  
truncated to 7 bits (C to D). After the address, a dummy  
byte must be clocked in (D to E). The EEPROM data  
byte is clocked out on the next rising edge of the clock  
line with the Least Significant bit first (E to F). Sequen-  
tial reads are possible by repeating sequence E to F  
within 1 ms after the falling edge of the previous byte’s  
Most Significant bit (MSb). During the sequential read,  
the address value will wrap after 128 bytes. The  
decoder will terminate the read command if no clock  
pulses are received for a period longer than 1.2 ms.  
The write command (Figure 4-5) is used to write a loca-  
tion in the user EEPROM. The address byte is trun-  
cated to seven bits (C to D). The data is clocked in  
Least Significant bit (LSb) first. The clock line must be  
asserted to initiate the write. Sequential writes of bytes  
are possible by clocking in the byte and then asserting  
the clock line (D – F). The decoder will terminate the  
write command if no clock pulses are received for a  
period longer than 1.2 ms After a successful write  
sequence, the decoder will acknowledge by taking the  
data line high and keeping it high until the clock line  
goes low.  
FIGURE 4-4: READ BYTES FROM USER EEPROM  
TRD  
TRD  
CLK  
μC DATA  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
MSB  
Data Byte  
LSB  
Decoder DATA  
START Command  
Command Byte  
Address Byte  
Dummy Byte  
A
B
C
D
E
F
FIGURE 4-5: WRITE BYTES TO USER EEPROM  
TACK  
TRESP  
TWR  
CLK  
μC DATA  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
TACK2  
Decoder DATA  
START Command  
Command Byte  
Address Byte  
Data Byte  
Acknowledge  
A
B
C
D
E
F
© 2011 Microchip Technology Inc.  
DS40183E-page 11  
 
 
 
 
HCS515  
asserted to activate the command. After a successful  
completion of an erase all command, the data line is  
asserted until the clock line goes low.  
4.2.7  
ERASE ALL  
The erase all command (Figure 4-6) erases all the  
transmitters in the decoder. After the command and two  
dummy bytes are clocked in, the clock line must be  
FIGURE 4-6: ERASE ALL  
TACK  
TRESP  
TERA  
CLK  
μC DATA  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
TACK2  
Decoder DATA  
START Command  
Command Byte  
Subcommand Byte  
Dummy Byte  
Acknowledge  
A
B
C
D
E
F
Upon reception of the second transmission, the  
decoder will respond with a learn status message  
(Figure 4-9).  
4.2.8  
ACTIVATE LEARN  
The activate learn command (Figure 4-7) is used to  
activate a transmitter learning sequence on the  
decoder. The command consists of a Command mode  
activation sequence, a command byte, and two dummy  
bytes. The decoder will respond by taking the data line  
high to acknowledge that the command was valid and  
that learn is active.  
The learn status message after the second transmis-  
sion consists of the following:  
• 1 START bit.  
• The function code [S3:S0] of the message is  
zero, indicating that this is a status string.  
Upon reception of the first transmission, the decoder  
will respond with a learn status message (Figure 4-8).  
• The RESULT bit indicates the result of the learn  
sequence. The RESULT bit is set if successful  
and cleared otherwise.  
During learn, the decoder will acknowledge the recep-  
tion of the first transmission by taking the data line high  
for 60 ms. The controlling microcontroller can clock out  
at most 8 bits, which will all be zeros. All of the bits of  
the status byte are zero, and this is used to distinguish  
between a learn time-out status string and the first  
transmission received string. The controlling microcon-  
troller must ensure that the clock line does not go high  
60 ms after the falling edge of the data line, for this will  
terminate learn.  
• The OVR bit will indicate whether an exiting trans-  
mitter is over written. The OVR bit will be set if an  
existing transmitter is learned over.  
• The [CNT3…CNT0] bits will indicate the number of  
transmitters learned on the decoder.  
• The [TX3…TX0] bits indicate the block number  
used during the learning of the transmitter.  
FIGURE 4-7: LEARN MODE ACTIVATION  
TACK  
TLRN  
TRESP  
CLK  
μC DATA  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
TACK2  
ecoder DATA  
START Command  
B
Command Byte  
Dummy Byte  
Dummy Byte  
Acknowledge  
A
C
D
E
F
DS40183E-page 12  
© 2011 Microchip Technology Inc.  
 
 
HCS515  
FIGURE 4-8: LEARN STATUS MESSAGE AFTER FIRST TRANSMISSION  
TACT  
TCLL  
TCLKL  
TCLKH  
CLK  
TCLH  
TCLA  
TDHI  
0
0
0
0
0
0
0
0
Decoder  
Data  
Command Request  
Status Byte  
A
B
C
FIGURE 4-9: LEARN STATUS MESSAGE AFTER SECOND TRANSMISSION  
TACT  
TCLL  
TCLKL  
TCLKH  
CLK  
TCLH  
TCLA  
TDHI  
0
0
OVR RSLT  
0
0
0
CNT0  
CNT3 TX0  
TX3 RX0 RX1  
RX62 RX63  
1
Decoder  
DATA  
Communications Request  
Learn Status Bits  
Decoded TX  
A
B
CI  
CII  
4.3  
Stand-Alone Mode  
4.4  
Erase All Command and Erase  
Command  
The HCS515 decoder can also be used in stand-alone  
applications. The HCS515 will activate the data line for  
up to 500 ms if a valid transmission was received, and  
this output can be used to drive a relay circuit. To acti-  
vate learn or erase all commands, a button must be  
connected to the CLK input. User feedback is indicated  
on an LED connected to the S_DAToutput line. If the  
CLK line is pulled high, using the learn button, the LED  
will switch on. After the CLK line is kept high for longer  
than 2 seconds, the decoder will switch the LED line off,  
indicating that learn will be entered if the button is  
released. If the CLK line is kept high for another 6 sec-  
onds, the decoder will activate an ERASE_ALLcom-  
mand.  
The Table 4-3 describes two versions of the Erase All  
command.  
TABLE 4-3:  
ERASE ALL COMMAND  
Command  
Byte  
Subcommand  
Description  
Byte  
Erase all  
transmitters.  
C3 HEX  
00HEX  
Erase all transmit-  
ters except 1. The  
first transmitter in  
memory is not  
erased.  
C3 HEX  
01HEX  
Learn mode can be aborted by taking the clock line  
high until the data line goes high (LED switches on).  
During learn, the data line will give feedback to the user  
and, therefore, must not be connected to the relay drive  
circuitry.  
Subcommand 01 can be used where a transmitter with  
permanent status is implemented in the microcontroller  
software. Use of subcommand 01 ensures that the  
permanent transmitter remains in memory even when  
all other transmitters are erased. The first transmitter  
learned after any of the following events is the first  
transmitter in memory and becomes the permanent  
transmitter:  
Note: The Repeat bit must be cleared in the  
configuration byte in Stand-alone  
mode.  
After taking the clock low and before a transmitter is  
learned, any low-to-high change on the clock line may  
terminate learn. This has learn implications when a  
switch with contact bounce is used.  
1. Programming of the manufacturer’s code.  
2. Erasing of all transmitters  
(subcommand 00only).  
© 2011 Microchip Technology Inc.  
DS40183E-page 13  
 
HCS515  
4. Synchronization counter value = any value  
(synchronization information is ignored).  
4.5  
Test Mode  
A special Test mode is activated after:  
Because the synchronization counter value is ignored  
in Test mode, any number of test transmitters can be  
used, even if their synchronization counter values are  
different.  
1. Programming of the manufacturer’s code.  
2. Erasing of all transmitters.  
Test mode can be used to test a decoder before any  
transmitters are learned on it. Test mode enables test-  
ing of decoders without spending the time to learn a  
transmitter. Test mode is terminated after the first suc-  
cessful learning of an ordinary transmitter. In test  
mode, the decoder responds to a test transmitter. The  
test transmitter has the following properties:  
4.6  
Power Supply Supervisor  
Reliable operation of the HCS515 requires that the  
contents of the EEPROM memory be protected against  
erroneous writes. To ensure that erroneous writes do  
not occur after supply voltage “brown-out” conditions,  
the use of a proper power supply supervisor device is  
imperative (Figure 4-11 and Figure 9-2).  
1. Encoder decryption key = manufacturer’s code.  
2. Serial number = any value.  
3. Discrimination bits = lower 10 bits of the serial  
number.  
FIGURE 4-10: STAND-ALONE MODE LEARN/ERASE-ALL TIMING  
TREQ  
TLRN  
TERA  
TLRN  
CLK  
DATA  
Learn Activation  
Erase-All Activation  
Successful  
A
B
C
D
E
FIGURE 4-11: TYPICAL STAND-ALONE APPLICATION CIRCUIT  
from RF Receiver  
VDD  
HCS515  
VDD  
1
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
X
X
X
X
2
3
4
5
6
7
NC  
VSS  
VDD  
S1  
VDD  
LEARN  
RF_IN  
S_CLK  
S_DAT  
NC  
MCP100-450  
Voltage Supervisor  
S0  
VI  
RST  
GND  
MCLR  
NC  
8
X
X
10KΩ  
10KΩ  
10KΩ 10KΩ  
OUTPUT1  
OUTPUT0  
VDD  
VDD  
LED  
RELAY SPST  
RELAY SPST  
NPN  
NPN  
DS40183E-page 14  
© 2011 Microchip Technology Inc.  
 
HCS515  
5.1  
Configuration Byte  
5.0  
DECODER PROGRAMMING  
The decoder is configured during initialization by set-  
ting the appropriate bits in the configuration byte. The  
following table list the options:  
The memory is divided between system memory that  
stores the transmitter information (read protected) and  
user memory (read/write). Commands to access the  
user memory are described in Sections 4.2.5 and  
4.2.6.  
Bit  
Mnemonic  
Description  
The following information stored in system memory  
needs to be programmed before the decoder can be  
used:  
0
Learning mode selection  
LRN_MODE = 0– Normal  
Learn  
LRN_MODE  
64-bit manufacturer’s code  
LRN_MODE = 1– Secure  
Learn  
• Decoder configuration byte  
1
2
Not Used  
Reserved  
Note 1: These memory locations are read pro-  
tected and can only be written to using  
the program command with the device  
powered up.  
Repeat Transmission enable  
0= Disable  
REPEAT  
1= Enabled  
3
4
5
6
7
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2: The contents of the system memory is  
encrypted by a unique 64-bit key that  
is stored in the HCS515. To initialize  
the system memory, the HCS515’s  
program command must be used.  
5.1.1  
LRN_MODE  
LRN_MODEselects between two learning modes. With  
LRN_MODE = 0, the Normal (serial number derived)  
mode is selected; with LRN_MODE = 1, the Secure  
(seed derived) mode is selected. See Section 6.0 for  
more detail on learning modes.  
5.1.2  
REPEAT  
The HCS515 can be configured to indicate repeated  
transmissions. In a stand-alone configuration, repeated  
transmissions must be disabled.  
© 2011 Microchip Technology Inc.  
DS40183E-page 15  
HCS515  
5.2  
Programming Waveform  
5.3  
Programming Data String  
The programming command consists of the following:  
A total of 80 bits are clocked into the decoder. The 8-bit  
command byte is clocked in first, followed by the 8-bit  
configuration byte and the 64-bit manufacturer’s code.  
The data must be clocked in Least Significant bit (LSb)  
first. The decoder will then encrypt the manufacturer’s  
code using the decoder’s unique 64-bit EEPROM  
encoder decryption key. After completion of the pro-  
gramming EEPROM, the decoder will acknowledge by  
taking the data line high (G to H). If the data line goes  
high within 30 ms after the clock goes high, program-  
ming also fails.  
• Command Request Sequence (A to B)  
• Command Byte (B to C)  
• Configuration Byte (C to D)  
• Manufacturer’s Code Eight Data Bytes (D to G)  
• Activation and Acknowledge Sequence (G to H)  
FIGURE 5-1: PROGRAMMING WAVEFORM  
TCLKL  
TDATA  
TDATA  
TDATA  
TDATA  
TACK  
TWTH  
TREQ  
TCLKH  
TSTART  
TDS  
CLK  
μC  
Data  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
TWTL  
TRESP  
HCS515  
Data  
START Command Command Byte  
Configuration Byte  
Least Significant Byte  
Most Significant Byte Acknowledge  
A
F
G
H
B
C
E
D
TABLE 5-1:  
Symbol  
PROGRAMMING COMMAND  
Parameters  
Sugg. Value  
Min.  
Max.  
Units  
TREQ  
TRESP  
TSTART  
TCLKH  
TCLKL  
TDS  
Command request time  
Acknowledge time  
d.o.d.  
100  
100  
100  
100  
50  
0.005  
10  
500  
1000  
1000  
1000  
1000  
1000  
1000  
240  
ms  
μs  
μs  
μs  
μs  
μs  
μs  
ms  
μs  
μs  
Command request to first command bit  
Clock high time  
20  
20  
Clock low time  
20  
Data hold time  
14  
TDATA  
TACK  
Command last bit to data first bit  
Command acknowledge time  
Acknowledge respond time  
Clock low to next command  
100  
d.o.d.  
100  
100  
10  
30  
TWTH  
TWTL  
20  
1000  
10  
Note: d.o.d. - depends on decoder status  
These parameters are characterized but not tested  
DS40183E-page 16  
© 2011 Microchip Technology Inc.  
HCS515  
6.0  
KEY GENERATION  
The HCS515 supports two learning schemes which are selected during the initialization of the system EEPROM. The  
learning schemes are:  
• Normal learn using the KEELOQ decryption algorithm  
• Secure learn using the KEELOQ decryption algorithm  
6.1  
Normal (Serial Number derived) Learn using the Decryption Algorithm  
This learning scheme uses the KEELOQ decryption algorithm and the 28-bit serial number of the transmitter to derive  
the encoder decryption key. The 28-bit serial number is patched with predefined values as indicated below to form two  
32-bit seeds.  
SourceH = 60000000 00000000H + Serial Number | 28 bits  
SourceL = 20000000 00000000H + Serial Number | 28 bits  
Then, using the KEELOQ decryption algorithm and the manufacturer’s code the encoder decryption key is  
derived as follows:  
KeyH Upper 32 bits = F KEELOQ Decryption (SourceH) | 64-bit Manufacturer’s Code  
KeyL Lower 32 bits = F KEELOQ Decryption (SourceL) | 64-bit Manufacturer’s Code  
6.2  
Secure (Seed Derived) Learn using the Decryption Algorithm  
This scheme uses the secure seed transmitted by the encoder to derive the two input seeds. The decoder always uses  
the lower 64 bits of the transmission to form a 60-bit seed. The upper 4 bits are always forced to zero.  
For 32-bit seed encoders:  
SourceH = Serial Number Lower 28 bits  
SourceL = Seed 32 bits  
For 48-bit seed encoders:  
SourceH = Seed Upper 16 bits + Serial Number Upper 16 bits (with upper 4 bits set to zero) << 16  
SourceL = Seed Lower 32 bits  
For 60-bit seed encoders:  
SourceH = Seed Upper 28 bits with upper 4 bits set to zero  
SourceL = Seed Lower 32 bits  
The KEELOQ decryption algorithm and the manufacturer’s code is used to derive the encoder decryption key as  
follows:  
KeyH Upper 32 bits = Decrypt (SourceH)  
KeyL Lower 32 bits = Decrypt (SourceL)  
64-bit Manufacturer’s Code  
64-bit Manufacturer’s Code  
© 2011 Microchip Technology Inc.  
DS40183E-page 17  
HCS515  
7.2  
Code Word Organization  
7.0  
7.1  
ENCODERS  
The HCS encoder transmits a 66/69-bit code word  
when a button is pressed. The 66/69-bit word is con-  
structed from a code hopping portion and a non-code  
hopping portion (Figure 7-2).  
Transmission Format (PWM)  
The encoder transmission is made up of several parts  
(Figure 7-1). Each transmission begins with  
a
preamble and a header, followed by the encrypted and  
then the fixed data. The actual data is 66/69 bits, which  
consist of 32 bits of encrypted data and 34/37 bits of  
non-encrypted data. Each transmission is followed by  
a guard period before another transmission can begin.  
The code hopping portion provides up to four billion  
changing code combinations and includes the button  
status bits (based on which buttons were activated),  
along with the synchronization counter value and some  
discrimination bits. The non-code hopping portion is  
comprised of the status bits, the function bits, and the  
28-bit serial number. The encrypted and non-encrypted  
combined sections increase the number of combina-  
The Encrypted Data is generated from four button bits,  
two overflow counter bits, ten discrimination bits, and  
the 16-bit synchronization counter value.  
The Non-encrypted Data is made up from 2 status  
bits, 4 function bits, and the 28/32-bit serial number.  
tions to 7.38 x 1019  
.
FIGURE 7-1: TRANSMISSION FORMAT (PWM)  
TE  
TE  
TE  
LOGIC "0"  
LOGIC "1"  
TBP  
50% Preamble  
10xTE  
Header  
Encrypted  
Portion  
Fixed Code  
Portion  
Guard  
Time  
FIGURE 7-2:  
CODE WORD ORGANIZATION  
34 bits of Fixed Portion  
32 bits of Encrypted Portion  
Repeat VLOW  
(1-bit) (1-bit)  
Button  
Status  
Serial Number  
(28 bits)  
Button  
Status  
OVR  
(2 bits) (10 bits)  
DISC  
Sync Counter  
(16 bits)  
S2 S1 S0 S3  
S2 S1 S0 S3  
MSb  
MSb  
LSb  
66 Data bits  
Transmitted  
LSb first.  
Repeat VLOW  
(1-bit) (1-bit)  
Button  
Status  
1 1 1 1  
Serial Number  
(28 bits)  
SEED  
(32 bits)  
LSb  
SEED replaces Encrypted Portion when all button inputs are activated at the same time.  
DS40183E-page 18  
© 2011 Microchip Technology Inc.  
 
 
HCS515  
8.1  
MPLAB Integrated Development  
Environment Software  
8.0  
DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2011 Microchip Technology Inc.  
DS40183E-page 19  
HCS515  
8.2  
MPLAB C Compilers for Various  
Device Families  
8.5  
MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
8.3  
HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
8.6  
MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
8.4  
MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS40183E-page 20  
© 2011 Microchip Technology Inc.  
HCS515  
8.7  
MPLAB SIM Software Simulator  
8.9  
MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC® MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
8.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
8.8  
MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2011 Microchip Technology Inc.  
DS40183E-page 21  
HCS515  
8.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
8.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
8.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS40183E-page 22  
© 2011 Microchip Technology Inc.  
HCS515  
9.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
Ambient temperature under bias............................................................................................................ -40°C to +125°C  
Storage temperature ..............................................................................................................................-65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD)......................................................................... -0.6V to VDD +0.6V  
Voltage on VDD with respect to Vss ..................................................................................................................0 to +7.0V  
Total power dissipation (Note) .............................................................................................................................700 mW  
Maximum current out of VSS pin ...........................................................................................................................200 mA  
Maximum current into VDD pin ..............................................................................................................................150 mA  
Input clamp current, IIK (VI < 0 or VI > VDD).........................................................................................................± 20 mA  
Output clamp current, IOK (VO < 0 or VO >VDD)..................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Note: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD–VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other condi-  
tions above those indicated in the operation listings of this specification is not implied. Exposure to  
maximum rating conditions for extended periods may affect device reliability.  
© 2011 Microchip Technology Inc.  
DS40183E-page 23  
 
HCS515  
TABLE 9-1:  
DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
Commercial (C):  
Industrial (I):  
0°C TA +70°C  
-40°C TA +85°C  
Typ.(†)  
Symbol  
Parameters  
Min.  
Max.  
Units  
Conditions  
VDD  
Supply voltage  
4.5  
5.5  
V
V
VPOR  
VDD start voltage to  
ensure RESET  
Vss  
SVDD  
VDD rise rate to  
ensure RESET  
0.05*  
V/ms  
IDD  
IPD  
Supply current  
1.8  
10  
2.  
mA  
μA  
V
FOSC = 4 MHz, VDD = 5.5V  
VDD = 4.5V  
Power-Down Current  
VSS  
50  
MCLR = .2 VDD  
VIL  
Input low voltage  
Input high voltage  
VSS  
0.8  
V
VDD between 4.5V and 5.5V  
VDD between 4.5V and 5.5V  
Except MCLR = 0.80 VDD  
IOL = 8.5 mA, VDD = 4.5V  
IOH = -3 mA, VDD = 4.5V  
0.25 VDD + 0.8  
VDD  
V
VIH  
V
VOL  
VOH  
Output low voltage  
Output high voltage  
0.6  
V
VDD - 0.7  
V
*
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
These parameters are characterized but not tested.  
Note: Negative current is defined as coming out of the pin.  
TABLE 9-2:  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Conditions  
TE  
Transmit elemental period  
Output delay  
65  
48  
75  
660  
237  
μs  
ms  
ns  
TOD  
TMCLR MCLR low time  
TOV Time output valid  
150  
150  
222  
ms  
Note: These parameters are characterized but not tested.  
FIGURE 9-1: RESET WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
TMCLR  
Tov  
I/O Pins  
DS40183E-page 24  
© 2011 Microchip Technology Inc.  
HCS515  
9.1  
AC Electrical Characteristics  
9.1.1  
VALID TRANSMISSION NOTIFICATION  
Standard Operating Conditions (unless otherwise specified)  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TDHI  
TCLA  
TACK  
TACT  
Command request time  
0.0050  
0.0050  
500  
1
ms  
ms  
μs  
Micro request acknowledge time  
Decoder Acknowledge time  
4
Start Command mode to  
first command bit  
20  
1200  
μs  
TCLKH  
TCLKL  
FCLK  
TDS  
Clock high time  
Clock low time  
Clock frequency  
Data hold time  
20  
20  
1000  
1000  
25000  
1000  
μs  
μs  
Hz  
μs  
500  
14  
Note: These parameters are characterized but not tested.  
9.1.2  
COMMAND MODE ACTIVATION  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TREQ  
Command request time  
0.0050  
500  
ms  
Microcontroller request  
acknowledge time  
TRESP  
TACK  
20  
1
4
ms  
μs  
Decoder acknowledge time  
Start Command mode to first  
command bit  
TSTART  
1000  
μs  
TCLKH  
TCLKL  
FCLK  
Clock high time  
20  
20  
500  
14  
1000  
1000  
25000  
μs  
μs  
Hz  
μs  
μs  
μs  
μs  
Clock low time  
Clock frequency  
Data hold time  
TDS  
TCMD  
TADDR  
TDATA  
Command validate time  
Address validate time  
Data validate time  
10  
10  
10  
Note: These parameters are characterized but not tested.  
9.1.3 READ FROM USER EEPROM COMMAND  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TRD  
Decoder EEPROM read time  
1000  
2000  
μs  
Note: These parameters are characterized but not tested.  
© 2011 Microchip Technology Inc.  
DS40183E-page 25  
HCS515  
9.1.4  
WRITE TO USER EEPROM COMMAND  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TWR  
TACK  
Write command activation time  
EEPROM write acknowledge time  
20  
1000  
10  
μs  
ms  
TRESP  
Microcontroller acknowledge  
response time  
20  
1000  
10  
μs  
μs  
TACK2  
Decoder response  
acknowledge time  
Note: These parameters are characterized but not tested.  
9.1.5  
ERASE ALL COMMAND  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TERA  
TACK  
Learn command activation time  
Decoder acknowledge time  
20  
20  
1000  
210  
μs  
ms  
Microcontroller acknowledge  
response time  
TRESP  
20  
1000  
10  
μs  
μs  
TACK2  
Decoder data line low  
Note: These parameters are characterized but not tested.  
9.1.6 ACTIVATE LEARN COMMAND IN MICRO MODE  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70 °C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TLRN  
TACK  
Learn command activation time  
Decoder acknowledge time  
20  
1000  
20  
μs  
μs  
Microcontroller acknowledge  
response time  
TRESP  
20  
1000  
10  
μs  
μs  
TACK2  
Decoder data line low  
Note: These parameters are characterized but not tested.  
9.1.7 ACTIVATE LEARN COMMAND IN STAND-ALONE MODE  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TREQ  
TLRN  
TERA  
Command request time  
100  
2
ms  
s
Learn command activation time  
Erase-all command activation time  
6
s
Note: These parameters are characterized but not tested.  
DS40183E-page 26  
© 2011 Microchip Technology Inc.  
HCS515  
9.1.8  
LEARN STATUS STRING  
Standard Operating Conditions (unless otherwise specified):  
Commercial (C): 0°C TA +70°C  
Industrial (I):  
-40°C TA +85°C  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
TDHI  
TCLA  
Command request time  
500  
ms  
Microcontroller command  
request time  
0.005  
500  
ms  
TACT  
TCLH  
TCLL  
Decoder request acknowledge time  
Clock high hold time  
Clock low hold time  
Clock high time  
10  
1.2  
μs  
ms  
ms  
μs  
0.020  
20  
1.2  
TCLKH  
TCLKL  
FCLK  
TDS  
1000  
1000  
25000  
5
Clock low time  
20  
μs  
Clock frequency  
500  
Hz  
μs  
Data hold time  
Note: These parameters are characterized but not tested.  
FIGURE 9-2: TYPICAL MICROCONTROLLER INTERFACE CIRCUIT  
RF  
Receiver  
HCS515  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
NC  
VSS  
NC  
NC  
VDD  
S1  
S0  
X
X
X
X
RST  
Microcontroller  
CLK  
DAT  
VDD  
X
X
RF_IN  
S_CLK  
S_DAT  
NC  
MCP100-450  
Voltage Supervisor  
G
N
D
VI  
VO  
MCLR  
NC  
8
X
X
10K  
In-circuit  
Programming  
Probe Pads  
© 2011 Microchip Technology Inc.  
DS40183E-page 27  
HCS515  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
14-Lead PDIP  
Example  
HCS515  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0025NNN  
14-Lead SOIC  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
HCS515  
XXXXXXXXXXXXXX  
YYWWNNN  
0025NNN  
Legend: XX...X Customer specific information*  
YY  
WW  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
NNN Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.  
For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
DS40183E-page 28  
© 2011 Microchip Technology Inc.  
HCS515  
10.2 Package Details  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ4ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ4ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ255)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&5ꢔꢇꢍ4ꢇꢒꢃꢄꢒ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
6ꢄꢃ%  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ9ꢃ&ꢃ%  
ꢚ7+8-ꢑ  
7:ꢕ  
ꢀꢗ  
ꢁꢀꢖꢖꢅ1ꢑ+  
M
ꢕꢚ7  
ꢕꢘ;  
7!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7
ꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
M
ꢁꢏꢀꢖ  
ꢁꢀꢛ0  
M
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ4ꢇꢒꢉꢅꢙꢎꢃꢍ4ꢄꢉ    
1ꢇ ꢉꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
ꢑꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢑꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ4ꢇꢒꢉꢅ=ꢃ"%ꢎ  
:ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢄꢒ%ꢎ  
ꢙꢃꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
9ꢉꢇ"ꢅꢙꢎꢃꢍ4ꢄꢉ    
6ꢔꢔꢉꢊꢅ9ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢘꢏ  
ꢘꢀ  
-
-ꢀ  
9
(ꢀ  
(
ꢉ1  
ꢁꢀꢀ0  
ꢁꢖꢀ0  
ꢁꢏꢛꢖ  
ꢁꢏꢗꢖ  
ꢁꢜ,0  
ꢁꢀꢀ0  
ꢁꢖꢖ>  
ꢁꢖꢗ0  
ꢁꢖꢀꢗ  
M
ꢁꢀ,ꢖ  
M
ꢁ,ꢀꢖ  
ꢁꢏ0ꢖ  
ꢁꢜ0ꢖ  
ꢁꢀ,ꢖ  
ꢁꢖꢀꢖ  
ꢁꢖ?ꢖ  
ꢁꢖꢀ>  
M
ꢁ,ꢏ0  
ꢁꢏ>ꢖ  
ꢁꢜꢜ0  
ꢁꢀ0ꢖ  
ꢁꢖꢀ0  
ꢁꢖꢜꢖ  
ꢁꢖꢏꢏ  
ꢁꢗ,ꢖ  
9ꢌ)ꢉꢊꢅ9ꢉꢇ"ꢅ=ꢃ"%ꢎ  
:ꢆꢉꢊꢇꢈꢈꢅꢝꢌ)ꢅꢑꢔꢇꢍꢃꢄꢒꢅꢅꢐ  
ꢜꢘꢋꢄꢊ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢕꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢖꢀꢖ.ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢘꢑꢕ-ꢅ/ꢀꢗꢁ0ꢕꢁ  
1ꢑ+2ꢅ1ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢙꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢕꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢖꢗꢞꢖꢖ01  
© 2011 Microchip Technology Inc.  
DS40183E-page 29  
HCS515  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40183E-page 30  
© 2011 Microchip Technology Inc.  
HCS515  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS40183E-page 31  
HCS515  
ꢜꢘꢋꢄ  3ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ4ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ4ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ255)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&5ꢔꢇꢍ4ꢇꢒꢃꢄꢒ  
DS40183E-page 32  
© 2011 Microchip Technology Inc.  
HCS515  
APPENDIX A: ADDITIONAL  
INFORMATION  
Microchip’s Secure Data Products are covered by  
some or all of the following:  
Code hopping encoder patents issued in European  
countries and U.S.A.  
Secure learning patents issued in European countries,  
U.S.A. and R.S.A.  
REVISION HISTORY  
Revision E (June 2011)  
• Updated the following sections: Development Sup-  
port, The Microchip Web Site, Reader Response  
and HCS515 Product Identification System  
• Added new section Appendix A  
• Minor formatting and text changes were incorporated  
throughout the document  
© 2011 Microchip Technology Inc.  
DS40183E-page 33  
HCS515  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
DS40183E-page 34  
© 2011 Microchip Technology Inc.  
HCS515  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
HCS515  
DS40183E  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
© 2011 Microchip Technology Inc.  
DS40183E-page 35  
HCS515  
HCS515 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
HCS515  
/P  
Package:  
P = Plastic DIP (300 mil Body), 14-lead  
SL = Plastic SOIC (150 mil Body), 14-lead  
Temperature  
Range:  
Blank = 0°C to +70°C  
I = –40°C to +85°C  
Device:  
HCS515  
HCS515T  
Code Hopping Decoder  
Code Hopping Decoder (Tape and Reel)  
DS40183E-page 36  
© 2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
PIC32 logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-227-5  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2011 Microchip Technology Inc.  
DS40183E-page 37  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hangzhou  
Tel: 86-571-2819-3180  
Fax: 86-571-2819-3189  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
05/02/11  
DS40183E-page 38  
© 2011 Microchip Technology Inc.  
配单直通车
HCS515-I/SL产品参数
型号:HCS515-I/SL
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:MICROCHIP TECHNOLOGY INC
零件包装代码:SOIC
包装说明:SOP, SOP14,.25
针数:14
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.31.00.01
Factory Lead Time:13 weeks
风险等级:0.86
Samacsys Confidence:3
Samacsys Status:Released
Samacsys PartID:158815
Samacsys Pin Count:14
Samacsys Part Category:Integrated Circuit
Samacsys Package Category:Small Outline Packages
Samacsys Footprint Name:14-Lead(SL) SOIC
Samacsys Released Date:2015-04-16 09:48:08
Is Samacsys:N
JESD-30 代码:R-PDSO-G14
JESD-609代码:e3
长度:8.69 mm
湿度敏感等级:1
功能数量:1
端子数量:14
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP14,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
电源:5 V
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Other Telecom ICs
标称供电电压:5 V
表面贴装:YES
技术:CMOS
电信集成电路类型:DATA ENCRYPTION CIRCUIT
温度等级:INDUSTRIAL
端子面层:Matte Tin (Sn)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!