欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HD2546-B图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HD2546-B
  • 数量65000 
  • 厂家HIT 
  • 封装CDIP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HD2546-B图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • HD2546-B
  • 数量28000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号HD26C31的Datasheet PDF文件预览

HD26C31  
Quadruple Differential Line Drivers With 3 State Outputs  
ADE-205-574 (Z)  
1st. Edition  
Dec. 2000  
Description  
The HD26C31 features quadruple differential line drivers which satisfy the requirements of EIA standard  
RS-422A. This device is designed to provide differential signals with high current capability on bus lines.  
The circuit provides enable input to control all four drivers. The output circuit has active pull up and pull  
down and is capable of sinking or sourcing 20 mA.  
Features  
TTL input compatibility  
Propagation delay time: 6 ns typ  
Output to output skew: 0.5 ns typ  
High output impedance in power off conditions  
Meets EIA standard RS-422A  
Operates from a single 5 V supply  
Three state outputs  
Low power dissipation with CMOS process  
Power up and power down protection  
Pin to pin compatible with HD26LS31  
HD26C31  
Pin Arrangement  
16 VCC  
1
2
3
4
5
6
7
1A  
15  
14  
13  
4A  
4Y  
4Z  
1Y  
1Z  
Enable G  
2Z  
12 Enable G  
11 3Z  
2Y  
10  
3Y  
2A  
GND 8  
9
3A  
(Top view)  
Function Table  
Input  
A
Enables  
Outputs  
G
H
H
X
X
L
G
X
X
L
Y
H
L
Z
L
H
L
H
L
H
H
L
L
L
H
Z
X
H
Z
H :  
High level  
Low level  
Irrelevant  
L
X
Z
:
:
:
High impedance  
2
HD26C31  
Absolute Maximum Ratings (Ta = 25°C)  
Item  
Supply Voltage*2  
Symbol  
VCC  
Ratings  
–0.5 to 7.0  
–1.5 to VCC +1.5  
–0.5 to VCC +0.5  
500  
Unit  
V
Input Voltage  
VIN  
V
Output Voltage  
Power Dissipation  
Storage Temperature Range  
Lead Temperature*3  
Output Current  
Supply Current  
VOUT  
PT  
V
mW  
°C  
°C  
mA  
mA  
Tstg  
Tlead  
IOUT  
–65 to 150  
260  
±150  
ICC  
±150  
Notes: 1. The absolute maximum ratings are values which must not individually be exceeded, and  
furthermore, no two of which may be realized at the same time.  
2. The values is defined as of ground terminal.  
3. The values at 1.6 mm away from the package within 10 second, when soldering.  
Recommended Operating Conditions (Ta = –40°C to +85°C)  
Item  
Symbol  
VCC  
Min  
4.5  
0
Typ  
5.0  
Max  
5.5  
VCC  
VCC  
85  
Unit  
V
Supply Voltage  
Input Voltage  
VIN  
V
Output Voltage  
Operating Temperature  
Input Rise/Fall Time*1  
VOUT  
Ta  
0
V
–40  
25  
°C  
ns  
tr, tf  
500  
Note: 1. This guarantees maximum limit when one input switches.  
3
HD26C31  
Logic Diagram  
1Y  
1Z  
1A  
2A  
3A  
4A  
2Y  
2Z  
3Y  
3Z  
4Y  
4Z  
Enable G  
Enable G  
4
HD26C31  
Electrical Characteristics (Ta = –40°C to +85°C)  
Item  
Symbol  
VIH  
Min Typ Max Unit  
Conditions  
Input Voltage  
2.0  
V
V
V
V
V
VIL  
0.8  
Output Voltage  
VOH  
2.4  
3.4  
0.2  
3.1  
VIN = VIH or VIL, IOH = –20 mA  
VIN =VIH or VIL, IOL = 20 mA  
VOL  
0.4  
Differential Output Voltage VT  
2.0  
RL = 100 Ω  
50  
VT  
50  
VOS  
Difference In Differential  
Output  
IVTI – IVTI  
0.4  
3.0  
0.4  
V
V
V
Common ModeOutput  
Voltage  
VOS  
1.8  
Difference In Output  
Common Mode  
IVOS – VOSI  
Input Current  
IIN  
–30  
±1.0 µA  
500 µA  
VIN = VCC, GND, VIH or VIL  
Supply Current  
ICC  
ICC*2  
IOZ  
200  
0.8  
IOUT = 0 µA, VIN = VCC or GND  
IOUT=0 µA, VIN = 2.4 V or 0.5 V  
2.0  
mA  
Off State Output Current  
Short Circuit Output Current ISC*3  
±0.5 ±5.0 µA  
VOUT = VCC or GND, G = VIL, G = VIH  
VIN = VCC or GND  
–150 mA  
100 µA  
–100 µA  
Output Current with Power IOFF  
VCC = 0 V, VOUT = 6 V  
Off  
IOFF  
VCC = 0 V, VOUT = –0.25 V  
Notes: 1. All typical values are at VCC = Ta = 25°C.  
2. 1 input: VIN = 2.4 V or 0.5 V, other inputs: VIN = VCC or GND  
3. Not more than one output should be shorted at a time and duration of the short circuit should not  
exceed one second.  
5
HD26C31  
Switching Characteristics (Ta = –40°C to +85°C, VCC = 5 V ± 10%)  
Item  
Symbol  
tPLH  
tPHL  
Skew  
tTLH  
Min  
2.0  
2.0  
Typ  
6.0  
Max  
11.0  
11.0  
2.0  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
Conditions  
Propagation Delay Time  
Test Circuit (1)  
6.0  
Output To Output Skew  
0.5  
Differential Output Transition Time  
6.0  
10.0  
10.0  
19.0  
21.0  
9.0  
Test Circuit (3)  
Test Circuit (2)  
tTHL  
6.0  
Output Enable Time  
Output Disable Time  
tZL  
11.0  
13.0  
5.0  
tZH  
tLZ  
tHZ  
7.0  
11.0  
Power Dissipation Capacitance  
Input Capacitance  
CPD  
CIN  
50.0  
6.0  
Test Circuit 1  
VCC  
Input  
Output  
1.5 V  
S1  
R1  
R3  
C2  
C3  
Y
Z
Palse Generator  
A
C1  
Zout = 50  
OPEN  
R2  
VCC  
G
G
Output  
Note:  
1. C1, C2 and C3 (40 pF) include probe and jig capacitance.  
R1 = R2 = 50 , R3 = 500 Ω  
6
HD26C31  
Waveforms 1  
tr  
tf  
3 V  
0 V  
90 %  
1.3 V  
90 %  
1.3 V  
Input A  
10 %  
10 %  
tPHL  
tPLH  
VOH  
Output Y  
1.3 V  
1.3 V  
1.3 V  
tPLH  
VOL  
tPHL  
VOH  
VOL  
VOH  
VOL  
1.3 V  
Output Z  
Output Y  
50 %  
Skew  
50 %  
Skew  
50 %  
VOH  
50 %  
Output Z  
VOL  
Notes:  
1. tr 6 ns, tf 6 ns  
2. Input waveforms: PRR = 1 MHz, duty cycle 50%  
7
HD26C31  
Test Circuit 2  
VCC  
VCC  
Output  
1.5 V  
R1  
R3  
A
S1  
C2  
C3  
Y
Z
Input  
C1  
CLOSED  
R2  
G
Pulse Generater  
Output  
Zout = 50 Ω  
G
Notes:  
1. tr 6 ns, tf 6 ns  
2. Input waveforms: PRR = 1 MHz, duty cycle 50%  
Waveforms 2  
tr  
tf  
Enable G  
Enable G  
3 V  
0 V  
90 %  
1.3 V  
90 %  
1.3 V  
10 %  
10 %  
tLZ  
tZL  
1.5 V  
VOL  
Output Y  
V
OL + 0.3 V  
0.8 V  
tZH  
tHZ  
VOH  
V
OH – 0.3 V  
2.0 V  
Output Z  
1.5 V  
Notes:  
1. tf 6 ns, tf 6 ns  
2. Input waveforms: PRR = 1 MHz, duty cycle 50%  
8
HD26C31  
Test Circuit 3  
Input  
1.5 V  
S1  
R1  
R3  
C2  
C3  
Y
Z
Pulse Generator  
Zout = 50 Ω  
A
Output  
C1  
OPEN  
R2  
VCC  
G
G
Ach  
Bch  
Oscilloscope  
Bch Invert  
Ach Add Bch  
Note:  
1. C1, C2 and C3 (40 pF) include probe and jig capacitance.  
R1 = R2 = 50 , R3 = 500 Ω  
Waveforms 3  
tr  
tf  
3 V  
0 V  
90 %  
90 %  
Input A  
10 %  
10 %  
90 %  
90 %  
Output  
(Differential)  
10 %  
10 %  
tTHL  
tTLH  
Notes:  
1. tr 6 ns, tf 6 ns  
2. Input waveforms: PRR = 1 MHz, duty cycle 50%  
9
HD26C31  
HD26C31 Line Driver Applications  
The HD26C31 is a line driver that meets the EIA RS-422A conditions, and has been designed to supply a  
high current for differential signals to a bus line. Its features are listed below.  
Operates on a single 5 V power supply.  
High output impedance when power is off  
Sink current and source current both 20 mA  
On-chip power up/down protection circuit  
As shown by the logic diagram, the enable function is common to all four drivers, and either active-high or  
active-low can be selected.  
The output section consists of two output stages (the Y side and Z side), each of which has the same sink  
current and source current capacity.  
Connection of a termination resistance when the HD26C31 is used as a balanced differential type driver is  
shown.  
Output Characteristics ("H" Level)  
5.0  
Ta = 25°C  
4.0  
VCC = 5.5 V  
3.0  
VCC = 5.0 V  
2.0  
VCC = 4.5 V  
1.0  
0
–20  
–40  
–60  
–80 –100  
Output Current IOH (mA)  
Figure 1 IOH vs. VOH Characteristics  
10  
HD26C31  
Output Characteristics ("L" Level)  
0.5  
0.4  
0.3  
0.2  
0.1  
Ta = 25°C  
VCC = 4.5 V  
VCC = 5.0 V  
VCC = 5.5 V  
0
20  
40  
60  
80  
100  
Output Current IOL (mA)  
Figure 2 IOL vs. VOL Characteristics  
When termination resistance RT is connected between the two transmission lines, as shown in figure 3 the  
current path situation is that current IOH on the side outputting a high level (in this case, the Y output) flows  
to the side outputting a low level (in this case, the Z output) via R , with the result that the low level rise is  
T
large.  
If termination resistance RT is dropped to GND on both transmit lines, as shown in figure 4 the current path  
situation is that the current that flows into the side outputting a low level (in this case, the Z output) is only  
the input bias current from the receiver. As this input bias current is small compared with the signal  
current, it has almost no effect on the differential input signal at the receiver end.  
Figure 5 shows the output voltage characteristic when termination resistance RT is varied.  
Also, when used in a party line system, etc., the low level rises further due to the receiver input bias  
current, so that it is probably advisable to drop the termination resistance to GND.  
However, the fact that it is possible to make the value of RT equal to the characteristic impedance of the  
transmission line offers the advantage of being able to hold the power dissipation on the side outputting a  
high level to a lower level than in the above case.  
Consequently, the appropriate use must be decided according to the actual operating conditions  
(transmission line characteristics, transmission distance, whether a party line is used, etc.).  
Figure 6 shows the output characteristics when termination resistance RT is varied.  
11  
HD26C31  
IOH  
Y
Z
"H"  
"L"  
RT  
IOL IIN (Receiver)  
Figure 3 Example of Driver Use-1  
IOH  
Y
"H"  
"L"  
RT  
RT  
Z
IIN (Receiver)  
Figure 4 Example of Driver Use-2  
Output Voltage vs. Termination Resistance  
VOH(Y)  
10  
1
Y
Z
RT  
RT  
"H"  
0.1  
0.01  
VOH  
VOL  
GND  
VOL(Z)  
0.001  
10 20 50 100 200 500 1k 2k  
5k 10k 20k 50k  
Termination Resistance RT ()  
Figure 5 Termination Resistance vs. Output Voltage Characteristics  
A feature of termination implemented as shown in figure 7 is that power dissipation is low when the duty of  
the transmitted signal is high.  
However, care is required, since if RT is sufficiently small, when the output on the pulled-up side goes high,  
a large current will flow and the output low level will rise.  
Figure 8 shows the output characteristics when termination resistance RT is varied.  
12  
HD26C31  
Output Voltage vs. Termination Resistance  
VOH(Y)  
10  
1
VCC = 5 V  
Ta = 25°C  
Y
Z
RT  
"H"  
0.1  
0.01  
VOL(Z)  
VOH  
VOL  
GND  
0.001  
10 20 50 100 200 500 1k 2k  
5k 10k 20k 50k  
Termination Resistance RT ()  
Figure 6 Termination Resistance vs. Output Voltage Characteristics  
VCC  
RT  
Y
Data input  
Z
RT  
Figure 7 Example of Driver Use-3  
Output Voltage vs. Termination Resistance  
VOH(Z)  
10  
1
VCC = 5 V  
Ta = 25°C  
RT  
Y
"L"  
0.1  
0.01  
VOL(Y)  
VOL  
VOH  
Z
RT  
GND  
0.001  
10 20 50 100 200 500 1k 2k  
5k 10k 20k 50k  
Termination Resistance RT ()  
Figure 8 Termination Resistance vs. Output Voltage Characteristics  
13  
HD26C31  
Package Dimensions  
Unit: mm  
19.20  
20.00 Max  
16  
1
9
8
1.3  
1.11 Max  
7.62  
+ 0.13  
– 0.05  
0.25  
2.54 ± 0.25  
0.48 ± 0.10  
0° – 15°  
Hitachi Code  
DP-16  
JEDEC  
EIAJ  
Mass (reference value)  
Conforms  
Conforms  
1.07 g  
Unit: mm  
10.06  
10.5 Max  
9
8
16  
1
+ 0.20  
7.80  
– 0.30  
0.80 Max  
1.15  
0° – 8°  
1.27  
0.70 ± 0.20  
*0.42 ± 0.08  
0.40 ± 0.06  
0.15  
M
0.12  
Hitachi Code  
JEDEC  
FP-16DA  
EIAJ  
Conforms  
0.24 g  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
14  
HD26C31  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
Asia  
: http://semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
: http://sicapac.hitachi-asia.com  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
179 East Tasman Drive, Dornacher Straβe 3  
Hitachi Europe GmbH  
Electronic Components Group  
Hitachi Asia Ltd.  
Hitachi Tower  
16 Collyer Quay #20-00,  
Singapore 049318  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower,  
San Jose,CA 95134  
D-85622 Feldkirchen, Munich  
World Finance Centre,  
Tel: <1> (408) 433-1990 Germany  
Fax: <1>(408) 433-0223 Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
Tel : <65>-538-6533/538-8577  
Fax : <65>-538-6933/538-3877  
URL : http://www.hitachi.com.sg  
Harbour City, Canton Road  
Tsim Sha Tsui, Kowloon,  
Hong Kong  
Tel : <852>-(2)-735-9218  
Fax : <852>-(2)-730-0281  
URL : http://www.hitachi.com.hk  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Hitachi Asia Ltd.  
(Taipei Branch Office)  
4/F, No. 167, Tun Hwa North Road,  
Hung-Kuo Building,  
Taipei (105), Taiwan  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 585160  
Tel : <886>-(2)-2718-3666  
Fax : <886>-(2)-2718-8180  
Telex : 23222 HAS-TP  
URL : http://www.hitachi.com.tw  
Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.  
Colophon 2.0  
15  
配单直通车
HD26C31FP产品参数
型号:HD26C31FP
是否无铅: 含铅
是否Rohs认证: 不符合
生命周期:Obsolete
零件包装代码:SOIC
包装说明:SOP, SOP16,.3
针数:16
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.14
差分输出:YES
驱动器位数:4
输入特性:STANDARD
接口集成电路类型:LINE DRIVER
接口标准:EIA-422-A
JESD-30 代码:R-PDSO-G16
JESD-609代码:e0
长度:10.06 mm
功能数量:4
端子数量:16
最高工作温度:85 °C
最低工作温度:-40 °C
最小输出摆幅:2 V
输出特性:3-STATE
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP16,.3
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT SPECIFIED
电源:5 V
认证状态:Not Qualified
最大接收延迟:
座面最大高度:2.2 mm
子类别:Line Driver or Receivers
最大供电电压:5.5 V
最小供电电压:4.5 V
标称供电电压:5 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
最大传输延迟:11 ns
宽度:5.5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!