欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HIP6301CBZ图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HIP6301CBZ 现货库存
  • 数量3685 
  • 厂家INTERSEL 
  • 封装SOP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • HIP6301CBZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ
  • 数量98500 
  • 厂家INTERSIL 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • HIP6301CBZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ
  • 数量85000 
  • 厂家INTERSIL 
  • 封装SOP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HIP6301CBZ图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • HIP6301CBZ
  • 数量39982 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • HIP6301CBZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • HIP6301CBZ
  • 数量4500 
  • 厂家HAR 
  • 封装SOP 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • HIP6301CBZ图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • HIP6301CBZ
  • 数量535 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • HIP6301CBZ图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HIP6301CBZ
  • 数量3625 
  • 厂家INTERSEL 
  • 封装SOP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • HIP6301CBZ图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HIP6301CBZ
  • 数量152 
  • 厂家INTERSIL 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HIP6301CBZ图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ
  • 数量69800 
  • 厂家INTERSIL 
  • 封装SOP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • HIP6301CBZ图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HIP6301CBZ
  • 数量3800 
  • 厂家Intersil 
  • 封装20-SOIC 
  • 批号24+ 
  • 授权分销 现货热卖
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • HIP6301CBZ-T图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HIP6301CBZ-T
  • 数量5369 
  • 厂家INTERSI 
  • 封装SOP20 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • HIP6301CBZ图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • HIP6301CBZ
  • 数量4500 
  • 厂家HAR 
  • 封装SOP 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • HIP6301CBZ图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • HIP6301CBZ
  • 数量9800 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号23+ 
  • 进口原装原盘原标签假一赔十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • HIP6301CBZ图
  • 集好芯城

     该会员已使用本站13年以上
  • HIP6301CBZ
  • 数量14242 
  • 厂家TI/德州仪器 
  • 封装SOP20 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HIP6301CBZ图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HIP6301CBZ
  • 数量29841 
  • 厂家INTERSEL 
  • 封装SOP 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • HIP6301CBZ-图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • HIP6301CBZ-
  • 数量8062 
  • 厂家√ 欧美㊣品 
  • 封装贴◆插 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • HIP6301CBZ图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ
  • 数量5600 
  • 厂家Intersil 
  • 封装20-SOIC(0.295",7.50mm 宽) 
  • 批号16+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • HIP6301CBZ图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • HIP6301CBZ
  • 数量5000 
  • 厂家INTERSIL 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • HIP6301CBZ-T图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HIP6301CBZ-T
  • 数量27425 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HIP6301CBZ图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ
  • 数量3000 
  • 厂家INTERSIL 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • HIP6301CBZ图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • HIP6301CBZ
  • 数量12500 
  • 厂家INTERSIL 
  • 封装SOP-20 
  • 批号23+ 
  • 全新原装现货,假一赔十
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • HIP6301CBZ-T图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • HIP6301CBZ-T
  • 数量9000 
  • 厂家INTERSI 
  • 封装SOP20 
  • 批号2021+ 
  • 优势价格.十年专营渠道.深圳原装现货
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • HIP6301CBZ图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ
  • 数量2040 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • HIP6301CBZ图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • HIP6301CBZ
  • 数量35600 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • HIP6301CBZ图
  • 长荣电子

     该会员已使用本站14年以上
  • HIP6301CBZ
  • 数量
  • 厂家 
  • 封装SOP 
  • 批号09+ 
  • 现货
  • QQ:172370262QQ:172370262 复制
  • 754-4457500 QQ:172370262
  • HIP6301CBZ图
  • 深圳市顺鑫诚电子科技有限公司

     该会员已使用本站14年以上
  • HIP6301CBZ
  • 数量5000 
  • 厂家INTELRSIL 
  • 封装SOIC 
  • 批号18+ 
  • 保证原装正品,欢迎来电咨询
  • QQ:1533095505QQ:1533095505 复制
    QQ:449551876QQ:449551876 复制
  • 0755-29486608 QQ:1533095505QQ:449551876
  • HIP6301CBZ图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • HIP6301CBZ
  • 数量20000 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号24+ 
  • 百域芯优势 实单必成 可开13点增值税发票
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • HIP6301CBZ图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • HIP6301CBZ
  • 数量18560 
  • 厂家INTERSIL 
  • 封装SOP20 
  • 批号16PB 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • HIP6301CBZ-T图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • HIP6301CBZ-T
  • 数量6500 
  • 厂家INTERSIL 
  • 封装SOIC20 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • HIP6301CBZ图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • HIP6301CBZ
  • 数量10000 
  • 厂家INTERSIL 
  • 封装SOP-20 
  • 批号22+ 
  • 百分百原装正品,现货库存
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • HIP6301CBZ图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ
  • 数量30000 
  • 厂家NXP 
  • 封装SOT669 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • HIP6301CBZ图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • HIP6301CBZ
  • 数量6500000 
  • 厂家RENESAS 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • HIP6301CBZ图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • HIP6301CBZ
  • 数量1200 
  • 厂家INTERSIL 
  • 封装SOP 
  • 批号0618+ 
  • 原装 现货 专业INTERSIL供应商 优势库存热卖中!
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • HIP6301CBZ图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • HIP6301CBZ
  • 数量24500 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6301CBZ-图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HIP6301CBZ-
  • 数量24500 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6301CBZ-T图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • HIP6301CBZ-T
  • 数量24500 
  • 厂家Renesas Electronics America Inc 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • HIP6301CBZ-T(INTERSIL)                  15k图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • HIP6301CBZ-T(INTERSIL) 15k
  • 数量24500 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号HIP6301CBZ的概述

芯片HIP6301CBZ的概述 HIP6301CBZ是一款用于电源管理和DC-DC转换的集成电路芯片,广泛应用于计算机、通信设备以及消费电子产品中。随着电子设备需求的不断增加,电源管理芯片的重要性愈加显著,HIP6301CBZ则因其高效能、低功耗和多功能性而备受青睐。 该芯片由Intersil(现在是Renesas的一部分)公司生产,具有卓越的性能和可信赖的电源管理能力。其主要功能包括调节输出电压、提供过流保护和过温保护等,确保了电子设备在工作时的稳定性和安全性。 芯片HIP6301CBZ的详细参数 HIP6301CBZ的主要参数包括: - 输入电压范围: 4.5V至16V - 输出电压范围: 可调,通常在0.8V至5.0V之间 - 输出电流能力: 最大可达到30A - 开关频率: 可调,范围为200kHz至1MHz - 效率: 在各种负载条件下,效率可达90%以上 - 温度范围: ...

产品型号HIP6301CBZ的Datasheet PDF文件预览

HIP6301  
®
Data Sheet  
December 27, 2004  
FN4765.6  
Microprocessor CORE Voltage Regulator  
Multi-Phase Buck PWM Controller  
Features  
• Multi-Phase Power Conversion  
The HIP6301 multi-phase PWM control IC together with its  
companion gate drivers, the HIP6601B, HIP6602B,  
HIP6603B or HIP6604B and external MOSFETs provides a  
precision voltage regulation system for advanced  
• Precision Channel Current Sharing  
- Loss Less Current Sampling - Uses r  
DS(ON)  
• Precision CORE Voltage Regulation  
- ±1% System Accuracy Over Temperature  
microprocessors. Multiphase power conversion is a marked  
departure from earlier single phase converter configurations  
previously employed to satisfy the ever increasing current  
demands of modern microprocessors. Multi-phase  
convertors, by distributing the power and load current results  
in smaller and lower cost transistors with fewer input and  
output capacitors. These reductions accrue from the higher  
effective conversion frequency with higher frequency ripple  
current due to the phase interleaving process of this  
topology. For example, a three phase convertor operating at  
350kHz will have a ripple frequency of 1.05MHz. Moreover,  
greater convertor bandwidth of this design results in faster  
response to load transients.  
• Microprocessor Voltage Identification Input  
- 5-Bit VID Input  
- 1.100V to 1.850V in 25mV Steps  
- Programmable “Droop” Voltage  
• Fast Transient Recovery Time  
• Over Current Protection  
• Automatic Selection of 2, 3, or 4 Phase Operation  
• High Ripple Frequency, (Channel Frequency) Times  
Number Channels . . . . . . . . . . . . . . . . . .100kHz to 6MHz  
Pb-Free Available (RoHS Compliant)  
Outstanding features of this controller IC include  
programmable VID codes from the microprocessor that  
range from 1.100V to 1.850V with a system accuracy of  
±1%. Pull up currents on these VID pins eliminates the need  
for external pull up resistors. In addition “droop”  
compensation, used to reduce the overshoot or undershoot  
of the CORE voltage, is easily programmed with a single  
resistor.  
Ordering Information  
PART NUMBER  
TEMP. (°C)  
PACKAGE PKG. DWG #  
HIP6301CB  
0 to 70  
20 Ld SOIC  
M20.3  
M20.3  
HIP6301CBZ  
(Note)  
0 to 70  
20 Ld SOIC  
(Pb-free)  
HIP6301CB-T  
20 Ld SOIC Tape and Reel  
HIP6301CBZ-T  
(Note)  
20 Ld SOIC Tape and Reel  
(Pb-free)  
Another feature of this controller IC is the PGOOD monitor  
circuit which is held low until the CORE voltage increases,  
during its Soft-Start sequence, to within 10% of the  
programmed voltage. Overvoltage, 15% above programmed  
CORE voltage, results in the converter shutting down and  
turning the lower MOSFETs ON to clamp and protect the  
microprocessor. Under voltage is also detected and results  
in PGOOD low if the CORE voltage falls 10% below the  
programmed level. Overcurrent protection reduces the  
regulator current to less than 25% of the programmed trip  
value. These features provide monitoring and protection for  
the microprocessor and power system.  
HIP6301CBZA-T  
(Note)  
20 Ld SOIC Tape and Reel  
(Pb-free)  
HIP6301EVAL2  
Evaluation Platform  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding  
compounds/die attach materials and 100% matte tin plate termination finish, which are  
RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
Pinout  
HIP6301 (SOIC)  
TOP VIEW  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VID4  
VID3  
V
CC  
PGOOD  
PWM4  
ISEN4  
ISEN1  
PWM1  
PWM2  
ISEN2  
ISEN3  
PWM3  
3
VID2  
4
VID1  
5
VID0  
6
COMP  
FB  
7
8
FS/DIS  
GND  
9
10  
VSEN  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2000, 2002, 2004. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
HIP6301  
Block Diagram  
V
PGOOD  
CC  
POWER-ON  
RESET (POR)  
+
-
VSEN  
THREE  
STATE  
UV  
OV  
LATCH  
X 0.9  
CLOCK AND  
S
SAWTOOTH  
GENERATOR  
FS/EN  
PWM1  
+
-
+
OVP  
+
-
X1.15  
PWM  
-
+
SOFT-  
+
-
START  
AND FAULT  
LOGIC  
PWM2  
PWM  
-
COMP  
+
+
-
PWM  
PWM3  
PWM4  
-
VID0  
VID1  
VID2  
VID3  
VID4  
+
D/A  
+
-
PWM  
+
-
E/A  
-
PHASE  
NUMBER  
CHANNEL  
DETECTOR  
CURRENT  
CORRECTION  
FB  
ISEN1  
I_TOT  
+
+
+
ISEN2  
ISEN3  
+
+
OC  
-
ISEN4  
I_TRIP  
GND  
FN4765.6  
December 27, 2004  
2
HIP6301  
Simplified Power System Diagram  
SYNCHRONOUS  
RECTIFIED BUCK  
CHANNEL  
VSEN  
PWM 1  
SYNCHRONOUS  
RECTIFIED BUCK  
CHANNEL  
PWM 2  
MICROPROCESSOR  
HIP6301  
PWM 3  
SYNCHRONOUS  
RECTIFIED BUCK  
CHANNEL  
PWM 4  
VID  
SYNCHRONOUS  
RECTIFIED BUCK  
CHANNEL  
converter. Pulling this pin to ground disables the converter  
and three states the PWM outputs. See Figure 10.  
Functional Pin Description  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VID4  
VID3  
V
CC  
GND (Pin 9)  
PGOOD  
PWM4  
ISEN4  
ISEN1  
PWM1  
PWM2  
ISEN2  
ISEN3  
PWM3  
Bias and reference ground. All signals are referenced to this  
pin.  
3
VID2  
4
VID1  
VSEN (Pin 10)  
5
VID0  
6
Power good monitor input. Connect to the microprocessor-  
CORE voltage.  
COMP  
FB  
7
8
FS/DIS  
GND  
PWM1 (Pin 15), PWM2 (Pin 14), PWM3 (Pin 11) and  
PWM4 (Pin 18)  
9
10  
VSEN  
PWM outputs for each driven channel in use. Connect these  
pins to the PWM input of a HIP6601B/2B/3B/4B driver. For  
systems which use 3 channels, connect PWM4 high. Two  
channel systems connect PWM3 and PWM4 high.  
VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4)  
and VID0 (Pin 5)  
ISEN1 (Pin 16), ISEN2 (Pin 13), ISEN3 (Pin 12) and  
ISEN4 (Pin 17)  
Voltage Identification inputs from microprocessor. These pins  
respond to TTL and 3.3V logic signals. The HIP6301 decodes  
VID bits to establish the output voltage. See Table 1.  
Current sense inputs from the individual converter channel’s  
phase nodes. Unused sense lines MUST be left open.  
COMP (Pin 6)  
PGOOD (Pin 19)  
Output of the internal error amplifier. Connect this pin to the  
external feedback and compensation network.  
Power good. This pin is an open-drain logic signal that  
indicates when the microprocessor CORE voltage (VSEN  
pin) is within specified limits and Soft-Start has timed out.  
FB (Pin 7)  
Inverting input of the internal error amplifier.  
V
(Pin 20)  
CC  
Bias supply. Connect this pin to a 5V supply.  
FS/DIS (Pin 8)  
Channel frequency, F , select and disable. A resistor from  
SW  
this pin to ground sets the switching frequency of the  
FN4765.6  
3
December 27, 2004  
HIP6301  
Typical Application - 2 Phase Converter Using HIP6601B Gate Drivers  
+12V  
V
= +5V  
IN  
BOOT  
PVCC  
VCC  
UGATE  
+5V  
PHASE  
DRIVER  
HIP6601B  
PWM  
LGATE  
GND  
COMP  
V
FB  
CC  
VSEN  
+V  
CORE  
PWM4  
PWM3  
+12V  
PGOOD  
PWM2  
PWM1  
V
= +5V  
IN  
VID4  
VID3  
BOOT  
PVCC  
UGATE  
PHASE  
VID2  
VID1  
MAIN  
CONTROL  
HIP6301  
VCC  
DRIVER  
HIP6601B  
VID0  
PWM  
NC  
NC  
ISEN4  
LGATE  
GND  
ISEN3  
ISEN2  
ISEN1  
FS/DIS  
GND  
FN4765.6  
December 27, 2004  
4
HIP6301  
Typical Application - 4 Phase Converter Using HIP6602B Gate Drivers  
V
= +12V  
IN  
+12V  
BOOT1  
UGATE1  
PHASE1  
L
01  
V
CC  
LGATE1  
PVCC  
+5V  
DUAL  
DRIVER  
HIP6602B  
+5V  
V
+12V  
IN  
BOOT2  
FB  
COMP  
V
CC  
VSEN  
UGATE2  
PHASE2  
L
02  
ISEN1  
PWM1  
PWM1  
PWM2  
PGOOD  
VID4  
PWM2  
ISEN2  
LGATE2  
VID3  
GND  
VID2  
VID1  
VID0  
MAIN  
CONTROL  
HIP6301  
+V  
CORE  
ISEN3  
FS/DIS  
PWM3  
PWM4  
V
IN  
+12V  
+12V  
BOOT3  
GND  
ISEN4  
UGATE3  
PHASE3  
L
03  
V
CC  
LGATE3  
PVCC  
DUAL  
DRIVER  
HIP6602B  
+5V  
V
+12V  
BOOT4  
IN  
UGATE4  
PHASE4  
L
04  
PWM3  
PWM4  
LGATE4  
GND  
FN4765.6  
December 27, 2004  
5
HIP6301  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+7V  
Input, Output, or I/O Voltage . . . . . . . . . . GND -0.3V to V + 0.3V  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
CC  
JA  
CC  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Maximum Storage Temperature Range. . . . . . . . . . .-65 C to 150°C  
65  
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5kV  
o
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300°C  
(SOIC - Lead Tips Only)  
Recommended Operating Conditions  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5V ±5%  
Ambient Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
CAUTION: Stress above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational section of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications Operating Conditions: V = 5V, T = 0°C to 70°C, Unless Otherwise Specified  
CC  
A
PARAMETER  
INPUT SUPPLY POWER  
Input Supply Current  
TEST CONDITIONS  
MIN  
TYP MAX UNITS  
R
= 100kΩ  
-
10  
15  
4.5  
mA  
mA  
V
T
EN = 0V  
4.25  
4.25  
3.75  
8.8  
POR (Power-On Reset) Threshold  
V
V
Rising  
Falling  
4.38  
3.88  
4.5  
CC  
CC  
4.00  
V
REFERENCE AND DAC  
System Accuracy  
Percent system deviation from programmed VID Codes  
DAC Programming Input Low Threshold Voltage  
DAC Programming Input High Threshold Voltage  
VIDx = 0V or VIDx = 3V  
-1  
-
-
-
1
0.8  
-
%
V
DAC (VID0 - VID3) Input Low Voltage  
DAC (VID0 - VID3) Input High Voltage  
VID Pull-Up  
2.0  
10  
-
V
20  
40  
µA  
CHANNEL GENERATOR, SAWTOOTH GENERATOR and Maximum PWM Duty Cycle  
Frequency, F = 100k, ±1%  
R
224  
280  
-
336  
1.5  
1.0  
-
kHz  
MHz  
V
SW  
T
Adjustment Range  
Disable Voltage  
See Figure 10  
0.05  
Maximum voltage at FS/DIS to disable controller. I  
= 1mA.  
-
-
-
1.2  
1.33  
75  
FS/DIS  
Sawtooth Amplitude  
PWM Maximum Duty Cycle  
ERROR AMPLIFIER  
DC Gain  
Amplitude of Sawtooh Generator at Channel Comparator Input  
Vp-p  
%
-
R
C
C
R
R
= 10K to ground  
-
72  
18  
-
dB  
MHz  
V/µs  
V
L
L
L
L
L
Gain-Bandwidth Product  
Slew Rate  
= 100pF, R = 10K to ground  
-
-
-
-
L
= 100pF, R = 10K to ground  
L
5.3  
4.1  
0.16  
Maximum Output Voltage  
Minimum Output Voltage  
= 10K to ground  
= 10K to ground  
3.6  
-
-
0.5  
V
I
SEN  
Full Scale Input Current  
Overcurrent Trip Level  
-
50  
-
-
µA  
µA  
-67.5  
-87.5  
POWER GOOD MONITOR  
Undervoltage Threshold  
Undervoltage Threshold  
PGOOD Low Output Voltage  
VSEN Rising  
VSEN Falling  
-
-
-
0.92  
0.90  
0.18  
-
-
V
DAC  
V
DAC  
V
I
= 4mA  
0.4  
PGOOD  
FN4765.6  
December 27, 2004  
6
HIP6301  
Electrical Specifications Operating Conditions: V = 5V, T = 0°C to 70°C, Unless Otherwise Specified (Continued)  
CC  
A
PARAMETER  
PROTECTION  
TEST CONDITIONS  
MIN  
TYP MAX UNITS  
Overvoltage Threshold  
VSEN Rising  
1.12  
-
1.15  
2
1.2  
-
V
DAC  
%
Percent Overvoltage Hysteresis  
VSEN Falling after Overvoltage  
R
IN  
FB  
V
IN  
HIP6303  
ERROR  
AMPLIFIER  
COMPARATOR  
L
Q1  
01  
-
PWM1  
CORRECTION  
PWM  
-
HIP6601B  
CIRCUIT  
+
I
L1  
+
+
-
Q2  
PHASE  
PROGRAMMABLE  
REFERENCE  
DAC  
R
ISEN1  
+
CURRENT  
SENSING  
I
SEN1  
-
-
I AVERAGE  
CURRENT  
AVERAGING  
V
CORE  
C
R
OUT  
LOAD  
R
ISEN2  
I
SEN2  
+
CURRENT  
SENSING  
V
IN  
PHASE  
-
COMPARATOR  
+
L
Q3  
02  
+
-
PWM2  
PWM  
HIP6601B  
CORRECTION  
CIRCUIT  
I
L2  
Q4  
FIGURE 1. SIMPLIFIED BLOCK DIAGRAM OF THE HIP6301 VOLTAGE AND CURRENT CONTROL LOOPS FOR A TWO POWER  
CHANNEL REGULATOR  
drive the Error Amplifier output either high or low, depending  
upon the CORE voltage. Low CORE voltage makes the  
amplifier output move towards a higher output voltage level.  
Amplifier output voltage is applied to the positive inputs of  
the Comparators via the Correction summing networks. Out-  
of-phase sawtooth signals are applied to the two  
Comparators inverting inputs. Increasing Error Amplifier  
voltage results in increased Comparator output duty cycle.  
This increased duty cycle signal is passed through the PWM  
CIRCUIT with no phase reversal and on to the HIP6601B,  
again with no phase reversal for gate drive to the upper  
MOSFETs, Q1 and Q3. Increased duty cycle or ON time for  
the MOSFET transistors results in increased output voltage  
to compensate for the low output voltage sensed.  
Operation  
Figure 1 shows a simplified diagram of the voltage regulation  
and current control loops. Both voltage and current feedback  
are used to precisely regulate voltage and tightly control  
output currents, I and I , of the two power channels. The  
L1 L2  
voltage loop comprises the Error Amplifier, Comparators,  
gate drivers and output MOSFETs. The Error Amplifier is  
essentially connected as a voltage follower that has as an  
input, the Programmable Reference DAC and an output that  
is the CORE voltage.  
Voltage Loop  
Feedback from the CORE voltage is applied via resistor R  
to the inverting input of the Error Amplifier. This signal can  
IN  
FN4765.6  
7
December 27, 2004  
HIP6301  
Current Loop  
The current control loop works in a similar fashion to the  
voltage control loop, but with current control information  
applied individually to each channel’s Comparator. The  
information used for this control is the voltage that is  
PWM 1  
PWM 2  
PWM 3  
PWM 4  
developed across r  
of each lower MOSFET, Q2 and  
DS(ON)  
Q4, when they are conducting. A single resistor converts and  
scales the voltage across the MOSFETs to a current that is  
applied to the Current Sensing circuit within the HIP6301.  
Output from these sensing circuits is applied to the current  
averaging circuit. Each PWM channel receives the difference  
current signal from the summing circuit that compares the  
average sensed current to the individual channel current.  
When a power channel’s current is greater than the average  
current, the signal applied via the summing Correction circuit  
to the Comparator, reduces the output pulse width of the  
Comparator to compensate for the detected “above average”  
current in that channel.  
FIGURE 2. FOUR PHASE PWM OUTPUT AT 500kHz  
Power supply ripple frequency is determined by the channel  
Droop Compensation  
frequency, F , multiplied by the number of active channels.  
SW  
In addition to control of each power channel’s output current,  
the average channel current is also used to provide CORE  
voltage “droop” compensation. Average full channel current  
For example, if the channel frequency is set to 250kHz and  
there are three phases, the ripple frequency is 750kHz.  
The IC monitors and precisely regulates the CORE voltage  
of a microprocessor. After initial start-up, the controller also  
provides protection for the load and the power supply. The  
following section discusses these features.  
is defined as 50µA. By selecting an input resistor, R , the  
amount of voltage droop required at full load current can be  
programmed. The average current driven into the FB pin  
IN  
results in a voltage increase across resistor R that is in the  
IN  
direction to make the Error Amplifier “see” a higher voltage at  
the inverting input, resulting in the Error Amplifier adjusting  
Initialization  
The HIP6301 usually operates from an ATX power supply.  
Many functions are initiated by the rising supply voltage to  
the output voltage lower. The voltage developed across R  
IN  
is equal to the “droop” voltage. See the “Current Sensing and  
Balancing” section for more details.  
the V  
pin of the HIP6301. Oscillator, Sawtooth Generator,  
CC  
Soft-Start and other functions are initialized during this  
interval. These circuits are controlled by POR, Power-On  
Reset. During this interval, the PWM outputs are driven to a  
three state condition that makes these outputs essentially  
open. This state results in no gate drive to the output  
MOSFETs.  
Applications and Convertor Start-Up  
Each PWM power channel’s current is regulated. This  
enables the PWM channels to accurately share the load  
current for enhanced reliability. The HIP6601B, HIP6602B  
HIP6603B or HIP6604B MOSFET driver interfaces with the  
HIP6301. For more information, see the HIP6601B or  
HIP6602B data sheets.  
Once the V  
CC  
voltage reaches 4.375V (+125mV), a voltage  
level to insure proper internal function, the PWM outputs are  
enabled and the Soft-Start sequence is initiated. If for any  
The HIP6301 is capable of controlling up to 4 PWM power  
reason, the V  
voltage drops below 3.875V (+125mV), the  
CC  
channels. Connecting unused PWM outputs to V  
CC  
POR circuit shuts the converter down and again three states  
the PWM outputs.  
automatically sets the number of channels. The phase  
o
relationship between the channels is 360 /number of active  
PWM channels. For example, for three channel operation,  
the PWM outputs are separated by 120 . Figure 2 shows the  
Soft-Start  
o
After the POR function is completed with V  
reaching  
CC  
PWM output signals for a four channel system. In all cases  
the maximum duty cycle is 75%.  
4.375V, the Soft-Start sequence is initiated. Soft-Start, by its  
slow rise in CORE voltage from zero, avoids an overcurrent  
condition by slowly charging the discharged output  
capacitors. This voltage rise is initiated by an internal DAC  
that slowly raises the reference voltage to the error amplifier  
input. The voltage rise is controlled by the oscillator  
frequency and the DAC within the HIP6301, therefore, the  
output voltage is effectively regulated as it rises to the final  
programmed CORE voltage value.  
FN4765.6  
8
December 27, 2004  
HIP6301  
For the first 32 PWM switching cycles, the DAC output  
remains inhibited and the PWM outputs remain three stated.  
From the 33rd cycle and for another, approximately 150  
cycles the PWM output remains low, clamping the lower  
output MOSFETs to ground, see Figure 3. The time  
variability is due to the Error Amplifier, Sawtooth Generator  
and Comparators moving into their active regions. After this  
short interval, the PWM outputs are enabled and increment  
the PWM pulse width from zero duty cycle to operational  
pulse width, thus allowing the output voltage to slowly reach  
the CORE voltage. The CORE voltage will reach its  
programmed value before the 2048 cycles, but the PGOOD  
output will not be initiated until the 2048th PWM switching  
cycle.  
PWM 1  
OUTPUT  
DELAY TIME  
PGOOD  
V
CORE  
5V  
V
CC  
The Soft-Start time or delay time, DT = 2048/F . For an  
SW  
oscillator frequency, F , of 200kHz, the first 32 cycles or  
V
= 12V  
SW  
IN  
160µs, the PWM outputs are held in a three state level as  
explained above. After this period and a short interval  
described above, the PWM outputs are initiated and the  
voltage rises in 10.08ms, for a total delay time DT of  
10.24ms.  
FIGURE 3. START-UP OF 4 PHASE SYSTEM OPERATING AT  
500kHz  
V COMP  
Figure 3 shows the start-up sequence as initiated by a fast  
rising 5V supply, V  
applied to the HIP6301. Note the  
CC,  
short rise to the three state level in PWM 1 output during first  
32 PWM cycles.  
DELAY TIME  
PGOOD  
Figure 4 shows the waveforms when the regulator is  
operating at 200kHz. Note that the Soft-Start duration is a  
function of the Channel Frequency as explained previously.  
Also note the pulses on the COMP terminal. These pulses  
are the current correction signal feeding into the comparator  
input (see the Block Diagram on page 2).  
V
CORE  
5V  
V
CC  
Figure 5 shows the regulator operating from an ATX supply.  
In this figure, note the slight rise in PGOOD as the 5V supply  
rises. The PGOOD output stage is an open drain NMOS  
V
= 12V  
IN  
transistor. On rising V , the pull-up resistor begins to move  
CC  
FIGURE 4. START-UP OF 4 PHASE SYSTEM OPERATING AT  
200kHz  
PGOOD output slightly positive before the NMOS transistor  
pulls “down”, generating the slight rise in PGOOD output  
voltage.  
12V ATX  
SUPPLY  
Note that Figure 5 shows the 12V gate driver voltage  
available before the 5V supply to the HIP6301 has reached  
its threshold level. If conditions were reversed and the 5V  
supply was to rise first, the start-up sequence would be  
different. In this case the HIP6303 will sense an overcurrent  
condition due to charging the output capacitors. The supply  
will then restart and go through the normal Soft-Start cycle.  
PGOOD  
V
CORE  
5 V ATX  
SUPPLY  
V
= 5V, CORE LOAD CURRENT = 31A  
FREQUENCY 200kHz  
IN  
ATX SUPPLY ACTIVATED BY ATX “PS-ON PIN”  
FIGURE 5. SUPPLY POWERED BY ATX SUPPLY  
FN4765.6  
December 27, 2004  
9
HIP6301  
Overcurrent  
Fault Protection  
In the event of an overcurrent condition, the overcurrent  
protection circuit reduces the average current delivered to  
less than 25% of the current limit. When an overcurrent  
condition is detected, the controller forces all PWM outputs  
into a three state mode. This condition results in the gate  
driver removing drive to the output stages. The HIP6301  
goes into a wait delay timing cycle that is equal to the Soft-  
Start ramp time. PGOOD also goes “low” during this time  
due to VSEN going below its threshold voltage. To lower the  
average output dissipation, the Soft-Start initial wait time is  
increased from 32 to 2048 cycles, then the Soft-Start ramp is  
initiated. At a PWM frequency of 200kHz, for instance, an  
overcurrent detection would cause a dead time of 10.24ms,  
then a ramp of 10.08ms.  
The HIP6301 protects the microprocessor and the entire  
power system from damaging stress levels. Within the  
HIP6301 both Overvoltage and Overcurrent circuits are  
incorporated to protect the load and regulator.  
Overvoltage  
The VSEN pin is connected to the microprocessor CORE  
voltage. A CORE overvoltage condition is detected when the  
VSEN pin goes more than 15% above the programmed VID  
level.  
The overvoltage condition is latched, disabling normal PWM  
operation, and causing PGOOD to go low. The latch can  
only be reset by lowering and returning V  
POR and Soft-Start sequence.  
high to initiate a  
CC  
At the end of the delay, PWM outputs are restarted and the  
soft-start ramp is initiated. If a short is present at that time,  
the cycle is repeated. This is the hiccup mode.  
During a latched overvoltage, the PWM outputs will be  
driven either low or three state, depending upon the VSEN  
input. PWM outputs are driven low when the VSEN pin  
detects that the CORE voltage is 15% above the  
programmed VID level. This condition drives the PWM  
outputs low, resulting in the lower or synchronous rectifier  
MOSFETs to conduct and shunt the CORE voltage to  
ground to protect the load.  
Figure 6 shows the supply shorted under operation and the  
hiccup operating mode described above. Note that due to  
the high short circuit current, overcurrent is detected before  
completion of the start-up sequence so the delay is not quite  
as long as the normal Soft-Start cycle.  
If after this event, the CORE voltage falls below the  
overvoltage limit (plus some hysteresis), the PWM outputs  
will three state. The HIP6601B family drivers pass the three  
state information along, and shuts off both upper and lower  
MOSFETs. This prevents “dumping” of the output capacitors  
back through the lower MOSFETs, avoiding a possibly  
destructive ringing of the capacitors and output inductors. If  
the conditions that caused the overvoltage still persist, the  
SHORT APPLIED HERE  
PGOOD  
SHORT  
CURRENT  
50A/Div  
PWM outputs will be cycled between three state and V  
clamped to ground, as a hysteretic shunt regulator.  
CORE  
HICCUP MODE. SUPPLY POWERED BY ATX SUPPLY  
CORE LOAD CURRENT = 31A, 5V LOAD = 5A  
SUPPLY FREQUENCY = 200kHz, V = 12V  
IN  
Undervoltage  
ATX SUPPLY ACTIVATED BY ATX “PS-ON PIN”  
The VSEN pin also detects when the CORE voltage falls  
more than 10% below the VID programmed level. This  
causes PGOOD to go low, but has no other effect on  
operation and is not latched. There is also hysteresis in this  
detection point.  
FIGURE 6. SHORT APPLIED TO SUPPLY AFTER POWER-UP  
FN4765.6  
10  
December 27, 2004  
HIP6301  
CORE Voltage Programming  
The voltage identification pins (VID0, VID1, VID3, and VID4)  
Table 1 shows the nominal DAC voltage as a function of the  
VID codes. The power supply system is ±1% accurate over  
the operating temperature and voltage range.  
set the CORE output voltage. Each VID pin is pulled to V  
CC  
by an internal 20µA current source and accepts open-  
collector/open-drain/open-switch-to-ground or standard low-  
voltage TTL or CMOS signals.  
TABLE 1. VOLTAGE IDENTIFICATION CODES  
TABLE 1. VOLTAGE IDENTIFICATION CODES (Continued)  
VID4  
1
VID3  
1
VID2  
1
VID1  
1
VID0  
1
VDAC  
Off  
VID4  
0
VID3  
1
VID2  
1
VID1  
1
VID0  
1
VDAC  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1
1
1
1
0
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
0
1
1
1
0
1
1
1
0
1
0
1
1
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
1
1
0
1
0
1
1
1
1
0
1
0
0
1
0
1
0
1
1
0
0
1
0
1
0
0
1
1
1
0
0
0
0
1
0
0
0
1
0
1
1
1
0
0
1
1
1
1
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
0
1
0
1
1
0
1
0
0
0
0
1
0
0
1
0
0
1
1
0
0
0
1
1
1
0
0
1
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
FN4765.6  
11  
December 27, 2004  
HIP6301  
R
IN  
C
R
c
FB  
COMP  
FB  
V
IN  
HIP6301  
SAWTOOTH  
COMPARATOR  
L
Q1  
01  
ERROR  
AMPLIFIER  
GENERATOR  
V
-
CORE  
PWM  
HIP6601B  
+
CIRCUIT  
CORRECTION  
+
PWM  
I
L
-
Q2  
+
-
PHASE  
DIFFERENCE  
REFERENCE  
DAC  
R
ISEN  
I
+
CURRENT  
SENSING  
SEN  
-
ONLY ONE OUTPUT  
STAGE SHOWN  
CURRENT  
SENSING  
FROM  
TO OTHER  
CHANNELS  
OTHER  
CHANNELS  
INDUCTOR  
CURRENT(S)  
FROM  
AVERAGING  
OTHER  
CHANNELS  
TO OVER  
CURRENT  
TRIP  
+
-
REFERENCE  
COMPARATOR  
FIGURE 7. SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM SHOWING CURRENT AND VOLTAGE SAMPLING  
Overcurrent, Selecting R  
Current Sensing and Balancing  
ISEN  
The current detected through the R  
resistor is averaged  
ISEN  
Overview  
with the current(s) detected in the other 1, 2, or 3 channels.  
The averaged current is compared with a trimmed, internally  
generated current, and used to detect an overcurrent  
condition.  
The HIP6301 samples the on-state voltage drop across each  
synchronous rectifier FET, Q2, as an indication of the  
inductor current in that phase, see Figure 7. Neglecting AC  
effects (to be discussed later), the voltage drop across Q2 is  
The nominal current through the R  
ISEN  
50µA at full output load current, and the nominal trip point for  
resistor should be  
simply r  
(Q2) x inductor current (I ). Note that I , the  
DS(ON)  
L L  
inductor current, is either 1/2, 1/3, or 1/4 of the total current  
overcurrent detection is 165% of that value, or 82.5µA  
(I ), depending on how many phases are in use.  
LT  
(I )r  
(Q2)  
DS(ON)  
50µA  
L
Therefore, R  
= ---------------------------------------------- .  
The voltage at Q2’s drain, the PHASE node, is applied to the  
ISEN  
R
resistor to develop the I  
current to the HIP6301  
ISEN  
ISEN  
For a full load of 25A per phase, and an r  
DS(ON)  
(Q2) of  
ISEN pin. This pin is held at virtual ground, so the current  
4m, R  
= 2k.  
ISEN  
The overcurrent trip point would be 165% of 25A, or ~ 41A  
per phase. The R value can be adjusted to change the  
r
(Q2)  
DS(ON)  
R
through R  
is  
I
ISEN  
current provides IinSfEoNrmation to perform the  
= ------------------------------------  
L
The I  
ISEN  
ISEN  
following functions:  
overcurrent trip point, but it is suggested to stay within ±25%  
of nominal.  
1. Detection of an overcurrent condition  
2. Reduce the regulator output voltage with increasing load  
current (droop)  
Droop, Selection of R  
IN  
The average of the currents detected through the R  
ISEN  
resistors is also steered to the FB pin. There is no DC return  
3. Balance the I currents in multiple channels  
L
path connected to the FB pin except for R , so the average  
IN  
FN4765.6  
12  
December 27, 2004  
HIP6301  
current creates a voltage drop across R . This drop  
IN  
Where: V  
= DC value of the output or V voltage  
ID  
CORE  
increases the apparent V  
voltage with increasing load  
V
= DC value of the input or supply voltage  
CORE  
IN  
current, causing the system to decrease V  
to maintain  
L = value of the inductor  
= switching frequency  
CORE  
balance at the FB pin. This is the desired “droop” voltage  
F
SW  
used to maintain V  
conditions.  
within limits under transient  
CORE  
Example: For V  
=1.6V,  
=12V,  
CORE  
V
IN  
With a high dv/dt load transient, typical of high performance  
microprocessors, the largest deviations in output voltage  
occur at the leading and trailing edges of the load transient.  
In order to fully utilize the output-voltage tolerance range, the  
output voltage is positioned in the upper half of the range  
when the output is unloaded and in the lower half of the  
range when the controller is under full load. This droop  
compensation allows larger transient voltage deviations and  
thus reduces the size and cost of the output filter  
components.  
L =1.3µH,  
= 250kHz,  
F
SW  
= 4.3A  
Then i  
PK-PK  
25  
20  
15  
10  
5
R
should be selected to give the desired “droop” voltage at  
IN  
the normal full load current 50µA applied through the R  
ISEN  
resistor (or at a different full load current if adjusted as under  
“Overcurrent, Selecting R ” above).  
ISEN  
R
= Vdroop/50µA  
0
IN  
For a Vdroop of 80mV, R = 1.6kΩ  
IN  
The AC feedback components, R and Cc, are scaled in  
FB  
relation to R  
.
IN  
Current Balancing  
FIGURE 8. TWO CHANNEL MULTIPHASE SYSTEM WITH  
CURRENT BALANCING DISABLED  
The detected currents are also used to balance the phase  
currents.  
Each phase’s current is compared to the average of all  
phase currents, and the difference is used to create an offset  
in that phase’s PWM comparator. The offset is in a direction  
to reduce the imbalance.  
25  
20  
15  
10  
5
The balancing circuit can not make up for a difference in  
r
between synchronous rectifiers. If a FET has a  
DS(ON)  
higher r  
, the current through that phase will be  
DS(ON)  
reduced.  
Figures 8 and 9 show the inductor current of a two phase  
system without and with current balancing.  
0
Inductor Current  
The inductor current in each phase of a multi-phase Buck  
converter has two components. There is a current equal to  
FIGURE 9. TWO CHANNEL MULTIPHASE SYSTEM WITH  
CURRENT BALANCING ENABLED  
the load current divided by the number of phases (I / n),  
LT  
and a sawtooth current, (i  
) resulting from switching.  
PK-PK  
The sawtooth component is dependent on the size of the  
inductors, the switching frequency of each phase, and the  
values of the input and output voltage. Ignoring secondary  
effects, such as series resistance, the peak to peak value of  
the sawtooth current can be described by:  
The inductor, or load current, flows alternately from V  
IN  
through Q1 and from ground through Q2. The HIP6301  
samples the on-state voltage drop across each Q2 transistor  
to indicate the inductor current in that phase. The voltage  
drop is sampled 1/3 of a switching period, i/F , after Q1 is  
SW  
turned OFF and Q2 is turned on. Because of the sawtooth  
current component, the sampled current is different from the  
average current per phase. Neglecting secondary effects,  
2
V
(V  
) V  
CORE  
IN CORE  
i
= ----------------------------------------------------------------  
PK PK  
(L)(F  
)(V  
)
SW  
IN  
FN4765.6  
13  
December 27, 2004  
HIP6301  
the sampled current (I  
) can be related to the load  
traces minimize the magnitude of voltage spikes. Contact  
SAMPLE  
current (I ) by:  
LT  
Intersil for evaluation board drawings of the component  
placement and printed circuit board.  
I
LT  
n
------- + (V )V  
3V  
IN CORE  
2
CORE  
There are two sets of critical components in a DC-DC  
converter using a HIP6301 controller and a HIP6601B gate  
driver. The power components are the most critical because  
they switch large amounts of energy. Next are small signal  
components that connect to sensitive nodes or supply critical  
bypassing current and signal coupling.  
I
= -----------------------------------------------------------------------------------  
SAMPLE  
(6L)(F  
)(V  
)
SW  
IN  
Where: I = total load current  
LT  
n = the number of channels  
Example: Using the previously given conditions, and  
For I =100A,  
LT  
n =4  
1,000  
Then I  
SAMPLE  
= 25.49A  
500  
As discussed previously, the voltage drop across each Q2  
transistor at the point in time when current is sampled is  
200  
r
(Q2) x I  
. The voltage at Q2’s drain, the  
DSON  
SAMPLE  
PHASE node, is applied through the R resistor to the  
HIP6301 ISEN pin. This pin is held at virtual ground, so the  
current into ISEN is:  
ISEN  
100  
50  
(I  
)r  
(Q2)  
SAMPLE DS(ON)  
I
= ------------------------------------------------------------------  
SENSE  
R
ISEN  
20  
10  
(I  
)r  
(Q2)  
SAMPLE DS(ON)  
R
= ------------------------------------------------------------------  
ISEN  
50µA  
Example: From the previous conditions,  
5
where I  
= 100A,  
LT  
2
1
I
= 25.49A,  
= 4mΩ  
SAMPLE  
r
(Q2)  
DS(ON)  
Then: R  
= 2.04K and  
= 165%  
ISEN  
10  
20  
50 100 200  
500 1,000 2,000 5,000 10,000  
(kHz)  
CHANNEL OSCILLATOR FREQUENCY, F  
I
SW  
CURRENT TRIP  
FIGURE 10. RESISTANCE R vs FREQUENCY  
Short circuit I  
= 165A.  
T
LT  
The power components should be placed first. Locate the  
input capacitors close to the power switches. Minimize the  
Channel Frequency Oscillator  
The channel oscillator frequency is set by placing a resistor,  
length of the connections between the input capacitors, C  
and the power switches. Locate the output inductors and  
output capacitors between the MOSFETs and the load.  
Locate the gate driver close to the MOSFETs.  
,
IN  
R , to ground from the FS/DIS pin. Figure 10 is a curve  
T
showing the relationship between frequency, F  
and  
SW,  
resistor R . To avoid pickup by the FS/DIS pin, it is important  
T
to place this resistor next to the pin.  
The critical small components include the bypass capacitors  
for VCC and PVCC on the gate driver ICs. Locate the bypass  
Layout Considerations  
capacitor, C , for the HIP6301 controller close to the  
MOSFETs switch very fast and efficiently. The speed with  
which the current transitions from one device to another  
causes voltage spikes across the interconnecting  
BP  
device. It is especially important to locate the resistors  
associated with the input to the amplifiers close to their  
respective pins, since they represent the input to feedback  
impedances and parasitic circuit elements. These voltage  
spikes can degrade efficiency, radiate noise into the circuit  
and lead to device overvoltage stress. Careful component  
layout and printed circuit design minimizes the voltage  
spikes in the converter. Consider, as an example, the turnoff  
transition of the upper PWM MOSFET. Prior to turnoff, the  
upper MOSFET was carrying channel current. During the  
turnoff, current stops flowing in the upper MOSFET and is  
picked up by the lower MOSFET. Any inductance in the  
switched current path generates a large voltage spike during  
the switching interval. Careful component selection, tight  
layout of the critical components, and short, wide circuit  
amplifiers. Resistor R , that sets the oscillator frequency  
T
should also be located next to the associated pin. It is  
especially important to place the R  
resistor(s) at the  
SEN  
respective terminals of the HIP6301.  
A multi-layer printed circuit board is recommended. Figure 11  
shows the connections of the critical components for one output  
channel of the converter. Note that capacitors C and C  
IN OUT  
could each represent numerous physical capacitors. Dedicate  
one solid layer, usually the middle layer of the PC board, for a  
ground plane and make all critical component ground connections  
FN4765.6  
14  
December 27, 2004  
HIP6301  
with vias to this layer. Dedicate another solid layer as a power  
plane and break this plane into smaller islands of common voltage  
levels. Keep the metal runs from the PHASE terminal to inductor  
bulk capacitor’s ESR determines the output ripple voltage  
and the initial voltage drop following a high slew-rate  
transient’s edge. In most cases, multiple capacitors of small  
case size perform better than a single large case capacitor.  
L
short. The power plane should support the input power and  
O1  
output power nodes. Use copper filled polygons on the top and  
bottom circuit layers for the phase nodes. Use the remaining  
printed circuit layers for small signal wiring. The wiring traces from  
the driver IC to the MOSFET gate and source should be sized to  
carry at least one ampere of current.  
Bulk capacitor choices include aluminum electrolytic, OS-  
Con, Tantalum and even ceramic dielectrics. An aluminum  
electrolytic capacitor’s ESR value is related to the case size  
with lower ESR available in larger case sizes. However, the  
equivalent series inductance (ESL) of these capacitors  
increases with case size and can reduce the usefulness of  
the capacitor to high slew-rate transient loading.  
Component Selection Guidelines  
Output Capacitor Selection  
Unfortunately, ESL is not a specified parameter. Consult the  
capacitor manufacturer and measure the capacitor’s  
impedance with frequency to select a suitable component.  
The output capacitor is selected to meet both the dynamic  
load requirements and the voltage ripple requirements. The  
load transient for the microprocessor CORE is characterized  
by high slew rate (di/dt) current demands. In general,  
multiple high quality capacitors of different size and dielectric  
are paralleled to meet the design constraints.  
Output Inductor Selection  
One of the parameters limiting the converter’s response to a  
load transient is the time required to change the inductor  
current. Small inductors in a multi-phase converter reduces  
the response time without significant increases in total ripple  
current.  
Modern microprocessors produce severe transient load rates.  
High frequency capacitors supply the initially transient current  
and slow the load rate-of-change seen by the bulk capacitors.  
The bulk filter capacitor values are generally determined by  
the ESR (effective series resistance) and voltage rating  
requirements rather than actual capacitance requirements.  
The output inductor of each power channel controls the  
ripple current. The control IC is stable for channel ripple  
current (peak-to-peak) up to twice the average current. A  
single channel’s ripple current is approximately:  
High frequency decoupling capacitors should be placed as  
close to the power pins of the load as physically possible. Be  
careful not to add inductance in the circuit board wiring that  
could cancel the usefulness of these low inductance  
components. Consult with the manufacturer of the load on  
specific decoupling requirements.  
V
V  
V
OUT  
V
IN  
IN  
F
OUT  
------------------------------- ---------------  
I =  
×
× L  
SW  
The current from multiple channels tend to cancel each other  
and reduce the total ripple current. Figure 12 gives the total  
ripple current as a function of duty cycle, normalized to the  
parameter (Vo) ⁄ (LxF ) at zero duty cycle. To determine  
the total ripple current from the number of channels and the  
SW  
Use only specialized low-ESR capacitors intended for  
switching-regulator applications for the bulk capacitors. The  
duty cycle, multiply the y-axis value by (Vo) ⁄ (LxF ) .  
SW  
+5V  
IN  
USE INDIVIDUAL METAL RUNS  
FOR EACH CHANNEL TO HELP  
ISOLATE OUTPUT STAGES  
+12V  
C
BP  
VCC PVCC  
LOCATE NEXT TO IC PIN(S)  
C
BOOT  
C
IN  
LOCATE NEAR TRANSISTOR  
V
CC  
L
C
PWM  
O1  
BP  
V
CORE  
HIP6601B  
PHASE  
FS/DIS  
COMP  
C
OUT  
C
T
HIP6301  
R
T
R
FB  
LOCATE NEXT  
TO FB PIN  
FB  
LOCATE NEXT TO IC PIN  
SEN  
R
IN  
R
VSEN  
ISEN  
KEY  
ISLAND ON POWER PLANE LAYER  
VIA CONNECTION TO GROUND PLANE  
ISLAND ON CIRCUIT PLANE LAYER  
FIGURE 11. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS  
FN4765.6  
15  
December 27, 2004  
HIP6301  
Small values of output inductance can cause excessive power  
dissipation. The HIP6303 is designed for stable operation for  
ripple currents up to twice the load current. However, for this  
condition, the RMS current is 115% above the value shown in  
the following MOSFET Selection and Considerations section.  
With all else fixed, decreasing the inductance could increase  
the power dissipated in the MOSFETs by 30%.  
Use a mix of input bypass capacitors to control the voltage  
overshoot across the MOSFETs. Use ceramic capacitance for  
the high frequency decoupling and bulk capacitors to supply  
the RMS current. Small ceramic capacitors should be placed  
very close to the drain of the upper MOSFET to suppress the  
voltage induced in the parasitic circuit impedances.  
For bulk capacitance, several electrolytic capacitors (Panasonic  
HFQ series or Nichicon PL series or Sanyo MV-GX or  
equivalent) may be needed. For surface mount designs, solid  
tantalum capacitors can be used, but caution must be exercised  
with regard to the capacitor surge current rating. These  
capacitors must be capable of handling the surge-current at  
power-up. The TPS series available from AVX, and the 593D  
series from Sprague are both surge current tested.  
1.0  
SINGLE  
0.8  
0.6  
0.4  
0.2  
0
CHANNEL  
2 CHANNEL  
MOSFET Selection and Considerations  
3 CHANNEL  
In high-current PWM applications, the MOSFET power  
dissipation, package selection and heatsink are the  
dominant design factors. The power dissipation includes two  
loss components; conduction loss and switching loss. These  
losses are distributed between the upper and lower  
MOSFETs according to duty factor (see the following  
equations). The conduction losses are the main component  
of power dissipation for the lower MOSFETs, Q2 and Q4 of  
Figure 1. Only the upper MOSFETs, Q1 and Q3 have  
significant switching losses, since the lower device turns on  
and off into near zero voltage.  
4 CHANNEL  
0.1  
0.2  
0.3  
0.4  
0.5  
0
DUTY CYCLE (V /V  
)
IN  
O
FIGURE 12. RIPPLE CURRENT vs DUTY CYCLE  
Input Capacitor Selection  
The important parameters for the bulk input capacitors are the  
voltage rating and the RMS current rating. For reliable  
operation, select bulk input capacitors with voltage and current  
ratings above the maximum input voltage and largest RMS  
current required by the circuit. The capacitor voltage rating  
should be at least 1.25 times greater than the maximum input  
voltage and a voltage rating of 1.5 times is a conservative  
guideline. The RMS current required for a multi-phase  
converter can be approximated with the aid of Figure 13.  
The equations assume linear voltage-current transitions and  
do not model power loss due to the reverse-recovery of the  
lower MOSFETs body diode. The gate-charge losses are  
dissipated by the Driver IC and don't heat the MOSFETs.  
However, large gate-charge increases the switching time,  
t
which increases the upper MOSFET switching losses.  
SW  
Ensure that both MOSFETs are within their maximum  
junction temperature at high ambient temperature by  
calculating the temperature rise according to package  
thermal-resistance specifications. A separate heatsink may  
be necessary depending upon MOSFET power, package  
0.5  
SINGLE  
CHANNEL  
0.4  
0.3  
0.2  
0.1  
0
type, ambient temperature and air flow.  
2 CHANNEL  
2
I
× r  
× V  
I
× V × t  
× F  
SW SW  
O
DS(ON)  
OUT  
O
IN  
P
= ------------------------------------------------------------ + ---------------------------------------------------------  
UPPER  
LOWER  
V
2
IN  
3 CHANNEL  
2
I
× r  
× (V V  
)
OUT  
O
DS(ON)  
IN  
P
= --------------------------------------------------------------------------------  
4 CHANNEL  
0.1  
V
IN  
A diode, anode to ground, may be placed across Q2 and Q4  
of Figure 1. These diodes function as a clamp that catches  
the negative inductor swing during the dead time between  
the turn off of the lower MOSFETs and the turn on of the  
upper MOSFETs. The diodes must be a Schottky type to  
prevent the lossy parasitic MOSFET body diode from  
conducting. It is usually acceptable to omit the diodes and let  
the body diodes of the lower MOSFETs clamp the negative  
inductor swing, but efficiency could drop one or two percent  
as a result. The diode's rated reverse breakdown voltage  
must be greater than the maximum input voltage.  
0.2  
0.3  
0.4  
0.5  
0
DUTY CYCLE (V /V  
)
IN  
O
FIGURE 13. CURRENT MULTIPLIER vs DUTY CYCLE  
First determine the operating duty ratio as the ratio of the  
output voltage divided by the input voltage. Find the Current  
Multiplier from the curve with the appropriate power  
channels. Multiply the current multiplier by the full load  
output current. The resulting value is the RMS current rating  
required by the input capacitor.  
FN4765.6  
16  
December 27, 2004  
HIP6301  
Small Outline Plastic Packages (SOIC)  
M20.3 (JEDEC MS-013-AC ISSUE C)  
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INCHES MILLIMETERS  
INDEX  
M
M
B
0.25(0.010)  
H
AREA  
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.35  
0.23  
MAX  
2.65  
NOTES  
E
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.014  
0.1043  
0.0118  
0.019  
-
-B-  
0.30  
-
0.49  
9
1
2
3
L
0.0091  
0.4961  
0.2914  
0.0125  
0.32  
-
SEATING PLANE  
A
0.5118 12.60  
13.00  
7.60  
3
-A-  
0.2992  
7.40  
4
o
D
h x 45  
0.050 BSC  
1.27 BSC  
-
-C-  
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
α
µ
5
e
A1  
C
L
6
B
0.10(0.004)  
N
α
20  
20  
7
M
M
S
B
0.25(0.010)  
C
A
o
o
o
o
0
8
0
8
-
Rev. 1 1/02  
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section  
2.2 of Publication Number 95.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusion and gate burrs shall not exceed  
0.15mm (0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. In-  
terlead flash and protrusions shall not exceed 0.25mm (0.010  
inch) per side.  
5. The chamfer on the body is optional. If it is not present, a visual  
index feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN4765.6  
17  
December 27, 2004  
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!