欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • ID82C54图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • ID82C54 现货库存
  • 数量6980 
  • 厂家ATMEL 
  • 封装DIP-24 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • ID82C54图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • ID82C54 现货库存
  • 数量7702 
  • 厂家INTERSIL 
  • 封装DIP 
  • 批号24+ 
  • 全新原装现货 假一罚十!
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • ID82C54图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • ID82C54 现货库存
  • 数量1050 
  • 厂家INTERSIL 
  • 封装代理 
  • 批号24+ 
  • 假一罚万,原厂原装有COC,长期有订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • ID82C54图
  • 麦尔集团

     该会员已使用本站10年以上
  • ID82C54 热卖库存
  • 数量167 
  • 厂家INTERSIL 
  • 封装N/A 
  • 批号16+ 
  • 原装现货热卖!先到先得!
  • QQ:1716771758QQ:1716771758 复制
    QQ:2574148071QQ:2574148071 复制
  • 88266576 QQ:1716771758QQ:2574148071
  • ID82C54图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • ID82C54
  • 数量33 
  • 厂家INTERSIL 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • ID82C54图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • ID82C54
  • 数量92845 
  • 厂家HAR 
  • 封装OEM渠道,价格超越代理! 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189
  • ID82C54-12B图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • ID82C54-12B
  • 数量7597 
  • 厂家AMD 
  • 封装CDIP 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • ID82C54A图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • ID82C54A
  • 数量4902 
  • 厂家 
  • 封装CDIP 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • ID82C54图
  • 集好芯城

     该会员已使用本站13年以上
  • ID82C54
  • 数量13963 
  • 厂家HAR 
  • 封装DIP-24 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • ID82C54-1862图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • ID82C54-1862
  • 数量56 
  • 厂家HARRIS 
  • 封装 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • ID82C54图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • ID82C54
  • 数量5000 
  • 厂家INTERSIL 
  • 封装CDIP24 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • ID82C54图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • ID82C54
  • 数量284 
  • 厂家INTERSIL 
  • 封装DIP-24 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:380元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • ID82C54图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • ID82C54
  • 数量6980 
  • 厂家ATMEL 
  • 封装DIP-24 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • ID82C54-10图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • ID82C54-10
  • 数量5000 
  • 厂家INTERSIL 
  • 封装 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • ID82C54-10图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • ID82C54-10
  • 数量2047 
  • 厂家INTERSIL 
  • 封装代理 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 0755-83950895 QQ:3003818780QQ:3003819484
  • ID82C54图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • ID82C54
  • 数量28458 
  • 厂家INTERSIL 
  • 封装DIP-24 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • ID82C54图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • ID82C54
  • 数量9000 
  • 厂家HAR 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • ID82C54图
  • 深圳市意好科技有限公司

     该会员已使用本站15年以上
  • ID82C54
  • 数量9230 
  • 厂家HAR 
  • 封装原厂 
  • 批号24+ 
  • 中华地区销售
  • QQ:2853107358QQ:2853107358 复制
    QQ:2853107357QQ:2853107357 复制
  • 0755-88608316 QQ:2853107358QQ:2853107357
  • ID82C54-10图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • ID82C54-10
  • 数量8560 
  • 厂家INTERSI 
  • 封装CDIP 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • ID82C54图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • ID82C54
  • 数量5800 
  • 厂家 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • ID82C54图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • ID82C54
  • 数量8460 
  • 厂家HARRIS 
  • 封装CDIP 
  • 批号NEW 
  • 全新原装实力热卖正品
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • ID82C54图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • ID82C54
  • 数量894 
  • 厂家
  • 封装DIP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • ID82C54图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • ID82C54
  • 数量4035 
  • 厂家INTERSIL 
  • 封装CDIP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • ID82C54图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • ID82C54
  • 数量5000 
  • 厂家HARRIS 
  • 封装 
  • 批号12+ 
  • 全新原装现货,假一罚百,详细资料请致电010-82626036或qq:2355365902
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • ID82C54图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • ID82C54
  • 数量1980 
  • 厂家INTERSIL 
  • 封装CDIP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • ID82C54图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • ID82C54
  • 数量6500 
  • 厂家HAR 
  • 封装CDIP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • ID82C54图
  • 麦尔集团

     该会员已使用本站10年以上
  • ID82C54
  • 数量300 
  • 厂家INTERSIL 
  • 封装主营高端军工 
  • 批号14+ 
  • 常订型号,特价热卖!
  • QQ:1716771758QQ:1716771758 复制
    QQ:2574148071QQ:2574148071 复制
  • 88266576 QQ:1716771758QQ:2574148071

产品型号ID82C54的概述

芯片ID82C54的概述 ID82C54是一种广泛使用的可编程间隔定时器和计数器芯片,属于Intel公司推出的82C系列集成电路中的一员。这款芯片在工业控制、数据采集、信号处理等领域中扮演了重要角色。与其他定时器和计数器相比,82C54具有较高的灵活性和可编程性,使其能够满足多种应用需求。 此芯片基于Intel经典的8080架构设计,具备3个独立的16位计数器,并支持多种操作模式,包括脉冲发生、频率计数和实时计数等。其工作频率可达数兆赫兹,因此非常适合实时系统中的定时及计数任务。 芯片ID82C54的详细参数 ID82C54的主要技术参数如下: 1. 工作电压: 5V±10% 2. 最大功耗: 300mW(典型值) 3. 工作温度范围: -40℃到+85℃ 4. 引脚数量: 24引脚双列直插(DIP)封装 5. 存储温度范围: -65℃到+150℃ 6. 时钟频率: 支持高达2MHz的...

产品型号ID82C54的Datasheet PDF文件预览

82C54  
CMOS Programmable Interval Timer  
March 1997  
Features  
Description  
• 8MHz to 12MHz Clock Input Frequency  
The Intersil 82C54 is a high performance CMOS Program-  
mable Interval Timer manufactured using an advanced 2  
micron CMOS process.  
• Compatible with NMOS 8254  
- Enhanced Version of NMOS 8253  
The 82C54 has three independently programmable and  
functional 16-bit counters, each capable of handling clock  
input frequencies of up to 8MHz (82C54) or 10MHz  
(82C54-10) or 12MHz (82C54-12).  
• Three Independent 16-Bit Counters  
• Six Programmable Counter Modes  
• Status Read Back Command  
• Binary or BCD Counting  
The high speed and industry standard configuration of the  
82C54 make it compatible with the Intersil 80C86, 80C88,  
and 80C286 CMOS microprocessors along with many other  
industry standard processors. Six programmable timer  
modes allow the 82C54 to be used as an event counter,  
elapsed time indicator, programmable one-shot, and many  
other applications. Static CMOS circuit design insures low  
power operation.  
• Fully TTL Compatible  
• Single 5V Power Supply  
• Low Power  
- ICCSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10µA  
- ICCOP . . . . . . . . . . . . . . . . . . . . . . . . . .10mA at 8MHz  
• Operating Temperature Ranges  
The Intersil advanced CMOS process results in a significant  
reduction in power with performance equal to or greater than  
existing equivalent products.  
o
o
- C82C54 . . . . . . . . . . . . . . . . . . . . . . . . . .0 C to +70 C  
o
o
- I82C54 . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to +85 C  
o
o
- M82C54 . . . . . . . . . . . . . . . . . . . . . . . -55 C to +125 C  
Pinouts  
82C54 (PDIP, CERDIP, SOIC)  
82C54 (PLCC/CLCC)  
TOP VIEW  
TOP VIEW  
D7  
D6  
1
2
3
4
5
6
7
8
9
24  
VCC  
23 WR  
22  
4
3
2
1
28 27 26  
D5  
RD  
D4  
D3  
5
6
25 NC  
21 CS  
D4  
24 CS  
D3  
20 A1  
D2  
19 A0  
D2  
7
23 A1  
D1  
18 CLK 2  
17 OUT 2  
16 GATE 2  
D1  
8
22 A0  
D0  
9
D0  
21 CLK2  
20 OUT 2  
19 GATE 2  
CLK 0  
10  
11  
CLK 0  
NC  
15  
OUT 0 10  
GATE 0 11  
GND 12  
CLK 1  
14 GATE 1  
13 OUT 1  
12 13 14 15 16 17 18  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 2970.1  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 19994-1  
82C54  
Ordering Information  
PART NUMBERS  
10MHz  
CP82C54-10  
TEMPERATURE  
RANGE  
8MHz  
CP82C54  
12MHz  
CP82C54-12  
PACKAGE  
24 Lead PDIP  
PKG. NO.  
E24.6  
o
o
0 C to +70 C  
o
o
IP82C54  
IP82C54-10  
CS82C54-10  
IS82C54-10  
CD82C54-10  
ID82C54-10  
MD82C54-10/B  
MR82C54-10/B  
-
IP82C54-12  
CS82C54-12  
IS82C54-12  
CD82C54-12  
ID82C54-12  
-40 C to +85 C  
24 Lead PDIP  
E24.6  
o
o
CS82C54  
0 C to +70 C  
28 Lead PLCC  
28 Lead PLCC  
24 Lead CERDIP  
24 Lead CERDIP  
24 Lead CERDIP  
28 Lead CLCC  
24 Lead CERDIP  
28 Lead CLCC  
24 Lead SOIC  
N28.45  
N28.45  
F24.6  
o
o
IS82C54  
-40 C to +85 C  
o
o
CD82C54  
0 C to +70 C  
o
o
ID82C54  
-40 C to +85 C  
F24.6  
o
o
MD82C54/B  
MR82C54/B  
SMD # 8406501JA  
SMD# 84065013A  
CM82C54  
MD82C54-12/B  
MR82C54-12/B  
8406502JA  
-55 C to +125 C  
F24.6  
o
o
-55 C to +125 C  
J28.A  
o
o
-55 C to +125 C  
F24.6  
o
o
-
84065023A  
-55 C to +125 C  
J28.A  
o
o
CM82C54-10  
CM82C54-12  
0 C to +70 C  
M24.3  
Functional Diagram  
CLK 0  
DATA/  
COUNTER  
BUS  
8
D
- D  
0
GATE 0  
OUT 0  
7
INTERNAL BUS  
0
BUFFER  
CONTROL  
WORD  
STATUS  
LATCH  
REGISTER  
CR  
CR  
L
M
RD  
STATUS  
REGISTER  
CLK 1  
GATE 1  
OUT 1  
READ/  
WRITE  
LOGIC  
WR  
COUNTER  
1
A
0
1
A
CE  
CONTROL  
LOGIC  
CS  
CLK 2  
GATE 2  
OUT 2  
OL  
M
OL  
L
CONTROL  
WORD  
REGISTER  
COUNTER  
2
GATE n  
CLK n  
OUT n  
COUNTER INTERNAL BLOCK DIAGRAM  
Pin Description  
DIP PIN  
SYMBOL  
D7 - D0  
CLK 0  
NUMBER  
TYPE  
DEFINITION  
1 - 8  
9
I/O  
DATA: Bi-directional three-state data bus lines, connected to system data bus.  
CLOCK 0: Clock input of Counter 0.  
OUT 0: Output of Counter 0.  
I
O
I
OUT 0  
GATE 0  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
GATE 0: Gate input of Counter 0.  
GROUND: Power supply connection.  
OUT 1: Output of Counter 1.  
OUT 1  
GATE 1  
CLK 1  
O
I
GATE 1: Gate input of Counter 1.  
I
CLOCK 1: Clock input of Counter 1.  
GATE 2: Gate input of Counter 2.  
GATE 2  
OUT 2  
I
O
OUT 2: Output of Counter 2.  
4-2  
82C54  
Pin Description (Continued)  
DIP PIN  
SYMBOL  
CLK 2  
NUMBER  
TYPE  
DEFINITION  
18  
I
I
CLOCK 2: Clock input of Counter 2.  
A0, A1  
19 - 20  
ADDRESS: Select inputs for one of the three counters or Control Word Register for read/write  
operations. Normally connected to the system address bus.  
A1  
0
A0  
0
SELECTS  
Counter 0  
0
1
Counter 1  
1
0
Counter 2  
1
1
Control Word Register  
CS  
21  
I
CHIP SELECT: A low on this input enables the 82C54 to respond to RD and WR signals. RD and  
WR are ignored otherwise.  
RD  
22  
23  
24  
I
I
READ: This input is low during CPU read operations.  
WRITE: This input is low during CPU write operations.  
WR  
V
V
: The +5V power supply pin. A 0.1µF capacitor between pins VCC and GND is recommended  
CC  
CC  
for decoupling.  
Functional Description  
General  
The 82C54 is a programmable interval timer/counter  
designed for use with microcomputer systems. It is a general  
purpose, multi-timing element that can be treated as an  
array of I/O ports in the system software.  
CLK 0  
GATE 0  
OUT 0  
DATA/  
BUS  
BUFFER  
COUNTER  
0
D
- D  
0
8
7
The 82C54 solves one of the most common problems in any  
microcomputer system, the generation of accurate time  
delays under software control. Instead of setting up timing  
loops in software, the programmer configures the 82C54 to  
match his requirements and programs one of the counters  
for the desired delay. After the desired delay, the 82C54 will  
interrupt the CPU. Software overhead is minimal and vari-  
able length delays can easily be accommodated.  
RD  
CLK 1  
GATE 1  
OUT 1  
READ/  
WRITE  
LOGIC  
WR  
COUNTER  
1
A
0
1
A
CS  
Some of the other computer/timer functions common to micro-  
computers which can be implemented with the 82C54 are:  
CLK 2  
GATE 2  
OUT 2  
CONTROL  
WORD  
REGISTER  
COUNTER  
2
• Real time clock  
• Event counter  
• Digital one-shot  
• Programmable rate generator  
• Square wave generator  
• Binary rate multiplier  
• Complex waveform generator  
• Complex motor controller  
FIGURE 1. DATA BUS BUFFER AND READ/WRITE LOGIC  
FUNCTIONS  
Read/Write Logic  
The Read/Write Logic accepts inputs from the system bus and  
generates control signals for the other functional blocks of the  
82C54. A1 and A0 select one of the three counters or the Con-  
trol Word Register to be read from/written into. A “low” on the  
RD input tells the 82C54 that the CPU is reading one of the  
counters. A “low” on the WR input tells the 82C54 that the CPU  
is writing either a Control Word or an initial count. Both RD and  
WR are qualified by CS; RD and WR are ignored unless the  
82C54 has been selected by holding CS low.  
Data Bus Buffer  
This three-state, bi-directional, 8-bit buffer is used to inter-  
face the 82C54 to the system bus (see Figure 1).  
4-3  
82C54  
Control Word Register  
The Control Word Register (Figure 2) is selected by the  
Read/Write Logic when A1, A0 = 11. If the CPU then does a  
write operation to the 82C54, the data is stored in the Con-  
trol Word Register and is interpreted as a Control Word used  
to define the Counter operation.  
INTERNAL BUS  
CONTROL  
WORD  
REGISTER  
STATUS  
LATCH  
CR  
CR  
L
M
The Control Word Register can only be written to; status  
information is available with the Read-Back Command.  
STATUS  
REGISTER  
CE  
CONTROL  
LOGIC  
CLK 0  
DATA/  
COUNTER  
D
- D  
0
8
BUS  
7
GATE 0  
OUT 0  
0
BUFFER  
OL  
M
OL  
L
RD  
GATE n  
CLK 1  
GATE 1  
OUT 1  
READ/  
WRITE  
LOGIC  
WR  
COUNTER  
1
CLK n  
OUT n  
A
A
0
FIGURE 3. COUNTER INTERNAL BLOCK DIAGRAM  
1
OLM and OLL are two 8-bit latches. OL stands for “Output  
Latch”; the subscripts M and L for “Most significant byte” and  
“Least significant byte”, respectively. Both are normally referred  
to as one unit and called just OL. These latches normally “fol-  
low” the CE, but if a suitable Counter Latch Command is sent to  
the 82C54, the latches “latch” the present count until read by  
the CPU and then return to “following” the CE. One latch at a  
time is enabled by the counter’s Control Logic to drive the inter-  
nal bus. This is how the 16-bit Counter communicates over the  
8-bit internal bus. Note that the CE itself cannot be read; when-  
ever you read the count, it is the OL that is being read.  
CS  
CLK 2  
GATE 2  
OUT 2  
CONTROL  
WORD  
REGISTER  
COUNTER  
2
FIGURE 2. CONTROL WORD REGISTER AND COUNTER  
FUNCTIONS  
Similarly, there are two 8-bit registers called CRM and CRL (for  
“Count Register”). Both are normally referred to as one unit and  
called just CR. When a new count is written to the Counter, the  
count is stored in the CR and later transferred to the CE. The  
Control Logic allows one register at a time to be loaded from  
the internal bus. Both bytes are transferred to the CE simulta-  
neously. CRM and CRL are cleared when the Counter is pro-  
grammed for one byte counts (either most significant byte only  
or least significant byte only) the other byte will be zero. Note  
that the CE cannot be written into; whenever a count is written,  
it is written into the CR.  
Counter 0, Counter 1, Counter 2  
These three functional blocks are identical in operation, so  
only a single Counter will be described. The internal block  
diagram of a signal counter is shown in Figure 3. The  
counters are fully independent. Each Counter may operate  
in a different Mode.  
The Control Word Register is shown in the figure; it is not  
part of the Counter itself, but its contents determine how the  
Counter operates.  
The Control Logic is also shown in the diagram. CLK n,  
GATE n, and OUT n are all connected to the outside world  
through the Control Logic.  
The status register, shown in the figure, when latched, con-  
tains the current contents of the Control Word Register and  
status of the output and null count flag. (See detailed expla-  
nation of the Read-Back command.)  
82C54 System Interface  
The 82C54 is treated by the system software as an array of  
peripheral I/O ports; three are counters and the fourth is a  
control register for MODE programming.  
The actual counter is labeled CE (for Counting Element). It is  
a 16-bit presettable synchronous down counter.  
Basically, the select inputs A0, A1 connect to the A0, A1  
address bus signals of the CPU. The CS can be derived  
directly from the address bus using a linear select method or  
it can be connected to the output of a decoder.  
4-4  
82C54  
Operational Description  
SC - Select Counter  
General  
SC1  
SC0  
0
0
1
1
0
1
0
1
Select Counter 0  
After power-up, the state of the 82C54 is undefined. The  
Mode, count value, and output of all Counters are undefined.  
Select Counter 1  
How each Counter operates is determined when it is pro-  
grammed. Each Counter must be programmed before it can  
be used. Unused counters need not be programmed.  
Select Counter 2  
Read-Back Command (See Read Operations)  
RW - Read/Write  
RW1 RW0  
Programming the 82C54  
Counters are programmed by writing a Control Word and  
then an initial count.  
0
0
1
1
0
1
0
1
Counter Latch Command (See Read Operations)  
Read/Write least significant byte only.  
All Control Words are written into the Control Word Register,  
which is selected when A1, A0 = 11. The Control Word spec-  
ifies which Counter is being programmed.  
Read/Write most significant byte only.  
Read/Write least significant byte first, then most  
significant byte.  
By contrast, initial counts are written into the Counters, not  
the Control Word Register. The A1, A0 inputs are used to  
select the Counter to be written into. The format of the initial  
count is determined by the Control Word used.  
M - Mode  
M2  
0
M1  
M0  
0
0
1
1
0
0
0
1
0
1
0
1
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
ADDRESS BUS (16)  
A1 A0  
0
X
X
1
CONTROL BUS  
I/OR I/OW  
DATA BUS (8)  
1
8
BCD - Binary Coded Decimal  
RD  
WR  
CS  
D0 - D7  
82C54  
A0  
A1  
0
1
Binary Counter 16-bit  
COUNTER  
0
COUNTER  
1
COUNTER  
2
Binary Coded Decimal (BCD) Counter (4 Decades)  
NOTE: Don’t Care bits (X) should be 0 to insure compatibility with  
future products.  
OUTGATE CLK OUTGATE CLK OUTGATECLK  
Possible Programming Sequence  
FIGURE 4. 82C54 SYSTEM INTERFACE  
A1  
1
A0  
1
Write Operations  
Control Word - Counter 0  
LSB of Count - Counter 0  
MSB of Count - Counter 0  
Control Word - Counter 1  
LSB of Count - Counter 1  
MSB of Count - Counter 1  
Control Word - Counter 2  
LSB of Count - Counter 2  
MSB of Count - Counter 2  
The programming procedure for the 82C54 is very flexible.  
Only two conventions need to be remembered:  
0
0
0
0
1. For Each Counter, the Control Word must be written  
before the initial count is written.  
1
1
0
1
2. The initial count must follow the count format specified in the  
Control Word (least significant byte only, most significant byte  
only, or least significant byte and then most significant byte).  
0
1
1
1
Since the Control Word Register and the three Counters have  
separate addresses (selected by the A1, A0 inputs), and each  
Control Word specifies the Counter it applies to (SC0, SC1 bits),  
no special instruction sequence is required. Any programming  
sequence that follows the conventions above is acceptable.  
1
0
1
0
Possible Programming Sequence  
A1  
1
A0  
1
Control Word Format  
Control Word - Counter 0  
Control Word - Counter 1  
Control Word - Counter 2  
LSB of Count - Counter 2  
A1, A0 = 11; CS = 0; RD = 1; WR = 0  
1
1
1
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
SC1  
SC0  
RW1  
RW0  
M2  
M1  
M0  
BCD  
4-5  
82C54  
Possible Programming Sequence (Continued)  
A1  
explained later. The second is a simple read operation of the  
Counter, which is selected with the A1, A0 inputs. The only  
requirement is that the CLK input of the selected Counter  
must be inhibited by using either the GATE input or external  
logic. Otherwise, the count may be in process of changing  
when it is read, giving an undefined result.  
A0  
1
LSB of Count - Counter 1  
LSB of Count - Counter 0  
MSB of Count - Counter 0  
MSB of Count - Counter 1  
MSB of Count - Counter 2  
0
0
0
0
1
0
0
Counter Latch Command  
1
The other method for reading the Counters involves a spe-  
cial software command called the “Counter Latch Com-  
mand”. Like a Control Word, this command is written to the  
Control Word Register, which is selected when A1, A0 = 11.  
Also, like a Control Word, the SC0, SC1 bits select one of  
the three Counters, but two other bits, D5 and D4, distin-  
guish this command from a Control Word.  
0
Possible Programming Sequence  
A1  
1
A0  
1
Control Word - Counter 2  
Control Word - Counter 1  
Control Word - Counter 0  
LSB of Count - Counter 2  
MSB of Count - Counter 2  
LSB of Count - Counter 1  
MSB of Count - Counter 1  
LSB of Count - Counter 0  
MSB of Count - Counter 0  
1
1
.
1
1
A1, A0 = 11; CS = 0; RD = 1; WR = 0  
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
SC1  
SC0  
0
0
X
X
X
X
0
1
0
1
SC1, SC0 - specify counter to be latched  
0
0
SC1  
SC0  
COUNTER  
0
0
0
0
1
1
0
1
0
1
0
1
2
Possible Programming Sequence  
A1  
1
A0  
1
Control Word - Counter 1  
Control Word - Counter 0  
LSB of Count - Counter 1  
Control Word - Counter 2  
LSB of Count - Counter 0  
MSB of Count - Counter 1  
LSB of Count - Counter 2  
MSB of Count - Counter 0  
MSB of Count - Counter 2  
Read-Back Command  
1
1
D5, D4 - 00 designates Counter Latch Command, X - Don’t Care.  
NOTE: Don’t Care bits (X) should be 0 to insure compatibility with  
future products.  
0
1
1
1
0
0
The selected Counter’s output latch (OL) latches the count  
when the Counter Latch Command is received. This count is  
held in the latch until it is read by the CPU (or until the Counter  
is reprogrammed). The count is then unlatched automatically  
and the OL returns to “following” the counting element (CE).  
This allows reading the contents of the Counters “on the fly”  
without affecting counting in progress. Multiple Counter Latch  
Commands may be used to latch more than one Counter.  
Each latched Counter’s OL holds its count until read. Counter  
Latch Commands do not affect the programmed Mode of the  
Counter in any way.  
0
1
1
0
0
0
1
0
NOTE: In all four examples, all counters are programmed to  
Read/Write two-byte counts. These are only four of many  
programming sequences.  
A new initial count may be written to a Counter at any time  
without affecting the Counter’s programmed Mode in any way.  
Counting will be affected as described in the Mode definitions.  
The new count must follow the programmed count format.  
If a Counter is latched and then, some time later, latched  
again before the count is read, the second Counter Latch  
Command is ignored. The count read will be the count at the  
time the first Counter Latch Command was issued.  
If a Counter is programmed to read/write two-byte counts,  
the following precaution applies. A program must not transfer  
control between writing the first and second byte to another  
routine which also writes into that same Counter. Otherwise,  
the Counter will be loaded with an incorrect count.  
With either method, the count must be read according to the  
programmed format; specifically, if the Counter is pro-  
grammed for two byte counts, two bytes must be read. The  
two bytes do not have to be read one right after the other;  
read or write or programming operations of other Counters  
may be inserted between them.  
Read Operations  
It is often desirable to read the value of a Counter without  
disturbing the count in progress. This is easily done in the  
82C54.  
Another feature of the 82C54 is that reads and writes of the  
same Counter may be interleaved; for example, if the  
Counter is programmed for two byte counts, the following  
sequence is valid.  
There are three possible methods for reading the Counters.  
The first is through the Read-Back command, which is  
4-6  
82C54  
1. Read least significant byte.  
2. Write new least significant byte.  
3. Read most significant byte.  
4. Write new most significant byte.  
The read-back command may also be used to latch status  
information of selected counter(s) by setting STATUS bit D4  
= 0. Status must be latched to be read; status of a counter is  
accessed by a read from that counter.  
The counter status format is shown in Figure 6. Bits D5  
through D0 contain the counter’s programmed Mode exactly  
as written in the last Mode Control Word. OUTPUT bit D7  
contains the current state of the OUT pin. This allows the  
user to monitor the counter’s output via software, possibly  
eliminating some hardware from a system.  
If a counter is programmed to read or write two-byte counts,  
the following precaution applies: A program MUST NOT  
transfer control between reading the first and second byte to  
another routine which also reads from that same Counter.  
Otherwise, an incorrect count will be read.  
Read-Back Command  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The read-back command allows the user to check the count  
value, programmed Mode, and current state of the OUT pin  
and Null Count flag of the selected counter(s).  
OUTPUT  
NULL  
COUNT  
RW1 RW0 M2  
M1  
M0 BCD  
D7: 1 =Out pin is 1  
=Out pin is 0  
D6: 1 =Null count  
=Count available for reading  
The command is written into the Control Word Register and  
has the format shown in Figure 5. The command applies to  
the counters selected by setting their corresponding bits D3,  
D2, D1 = 1.  
0
0
D5 - D0 =Counter programmed mode (See Control Word Formats)  
FIGURE 6. STATUS BYTE  
A0, A1 = 11; CS = 0; RD = 1; WR = 0  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
NULL COUNT bit D6 indicates when the last count written to  
the counter register (CR) has been loaded into the counting  
element (CE). The exact time this happens depends on the  
Mode of the counter and is described in the Mode Definitions,  
but until the counter is loaded into the counting element (CE),  
it can’t be read from the counter. If the count is latched or read  
before this time, the count value will not reflect the new count  
just written. The operation of Null Count is shown below.  
1
1
COUNT  
STATUS CNT 2 CNT 1 CNT 0  
0
D5: 0 = Latch count of selected Counter (s)  
D4: 0 = Latch status of selected Counter(s)  
D3: 1 = Select Counter 2  
D2: 1 = Select Counter 1  
D1: 1 = Select Counter 0  
D0: Reserved for future expansion; Must be 0  
THIS ACTION:  
CAUSES:  
FIGURE 5. READ-BACK COMMAND FORMAT  
A. Write to the control word register:(1) . . . . . . . . . . Null Count = 1  
B. Write to the count register (CR):(2) . . . . . . . . . . . Null Count = 1  
C. New count is loaded into CE (CR - CE). . . . . . . . Null Count = 0  
The read-back command may be used to latch multiple  
counter output latches (OL) by setting the COUNT bit D5 = 0  
and selecting the desired counter(s). This signal command  
is functionally equivalent to several counter latch commands,  
one for each counter latched. Each counter’s latched count  
is held until it is read (or the counter is reprogrammed). That  
counter is automatically unlatched when read, but other  
counters remain latched until they are read. If multiple count  
read-back commands are issued to the same counter with-  
out reading the count, all but the first are ignored; i.e., the  
count which will be read is the count at the time the first  
read-back command was issued.  
(1) Only the counter specified by the control word will have its null  
count set to 1. Null count bits of other counters are unaffected.  
(2) If the counter is programmed for two-byte counts (least signifi-  
cant byte then most significant byte) null count goes to 1 when  
the second byte is written.  
If multiple status latch operations of the counter(s) are per-  
formed without reading the status, all but the first are ignored;  
i.e., the status that will be read is the status of the counter at  
the time the first status read-back command was issued.  
COMMANDS  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
DESCRIPTION  
RESULT  
Read-Back Count and Status of Counter 0 Count and Status Latched for Counter 0  
1
1
1
0
0
1
0
0
Read-Back Status of Counter 1  
Status Latched for Counter 1  
1
1
1
0
1
1
0
0
Read-Back Status of Counters 2, 1  
Status Latched for Counter 2,  
But Not Counter 1  
1
1
1
1
0
0
1
0
1
0
0
1
0
0
0
0
Read-Back Count of Counter 2  
Count Latched for Counter 2  
Read-Back Count and Status of Counter 1 Count Latched for Counter 1,  
But Not Status  
1
1
1
0
0
0
1
0
Read-Back Status of Counter 1  
Command Ignored, Status Already  
Latched for Counter 1  
FIGURE 7. READ-BACK COMMAND EXAMPLE  
4-7  
82C54  
Both count and status of the selected counter(s) may be If a new count is written to the Counter it will be loaded on  
latched simultaneously by setting both COUNT and STATUS the next CLK pulse and counting will continue from the new  
bits D5, D4 = 0. This is functionally the same as issuing two count. If a two-byte count is written, the following happens:  
separate read-back commands at once, and the above dis-  
(1)Writing the first byte disables counting. Out is set low  
cussions apply here also. Specifically, if multiple count  
immediately (no clock pulse required).  
and/or status read-back commands are issued to the same  
counter(s) without any intervening reads, all but the first are  
ignored. This is illustrated in Figure 7.  
(2)Writing the second byte allows the new count to be  
loaded on the next CLK pulse.  
If both count and status of a counter are latched, the first  
read operation of that counter will return latched status,  
regardless of which was latched first. The next one or two  
reads (depending on whether the counter is programmed for  
one or two type counts) return latched count. Subsequent  
reads return unlatched count.  
This allows the counting sequence to be synchronized by  
software. Again OUT does not go high until N + 1 CLK  
pulses after the new count of N is written.  
If an initial count is written while GATE = 0, it will still be  
loaded on the next CLK pulse. When GATE goes high, OUT  
will go high N CLK pulses later; no CLK pulse is needed to  
load the counter as this has already been done.  
CS  
0
RD WR  
A1  
0
A0  
0
CW = 10 LSB = 4  
1
1
1
1
0
0
0
0
X
1
0
0
0
0
1
1
1
1
X
1
Write into Counter 0  
WR  
0
0
1
Write into Counter 1  
0
1
0
Write into Counter 2  
CLK  
0
1
1
Write Control Word  
GATE  
OUT  
0
0
0
Read from Counter 0  
Read from Counter 1  
Read from Counter 2  
No-Operation (Three-State)  
No-Operation (Three-State)  
No-Operation (Three-State)  
0
0
1
0
4
0
3
0
2
0
1
0
0
FF FF  
FF FE  
N
N
N
N
0
1
0
0
1
1
CW = 10 LSB = 3  
1
X
X
X
X
WR  
CLK  
0
FIGURE 8. READ/WRITE OPERATIONS SUMMARY  
Mode Definitions  
GATE  
The following are defined for use in describing the operation  
of the 82C54.  
OUT  
0
3
0
2
0
2
0
2
0
1
0
0
FF  
FF  
CLK PULSE:  
N
N
N
N
A rising edge, then a falling edge, in that order, of a  
Counter’s CLK input.  
CW = 10 LSB = 3  
LSB = 2  
WR  
TRIGGER:  
A rising edge of a Counter’s Gate input.  
CLK  
COUNTER LOADING:  
GATE  
OUT  
The transfer of a count from the CR to the CE (See “Func-  
tional Description”)  
0
3
0
2
0
1
0
2
0
1
0
0
FF  
FF  
N
N
N
N
Mode 0: Interrupt on Terminal Count  
FIGURE 9. MODE 0  
NOTES: The following conventions apply to all mode timing diagrams.  
Mode 0 is typically used for event counting. After the Control  
Word is written, OUT is initially low, and will remain low until  
the Counter reaches zero. OUT then goes high and remains  
high until a new count or a new Mode 0 Control Word is writ-  
ten to the Counter.  
1. Counters are programmed for binary (not BCD) counting and for  
reading/writing least significant byte (LSB) only.  
2. The counter is always selected (CS always low).  
3. CW stands for “Control Word”; CW = 10 means a control word of  
10, Hex is written to the counter.  
GATE = 1 enables counting; GATE = 0 disables counting.  
GATE has no effect on OUT.  
4. LSB stands for Least significant “byte” of count.  
After the Control Word and initial count are written to a  
Counter, the initial count will be loaded on the next CLK  
pulse. This CLK pulse does not decrement the count, so for  
an initial count of N, OUT does not go high until N + 1 CLK  
pulses after the initial count is written.  
5. Numbers below diagrams are count values. The lower number is  
the least significant byte. The upper number is the most signifi-  
cant byte. Since the counter is programmed to read/write LSB  
only, the most significant byte cannot be read.  
6. N stands for an undefined count.  
7. Vertical lines show transitions between count values.  
4-8  
82C54  
Mode 1: Hardware Retriggerable One-Shot  
Mode 2: Rate Generator  
OUT will be initially high. OUT will go low on the CLK pulse This Mode functions like a divide-by-N counter. It is typically  
following a trigger to begin the one-shot pulse, and will remain used to generate a Real Time Clock Interrupt. OUT will ini-  
low until the Counter reaches zero. OUT will then go high and tially be high. When the initial count has decremented to 1,  
remain high until the CLK pulse after the next trigger.  
OUT goes low for one CLK pulse. OUT then goes high  
again, the Counter reloads the initial count and the process  
is repeated. Mode 2 is periodic; the same sequence is  
repeated indefinitely. For an initial count of N, the sequence  
repeats every N CLK cycles.  
After writing the Control Word and initial count, the Counter is  
armed. A trigger results in loading the Counter and setting  
OUT low on the next CLK pulse, thus starting the one-shot  
pulse N CLK cycles in duration. The one-shot is retriggerable,  
hence OUT will remain low for N CLK pulses after any trigger. GATE = 1 enables counting; GATE = 0 disables counting. If  
The one-shot pulse can be repeated without rewriting the GATE goes low during an output pulse, OUT is set high  
same count into the counter. GATE has no effect on OUT.  
immediately. A trigger reloads the Counter with the initial  
count on the next CLK pulse; OUT goes low N CLK pulses  
after the trigger. Thus the GATE input can be used to syn-  
chronize the Counter.  
If a new count is written to the Counter during a one-shot  
pulse, the current one-shot is not affected unless the  
Counter is retriggerable. In that case, the Counter is loaded  
with the new count and the one-shot pulse continues until After writing a Control Word and initial count, the Counter will  
the new count expires.  
be loaded on the next CLK pulse. OUT goes low N CLK  
pulses after the initial count is written. This allows the  
Counter to be synchronized by software also.  
CW = 12 LSB = 3  
WR  
Writing a new count while counting does not affect the current  
counting sequence. If a trigger is received after writing a new  
count but before the end of the current period, the Counter will  
be loaded with the new count on the next CLK pulse and count-  
ing will continue from the end of the current counting cycle.  
CLK  
GATE  
OUT  
CW = 14  
LSB = 3  
WR  
0
3
0
2
0
1
0
0
FF  
FF  
0
3
0
2
N
N
N
N
N
CLK  
GATE  
OUT  
CW = 12 LSB = 3  
WR  
0
3
0
2
0
1
0
3
0
2
0
1
0
3
N
N
N
N
CLK  
CW = 14  
LSB = 3  
GATE  
OUT  
WR  
CLK  
0
3
0
2
0
1
0
3
0
2
0
1
0
0
N
N
N
N
N
GATE  
OUT  
CW = 12 LSB = 2  
LSB = 4  
WR  
0
3
0
2
0
2
0
3
0
2
0
1
0
3
N
N
N
N
CW = 14  
LSB = 4  
LSB = 5  
CLK  
WR  
GATE  
OUT  
CLK  
GATE  
OUT  
0
2
0
1
0
0
FF FF  
FF FE  
0
4
0
3
N
N
N
N
N
0
4
0
3
0
2
0
1
0
5
0
4
0
3
FIGURE 10. MODE 1  
N
N
N
N
FIGURE 11. MODE 2  
4-9  
82C54  
Mode 3: Square Wave Mode  
Mode 3 is Implemented as Follows:  
Mode 3 is typically used for Baud rate generation. Mode 3 is EVEN COUNTS: OUT is initially high. The initial count is  
similar to Mode 2 except for the duty cycle of OUT. OUT will loaded on one CLK pulse and then is decremented by two  
initially be high. When half the initial count has expired, OUT on succeeding CLK pulses. When the count expires, OUT  
goes low for the remainder of the count. Mode 3 is periodic; changes value and the Counter is reloaded with the initial  
the sequence above is repeated indefinitely. An initial count count. The above process is repeated indefinitely.  
of N results in a square wave with a period of N CLK cycles.  
ODD COUNTS: OUT is initially high. The initial count is loaded  
GATE = 1 enables counting; GATE = 0 disables counting. If on one CLK pulse, decremented by one on the next CLK pulse,  
GATE goes low while OUT is low, OUT is set high immedi- and then decremented by two on succeeding CLK pulses.  
ately; no CLK pulse is required. A trigger reloads the When the count expires, OUT goes low and the Counter is  
Counter with the initial count on the next CLK pulse. Thus reloaded with the initial count. The count is decremented by  
the GATE input can be used to synchronize the Counter.  
three on the next CLK pulse, and then by two on succeeding  
CLK pulses. When the count expires, OUT goes high again and  
the Counter is reloaded with the initial count. The above pro-  
cess is repeated indefinitely. So for odd counts, OUT will be  
high for (N + 1)/2 counts and low for (N - 1)/2 counts.  
After writing a Control Word and initial count, the Counter will  
be loaded on the next CLK pulse. This allows the Counter to  
be synchronized by software also.  
Writing a new count while counting does not affect the cur-  
rent counting sequence. If a trigger is received after writing a  
Mode 4: Software Triggered Mode  
new count but before the end of the current half-cycle of the OUT will be initially high. When the initial count expires, OUT  
square wave, the Counter will be loaded with the new count will go low for one CLK pulse then go high again. The count-  
on the next CLK pulse and counting will continue from the ing sequence is “Triggered” by writing the initial count.  
new count. Otherwise, the new count will be loaded at the  
GATE = 1 enables counting; GATE = 0 disables counting.  
end of the current half-cycle.  
GATE has no effect on OUT.  
CW = 16 LSB = 4  
After writing a Control Word and initial count, the Counter will be  
loaded on the next CLK pulse. This CLK pulse does not decre-  
WR  
ment the count, so for an initial count of N, OUT does not strobe  
low until N + 1 CLK pulses after the initial count is written.  
CLK  
If a new count is written during counting, it will be loaded on  
the next CLK pulse and counting will continue from the new  
GATE  
count. If a two-byte count is written, the following happens:  
OUT  
(1)Writing the first byte has no effect on counting.  
0
4
0
2
0
4
0
2
0
4
0
2
0
4
0
2
0
4
0
2
N
N
N
N
(2)Writing the second byte allows the new count to be  
loaded on the next CLK pulse.  
CW = 16 LSB = 5  
WR  
This allows the sequence to be “retriggered” by software. OUT  
strobes low N + 1 CLK pulses after the new count of N is written.  
CLK  
GATE  
OUT  
0
5
0
4
0
2
0
5
0
2
0
5
0
4
0
2
0
5
0
2
N
N
N
N
CW = 16 LSB = 4  
WR  
CLK  
GATE  
OUT  
0
4
0
2
0
4
0
2
0
2
0
2
0
4
0
2
0
4
0
2
N
N
N
N
FIGURE 12. MODE 3  
4-10  
82C54  
CW = 18 LSB = 3  
CW = 1A LSB = 3  
WR  
WR  
CLK  
GATE  
OUT  
CLK  
GATE  
OUT  
0
3
0
2
0
1
0
0
FF FF FF  
FF FE FD  
N
N
N
N
0
3
0
2
0
1
0
0
FF  
FF  
0
3
N
N
N
N
N
N
N
CW = 18 LSB = 3  
CW = 1A LSB = 3  
WR  
WR  
CLK  
CLK  
GATE  
OUT  
GATE  
OUT  
0
0
0
0
0
1
0
0
FF  
FF  
N
N
N
N
3
3
3
2
0
3
0
2
0
3
0
2
0
1
0
0
FF  
FF  
N
N
N
N
N
CW = 18 LSB = 3  
LSB = 2  
CW = 1A LSB = 3  
LSB = 5  
WR  
WR  
CLK  
CLK  
GATE  
OUT  
GATE  
OUT  
0
3
0
2
0
1
0
2
0
1
0
0
FF  
FF  
N
N
N
N
0
5
FIGURE 13. MODE 4  
0
3
0
2
0
1
0
0
FF FF  
FF FE  
0
4
N
N
N
N
Mode 5: Hardware Triggered Strobe (Retriggerable)  
FIGURE 14. MODE 5  
OUT will initially be high. Counting is triggered by a rising  
edge of GATE. When the initial count has expired, OUT will  
go low for one CLK pulse and then go high again.  
Operation Common to All Modes  
Programming  
After writing the Control Word and initial count, the counter  
will not be loaded until the CLK pulse after a trigger. This  
CLK pulse does not decrement the count, so for an initial  
count of N, OUT does not strobe low until N + 1 CLK pulses  
after trigger.  
When a Control Word is written to a Counter, all Control  
Logic, is immediately reset and OUT goes to a known initial  
state; no CLK pulses are required for this.  
Gate  
A trigger results in the Counter being loaded with the initial The GATE input is always sampled on the rising edge of  
count on the next CLK pulse. The counting sequence is trig- CLK. In Modes 0, 2, 3 and 4 the GATE input is level sensi-  
gerable. OUT will not strobe low for N + 1 CLK pulses after tive, and logic level is sampled on the rising edge of CLK. In  
any trigger GATE has no effect on OUT.  
modes 1, 2, 3 and 5 the GATE input is rising-edge sensitive.  
In these Modes, a rising edge of Gate (trigger) sets an edge-  
sensitive flip-flop in the Counter. This flip-flop is then sam-  
pled on the next rising edge of CLK. The flip-flop is reset  
immediately after it is sampled. In this way, a trigger will be  
detected no matter when it occurs - a high logic level does  
not have to be maintained until the next rising edge of CLK.  
Note that in Modes 2 and 3, the GATE input is both edge-  
and level-sensitive.  
If a new count is written during counting, the current count-  
ing sequence will not be affected. If a trigger occurs after the  
new count is written but before the current count expires, the  
Counter will be loaded with new count on the next CLK pulse  
and counting will continue from there.  
4-11  
82C54  
Counter  
New counts are loaded and Counters are decremented on  
the falling edge of CLK.  
MODE  
MIN COUNT  
MAX COUNT  
0
1
2
3
4
5
1
1
2
2
1
1
0
0
0
0
0
16  
The largest possible initial count is 0; this is equivalent to 2  
for binary counting and 10 for BCD counting.  
4
The counter does not stop when it reaches zero. In Modes 0,  
1, 4, and 5 the Counter “wraps around” to the highest count,  
either FFFF hex for binary counting or 9999 for BCD count-  
ing, and continues counting. Modes 2 and 3 are periodic; the  
Counter reloads itself with the initial count and continues  
counting from there.  
0
4
16  
NOTE: 0 is equivalent to 2 for binary counting and 10 for BCD  
counting.  
SIGNAL  
STATUS  
MODES  
LOW OR  
GOING LOW  
FIGURE 16. MINIMUM AND MAXIMUM INITIAL COUNTS  
RISING  
HIGH  
0
1
Disables Counting  
-
-
Enables Counting  
-
1) Initiates  
Counting  
2) Resets output  
after next clock  
2
3
1) Disables  
counting  
2) Sets output im-  
mediately high  
Initiates Counting Enables Counting  
1) Disables  
Initiates Counting Enables Counting  
counting  
2) Sets output im-  
mediately high  
4
5
1) Disables  
Counting  
-
Enables Counting  
-
-
Initiates Counting  
FIGURE 15. GATE PIN OPERATIONS SUMMARY  
4-12  
82C54  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+8.0V Thermal Resistance (Typical)  
θJA ( C/W) θJC ( C/W)  
Input, Output or I/O Voltage . . . . . . . . . . . . GND-0.5V to V  
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1  
+0.5V  
CC  
CERDIP Package . . . . . . . . . . . . . . . .  
CLCC Package . . . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
PLCC Package . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . .  
55  
65  
60  
65  
75  
12  
14  
N/A  
N/A  
N/A  
Operating Conditions  
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . +4.5V to +5.5V  
Operating Temperature Range  
o
o
Storage Temperature Range. . . . . . . . . . . . . . . . . .-65 C to +150 C  
Maximum Junction Temperature Ceramic Package . . . . . . . +175 C  
Maximum Junction Temperature Plastic Package. . . . . . . . . +150 C  
Maximum Lead Temperature Package (Soldering 10s) . . . . +300 C  
o
o
o
C82C54, C82C54-10, -12 . . . . . . . . . . . . . . . . . . . . 0 C to +70 C  
o
o
o
I82C54, I82C54-10, -12 . . . . . . . . . . . . . . . . . . . . -40 C to +85 C  
o
o
o
M82C54, M82C54-10, -12 . . . . . . . . . . . . . . . . . -55 C to +125 C  
(PLCC and SOIC - Lean Tips Only)  
Die Characteristics  
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2250 Gates  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
)
o
o
DC Electrical Specifications  
V
= +5.0V ± 10%, T = 0 C to +70 C (C82C54, C82C54-10, C82C54-12)  
CC A  
o
o
T = -40 C to +85 C (I82C54, I82C54-10, I82C54-12)  
A
o
o
T = -55 C to +125 C (M82C54, M82C54-10, M82C54-12  
A
SYMBOL  
PARAMETER  
MIN  
2.0  
2.2  
-
MAX  
UNITS  
TEST CONDITIONS  
C82C54, I82C54  
VIH  
Logical One Input Voltage  
-
-
V
V
M82C54  
VIL  
Logical Zero Input Voltage  
Output HIGH Voltage  
0.8  
-
V
VOH  
3.0  
V
IOH = -2.5mA  
IOH = -100µA  
IOL = +2.5mA  
VIN = GND or V  
V
-0.4  
-
V
CC  
VOL  
II  
Output LOW Voltage  
Input Leakage Current  
-
0.4  
+1  
V
-1  
µA  
CC  
DIP Pins 9,11,14-16,18-23  
IO  
Output Leakage Current  
-10  
-
+10  
10  
µA  
µA  
VOUT = GND or V  
DIP Pins 1-8  
CC  
ICCSB  
Standby Power Supply Current  
V
= 5.5V, VIN = GND or V  
,
CC  
CC  
Outputs Open, Counters  
Programmed  
ICCOP  
Operating Power Supply Current  
-
10  
mA  
V
= 5.5V,  
CC  
CLK0 = CLK1 = CLK2 = 8MHz,  
VIN = GND or V  
Outputs Open  
,
CC  
o
Capacitance T = +25 C; All Measurements Referenced to Device GND, Note 1  
A
SYMBOL  
CIN  
PARAMETER  
Input Capacitance  
TYP  
20  
UNITS  
TEST CONDITIONS  
FREQ = 1MHz  
pF  
pF  
pF  
COUT  
CI/O  
Output Capacitance  
I/O Capacitance  
20  
FREQ = 1MHz  
FREQ = 1MHz  
20  
NOTE:  
1. Not tested, but characterized at initial design and at major process/design changes.  
4-13  
82C54  
o
o
AC Electrical Specifications V = +5.0V ± 10%, T = 0 C to +70 C (C82C54, C82C54-10, C82C54-12)  
CC  
A
o
o
T = -40 C to +85 C (I82C54, I82C54-10, I82C54-12)  
A
o
o
T = -55 C to +125 C (M82C54, M82C54-10, M82C54-12)  
A
82C54  
82C54-10  
82C54-12  
TEST  
SYMBOL  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS CONDITIONS  
READ CYCLE  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
TAR  
Address Stable Before RD  
CS Stable Before RD  
Address Hold Time After RD  
RD Pulse Width  
30  
0
-
25  
0
-
-
25  
0
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
TSR  
TRA  
TRR  
TRD  
TAD  
TDF  
TRV  
-
-
1
0
0
-
0
-
1
150  
-
-
95  
-
-
95  
-
-
1
Data Delay from RD  
120  
210  
85  
-
85  
185  
65  
-
85  
185  
65  
-
1
1
Data Delay from Address  
RD to Data Floating  
-
-
-
5
5
5
2, Note 1  
Command Recovery Time  
200  
165  
165  
WRITE CYCLE  
(9)  
TAW  
TSW  
TWA  
TWW  
TDW  
TWD  
TRV  
Address Stable Before WR  
CS Stable Before WR  
0
0
-
-
-
-
-
-
-
0
0
-
-
-
-
-
-
-
0
0
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
Address Hold Time After WR  
WR Pulse Width  
0
0
0
95  
140  
25  
200  
95  
95  
0
95  
95  
0
Data Setup Time Before WR  
Data Hold Time After WR  
Command Recovery Time  
165  
165  
CLOCK AND GATE  
TCLK Clock Period  
TPWH High Pulse Width  
TPWL Low Pulse Width  
(16)  
(17)  
(18)  
(19)  
(20)  
(21)  
(22)  
(23)  
(24)  
(25)  
(26)  
(27)  
(28)  
(29)  
(30)  
NOTE:  
125  
60  
60  
-
DC  
-
100  
30  
40  
-
DC  
-
80  
30  
30  
-
DC  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
-
-
-
TR  
TF  
Clock Rise Time  
25  
25  
-
25  
25  
-
25  
25  
-
Clock Fall Time  
-
-
-
TGW  
TGL  
TGS  
TGH  
TOD  
Gate Width High  
50  
50  
50  
50  
-
50  
50  
40  
50  
-
50  
50  
40  
50  
-
1
1
1
1
1
1
1
1
1
1
Gate Width Low  
-
-
-
Gate Setup Time to CLK  
Gate Hold Time After CLK  
Output Delay from CLK  
-
-
-
-
-
-
150  
120  
260  
55  
40  
40  
100  
100  
240  
55  
40  
40  
100  
100  
240  
55  
40  
40  
TODG Output Delay from Gate  
-
-
-
TWO  
TWC  
TWG  
TCL  
OUT Delay from Mode Write  
CLK Delay for Loading  
-
-
-
0
0
0
Gate Delay for Sampling  
CLK Setup for Count Latch  
-5  
-40  
-5  
-40  
-5  
-40  
1. Not tested, but characterized at initial design and at major process/design changes.  
4-14  
82C54  
Timing Waveforms  
A0 - A1  
(9)  
tAW  
tWA (11)  
CS  
DATA BUS  
WR  
(10)  
tSW  
VALID  
(13)  
tDW  
tWD (14)  
(12)  
tWW  
FIGURE 17. WRITE  
A0 - A1  
CS  
tRA (3)  
tAR (1)  
(2)  
tSR  
(4)  
tRR  
RD  
(5)  
tRD  
(7)  
tDF  
(6)  
tAD  
DATA BUS  
VALID  
FIGURE 18. READ  
(8) (15)  
tRV  
RD, WR  
FIGURE 19. RECOVERY  
COUNT  
(SEE NOTE)  
MODE  
WR  
(23)  
tGS  
tWC (28)  
(16)  
tCLK  
(17)  
tCL (30)  
tPWH  
(18)  
tPWL  
CLK  
GATE  
OUT  
(19)  
tR  
tF (20)  
tGS  
(23)  
tGH (24)  
(21)  
tGW  
(24)  
(22)  
tGL  
tGH  
tOD (25)  
(27)  
tWO  
tODG (26)  
NOTE: LAST BYTE OF COUNT BEING WRITTEN  
FIGURE 20. CLOCK AND GATE  
4-15  
82C54  
Burn-In Circuits  
MD 82C54 CERDIP  
V
CC  
C1  
R1  
R1  
R1  
R1  
R1  
R1  
R1  
R1  
R2  
Q1  
Q2  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
R1  
R1  
R1  
Q3  
VCC  
GND  
Q5  
Q4  
F2  
VCC  
GND  
F9  
3
4
R1  
R1  
R2  
V
CC  
5
F10  
F11  
F12  
F0  
6
7
R3  
R4  
A
8
A
R1  
9
Q8  
F1  
Q7  
A
R2  
R1  
A
Q6  
10  
11  
12  
R1  
GND  
MR 82C54 CLCC  
VCC  
C1  
Q3 VCC  
R1 R1  
VCC Q2 Q1 OPEN  
R1 R1 R1  
4
3
2
1
28 27 26  
R1  
R1  
R1  
R1  
R1  
R2  
25  
24  
23  
22  
21  
20  
19  
GND  
OPEN  
5
6
R1  
R1  
R1  
R2  
R5  
R1  
F9  
F10  
F11  
F12  
F0  
GND  
Q5  
7
8
Q4  
9
F2  
10  
11  
VCC/2  
OPEN  
Q8  
12 13 14 15 16 17 18  
R5 R1  
R5 R1 R2  
VCC/2 Q6 GND  
VCC/2 Q7 F1  
OPEN  
NOTES:  
1. V  
= 5.5V ± 0.5V  
8. R4 = 1.8kΩ ±5%  
9. R5 = 1.2kΩ ±5%  
CC  
2. GND = 0V  
3. VIH = 4.5V ±10%  
4. VIL = -0.2V to 0.4V  
5. R1 = 47kΩ ±5%  
6. R2 = 1.0kΩ ±5%  
7. R3 = 2.7kΩ ±5%  
10. C1 = 0.01µF Min  
11. F0 = 100kHz ±10%  
12. F1 = F0/2, F2 = F1/2, ...F12 = F11/2  
4-16  
82C54  
Die Characteristics  
DIE DIMENSIONS:  
129mils x 155mils x 19mils  
(3270µm x 3940µm x 483µm)  
Thickness: Metal 1: 8kÅ ± 0.75kÅ  
Metal 2: 12kÅ ± 1.0kÅ  
GLASSIVATION:  
METALLIZATION:  
Type: Nitrox  
Type: Si-Al-Cu  
Thickness: 10kÅ ± 3.0kÅ  
Metallization Mask Layout  
82C54  
D5  
D6  
D7  
VCC  
WR  
RD  
D4  
D3  
CS  
A1  
D2  
D1  
A0  
CLK2  
OUT2  
GATE2  
D0  
CLK0  
OUT0  
GATE0  
GND  
OUT1  
GATE1  
CLK1  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
4-17  
配单直通车
ID82C54产品参数
型号:ID82C54
是否Rohs认证: 不符合
生命周期:Obsolete
IHS 制造商:THOMSON CONSUMER ELECTRONICS
包装说明:DIP, DIP24,.6
Reach Compliance Code:unknown
风险等级:5.82
Is Samacsys:N
JESD-30 代码:R-XDIP-T24
端子数量:24
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:CERAMIC
封装代码:DIP
封装等效代码:DIP24,.6
封装形状:RECTANGULAR
封装形式:IN-LINE
电源:5 V
认证状态:Not Qualified
子类别:Analog Waveform Generation Functions
标称供电电压 (Vsup):5 V
表面贴装:NO
技术:CMOS
温度等级:INDUSTRIAL
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!