欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • IDT723614L20PQF
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • IDT723614L20PQF图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • IDT723614L20PQF
  • 数量4563 
  • 厂家IDT 
  • 封装TQFP 
  • 批号18+ 
  • 全新原装,优势品牌,有意请来电或QQ联系
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • IDT723614L20PQF图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • IDT723614L20PQF
  • 数量277 
  • 厂家IDT 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • IDT723614L20PQF图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • IDT723614L20PQF
  • 数量2015 
  • 厂家IDT 
  • 封装DIP/SMD 
  • 批号19889 
  • ★一级代理原装现货,特价热卖!
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • IDT723614L20PQF图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • IDT723614L20PQF
  • 数量9800 
  • 厂家IDT 
  • 封装QFP 
  • 批号23+ 
  • 进口原装原盘原标签假一赔十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • IDT723614L20PQF图
  • 集好芯城

     该会员已使用本站13年以上
  • IDT723614L20PQF
  • 数量16893 
  • 厂家IDT 
  • 封装QFP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • IDT723614L20PQF图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • IDT723614L20PQF
  • 数量13600 
  • 厂家IDT 
  • 封装原厂原封装 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • IDT723614L20PQF图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • IDT723614L20PQF
  • 数量6500 
  • 厂家IDT 
  • 封装QFP 
  • 批号24+ 
  • 全新原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • IDT723614L20PQF图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • IDT723614L20PQF
  • 数量865000 
  • 厂家原厂 
  • 封装原厂封装 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • IDT723614L20PQF图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • IDT723614L20PQF
  • 数量53529 
  • 厂家IDT 
  • 封装QFP132 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • IDT723614L20PQF图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • IDT723614L20PQF
  • 数量277 
  • 厂家IDT 
  • 封装QFP 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • IDT723614L20PQF图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • IDT723614L20PQF
  • 数量6500 
  • 厂家IDT 
  • 封装QFP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • IDT723614L20PQF图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • IDT723614L20PQF
  • 数量6500000 
  • 厂家IDT 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • IDT723614L20PQF图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • IDT723614L20PQF
  • 数量23000 
  • 厂家IDT 
  • 封装原封装 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • IDT723614L20PQFI图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • IDT723614L20PQFI
  • 数量24500 
  • 厂家Renesas Electronics America Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • IDT723614L20PQF图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • IDT723614L20PQF
  • 数量24500 
  • 厂家Renesas Electronics America Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • IDT723614L20PQFI图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • IDT723614L20PQFI
  • 数量1001 
  • 厂家IDT 
  • 封装QFP-132 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • IDT723614L20PQF图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • IDT723614L20PQF
  • 数量7800 
  • 厂家IDT 
  • 封装QFP 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • IDT723614L20PQF图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • IDT723614L20PQF
  • 数量1001 
  • 厂家IDT 
  • 封装QFP-132 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807

产品型号IDT723614L20PQF的概述

IDT723614L20PQF的概述与详细参数解析 概述 IDT723614L20PQF是一款由Integrated Device Technology(IDT)公司制造的高性能静态随机存取存储器(SRAM),其设计旨在提供快速的访问时间和高存储密度。这种存储器广泛应用于各种电子设备中,如计算机、网络设备和其它嵌入式系统。IDT723614L20PQF以其稳定性、可靠性和极低的功耗特点,成为了设计师在开发高性能应用时的优选元器件。 该芯片的存储容量为2M位(256K字×8位),适用于需要大量临时数据存储的应用场景。其内部结构设计使得数据写入和读取速度非常快,适合实时数据处理需求。其广泛的工作电压范围和低功耗设计,使其能够满足现代电子产品对能效的严格要求。 详细参数 1. 性能参数 - 存储容量:2M位 - 数据总线宽度:8位 - 访问时间:20 ns - 写入时间:20 ns - ...

产品型号IDT723614L20PQF的Datasheet PDF文件预览

CMOS SyncBiFIFO  
IDT723614  
WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
Integrated Device Technology, Inc.  
• Microprocessor interface control logic  
FEATURES:  
• Free-running CLKA and CLKB can be asynchronous or  
coincident (simultaneous reading and writing of data on a  
single clock edge is permitted)  
• Two independent clocked FIFOs (64 x 36 storage  
capacity each) buffering data in opposite directions  
• Mailbox bypass Register for each FIFO  
• Dynamic Port B bus sizing of 36-bits (long word), 18-bits  
(word), and 9-bits (byte)  
• Selection of Big- or Little-Endian format for word and  
byte bus sizes  
EFA, FFA, AEA, and AFA flags synchronized by CLKA  
• EFB, FFB, AEB, and AFB flags synchronized by CLKB  
• Passive parity checking on each port  
• Parity generation can be selected for each port  
• Low-power advanced BiCMOS technology  
• Supports clock frequencies up to 67 MHz  
• Fast access times of 10 ns  
• Available in 132-pin plastic quad flat package (PQF) or  
space-saving 120-pin thin quad flat package (TQFP)  
• Industrial temperature range (-40°C to +85°C) is avail-  
able, tested to military electrical specifications  
• Three modes of byte-order swapping on port B  
• Programmable Almost-Full and Almost-Empty Flags  
FUNCTIONAL BLOCK DIAGRAM  
CLKA  
CSA  
W/RA  
ENA  
Port-A  
Control  
Logic  
MBF1  
MBA  
Parity  
Gen/Check  
PEFB  
Mail 1  
Register  
PGB  
64 x 36  
SRAM  
36  
RST  
Device  
Control  
ODD/  
EVEN  
Read  
Pointer  
Write  
Pointer  
EFB  
AEB  
Status Flag  
Logic  
FFA  
AFA  
FIFO1  
36  
FS0  
FS1  
Programmable Flag  
Offset Register  
B
0-B35  
A
0
- A35  
FIFO2  
FFB  
Status Flag  
Logic  
EFA  
AEA  
AFB  
Write  
Pointer  
Read  
Pointer  
36  
64 x 36  
SRAM  
PGA  
Mail 2  
Register  
Parity  
Gen/Check  
PEFA  
MBF2  
CLKB  
Port-B  
Control  
Logic  
CSB  
W/RB  
ENB  
BE  
SIZ0  
SIZ1  
SW0  
SW1  
3146 drw 01  
The IDT logo is a registered trademark and SyncBiFIFO is a trademark of Integrated Device Technology, Inc.  
COMMERCIAL TEMPERATURE RANGE  
MAY 1997  
For latest information contact IDT's web site at www.idt.com or fax-on-demand at 408-492-8391.  
1997 Integrated Device Technology, Inc  
DSC-3146/4  
1
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
DESCRIPTION:  
with any bus size selection. Communication between each  
port can bypass the FIFOs via two 36-bit mailbox registers.  
Each mailbox register has a flag to signal when new mail has  
beenstored. Parityischeckedpassivelyoneachportandmay  
beignoredifnotdesired. Paritygenerationcanbeselectedfor  
data read from each port. Two or more devices can be used  
in parallel to create wider data paths.  
The IDT723614 is a clocked FIFO, which means each port  
employs a synchronous interface. All data transfers through a  
port are gated to the LOW-to-HIGH transition of a continuous  
(free-running) port clock by enable signals. The clocks for  
each port are independent of one another and can be asyn-  
The IDT723614 is a monolithic, high-speed, low-power  
BiCMOS bidirectional clocked FIFO memory. It supports  
clock frequencies up to 67MHz and has read access times as  
fastas10ns.Twoindependent64x36dual-portSRAMFIFOs  
on board the chip buffer data in opposite directions. Each  
FIFO has flags to indicate empty and full conditions and two  
programmable flags (almost-full and almost-empty) to indi-  
cate when a selected number of words is stored in memory.  
FIFO data on port B can be input and output in 36-bit, 18-bit,  
and 9-bit formats with a choice of big- or little-endian configu-  
rations. Three modes of byte-order swapping are possible  
PIN CONFIGURATIONS  
GND  
AEA  
EFA  
A0  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
GND  
AEB  
EFB  
B0  
*
A1  
B1  
A2  
B2  
GND  
A3  
GND  
B3  
A4  
B4  
A5  
B5  
A6  
B6  
VCC  
A7  
VCC  
B7  
A8  
A9  
B8  
B9  
GND  
A10  
A11  
VCC  
A12  
A13  
A14  
GND  
A15  
A16  
A17  
A18  
A19  
A20  
GND  
A21  
A22  
A23  
GND  
B10  
B11  
VCC  
B12  
B13  
B14  
GND  
B15  
B16  
B17  
B18  
B19  
B20  
GND  
B21  
B22  
B23  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
3146 drw 02  
*
Electrical pin 1 in center of beveled edge. Pin 1 identifier in corner.  
PQFP (PQ132-1, order code: PQF)  
TOP VIEW  
NOTES:  
1. NC - No internal connection.  
2. Uses Yamaichi socket IC51-1324-828.  
2
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
chronous or coincident. The enables for each port are ar- writesdatatoitsarray. Theemptyflag(EFA, EFB)andalmost-  
ranged to provide a simple bidirectional interface between empty (AEA, AEB) flag of a FIFO are two stage synchronized  
microprocessors and/or buses controlled by a synchronous to the port clock that reads data from its array.  
interface. The IDT723614 is characterized for operation from 0°C to  
The full flag (FFA, FFB) and almost-full flag (AFA, AFB) of 70°C.  
a FIFO are two-stage synchronized to the port clock that  
PIN CONFIGURATIONS (CONT.)  
A
A
A
23  
22  
21  
1
B
B
22  
21  
GND  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
2
3
GND  
4
B
B
B
B
B
B
B
B
B
B
B
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
A
A
A
A
A
A
A
A
A
A
A
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
GND  
GND  
B
B
B
V
B
B
B
B
9
8
7
CC  
6
5
4
3
A
A
A
9
8
7
V
CC  
A
A
A
A
6
5
4
3
GND  
GND  
B
B
B
2
1
0
A
A
A
2
1
0
EFB  
AEB  
AFB  
EFA  
AEA  
3146 drw 03  
TQFP (PN120-1, order code: PF)  
TOP VIEW  
3
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTION  
Symbol  
Name  
I/O  
I/O  
O
Description  
A0-A35 Port A Data  
36-bit bidirectional data port for side A.  
AEA  
AEB  
AFA  
AFB  
Port A Almost-Empty  
Programmable almost-empty flag synchronized to CLKA. It is LOW when  
Flag  
(Port A) the number of 36-bit words in FIFO2 is less than or equal to the value in  
the offset register, X.  
Port B Almost-Empty  
Flag  
O
Programmable almost-empty flag synchronized to CLKB. It is LOW when the  
(Port B) number of 36-bit words in FIFO1 is less than or equal to the value in the  
offset register, X.  
Port A Almost-Full  
Flag  
O
Programmable almost-full flag synchronized to CLKA. It is LOW when the  
(Port A) number of 36-bit empty locations in FIFO1 is less than or equal to the value  
in the offset register, X.  
Port B Almost-Full  
Flag  
O
Programmable almost-full flag synchronized to CLKB. It is LOW when the  
(Port B) number of 36-bit empty locations in FIFO2 is less than or equal to the value  
in the offset register, X.  
B0-B35 Port B Data.  
I/O  
I
36-bit bidirectional data port for side B.  
BE  
Big-endian select  
Selects the bytes on port B used during byte or word data transfer. A LOW  
on BEselects the most significant bytes on B0-B35 for use, and a HIGH  
selects the least significant bytes  
CLKA Port A Clock  
CLKB Port B Clock  
I
I
CLKA is a continuous clock that synchronizes all data transfers through port A  
and can be asynchronous or coincident to CLKB. EFA, FFA, AFA, and AEA  
are synchronized to the LOW-to-HIGH transition of CLKA.  
CLKB is a continuous clock that synchronizes all data transfers through port B  
and can be asynchronous or coincident to CLKA. Port B byte swapping and  
data port sizing operations are also synchronous to the LOW-to-HIGH transi-  
tion of CLKB. EFB, FFB, AFB, and AEB are synchronized to the LOW-to-HIGH  
transition of CLKB.  
CSA  
CSB  
EFA  
Port A Chip Select  
I
I
CSA must be LOW to enable a LOW-to-HIGH transition of CLKA to read or  
write data on port A. The A0-A35 outputs are in the high-impedance state  
when CSA is HIGH.  
Port B Chip Select  
Port A Empty Flag  
CSB must be LOW to enable a LOW-to-HIGH transition of CLKB to read or  
write data on port B. The B0-B35 outputs are in the high-impedance state  
when CSB is HIGH.  
O
EFA is synchronized to the LOW-to-HIGH transition of CLKA. When EFA is  
(Port A) LOW, FIFO2 is empty, and reads from its memory are disabled. Data can  
be read from FIFO2 to the output register when EFA is HIGH. EFA is forced  
LOW when the device is reset and is set HIGH by the second LOW-to-HIGH  
transition of CLKA after data is loaded into empty FIFO2 memory.  
EFB  
Port B Empty Flag  
O
EFB is synchronized to the LOW-to-HIGH transition of CLKB. When EFB is  
(Port B) LOW, the FIFO1 is empty, and reads from its memory are disabled. Data can  
be read from FIFO1 to the output register when EFB is HIGH. EFB is forced  
LOW when the device is reset and is set HIGH by the second LOW-to-HIGH  
transition of CLKB after data is loaded into empty FIFO1 memory.  
ENA  
ENB  
FFA  
Port A Enable  
Port B Enable  
Port A Full Flag  
I
ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or  
write data on port A.  
I
ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or  
write data on port B.  
O
FFA is synchronized to the LOW-to-HIGH transition of CLKA. When FFA is  
(Port A) LOW, FIFO1 is full, and writes to its memory are disabled. FFA is forced LOW  
when the device is reset and is set HIGH by the second LOW-to-HIGH transi-  
tion of CLKA after reset.  
FFB  
Port B Full Flag  
O
FFB is synchronized to the LOW-to-HIGH transition of CLKB. When FFB is  
(Port B) LOW, FIFO2 is full, and writes to its memory are disabled. FFB is forced LOW  
when the device is reset and is set HIGH by the second LOW-to-HIGH transi-  
tion of CLKB after reset.  
4
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTION (CONTINUED)  
Symbol  
Name  
I/O  
Description  
`FS1, FS0 Flag-Offset Selects  
I
The LOW-to-HIGH transition of RST latches the values of FS0 and FS1, which  
selects one of four preset values for the almost-full flag and almost-empty flag  
offset.  
MBA  
Port A Mailbox  
Select  
I
A HIGH level on MBA chooses a mailbox register for a port A read or write  
operation. When the A0-A35 outputs are active, a HIGH level on MBA selects  
data from the mail2 register for output, and a LOW level selects FIFO2 output  
register data for output.  
MBF1  
Mail1 Register Flag  
Mail2 Register Flag  
O
MBF1 is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the  
mail1 register. Writes to the mail1 register are inhibited while MBF1 is set LOW.  
MBF1 is set HIGH by a LOW-to-HIGH transition of CLKB when a port B read is  
selected and both SIZ1 and SIZ0 are HIGH. MBF1 is set HIGH when the device  
is reset.  
MBF2  
O
MBF2 is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the  
mail2 register. Writes to the mail2 register are inhibited while MBF2 is set LOW.  
MBF2 is set HIGH by a LOW-to-HIGH transition of CLKA when a port A read is  
selected and MBA is HIGH. MBF2 is set HIGH when the device is reset.  
ODD/  
EVEN  
Odd/Even Parity  
Select  
I
Odd parity is checked on each port when ODD/EVEN is HIGH, and even parity is  
checked when ODD/EVEN is LOW. ODD/EVEN also selects the type of parity  
generated for each port if parity generation is enabled for a readoperation.  
PEFA  
PEFB  
Port A Parity Error  
Flag  
O
When any byte applied to terminals A0-A35 fails parity, PEFA is LOW. Bytes are  
(Port A) organized as A0-A8, A9-A17, A18-A26, and A27-A35, with the most significant  
bit of each byte serving as the parity bit. The type of parity checked is deter  
mined by the state of the ODD/EVEN input.  
The parity trees used to check the A0-A35 inputs are shared by the mail2 register  
to generate parity if parity generation is selected by PGA. Therefore, if a mail2  
read parity generation is setup by having W/RA LOW, MBA HIGH, and PGA  
HIGH, the PEFA flag is forced HIGH regardless of the A0-A35 inputs.  
Port B Parity Error  
Flag  
O
When any valid byte applied to terminals B0-B35 fails parity, PEFB is LOW. Bytes  
(Port B) are organized as B0-B8, B9-B17, B18-B26, B27-B35 with the most significant bit  
of each byte serving as the parity bit. A byte is valid when it is used by the bus  
size selected for Port B. The type of parity checked is determined by the state of  
the ODD/EVEN input.  
The parity trees used to check the B0-B35 inputs are sharedby the mail 1 register to  
generate parity if parity generation isselected by PGB. Therefore, if a mail1 read  
with parity generation is setup by having W/RB LOW, SIZ1 and SIZ0 HIGH, and  
PGB HIGH, the PEFB flag is forced HIGH regardless of the state of the B0-B35  
inputs.  
PGA  
PGB  
RST  
Port A Parity  
Generation  
I
I
I
Parity is generated for data reads from port A when PGA is HIGH. The type of  
parity generated is selected by the state of the ODD/EVEN input. Bytes are  
organized as A0-A8, A9-A17, A18-A26, and A27-A35. The generated parity  
bits are output in the most significant bit of each byte.  
Port B Parity  
Generation  
Parity is generated for data reads from port B when PGB is HIGH. The type  
of parity generated is selected by the state of the ODD/EVEN input. Bytes are  
organized as B0-B8, B9-B17, B18-B26, and B27-B35. The generated parity  
bits are output in the most significant bit of each byte.  
Reset  
To reset the device, four LOW-to-HIGH transitions of CLKA and four LOW-to-  
HIGH transitions of CLKB must occur while RSTis LOW. This sets the AFA,  
AFB, MBF1, and MBF2 flags HIGH and the EFA, EFB, AEA, AEB, FFA, and  
FFB flags LOW. The LOW-to-HIGH transition of RST latches the status of the  
FS1 and FS0 inputs to select almost-full and almost-empty flag offsets  
SIZ0, SIZ1 Port B bus size  
selects  
I
A LOW-to-HIGH transition of CLKB latches the states of SIZ0, SIZ1, and BE, and  
(Port B) the following LOW-to-HIGH transition of CLKB implements the latched states as a  
port B bus size. Port B bus sizes can be long word, word, or byte. A high on both  
SIZ0 and SIZ1 accesses the mailbox reegisters for a port B 36-bit write or read.  
5
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTION (CONTINUED)  
Symbol  
Name  
I/O  
Description  
At the beginning of each long word transfer, one of four modes of byte-order  
SW0, SW1 Port B byte swap  
Select  
I
(Port B) swapping is selected by SW0 and SW1. The four modes are no swap, byte  
swap, word swap, and byte-word swap. Byte-order swapping is possible with  
any bus-size selection.  
W/RA  
W/RB  
Port A Write/Read  
Select  
I
A HIGH selects a write operation and a LOW selects a read operation on  
port A for a LOW-to-HIGH transition of CLKA. The A0-A35 outputs are in the  
high-impedance state when W/RA is HIGH.  
Port B Write/Read  
Select  
I
A HIGH selects a write operation and a LOW selects a read operation on  
port B for a LOW-to-HIGH transition of CLKB. The B0-B35 outputs are in the  
high-impedance state when W/RB is HIGH.  
SIGNAL DESCRIPTIONS  
RESET  
FIFO1 to the B0-B35 outputs by a LOW-to-HIGH transition of  
The IDT723614 is reset by taking the reset (RST) input  
LOW for at least four port A clock (CLKA) and four port B clock  
(CLKB) LOW-to-HIGH transitions. The reset input can switch  
asynchronously to the clocks. A device reset initializes the  
internal read and write pointers of each FIFO and forces the  
full flags (FFA, FFB) LOW, the empty flags (EFA, EFB) LOW,  
the almost-empty flags (AEA, AEB) LOW and the almost-full  
flags (AFA, AFB) HIGH. A reset also forces the mailbox flags  
(MBF1, MBF2) HIGH. After a reset, FFA is set HIGH after two  
LOW-to-HIGH transitions of CLKA and FFB is set HIGH after  
two LOW-to-HIGH transitions of CLKB. The device must be  
reset after power up before data is written to its memory.  
A LOW-to-HIGH transition on the RST input loads the  
almost-full and almost-empty offset register (X) with the val-  
ues selected by the flag-select (FS0, FS1) inputs. The values  
that can be loaded into the registers are shown in Table 1.  
CLKB when CSB is LOW, W/RB is LOW, ENB is HIGH, EFB  
is HIGH, and either SIZ0 or SIZ1 is LOW (see Table 3).  
The setup and hold time constraints to the port clocks  
fortheportchipselects(CSA,CSB)andwrite/readselects(W/  
RA,W/RB)areonlyforenablingwriteandreadoperationsand  
are not related to high-impedance control of the data outputs.  
IfaportenableisLOWduringaclockcycle,theportchipselect  
and write/read select can change states during the setup and  
hold time window of the cycle.  
SYNCHRONIZED FIFO FLAGS  
Each FIFO is synchronized to its port clock through two  
flip-flop stages. This is done to improve flag reliability by  
reducing the probability of metastable events on the output  
when CLKA and CLKB operate asynchronously to one an-  
other. EFA, AEA, FFA, and AFA are synchronized to CLKA.  
EFB, AEB, FFB, and AFB are synchronized to CLKB. Tables  
4 and 5 show the relationship of each port flag to FIFO1 and  
FIFO2.  
FIFO WRITE/READ OPERATION  
The state of port A data A0-A35 outputs is controlled by  
the port A chip select (CSA) and the port A write/read select  
(W/RA). The A0-A35 outputs are in the high-impedance state  
when either CSA or W/RA is HIGH. The A0-A35 outputs are  
activewhenboth CSAandW/RAareLOW. Dataisloadedinto  
FIFO1 from the A0-A35 inputs on a LOW-to-HIGH transition  
of CLKA when CSA is LOW, W/RA is HIGH, ENA is HIGH,  
MBA is LOW, and FFA is HIGH. Data is read from FIFO2 to  
the A0-A35 outputs by a LOW-to-HIGH transition of CLKA  
whenCSA isLOW, W/RAisLOW, ENAisHIGH, MBAisLOW,  
and EFA is HIGH (see Table 2).  
EMPTY FLAGS (  
,
)
EFA EFB  
The empty flag of a FIFO is synchronized to the port clock  
that reads data from its array. When the empty flag is HIGH,  
new data can be read to the FIFO output register. When the  
empty flag is LOW, the FIFO is empty and attempted FIFO  
reads are ignored. When reading FIFO1 with a byte or word  
size on port B, EFBis set LOW when the fourth byte or second  
word of the last long word is read.  
The read pointer of a FIFO is incremented each time a  
new word is clocked to the output register. The state machine  
that controls an empty flag monitors a write-pointer and read-  
pointer comparator that indicates when the FIFO SRAM  
status is empty, empty+1, or empty+2. A word written to a  
FIFO can be read to the FIFO output register in a minimum of  
three cycles of the empty flag synchronizing clock. Therefore,  
an empty flag is LOW if a word in memory is the next data to  
be sent to the FIFO output register and two cycles of the port  
The port B control signals are identical to those of port A.  
The state of the port B data (B0-B35) outputs is controlled by  
the port B chip select (CSB) and the port B write/read select  
(W/RB). The B0-B35 outputs are in the high-impedance state  
when either CSB or W/RB is HIGH. The B0-B35 outputs are  
activewhenboth CSBandW/RBareLOW. Dataisloadedinto  
FIFO2 from the B0-B35 inputs on a LOW-to-HIGH transition  
ofCLKBwhenCSBisLOW, W/RBisHIGH, ENBisHIGH,EFB  
is HIGH, and either SIZ0 or SIZ1 is LOW. Data is read from  
6
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
clockthatreadsdatafromtheFIFOhavenotelapsedsincethe FULL FLAG (  
,
)
FFA FFB  
time the word was written. The empty flag of the FIFO is set  
The full flag of a FIFO is synchronized to the port clock  
HIGH by the second LOW-to-HIGH transition of the synchro- that writes data to its array. When the full flag is HIGH, a  
nizing clock, and the new data word can be read to the FIFO memory location is free in the SRAM to receive new data. No  
output register in the following cycle.  
memory locations are free when the full flag is LOW and  
A LOW-to-HIGH transition on an empty flag synchroniz- attempted writes to the FIFO are ignored.  
ing clock begins the first synchronization cycle of a write if the  
Each time a word is written to a FIFO, the write pointer is  
clocktransitionoccursattimetSKEW1 orgreaterafterthewrite. incremented. The state machine that controls a full flag  
Otherwise, the subsequent clock cycle can be the first syn- monitors a write-pointer and read-pointer comparator that  
chronization cycle (see Figure 13 and 14).  
indicates when the FIFO SRAM status is full, full-1, or full-2.  
From the time a word is read from a FIFO, the previous  
memory location is ready to be written in a minimum of three  
cyclesofthefullflagsynchronizingclock. Therefore,afullflag  
is LOW if less than two cycles of the full flag synchronizing  
clock have elapsed since the next memory write location has  
been read. The second LOW-to-HIGH transition on the full  
flag synchronization clock after the read sets the full flag  
HIGH and the data can be written in the following clock cycle.  
A LOW-to-HIGH transition on a full flag synchronizing  
clock begins the first synchronization cycle of a read if the  
clocktransitionoccursattimetSKEW1 orgreateraftertheread.  
Otherwise, the subsequent clock cycle can be the first syn-  
chronization cycle (see Figure 15 and 16).  
TABLE 1: FLAG PROGRAMMING  
ALMOST-FULL AND  
FS1  
FS0  
ALMOST-EMPTY FLAG  
OFFSET REGISTER (X)  
RST  
H
H
L
H
L
16  
12  
8
H
L
L
4
TABLE 2: PORT-A ENABLE FUNCTION TABLE  
W/ A  
ENA  
X
MBA  
X
CLKA  
A0-A35 Outputs  
Port Functions  
CSA  
H
L
R
X
H
H
H
L
X
X
In High-Impedance State  
In High-Impedance State  
In High-Impedance State  
In High-Impedance State  
Active, FIFO2 Output Register  
Active, FIFO2 Output Register  
Active, Mail2 Register  
None  
None  
L
X
L
H
L
FIFO1 Write  
Mail1 Write  
L
H
H
L
L
L
X
None  
L
L
H
L
FIFO2 Read  
None  
L
L
L
H
X
L
L
H
H
Active, Mail2 Register  
Mail2 Read (Set MBF2 HIGH)  
TABLE 3: PORT-B ENABLE FUNCTION TABLE  
W/ B ENB  
SIZ1, SIZ0  
X
CLKB  
B0-B35 Outputs  
In High-Impedance State  
In High-Impedance State  
In High-Impedance State  
In High-Impedance State  
Active, FIFO1 Output Register  
Active, FIFO1 Output Register  
Active, Mail1 Register  
Port Functions  
CSB  
H
L
R
X
H
H
H
L
X
L
X
X
None  
None  
X
L
H
H
L
One, both LOW  
Both HIGH  
One, both LOW  
One, both LOW  
Both HIGH  
Both HIGH  
FIFO2 Write  
Mail2 Write  
None  
L
L
X
L
L
H
L
FIFO1 read  
None  
L
L
X
L
L
H
Active, Mail1 Register  
Mail1 Read (Set MBF1 HIGH)  
7
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ALMOST EMPTY FLAGS (  
,
)
AEA AEB  
more long words in memory and is HIGH when the FIFO  
contains [64-(X+1)] or less long words.  
The almost-empty flag of a FIFO is synchronized to the  
port clock that reads data from its array. The state machine  
that controls an almost-empty flag monitors a write-pointer  
and a read-pointer comparator that indicates when the FIFO  
SRAM status is almost empty, almost empty+1, or almost  
empty+2. The almost-empty state is defined by the value of  
the almost-full and almost-empty offset register (X). This  
register is loaded with one of four preset values during a  
devicereset(seeResetabove). Analmost-emptyflagisLOW  
when the FIFO contains X or less long words in memory and  
is HIGH when the FIFO contains (X+1) or more long words.  
Two LOW-to-HIGH transitions of the almost-empty flag  
synchronizing clock are required after a FIFO write for the  
almost-empty flag to reflect the new level of fill. Therefore, the  
almost-empty flag of a FIFO containing (X+1) or more long  
words remains LOW if two cycles of the synchronizing clock  
have not elapsed since the write that filled the memory to the  
(X+1) level. An almost-empty flag is set HIGH by the second  
LOW-to-HIGH transition of the synchronizing clock after the  
FIFO write that fills memory to the (X+1) level. A LOW-to-  
HIGH transition of an almost-empty flag synchronizing clock  
beginsthefirstsynchronizationcycleifitoccursattimetSKEW2  
orgreaterafterthewritethatfillstheFIFOto(X+1)longwords.  
Otherwise, the subsequent synchronizing clock cycle can be  
the first synchronization cycle (see Figure 17 and 18).  
Two LOW-to-HIGH transitions of the almost-full flag  
synchronizing clock are required after a FIFO read for the  
almost-full flag to reflect the new level of fill. Therefore, the  
almost-full flag of a FIFO containing [64-(X+1)] or less words  
remainsLOWiftwocyclesofthesynchronizingclockhavenot  
elapsed since the read that reduced the number of long words  
in memory to [64-(X+1)]. An almost-full flag is set HIGH by the  
second LOW-to-HIGH transition of the synchronizing clock  
after the FIFO read that reduces the number of long words in  
memory to [64-(X+1)]. A LOW-to-HIGH transition of an  
almost-full flag synchronizing clock begins the first synchroni-  
zation cycle if it occurs at time tSKEW2 or greater after the read  
that reduces the number of long words in memory to [64-  
(X+1)]. Otherwise, the subsequent synchronizing clock cycle  
can be the first synchronization cycle (see Figure 19 and 20).  
MAILBOX REGISTERS  
EachFIFOhasa36-bitbypassregistertopasscommand  
and control information between port A and port B without  
putting it in queue. The mailbox-select (MBA, MBB) inputs  
choose between a mail register and a FIFO for a port data  
transferoperation. ALOW-to-HIGHtransitiononCLKAwrites  
A0-A35 data to the mail1 register when a port A write is  
selected by CSA, W/RA, and ENA with MBA HIGH. A LOW-  
to-HIGH transition on CLKB writes B0-B35 data to the mail2  
register when a port B write is selected by CSB, W/RB, and  
ENB with both SIZ1 and SIZ0 HIGH. Writing data to a mail  
register sets the corresponding flag (MBF1 or MBF2) LOW.  
Attempted writes to a mail register are ignored while the mail  
flag is LOW.  
ALMOST FULL FLAGS (  
,
)
AFA AFB  
The almost-full flag of a FIFO is synchronized to the port  
clock that writes data to its array. The state machine that  
controls an almost-full flag monitors a write-pointer and read-  
pointer comparator that indicates when the FIFO SRAM  
status is almost full, almost full-1, or almost full-2. The almost-  
full state is defined by the value of the almost-full and almost-  
empty offset register (X). This register is loaded with one of  
four preset values during a device reset (see Reset above).  
An almost-full flag is LOW when the FIFO contains (64-X) or  
When the port A data outputs (A0-A35) are active, the  
data on the bus comes from the FIFO2 output register when  
MBA is LOW and from the mail2 register when MBA is HIGH.  
When the port B data outputs (B0-B35) are active, the data on  
thebuscomesfromtheFIFO1outputregisterwheneitherone  
TABLE 4: FIFO1 FLAG OPERATION  
Synchronized Synchronized  
TABLE 5: FIFO2 FLAG OPERATION  
Synchronized Synchronized  
Number of 36-Bit  
Words in the FIFO1(1)  
to CLKB  
EFB AEB  
to CLKA  
AFA FFA  
Number of 36-Bit  
Words in the FIFO2(1)  
to CLKA  
EFA AEA  
to CLKB  
AFB FFB  
0
1 to X  
L
L
L
H
H
H
L
H
H
H
H
L
0
1 to X  
L
H
H
H
H
L
L
H
H
H
L
H
H
H
H
L
H
H
H
H
(X+1) to [64-(X+1)]  
(64-X) to 63  
64  
H
H
H
(X+1) to [64-(X+1)]  
(64-X) to 63  
64  
H
H
H
L
L
NOTE:  
1. X is the value in the almost-empty flag and almost-full flag offset register.  
8
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE  
(UNLESS OTHERWISE NOTED)(1)  
Symbol  
VCC  
VI(2)  
Rating  
Commercial  
-0.5 to 7  
-0.5 to VCC+0.5  
-0.5 to VCC+0.5  
±20  
Unit  
V
Supply Voltage Range  
Input Voltage Range  
Output Voltage Range  
V
VO(2)  
V
IIK  
Input Clamp Current, (VI < 0 or VI > VCC)  
Output Clamp Current, (VO < 0 or VO > VCC)  
Continuous Output Current, (VO = 0 to VCC)  
Continuous Current Through VCC or GND  
Operating Free Air Temperature Range  
Storage Temperature Range  
mA  
mA  
mA  
mA  
°C  
°C  
IOK  
±50  
IOUT  
ICC  
±50  
±500  
TA  
0 to 70  
TSTG  
NOTES:  
-65 to 150  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
VCC  
VIH  
Parameter  
Min. Max. Unit  
Supply Voltage  
4.5  
2
5.5  
V
V
HIGH Level Input Voltage  
LOW-Level Input Voltage  
HIGH-Level Output Current  
LOW-Level Output Current  
VIL  
0.8  
-4  
V
IOH  
IOL  
mA  
mA  
°C  
8
TA  
Operating Free-air  
Temperature  
0
70  
ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR  
TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)  
Parameter  
VOH  
Test Conditions  
IOH = -4 mA  
IOL = 8 mA  
Min. Typ.(1)  
Max. Unit  
VCC = 4.5V,  
VCC = 4.5 V,  
VCC = 5.5 V,  
VCC = 5.5 V,  
VCC = 5.5 V,  
VI = 0,  
2.4  
V
VOL  
0.5  
±50  
±50  
1
V
II  
VI = VCC or 0  
VO = VCC or 0  
IO = 0 mA,  
µA  
µA  
mA  
pF  
pF  
IOZ  
ICC  
VI = VCC or GND  
CIN  
f = 1 MHz  
4
8
COUT  
VO = 0,  
f = 1 MHZ  
NOTE:  
1 . All typical values are at VCC = 5 V, TA = 25°C.  
9
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
DC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE  
AND OPERATING FREE-AIR TEMPERATURE (See Figures 4 through 26)  
IDT723614L15 IDT723614L20 IDT723614L30  
Symbol  
fS  
Parameter  
Min. Max. Min. Max.  
Min. Max.  
Unit  
MHz  
ns  
Clock Frequency, CLKA or CLKB  
Clock Cycle Time, CLKA or CLKB  
Pulse Duration, CLKA and CLKB HIGH  
Pulse Duration, CLKA and CLKB LOW  
15  
6
66.7  
20  
8
50  
33.4  
tCLK  
30  
12  
12  
6
tCLKH  
tCLKL  
tDS  
ns  
6
8
ns  
Setup Time, A0-A35 before CLKAand B0-B35  
before CLKB↑  
4
5
ns  
tENS  
Setup Time, CSA, W/RA, ENA and MBA before  
5
5
6
ns  
CLKA; CSB,W/RB and ENB before CLKB↑  
tSZS  
tSWS  
tPGS  
Setup Time, SIZ0, SIZ1,and BE before CLKB↑  
Setup Time, SW0 and SW1 before CLKB↑  
Setup Time, ODD/EVEN and PGA before  
CLKA; ODD/EVEN and PGB before CLKB(1)  
4
5
4
5
7
5
6
8
6
ns  
ns  
ns  
tRSTS  
Setup Time, RST LOW before CLKA↑  
or CLKB(2)  
5
6
7
ns  
tFSS  
tDH  
Setup Time, FS0 and FS1 before RST HIGH  
5
1
6
1
7
1
ns  
ns  
Hold Time, A0-A35 after CLKAand B0-B35  
after CLKB↑  
tENH  
Hold Time, CSA, W/RA, ENA and MBA after  
1
1
1
ns  
CLKA; CSB, W/RB, and ENB after CLKB↑  
tSZH  
tSWH  
tPGH  
Hold Time, SIZ0, SIZ1, and BE after CLKB↑  
Hold Time, SW0 and SW1 after CLKB↑  
2
0
0
2
0
0
2
0
0
ns  
ns  
ns  
Hold Time, ODD/EVEN and PGA after CLKA;  
ODD/EVEN and PGB after CLKB(1)  
tRSTH  
tFSH  
Hold Time, RST LOW after CLKAor CLKB(2)  
5
4
8
6
4
8
7
4
ns  
ns  
ns  
Hold Time, FS0 and FS1 after RST HIGH  
tSKEW1(3) Skew Time, between CLKAand CLKB↑  
10  
for EFA, EFB, FFA, and FFB  
tSKEW2(3) Skew Time, between CLKAand CLKB↑  
9
16  
20  
ns  
for AEA, AEB, AFA, and AFB  
NOTES:  
1.  
2.  
3.  
Only applies for a clock edge that does a FIFO read.  
Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
Skew time is not a timimg constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and  
CLKB cycle.  
10  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE  
AND OPERATING FREE-AIR TEMPERATURE, CL = 30pF (See Figures 4 through 26)  
IDT723614L15 IDT723614L20 IDT723614L30  
Symbol  
Parameter  
Min. Max. Min. Max.  
Min. Max.  
Unit  
tA  
Access Time, CLKAto A0-A35 and CLKB↑  
to B0-B35  
2
2
2
2
2
1
10  
10  
10  
10  
10  
9
2
2
2
2
2
1
12  
12  
12  
12  
12  
12  
2
2
2
2
2
1
15  
15  
15  
15  
15  
15  
ns  
tWFF  
tREF  
tPAE  
tPAF  
tPMF  
Propagation Delay Time, CLKAto FFA and  
CLKBto FFB  
ns  
ns  
ns  
ns  
ns  
Propagation Delay Time, CLKAto EFA and  
and CLKBto EFB  
Propagation Delay Time, CLKAto AEA and  
CLKBto AEB  
Propagation Delay Time, CLKAto AFA and  
CLKBto AFB  
Propagation Delay Time, CLKAto MBF1 LOW  
or MBF2 HIGH and CLKBto MBF2 LOW or  
MBF1 HIGH  
tPMR  
Propagation Delay Time, CLKAto B0-B35(1)  
and CLKBto A0-A35(2)  
3
11  
3
13  
3
15  
ns  
tPPE(3)  
tMDV  
Propagation delay time, CLKBto PEFB  
2
1
11  
11  
2
1
12  
2
1
13  
12  
ns  
ns  
Propagation Delay Time, MBA to A0-A35 valid  
and SIZ1, SIZ0 to B0-B35 valid  
11. 5  
tPDPE  
Propagation Delay Time, A0-A35 valid to PEFA  
valid; B0-B35 valid to PEFB valid  
3
3
2
10  
11  
11  
3
3
2
11  
12  
12  
3
3
2
13  
14  
14  
ns  
ns  
ns  
tPOPE  
tPOPB(4)  
Propagation Delay Time, ODD/EVEN to PEFA  
and PEFB  
Propagation Delay Time, ODD/EVEN to parity  
bits (A8, A17, A26, A35) and (B8, B17, B26,  
B35)  
tPEPE  
Propagation Delay Time, CSA, ENA,W/RA,  
MBA, or PGA to PEFA; CSB, ENB, W/RB, SIZ1,  
SIZ0, or PGB to PEFB  
1
3
11  
12  
1
3
12  
13  
1
3
14  
14  
ns  
ns  
tPEPB(4)  
Propagation Delay Time, CSA, ENA, W/RA,  
MBA, or PGA to parity bits (A8, A17, A26, A35);  
CSB, ENB, W/RB,SIZ1, SIZ0, or PGB to parity  
bits (B8, B17, B26, B35)  
tRSF  
tEN  
Propagation Delay Time, RST to (MBF1, MBF2)  
HIGH  
1
2
15  
10  
1
2
20  
12  
1
2
30  
14  
ns  
ns  
Enable Time, CSA and W/RA LOW to A0-A35  
active and CSB LOW and W/RB HIGH to  
B0-B35 active  
tDIS  
Disable Time, CSA or W/RA HIGH to A0-A35  
at high impedance and CSB HIGH or W/RB  
LOW to B0-B35 at high impedance  
1
8
1
9
1
11  
ns  
NOTES:  
1.  
2.  
3.  
4.  
Writing data to the mail1 register when the B0-B35 outputs are active and SIZ1, SIZ0 are HIGH.  
Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.  
Only applies when a new port B bus size is implemented by the rising CLKB edge.  
Only applies when reading data from a mail register.  
11  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
A35—A27  
A26—A18  
A17—A9  
A8—A0  
Write to FIFO1/  
Read From FIFO2  
BYTE ORDER ON PORT A:  
D
A
B
C
B35—B27 B26—B18 B17—B9  
B8—B0  
Read from FIFO1/  
Write to FIFO2  
SIZ1 SIZ0  
BE  
D
A
B
C
X
L
L
(a) LONG WORD SIZE  
B35—B27 B26—B18 B17—B9  
B8—B0  
B8—B0  
SIZ1 SIZ0  
BE  
1st: Read from FIFO1/  
Write to FIFO2  
B
A
L
L
H
B35—B27 B26—B18 B17—B9  
2nd: Read from FIFO1/  
Write to FIFO2  
C
D
(b) WORD SIZE — BIG ENDIAN  
B35—B27 B26—B18 B17—B9  
B8—B0  
SIZ1 SIZ0  
BE  
1st: Read from FIFO1/  
Write to FIFO2  
C
D
H
L
H
B35—B27 B26—B18 B17—B9  
B8—B0  
2nd: Read from FIFO1/  
Write to FIFO2  
A
B
(c) WORD SIZE — LITTLE ENDIAN  
B35—B27 B26—B18 B17—B9  
B8—B0  
B8—B0  
SIZ1 SIZ0  
BE  
1st: Read from FIFO1/  
Write to FIFO2  
A
L
H
L
B35—B27 B26—B18 B17—B9  
2nd: Read from FIFO1/  
Write to FIFO2  
B
B35—B27 B26—B18 B17—B9  
B8—B0  
B8—B0  
3rd: Read from FIFO1/  
Write to FIFO2  
C
B35—B27 B26—B18 B17—B9  
4th: Read from FIFO1/  
Write to FIFO2  
D
3146 drw fig 01  
(d) BYTE SIZE — BIG ENDIAN  
Figure 1. Dynamic Bus Sizing  
12  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
B35—B27  
B26—B18 B17—B9  
B8—B0  
SIZ1 SIZ0  
BE  
1st: Read from FIFO1/  
Write to FIFO2  
D
H
H
L
B35—B27  
B35—B27  
B26—B18 B17—B9  
B26—B18 B17—B9  
B8—B0  
2nd: Read from FIFO1/  
Write to FIFO2  
C
B8—B0  
B
3rd: Read from FIFO1/  
Write to FIFO2  
B35—B27  
B26—B18 B17—B9  
B8—B0  
4th: Read from FIFO1/  
Write to FIFO2  
A
(d) BYTE SIZE — LITTLE ENDIAN  
3146 drw fig 01a  
Figure 1. Dynamic Bus Sizing (continued)  
DESCRIPTION (CONTINUED)  
or both SIZ1 and SIZ0 are LOW and from the mail2 register  
when both SIZ1 and SIZ0 are HIGH.The mail1 register flag  
(MBF1) is set HIGH by a rising CLKB edge when a port B read  
is selected by CSB, W/RB, and ENB with both SIZ1 and SIZ0  
HIGH. The mail2 register flag (MBF2) is set HIGH by a LOW-  
to-HIGH transition on CLKA when port A read is selected by  
CSA, W/RA, and ENA and MBA is HIGH. The data in the mail  
register remains intact after it is read and changes only when  
new data is written to the register.  
byte or word size is implemented on port B, only the first one  
or two bytes appear on the selected portion of the FIFO1  
outputregister, withtherestofthelongwordstoredinauxiliary  
registers. Inthiscase, subsequentFIFO1readswiththesame  
bus-sizeimplementationoutputtherestofthelongwordtothe  
FIFO1 output register in the order shown by Figure1.  
Each FIFO1 read with a new bus-size implementation  
automatically unloads data from the FIFO1 RAM to its output  
register and auxiliary registers. Therefore, implementing a  
new port B bus size and performing a FIFO1 read before all  
bytesorwordsstoredintheauxiliaryregistershavebeenread  
results in a loss of the unread long word data.  
DYNAMIC BUS SIZING  
The port B bus can be configured in a 36-bit long word,  
18-bit word, or 9-bit byte format for data read from FIFO1 or  
written to FIFO2. Word- and byte-size bus selections can  
utilizethemostsignificantbytesofthebus(bigendian)orleast  
significant bytes of the bus (little endian). Port B bus size can  
be changed dynamically and synchronous to CLKB to com-  
municate with peripherals of various bus widths.  
When reading data from FIFO1 in byte or word format, the  
unused B0-B35 outputs remain inactive but static, with the  
unused FIFO1 output register bits holding the last data value  
to decrease power consumption.  
BUS-MATCHING FIFO2 WRITES  
The levels applied to the port B bus size select (SIZ0,  
SIZ1)inputsandthebig-endianselect(BE)inputarestoredon  
each CLKB LOW-to-HIGH transition. The stored port B bus  
sizeselectionisimplementedbythenextrisingedgeonCLKB  
according to Figure 1.  
Only 36-bit long-word data is written to or read from the  
two FIFO memories on the IDT723614. Bus-matching opera-  
tions are done after data is read from the FIFO1 RAM and  
before data is written to the FIFO2 RAM. Port B bus sizing  
does not apply to mail register operations.  
Data is written to the FIFO2 RAM in 36-bit long word  
increments. FIFO2 writes, with a long-word bus size, immedi-  
ately store each long word in FIFO2 RAM. Data written to  
FIFO2 with a byte or word bus size stores the initial bytes or  
words in auxiliary registers. The CLKB rising edge that writes  
the fourth byte or the second word of long word to FIFO2 also  
stores the entire long word in FIFO2 RAM. The bytes are  
arranged in the manner shown in Figure 1.  
Each FIFO2 write with a new bus-size implementation  
resets the state machine that controls the data flow from the  
auxiliary registers to the FIFO2 RAM. Therefore, implement-  
ing a new bus size and performing a FIFO2 write before bytes  
or words stored in the auxiliary registers have been loaded to  
FIFO2 RAM results in a loss of data.  
BUS-MATCHING FIFO1 READS  
Data is read from the FIFO1 RAM in 36-bit long word  
increments. If a long word bus size is implemented, the entire  
long word immediately shifts to the FIFO1 output register. If  
13  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PORT-B MAIL REGISTER ACCESS  
word read from FIFO1 or written to FIFO2 is maintained until  
the entire long word is transferred, regardless of the SW0 and  
SW1 states during subsequent writes or reads. Figure 3 is an  
example of the byte-order swapping available for long words.  
Performing a byte swap and bus size simultaneously for a  
FIFO1 read first rearranges the bytes as shown in Figure 3,  
then outputs the bytes as shown in Figure 1. Simultaneous  
bus-sizing and byte-swapping operations for FIFO2 writes,  
firstloadsthedataaccordingtoFigure1, thenswapsthebytes  
as shown in Figure 3 when the long word is loaded to FIFO2  
RAM.  
In addition to selecting port-B bus sizes for FIFO reads  
and writes, the port B bus size select (SIZ0, SIZ1) inputs also  
access the mail registers. When both SIZ0 and SIZ1 are  
HIGH, the mail1 register is accessed for a port B long word  
read and the mail2 register is accessed for a port B long word  
write. The mail register is accessed immediately and any bus-  
sizing operation that may be underway is unaffected by the  
mail register access. After the mail register access is com-  
plete, the previous FIFO access can resume in the next CLKB  
cycle. The logic diagram in Figure 2 shows the previous bus-  
size selection is preserved when the mail registers are ac-  
cessed from port B. A port B bus size is implemented on each  
rising CLKB edge according to the states of SIZ0_Q, SIZ1_Q,  
and BE_Q.  
PARITY CHECKING  
The port A inputs (A0-A35) and port B inputs (B0-B35)  
each have four parity trees to check the parity of incoming (or  
outgoing)data. Aparityfailureononeormorebytesoftheport  
A data bus is reported by a LOW level on the port parity error  
flag (PEFA). A parity failure on one or more bytes of the port  
B data input that are valid for the bus-size implementation is  
reported by a LOW level on the port B parity error flag  
(PEFB).Odd or even parity checking can be selected, and the  
parity error flags can be ignored if this feature is not desired.  
Parity status is checked on each input bus according to  
the level of the odd/even parity (ODD/EVEN) select input. A  
parity error on one or more valid bytes of a port is reported by  
a LOW level on the corresponding port parity error flag (PEFA,  
PEFB) output. Port A bytes are arranged as A0-A8, A9-A17,  
BYTE SWAPPING  
The byte-order arrangement of data read from FIFO1 or  
data written to FIFO2 can be changed synchronous to the  
rising edge of CLKB. Byte-order swapping is not available for  
mail register data. Four modes of byte-order swapping (in-  
cluding no swap) can be done with any data port size selec-  
tion. The order of the bytes are rearranged within the long  
word, but the bit order within the bytes remains constant.  
Byte arrangement is chosen by the port B swap select  
(SW0, SW1) inputs on a CLKB rising edge that reads a new  
longwordfromFIFO1orwritesanewlongwordtoFIFO2. The  
byte order chosen on the first byte or first word of a new long  
CLKB  
MUX  
G1  
1
SIZ0 Q  
SIZ1 Q  
BE Q  
D
Q
SIZ0  
1
SIZ1  
BE  
3146 drw fig 02  
Figure 2. Logic Diagrams for SIZ0, SIZ1, and  
Register  
BE  
14  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
A35—A27  
A26—A18  
A17—A9  
A8—A0  
B
A
C
D
SW1 SW0  
L
L
A
B
C
D
B35—B27  
B26—B18  
B17—B9  
B8—B0  
(a) NO SWAP  
A35—A27  
A26—A18  
A17—A9  
A8—A0  
SW1 SW0  
A
B
C
D
L
H
A
D
C
B
B35—B27  
B26—B18  
(b) BYTE SWAP  
B17—B9  
B8—B0  
A35—A27  
A26—A18  
A17—A9  
A8—A0  
SW1 SW0  
B
A
C
D
H
L
D
B
C
A
B35—B27  
B26—B18  
B17—B9  
B8—B0  
(c) WORD SWAP  
A35—A27  
A26—A18  
A17—A9  
A8—A0  
SW1 SW0  
A
B
C
D
H
H
B
A
D
C
B35—B27  
B26—B18  
B17—B9  
B8—B0  
(d) BYTE-WORD SWAP  
3146 drw fig 03  
Figure 3. Byte Swapping (Long Word Size Example)  
15  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
A18-A26, and A27-A35. Port B bytes are arranged as B0-B8, each byte used as the parity bit. A write to a FIFO or mail  
B9-B17, B18-B26, and B27-B35, and its valid bytes are those register stores the levels applied to all nine inputs of a byte  
used in a port B bus-size implementation. When odd/even regardless of the state of the parity generate select (PGA,  
parity is selected, a port parity error flag (PEFA, PEFB) is LOW PGB) inputs. When data is read from a port with parity  
if any byte on the port has an odd/even number of LOW levels generation selected, the lower eight bits of each byte are used  
applied to the bits.  
to generate a parity bit according to the level on the ODD/  
The four parity trees used to check the A0-A35 inputs are EVEN select. The generated parity bits are substituted for the  
shared by the mail2 register when parity generation is se- levels originally written to the most significant bits of each byte  
lectedforportAreads(PGA=HIGH). WhenaportAreadfrom as the word is read to the data outputs.  
the mail2 register with parity generation is selected with CSA  
Parity bits for FIFO data are generated after the data is  
LOW, ENA HIGH, W/RA LOW, MBA HIGH, and PGA HIGH, read from SRAM and before the data is written to the output  
the port A parity error flag (PEFA) is held HIGH regardless of register. Therefore, the port A parity generate select (PGA)  
the levels applied to the A0-A35 inputs. Likewise, the parity and odd/even parity select (ODD/EVEN) have setup and hold  
trees used to check the B0-B35 inputs are shared by the mail1 time constraints to the port A clock (CLKA) and the port B  
register when parity generation is selected for port B reads parity generate select (PGB) and ODD/EVEN have setup and  
(PGB=HIGH). WhenaportBreadfromthemail1registerwith hold-timeconstraintstotheportBclock(CLKB). Thesetiming  
parity generation is selected with CSB LOW, ENB HIGH, W/ constraints only apply for a rising clock edge used to read a  
RB LOW, both SIZ0 and SIZ1 HIGH, and PGB HIGH, the port new long word to the FIFO output register.  
B parity error flag (PEFB) is held HIGH regardless of the levels  
applied to the B0-B35 inputs.  
The circuit used to generate parity for the mail1 data is  
shared by the port B bus (B0-B35) to check parity and the  
circuit used to generate parity for the mail2 data is shared by  
the port A bus (A0-A35) to check parity. The shared parity  
PARITY GENERATION  
A HIGH level on the port A parity generate select (PGA) trees of a port are used to generate parity bits for the data in  
or port B parity generate select (PGB) enables the IDT723614 a mail register when the port chip select (CSA, CSB) is LOW,  
to generate parity bits for port reads from a FIFO or mailbox enable (ENA, ENB) is HIGH, write/read select (W/RA, W/RB)  
register. Port A bytes are arranged as A0-A8, A9-A17, A18- input is LOW, the mail register is selected (MBA is HIGH for  
26, and A27-A35, with the most significant bit of each byte portA;bothSIZ0andSIZ1areHIGHforportB),andportparity  
usedastheparitybit. PortBbytesarearrangedasB0-B8, B9- generate select (PGA, PGB) is HIGH. Generating parity for  
B17, B18-B26, and B27-B35, with the most significant bit of mailregisterdatadoesnotchangethecontentsoftheregister.  
16  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKA  
tRSTH  
CLKB  
tRSTS  
tFSS  
tFSH  
RST  
FS1,FS0  
FFA  
0,1  
tWFF  
tWFF  
tREF  
EFA  
tWFF  
tWFF  
FFB  
tREF  
EFB  
tRSF  
MBF1,  
MBF2  
tPAE  
AEA  
tPAF  
tPAE  
AFA  
AEB  
AFB  
tPAF  
3146 drw 04  
Figure 4. Device Reset Loading the X Register with the Value of Eight  
17  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
t
CLK  
tCLKH  
tCLKL  
CLKA  
HIGH  
FFA  
t
ENH  
tENS  
CSA  
t
ENS  
tENH  
W/RA  
MBA  
tENH  
tENS  
tENS  
tENH  
t
ENH  
tENS  
tENS  
tENH  
ENA  
t
DH  
tDS  
(1)  
W2(1)  
A0 - A35  
No Operation  
W1  
ODD/  
EVEN  
t
PDPE  
t
PDPE  
Valid  
Valid  
PEFA  
3146 drw 05  
NOTE:  
1. Written to FIFO1.  
Figure 5. Port-A Write Cycle Timing for FIFO1  
18  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
FFB  
HIGH  
t ENS  
CSB  
t ENS  
W/RB  
tENS  
tENH  
t ENS  
tSWS  
tENH  
tSWH  
ENB  
SW1,  
SW0  
tSZS  
tSZS  
tSZH  
tSZH  
BE  
SIZ1,  
SIZ0  
(0,0)  
(0,0)  
tPPE  
NOT (1,1)(1)  
tDS  
tDH  
B0-B35  
ODD/  
EVEN  
tPDPE  
PEFB  
VALID  
VALID  
3146 drw 06  
NOTE:  
1. SIZ0 = HIGH and SIZ1 = HIGH writes data to the mail2 register  
DATA SWAP TABLE FOR LONG-WORD WRITES TO FIFO2  
SWAP MODE  
SW1 SW0  
DATA WRITTEN TO FIFO2  
DATA READ FROM FIFO2  
B35-27  
B26-18  
B17-B9  
B8-B0  
A35-27  
A26-A18  
A17-A9  
A8-A0  
L
L
L
H
L
A
D
C
B
B
C
D
A
C
B
A
D
D
A
B
C
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
H
H
H
Figure 6. Port-B Long-Word Write Cycle Timing for FIFO2  
19  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
FFB  
HIGH  
tENH  
tENH  
tENS  
CSB  
tENS  
W/RB  
tENS  
tENH  
tSWH  
tENS  
tSWS  
ENB  
SW1, SW0  
tSZS  
tSZH  
tSZS  
tSZS  
tSZH  
tSZH  
BE  
tSZS  
tDS  
tSZH  
tDH  
NOT (1,1)(1)  
SIZ1, SIZ0  
(0, 1)  
(0, 1)  
Little  
Endian  
B0-B17  
tDH  
tDS  
Big  
Endian  
B18-B35  
ODD/EVEN  
PEFB  
tPPE  
tPDPE  
VALID  
VALID  
3146 drw 07  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH writes data to the mail2 register.  
2. PEFB indicates parity error for the following bytes: B35-B27 and B26-B18 for big-endian bus, and B17-B9 and B-8-B0 for little-endian bus.  
DATA SWAP TABLE FOR WORD WRITES TO FIFO2  
DATA WRITTEN TO FIFO2  
SWAP  
MODE  
WRITE  
NO.  
DATA READ FROM FIFO2  
BIG ENDIAN  
B35-27 B26-18  
LITTLE ENDIAN  
SW1 SW0  
B17-B9  
B8-B0  
A35-27  
A26-A18  
A17-A9  
A8-A0  
L
L
H
L
1
2
1
2
1
2
1
2
A
B
C
A
B
D
A
C
D
B
D
B
A
C
B
D
C
A
A
B
C
D
C
D
B
C
A
B
D
D
C
A
D
B
A
C
L
A
A
A
B
B
B
C
C
C
D
D
D
H
H
H
Figure 7. Port-B Word Write Cycle Timing for FIFO2  
20  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
FFB  
HIGH  
tENS  
tENH  
CSB  
tENS  
tENS  
W/RB  
ENB  
tENH  
tENS  
tENH  
tSWS  
tSZS  
tENH  
tSZH  
SW1,  
SW0  
tSZH  
tSZH  
tSZS  
tSZS  
BE  
tSZH  
tDH  
tDH  
tSZS  
SIZ1,  
SIZ0  
(1,0)  
(1,0)  
(1,0)  
(1,0)  
Not (1,1)(1)  
tDS  
tDS  
Little  
Endian  
B0-  
B8  
Big  
Endian  
B27-  
B35  
ODD/EVEN  
PEFB  
tPDPE  
tPPE  
tPDPE  
tPDPE  
Valid  
Valid  
Valid  
Valid  
3146 drw 08  
NOTES:  
1.  
2.  
SIZ0 = HIGH amd SIZ1 = HIGH writes data to the mail2 register.  
PEFB indicates parity error for the following bytes: B35—B27 for big-endian bus and B17—B9 for little-endian bus.  
Figure 8. Port-B Byte Write Cycle Timing for FIFO2  
21  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
DATA SWAP TABLE FOR BYTE WRITES TO FIFO2  
DATA WRITTEN  
TO FIFO2  
SWAP MODE  
WRITE  
NO.  
BIG  
ENDIAN  
LITTLE  
ENDIAN  
DATA READ FROM FIFO2  
SW1  
SW0  
B35-B27  
B8-80  
D
A35-A27  
A26-A18  
A17-A9  
A8-A0  
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
A
B
C
D
D
C
B
A
C
D
A
B
B
A
D
C
C
A
B
C
D
L
L
B
A
A
B
L
H
L
A
A
B
B
C
C
D
D
C
D
B
A
H
D
C
C
D
A
B
C
D
H
H
A
B
Figure 8. Port-B Byte Write Cycle Timing for FIFO2 (continued)  
22  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
EFB  
HIGH  
CSB  
W/RB  
tENS  
tENH  
tENS  
tSWS  
tENH  
ENB  
No Operation  
tSWH  
SW1,  
SW0  
tSZS  
tSZS  
tSZH  
tSZH  
BE  
SIZ1,  
SIZ0  
(1)  
(1)  
(0,0)  
(0,0)  
NOT (1,1)  
NOT (1,1)  
tPGS  
tPGH  
tA  
PGB,  
ODD/  
EVEN  
tEN  
tDIS  
tA  
Previous Data  
W1  
B0-B35  
W2  
3146 drw 09  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Data read from FIFO1.  
DATA SWAP TABLE FOR FIFO LONG-WORD READS FROM FIFO1  
DATA WRITTEN TO FIFO1  
A35-A27 A26-A18 A17-A9 A8-A0  
SWAP MODE  
DATA READ FROM FIFO1  
B35-B27 B26-B18 B17-B9 B8-B0  
SW1  
SW0  
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
L
L
L
H
L
A
D
C
B
B
C
D
A
C
B
A
D
D
A
B
C
H
H
H
Figure 9. Port-B Long-Word Read Cycle Timing for FIFO1  
23  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
EFB  
HIGH  
CSB  
W/RB  
tENS  
tENH  
tSWH  
ENB  
No Operation  
tSWS  
SW1,  
SW0  
tSZS  
tSZS  
tSZH  
tSZH  
BE  
SIZ1,  
SIZ0  
(1)  
(1)  
(0,1)  
(0,1)  
NOT (1,1)  
NOT (1,1)  
tPGS  
tPGH  
tA  
PGB,  
ODD/  
EVEN  
tEN  
tDIS  
tA  
tA  
Little  
Endian(2)  
Previous Data  
Read 1  
Read 1  
Read 2  
B0-B17  
tA  
tDIS  
Read 2  
Big  
Endian(2)  
B18-B35  
Previous Data  
3146 drw 10  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Unused word B0-B17 or B18-B35 holds last FIFO1 output register data for word-size reads.  
DATA SWAP TABLE FOR WORD READS FROM FIFO1  
DATA READ FROM FIFO1  
DATA WRITTEN TO FIFO1  
SWAP MODE READ  
NO.  
BIG ENDIAN  
LITTLE ENDIAN  
A35-A27 A26-A18 A17-A9  
A8-A0  
SW1  
SW0  
B35-B27 B26-B18  
B17-B9  
B8-B0  
1
2
A
C
B
D
C
A
D
B
A
A
A
A
B
B
B
B
C
C
C
C
D
L
L
1
2
D
B
C
A
B
D
A
C
D
D
D
L
H
H
H
L
1
2
C
A
D
B
A
C
B
D
1
2
B
D
A
C
D
B
C
A
H
Figure 10. Port-B Word Read Cycle Timing for FIFO1  
24  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
EFB  
HIGH  
CSB  
W/RB  
tENH  
tSWH  
tENS  
tSWS  
ENB  
No Operation  
SW1,  
SW0  
tSZH  
tSZS  
tSZS  
BE  
tSZH  
Not (1,1)(1)  
SIZ1,  
SIZ0  
(1,0)  
(1,0)  
(1,0)  
(1,0)  
Not (1,1)(1)  
tPGH  
Not (1,1) (1)  
Not (1,1)(1)  
tPGS  
PGB,  
ODD/  
EVEN  
tEN  
tA  
tA  
Read 3  
tDIS  
Read 4  
tDIS  
tA  
Read 1  
tA  
Read 1  
tA  
Previous Data  
B0-B8  
Read 2  
tA  
tA  
tA  
B27-B35  
Read 2  
Previous Data  
Read 3  
Read 4  
NOTES:  
3146 drw 11  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Unused bytes hold last FIFO1 output regisger data for byte-size reads.  
DATA SWAP TABLE FOR BYTE READS FROM FIFO1  
DATA READ FROM FIFO 1  
DATA WRITTEN TO FIFO 1  
SWAP MODE  
READ  
NO.  
BIG  
ENDIAN  
LITTLE  
ENDIAN  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
SW1  
SW0  
B35-B27  
B8-B0  
1
2
3
4
A
B
C
D
D
C
B
A
A
B
C
D
L
L
H
L
1
2
3
4
D
C
B
A
A
B
C
D
A
A
A
B
B
B
C
C
C
D
D
D
L
H
H
1
2
3
4
C
D
A
B
B
A
D
C
1
2
3
4
B
A
D
C
C
D
A
B
H
Figure 11. Port-B Byte Read Cycle Timing for FIFO1  
25  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
EFA  
HIGH  
CSA  
W/RA  
MBA  
tENH  
tA  
tENH  
tENH  
tENS  
tENS  
tENS  
ENA  
No  
tMDV  
tA  
Operation  
tDIS  
tEN  
(1)  
Word 2(1)  
A0 - A35  
Previous Data  
Word 1  
tPGS  
tPGS  
tPGH  
tPGH  
PGA,  
ODD/  
EVEN  
3146 drw 12  
NOTE:  
1. Read from FIFO2..  
Figure 12. Port-A Read Cycle Timing for FIFO2  
26  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKL  
tCLKH  
CLKA  
CSA  
LOW  
HIGH  
WRA  
MBA  
tENS  
tENS  
tENH  
tENH  
ENA  
HIGH  
tDS  
FFA  
tDH  
A0 - A35  
W1  
tCLK  
tCLKH  
(1)  
tSKEW1  
tCLKL  
1
2
CLKB  
EFB  
tREF  
tREF  
FIFO1 Empty  
LOW  
LOW  
CSB  
W/RB  
SIZ1,  
SIZ0  
LOW  
tENS  
tENH  
ENB  
tA  
B0 -B35  
W1  
3146 drw 13  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time  
between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of EFB HIGH may occur one CLKB cycle later than  
shown.  
2. Port-B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port-B size is word or byte, EFB is set LOW by the last word or  
byte read from FIFO1, respectively.  
Figure13.  
Flag Timing and First Data Read when FIFO1 is Empty  
EFB  
27  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKL  
tCLKH  
CLKB  
CSB  
LOW  
WRB  
HIGH tENS  
tENH  
tENH  
SIZ1,  
SIZ0  
tENS  
ENB  
HIGH  
tDS  
FFB  
tDH  
B0 - B35  
W1  
tCLK  
tCLKH  
(1)  
tSKEW1  
tCLKL  
1
2
CLKA  
EFA  
tREF  
tREF  
FIFO2 Empty  
LOW  
LOW  
LOW  
CSA  
W/RA  
MBA  
tENS  
tENH  
ENA  
tA  
A0 -A35  
W1  
3146 drw 14  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time  
between the rising CLKB edge and rising CLKA edge is less than tSKEW1, then the transition of EFA HIGH may occur one CLKA cycle later than  
shown.  
2. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte tSKEW1 is referenced to the rising  
CLKB edge that writes the last word or byte of the long word, respectively.  
Figure 14.  
Flag Timing and First Data Read when FIFO2 is Empty  
EFA  
28  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
LOW  
LOW  
W/RB  
SIZ1,  
SIZ0  
tENH  
tENS  
ENB  
HIGH  
EFB  
tA  
Previous Word in FIFO1 Output Register  
Next Word From FIFO1  
tCLK  
B0 - B35  
(1)  
tSKEW1  
tCLKH  
tCLKL  
1
2
CLKA  
tWFF  
tWFF  
FFA  
FIFO1 Full  
LOW  
CSA  
HIGH  
WRA  
MBA  
tENH  
tENH  
tDH  
tENS  
tENS  
ENA  
tDS  
A0 - A35  
To FIFO1  
3146 drw 15  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for FFA to transition HIGH in the next CLKA cycle. If the time  
between the rising CLKB edge and rising CLKA edge is less than tSKEW1, then FFA may transition HIGH one CLKA cycle later than shown.  
2. Port B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW1 is referenced from the rising  
CLKB edge that reads the last word or byte of the long word, respectively.  
Figure 15.  
Flag Timing and First Available Write when FIFO1 is Full.  
FFA  
29  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
LOW  
W/RA  
MBA  
LOW  
t
ENH  
t
ENS  
ENA  
HIGH  
EFA  
t
A
Previous Word in FIFO2 Output Register  
Next Word From FIFO2  
CLK  
A0 - A35  
(1)  
tSKEW1  
t
tCLKH  
tCLKL  
1
2
CLKB  
tWFF  
t
WFF  
FFB  
CSB  
WRB  
FIFO2 Full  
LOW  
HIGH  
tENH  
t
ENS  
SIZ1,  
SIZ0  
t
ENS  
t
ENH  
ENB  
tDS  
t
DH  
B0 - B35  
To FIFO2  
3146 drw 16  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for FFB to transition HIGH in the next CLKB cycle. If the time  
between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then FFB may transition HIGH one CLKB cycle later than shown.  
2. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, FFB is set LOW by the last word or  
byte write of the long word, respectively.  
Figure 16.  
Flag Timing and First Available Write when FIFO2 is Full  
FFB  
30  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKA  
tENS  
tENH  
ENA  
(1)  
tSKEW2  
1
2
CLKB  
AEB  
tPAE  
tPAE  
X Long Word in FIFO1  
(X+1) Long Words in FIFO1  
tENS  
tENH  
ENB  
3146 drw 17  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time  
between the rising CLKA edge and rising CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = LOW, MBB = LOW).  
3. Port B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, AEB is set LOW by the last word or  
byte read of the long word, respectively.  
Figure 17. Timing for  
when FIFO1 is Almost Empty  
AEB  
CLKB  
ENB  
t
ENH  
t
ENS  
(1)  
SKEW2  
t
1
2
CLKA  
AEA  
tPAE  
t
PAE  
X Long Words in FIFO2  
(X+1) Long Words in FIFO2  
ENS  
t
tENH  
ENA  
3146 drw 18  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time  
between the rising CLKB edge and rising CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = HIGH, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW).  
3. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW2 is referenced from the rising  
CLKB edge that writes the last word or byte of the long word, respectively.  
Figure 18. Timing for  
when FIFO2 is Almost Empty  
AEA  
31  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
(1)  
tSKEW2  
1
2
CLKA  
ENA  
tENH  
tPAF  
tENS  
tPAF  
(64-X) Long Words in FIFO1  
AFA  
[64-(X+1)] Long Words in FIFO1  
CLKB  
ENB  
tENS  
tENH  
3146 drw 19  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time  
between the rising CLKA edge and rising CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = LOW, MBB = LOW).  
3. Port B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW2 is referenced from the last  
word or byte read of the long word, respectively.  
Figure 19. Timing for  
when FIFO1 is Almost Full  
AFA  
(1)  
tSKEW2  
1
2
CLKB  
ENB  
tENH  
tPAF  
tENS  
tPAF  
(64-X) Long Words in FIFO2  
AFB  
[64-(X+1)] Long Words in FIFO2  
CLKA  
ENA  
tENS  
tENH  
3146 drw 20  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AFB to transition HIGH in the next CLKB cycle. If the time  
between the rising CLKB edge and rising CLKA edge is less than tSKEW2, then AFB may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = HIGH, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW).  
3. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, AFB is set LOW by the last word or  
byte read of the long word, respectively.  
Figure 20. Timing for  
when FIFO2 is Almost Full  
AFB  
32  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKA  
tENH  
tENS  
CSA  
W/RA  
MBA  
ENA  
tDH  
tDS  
W1  
A0 - A35  
CLKB  
tPMF  
tPMF  
MBF1  
CSB  
W/RB  
SIZ1,  
SIZ0  
tENH  
tENS  
ENB  
tMDV  
tEN  
tDIS  
tPMR  
B0 - B35  
W1 (Remains valid in Mail1 Register after read)  
FIFO1 Output Register  
3146 drw 21  
NOTE:  
1. Port B parity generation off (PGB = LOW).  
Figure 21. Timing for Mail1 Register and  
Flag  
MBF1  
33  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
tENH  
tENS  
CSB  
W/RB  
tSZS  
tSZH  
tDH  
SIZ1,  
SIZ0  
ENB  
B0 - B35  
CLKA  
tDS  
W1  
tPMF  
tPMF  
MBF2  
CSA  
W/RA  
MBA  
ENA  
tENH  
tENS  
tEN  
tMDV  
tDIS  
tPMR  
W1 (Remains valid in Mail2 Register after read)  
A0 - A35  
FIFO2 Output Register  
3146 drw 22  
NOTE:  
1. Port-A parity generation off (PGA = LOW).  
Figure 22. Timing for Mail2 Register and  
Flag  
MBF2  
34  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ODD/  
EVEN  
W/RA  
MBA  
PGA  
tPEPE  
tPOPE  
tPOPE  
tPEPE  
Valid  
Valid  
PEFA  
Valid  
Valid  
3146 drw 23  
Figure 23. ODD/  
. W/ A, MBA, and PGA to  
Timing  
PEFA  
EVEN  
R
ODD/  
EVEN  
W/RB  
SIZ1,  
SIZ0  
PGB  
tPEPE  
tPOPE  
tPOPE  
tPEPE  
Valid  
Valid  
PEFB  
Valid  
Valid  
3146 drw 24  
Figure 24. ODD/  
. W/ B, SIZ1, SIZ0, and PGB to  
EVEN  
Timing  
R
PEFB  
35  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ODD/  
EVEN  
LOW  
CSA  
W/RA  
MBA  
PGA  
tPEPB  
tMDV  
tEN  
tPOPB  
tPEPB  
A8, A17,  
A26, A35  
Generated Parity  
Generated Parity  
Mail2 Data  
Mail2  
Data  
3146 drw 25  
NOTE:  
1. ENA is HIGH.  
Figure 25. Parity Generation Timing when Reading from the Mail2 Register  
ODD/  
EVEN  
LOW  
CSB  
W/RB  
SIZ1,  
SIZ0  
PGB  
tPEPB  
tEN  
tMDV  
tPOPB  
tPEPB  
B8, B17,  
B26, B35  
Generated Parity  
Generated Parity  
Mail1 Data  
Mail1  
Data  
NOTE:  
3146drw 26  
1. ENB is HIGH.  
Figure 26. Parity Generation Timing when Reading from the Mail1 Register  
36  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
CLOCK FREQUENCY  
400  
V
CC = 5.5 V  
350  
300  
= 1/2  
f
f
data  
s
T
°
= 25 C  
A
V
CC = 5 V  
C
= 0 pF  
L
V
CC = 4.5 V  
250  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
f
– Clock Frequency – MHz  
s
3146 drw 27  
Figure 27  
CALCULATING POWER DISSIPATION  
The ICC(f) current for the graph in Figure 27 was taken while simultaneously reading and writing the FIFO on the  
IDT723614 with CLKA and CLKB set to fs. All data inputs and data outputs change state during each clock cycle to  
consume the highest supply current. Data outputs were disconnected to normalize the graph to a zero-capacitance load.  
Once the capacitive lead per data-output channel is known, the power dissipation can be calculated with the equation  
below.  
With ICC(f) taken from Figure 28, the maximum power dissipation (PT) of the IDT723614 can be calculated by:  
2
PT = VCC x ICC(f) + (CL x VOH x fo)  
where:  
CL  
fo  
VOH  
=
=
=
output capacitance load  
switching frequency of an output  
output high level voltage  
When no reads or writes are occurring on the IDT723614, the power dissipated by a single clock (CLKA or CLKB)  
input running at frequency fs is calculated by:  
PT=VCC x fs x 0.290 mA/MHz  
37  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PARAMETER MEASUREMENT INFORMATION  
5 V  
1.1 k  
From Output  
Under Test  
30 pF(1)  
680  
LOAD CIRCUIT  
3 V  
3 V  
Timing  
Input  
1.5 V  
High-Level  
Input  
1.5 V  
1.5 V  
GND  
GND  
3 V  
t
S
th  
tW  
3 V  
Data,  
Enable  
Input  
1.5 V  
1.5 V  
Low-Level  
Input  
1.5 V  
1.5 V  
GND  
GND  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3 V  
Output  
Enable  
1.5 V  
1.5 V  
t
PZL  
GND  
t
PLZ  
3 V  
3 V  
Input  
1.5 V  
1.5 V  
1.5 V  
Low-Level  
Output  
GND  
V
OL  
t
PD  
tPZH  
tPD  
V
OH  
V
OH  
OV  
In-Phase  
Output  
1.5 V  
1.5 V  
High-Level  
Output  
1.5 V  
V
t
PHZ  
OL  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
3146 drw 28  
NOTE:  
1. Includes probe and jig capacitance.  
Figure 28. Load Circuit and Voltage Waveforms  
38  
IDT723614 CMOS SyncBiFIFO WITH BUS MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ORDERING INFORMATION  
723614  
Device Type Power  
IDT  
X
XX  
Speed  
X
X
Package  
Process/  
Temperature  
Range  
BLANK Commercial (0°C to +70°C)  
PF  
PQF  
Thin Quad Flat Pack (TQFP, PN120-1)  
Plastic Quad Flat Pack (PQFP, PQ132-1)  
15  
20  
30  
Commercial Only  
Clock Cycle Time (tCLK)  
Speed in Nanoseconds  
L
Low Power  
723614 64 x 36 x 2 SyncBiFIFO  
3146 drw 29  
39  
配单直通车
IDT723614L20PQF产品参数
型号:IDT723614L20PQF
是否Rohs认证: 不符合
生命周期:Obsolete
IHS 制造商:INTEGRATED DEVICE TECHNOLOGY INC
零件包装代码:QFP
包装说明:PLASTIC, QFP-132
针数:132
Reach Compliance Code:not_compliant
ECCN代码:EAR99
HTS代码:8542.32.00.71
风险等级:5.91
Is Samacsys:N
最长访问时间:12 ns
其他特性:MAIL BOX; PARITY GENERATOR/CHECKER
最大时钟频率 (fCLK):50 MHz
周期时间:20 ns
JESD-30 代码:S-PQFP-G132
JESD-609代码:e0
长度:24.13 mm
内存密度:2304 bit
内存集成电路类型:BI-DIRECTIONAL FIFO
内存宽度:36
湿度敏感等级:3
功能数量:1
端子数量:132
字数:64 words
字数代码:64
工作模式:SYNCHRONOUS
最高工作温度:70 °C
最低工作温度:
组织:64X36
输出特性:3-STATE
可输出:YES
封装主体材料:PLASTIC/EPOXY
封装代码:BQFP
封装等效代码:SPQFP132,1.1SQ
封装形状:SQUARE
封装形式:FLATPACK, BUMPER
并行/串行:PARALLEL
峰值回流温度(摄氏度):225
电源:5 V
认证状态:Not Qualified
座面最大高度:4.57 mm
最大待机电流:0.000001 A
子类别:FIFOs
最大压摆率:0.001 mA
最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):4.5 V
标称供电电压 (Vsup):5 V
表面贴装:YES
技术:CMOS
温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING
端子节距:0.635 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:20
宽度:24.13 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!