欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • LM2502SMX图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LM2502SMX
  • 数量65000 
  • 厂家NSC 
  • 封装UFBGA-49 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • LM2502SMX图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • LM2502SMX
  • 数量5600 
  • 厂家TI 
  • 封装UFBGA-49 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • LM2502SMX图
  • 集好芯城

     该会员已使用本站13年以上
  • LM2502SMX
  • 数量9098 
  • 厂家NS 
  • 封装UFBGA49 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • LM2502SMX图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • LM2502SMX
  • 数量8800 
  • 厂家TI 
  • 封装UFBGA-49 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • LM2502SMX/NOPB图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • LM2502SMX/NOPB
  • 数量6180 
  • 厂家NS 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • LM2502SMX图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • LM2502SMX
  • 数量5000 
  • 厂家NSC 
  • 封装UFBGA49 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • LM2502SMX图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • LM2502SMX
  • 数量865000 
  • 厂家TI/德州仪器 
  • 封装UFBGA49 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • LM2502SMX图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • LM2502SMX
  • 数量15372 
  • 厂家TI 
  • 封装UFBGA-.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • LM2502SMX图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • LM2502SMX
  • 数量716 
  • 厂家TI 
  • 封装UFBGA-49 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • LM2502SMX图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • LM2502SMX
  • 数量15280 
  • 厂家NSC 
  • 封装UFBGA49 
  • 批号23+ 
  • 原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • LM2502SMX/NOPB图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • LM2502SMX/NOPB
  • 数量3587 
  • 厂家TI 
  • 封装49-TFBGA 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • LM2502SMX图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • LM2502SMX
  • 数量23480 
  • 厂家TI 
  • 封装UFBGA-49 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • LM2502SMX图
  • 上海振基实业有限公司

     该会员已使用本站13年以上
  • LM2502SMX
  • 数量1236 
  • 厂家NS 
  • 封装UFBGA 
  • 批号23+ 
  • 全新、原装现货
  • QQ:330263063QQ:330263063 复制
    QQ:1985476892QQ:1985476892 复制
  • 021-59159268 QQ:330263063QQ:1985476892
  • LM2502SMX/NOPB图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • LM2502SMX/NOPB
  • 数量660000 
  • 厂家原厂 
  • 封装原厂原装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • LM2502SMX图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • LM2502SMX
  • 数量6500000 
  • 厂家TI 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • LM2502SMX/NOPB图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • LM2502SMX/NOPB
  • 数量6500000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • LM2502SMX/NOPB图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • LM2502SMX/NOPB
  • 数量1001 
  • 厂家TI 
  • 封装BGA-48 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • LM2502SMX/NOPB图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • LM2502SMX/NOPB
  • 数量5800 
  • 厂家TI(德州仪器) 
  • 封装49-TFBGA 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • LM2502SMX/NOPB图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • LM2502SMX/NOPB
  • 数量15000 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • LM2502SMX图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • LM2502SMX
  • 数量15000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号LM2502SMX的概述

LM2502SMX 芯片概述 LM2502SMX是一款由德州仪器(Texas Instruments, TI)设计和制造的高性能电源管理芯片。它是一个用于降压转换器的集成电路,能够将高输入电压转换为稳定的低输出电压,广泛应用于电源供应、充电器以及各种电子设备中。LM2502SMX以其高效率、低阻抗和高度集成的特点而受到工程师的青睐,尤其是在对电源管理要求较高的应用场景中。 详细参数 LM2502SMX具有多种特性,这些特性使其适用于不同的电源管理需求。以下是其主要技术参数: - 输入电压范围:4.5V 至 60V - 输出电压范围:可调,最低到1.215V - 输出电流:可提供高达2A的输出电流 - 开关频率:120 kHz(可外部设置) - 效率:最高可达 95% - 温度范围:工作温度范围为 -40℃ 至 +125℃ - 封装类型:SMD(表面贴装) - 引脚数:8引脚 制造商与...

产品型号LM2502SMX的Datasheet PDF文件预览

August 2005  
LM2502  
Mobile Pixel Link (MPL) Display Interface Serializer and  
Deserializer  
General Description  
Features  
>
n
300 Mbps Dual Link Raw Throughput  
The LM2502 device is a dual link display interface SERDES  
that adapts existing CPU / video busses to a low power  
current-mode serial MPL link. The chipset may also be used  
for a RGB565 application with glue logic. The interconnect is  
reduced from 22 signals to only 3 active signals with the  
LM2502 chipset easing flex interconnect design, size and  
cost.  
n MPL Physical Layer (MPL-0)  
n Pin selectable Master / Slave mode  
n Frequency Reference Transport  
n Complete LVCMOS / MPL Translation  
n Interface Modes:  
— 16-bit CPU, i80 or m68 style  
— RGB565 with glue logic  
n −30˚C to 85˚C Operating Range  
n Link power down mode reduces IDDZ 10 µA  
n Dual Display Support (CS1* & CS2*)  
n Via-less MPL interconnect feature  
n 3.0V Supply Voltage (VDD and VDDA  
n Interfaces to 1.7V to 3.3V Logic (VDDIO  
The Master Serializer (SER) resides beside an application  
processor or baseband processor and translates a parallel  
bus from LVCMOS levels to serial MPL levels for transmis-  
sion over a flex cable and PCB traces to the Slave Deseri-  
alizer (DES) located near the display module.  
<
Dual display support is provided for a primary and sub  
display through the use of two ChipSelect signals. A Mode  
pin selects either a i80 or m68 style interface.  
)
)
The Power_Down (PD*) input controls the power state of the  
MPL interface. When PD* is asserted, the MD1/0 and MC  
signals are powered down to save current.  
System Benefits  
n Small Interface  
n Low Power  
n Low EMI  
n Frequency Reference Transport  
n Intrinsic Level Translation  
The LM2502 implements the physical layer of the MPL Stan-  
dard (MPL-0). The LM2502 is offered in NOPB (Lead-free)  
UFBGA and LLP packages.  
Typical Application Diagram  
20093301  
Ordering Information  
NSID  
Package Type  
Package ID  
49 Lead UFBGA style, 4.0 X 4.0 X 1.0 mm, 0.5 mm pitch  
1000 std reel, LM2502SMX 4500 reel  
LM2502SM  
LM2502SQ  
SLH49A  
SQF40A  
40 Lead LLP style, 5.0 X 5.0 X 0.8 mm, 0.4 mm pitch  
1000 std reel, LM2502SQX 4500 reel  
© 2005 National Semiconductor Corporation  
DS200933  
www.national.com  
UFBGA Connection Diagram  
20093319  
TOP VIEW  
(not to scale)  
TABLE 1. Ball Assignment  
Ball #  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
Master  
D0  
Slave  
D0  
Ball #  
D5  
D6  
D7  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
F1  
Master  
Slave  
NC  
NC  
VSScore  
VDDcore  
D8  
D1  
D1  
VSScore  
VDDcore  
D8  
D2  
D2  
VDDA  
INTR  
MD1  
MC  
VDDA  
CLKDIS*  
MD0  
MC  
D9  
D9  
NC  
NC  
NC  
NC  
D3  
D3  
NC  
NC  
D4  
D4  
CS1*  
CS1*  
D5  
D5  
PLLCON2 PLLCON2  
VSSA  
M/S*  
Mode  
MD0  
D6  
VSSA  
M/S*  
Mode  
MD1  
D6  
D10  
D11  
D10  
D11  
F2  
F3  
D12  
D12  
F4  
VSSIO  
MF0  
VSSIO  
MF0  
F5  
D7  
D7  
F6  
PLLCON1 PLLCON1  
NC  
NC  
F7  
PD*  
D13  
D14  
D15  
VDDIO  
A/D  
PD*  
D13  
D14  
D15  
VDDIO  
A/D  
NC  
NC  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
NC  
NC  
CS2*  
MF1  
VDDIO  
VSSIO  
NC  
CS2*  
MF1  
VDDIO  
VSSIO  
NC  
PLLCON0 PLLCON0  
CLK CLK  
NC  
NC  
NC = Not Connected  
Note: Three pins are different between Master and Slave configurations - see also Figure 17  
www.national.com  
2
LLP Connection Diagram  
20093324  
TOP VIEW  
(not to scale)  
TABLE 2. Pad Assignment  
Pin #  
1
Master  
D0  
Slave  
D0  
Ball #  
21  
Master  
Slave  
CLK  
CLK  
*
*
PD  
2
D3  
D3  
22  
PD  
*
*
CS1  
3
D7  
D7  
23  
CS1  
4
D6  
D6  
24  
PLLCON2 PLLCON2  
5
VSSIO  
VDDIO  
D8  
VSSIO  
VDDIO  
D8  
25  
VSScore  
VDDcore  
MF1  
VSScore  
VDDcore  
MF1  
6
26  
7
27  
*
*
CS2  
8
D9  
D9  
28  
CS2  
9
D10  
D11  
D13  
D14  
D12  
D15  
VSSIO  
VDDIO  
A/D  
D10  
D11  
D13  
D14  
D12  
D15  
VSSIO  
VDDIO  
A/D  
29  
MD0M  
MODE  
MC  
MD1S  
MODE  
MC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DAP  
30  
31  
32  
MD1M  
MD0S  
*
*
M/S  
33  
M/S  
*
34  
INTRM  
VSSA  
VDDA  
D2  
CLKDIS  
VSSA  
VDDA  
D2  
S
35  
36  
37  
MF0  
MF0  
38  
D5  
D5  
PLLCON0 PLLCON0  
PLLCON1 PLLCON1  
39  
D1  
D1  
40  
D4  
D4  
GND  
GND  
DAP  
GND  
GND  
Note: Three pins are different between Master and Slave configurations.  
3
www.national.com  
Pin Descriptions  
Description  
No.  
Pin Name  
I/O, Type  
of Pins  
Master (SER)  
Slave (DES)  
MPL SERIAL BUS PINS  
MD[1:0]  
MC  
2
1
IO, MPL  
IO, MPL  
Ground  
MPL Data Line Driver/Receiver  
MPL Clock Line Driver  
MPL Data Receiver/Line Driver  
MPL Clock Receiver  
VSSA  
MPL Ground - see Power/Ground Pins  
MPL Ground - see Power/Ground Pins  
CONFIGURATION/PARALLEL BUS PINS  
M/S*  
1
I,  
Master/Slave* Input,  
Master/Slave* Input  
LVCMOS  
I,  
M/S* = H for Master  
M/S* = L for Slave  
PD*  
1
Power_Down* Input,  
Power_Down* Input,  
H = Active  
LVCMOS  
H = Active  
L = Power Down Mode  
L = Power Down Mode  
Multi-function Output Zero (0):  
If MODE = L (m68 mode),  
E output pin, static High.  
If MODE = H (i80 mode),  
MF0  
1
IO,  
Multi-function Input Zero (0):  
If MODE = L (m68 mode), E input pin,  
data is latched on E High-to-Low  
transition or E may be static High and  
(E or RD*)  
LVCMOS  
Data is latched on CS* Low-to-High edge Read Enable output pin, active Low.  
If MODE = H (i80 mode), Read Enable  
input pin, active low. Read data is driven  
when both RD* and CS* are Low.  
MF1  
(R/W* or  
WR*)  
1
IO,  
Multi-function Input One (1):  
If Mode = L (m68 mode), Read/Write*  
pin, Read High, Write* Low  
If Mode = H (i80 mode), Write* enable  
input pin, active Low. Write data is  
latched on the Low-to-High transition of  
either WR* or CS* (which ever occurs  
first).  
Multi-function Output One (1):  
If Mode = L (m68 mode)  
Read/Write* pin,  
LVCMOS  
Read High, Write* Low  
If Mode = H (i80 mode)  
Write* enable output pin, active Low.  
CS1*  
CS2*  
1
1
1
IO,  
ChipSelect1* – Input  
ChipSelect1* – Output  
H = Ignored  
LVCMOS  
H = Ignored  
L = Active  
L = Active  
IO,  
ChipSelect2* – Input  
ChipSelect2* – Output  
H = Ignored  
LVCMOS  
H = Ignored  
L = Active  
L = Active  
A/D (RS or  
A0)  
IO,  
Address/Data – Input  
H = Data  
Address/Data – Output  
H = Data  
LVCMOS  
L = Address (Command)  
Data Bus – Inputs/Outputs  
L = Address (Command)  
Data Bus – Outputs/Inputs  
D[15:0]  
16  
1
IO,  
LVCMOS  
O or I,  
INTR  
or  
INTR is asserted when the read data is  
ready and de-asserted upon a second  
CPU Read cycle.  
Clock Disable - CLKDIS*:  
H = CLK output ON  
LVCMOS  
CLKDIS*  
L = CLK output LOW, allows for the  
Slave clock output to be held static if not  
used.  
CLK  
1
1
3
IO,  
Clock Input  
Clock Output (Frequency Reference) –  
no phase relationship to data – frequency  
reference only.  
LVCMOS  
Mode  
I,  
Mode Input Pin  
H = i80 Mode,  
L = m68 Mode  
Mode Input Pin  
LVCMOS  
H = i80 Mode,  
L = m68 Mode  
PLL_CON  
[2:0]  
I,  
PLL Configuration Input Pins – see Table Clock Divisor Configuration Input Pins –  
10 see Table 10  
LVCMOS  
www.national.com  
4
Pin Descriptions (Continued)  
Description  
No.  
Pin Name  
I/O, Type  
of Pins  
POWER/GROUND PINS  
Master (SER)  
Slave (DES)  
VDDA  
VSSA  
1
1
Power  
Power Supply Pin for the MPL Interface. 2.9V to 3.3V  
Ground  
Ground Pin for the MPL Interface, a low impedance ground path is required between  
the Master and the Slave device - see Applications Information section.  
Power Supply Pin for the digital core. 2.9V to 3.3V  
Ground Pin for the digital core.  
VDDcore  
VSScore  
VDDIO  
1
1
2
2
9
1
Power  
Ground  
Power  
Ground  
NC  
Power Supply Pin for the parallel interface. 1.7V to 3.3V  
Ground Pin for the parallel interface.  
VSSIO  
Not Connected (C3-5, D3-5, E3-5). UFBGA Package only.  
DAP = Ground. LLP Package only.  
Ground  
Note:  
I = Input, O = Output, IO = Input/Output, V  
V  
(V  
= V ). Do not float input pins.  
DDcore  
DDIO  
DD  
DDA  
Master Pinout - UFBGA Package  
MST  
1
2
3
4
5
6
7
MC  
A
D0  
D1  
D2  
D5  
VDDA  
VSSA  
INTR  
M/S*  
NC  
MD1  
B
D3  
D4  
Mode  
MD0  
C
D6  
D7  
NC  
NC  
NC  
NC  
CS2*  
MF1  
D
VDDIO  
D8  
VSSIO  
D9  
NC  
VSScore  
CS1*  
VDDcore  
PLLCON2  
PD*  
E
NC  
NC  
NC  
F
D10  
D13  
D11  
D14  
D12  
D15  
VSSIO  
VDDIO  
MF0  
A/D  
PLLCON1  
PLLCON0  
G
CLK  
Slave Pinout - UFBGA Package  
SLV  
1
2
3
4
5
CLKDIS*  
M/S*  
NC  
6
7
MC  
A
D0  
D1  
D2  
VDDA  
VSSA  
NC  
MD0  
B
D3  
D4  
D5  
Mode  
MD1  
C
D6  
D7  
NC  
NC  
NC  
D12  
D15  
CS2*  
MF1  
D
VDDIO  
D8  
VSSIO  
D9  
NC  
NC  
VSScore  
CS1*  
VDDcore  
PLLCON2  
PD*  
E
NC  
NC  
F
D10  
D13  
D11  
D14  
VSSIO  
VDDIO  
MF0  
A/D  
PLLCON1  
PLLCON0  
G
CLK  
5
www.national.com  
Absolute Maximum Ratings (Note 1)  
Maximum Package Power Dissipation Capacity at 25˚C  
UFBGA Package (Note 4)  
Derate UFBGA Package above  
25˚C  
2.5 W  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
25 mW/˚C  
45˚C/W  
Supply Voltage (VDDA  
Supply Voltage (VDD  
Supply Voltage (VDDIO  
)
−0.3V to +4.0V  
−0.3V to +4.0V  
−0.3V to +4.0V  
−0.3V to (VDDIO  
+0.3V)  
Theta JA  
)
LLP Package (Note 4)  
Derate LLP Package above 25˚C  
Theta JA  
1.39 W  
)
11 mW/˚C  
90˚C/W  
LVCMOS Input/Output Voltage  
MPL Input/Output Voltage  
−0.3V to (VDDA  
+0.3V)  
Recommended Operating  
Conditions  
Junction Temperature  
Storage Temperature  
Lead Temperature Soldering,  
4 Seconds  
+150˚C  
Min Typ Max Units  
−65˚C to +150˚C  
Supply Voltage  
VDDA to VSSA and  
VDDcore to VSScore  
VDDIO to VSSIO  
+260˚C  
2.9 3.0 3.3  
V
V
ESD Ratings:  
1.7  
3.3  
25  
85  
HBM, 1.5 k, 100pF  
EIAJ, 0, 200 pF  
2 kV  
200V  
Clock Frequency  
Ambient Temperature  
3.0  
MHz  
˚C  
−30 25  
Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 2, 3)  
Symbol  
MPL  
IOLL  
Parameter  
Conditions  
Min  
3.67 IB  
0.7 IB  
−2  
Typ  
Max  
Units  
Logic Low Current (5X IB)  
Mid Scale Current  
5.0 IB  
3.0 IB  
1.0 IB  
150  
6.33 IB  
1.3 IB  
+2  
µA  
µA  
µA  
µA  
µA  
IOMS  
IOLH  
IB  
Logic High Current (1X IB)  
Current Bias  
IOFF  
MPL Leakage Current  
PD* = L (PowerDown mode)  
VDDIO = 2.0V to 3.3V  
0
LVCMOS (1.7V to 3.3V Operation)  
VIH  
VIL  
Input Voltage High Level  
Input Voltage Low Level  
Input Hysteresis  
0.7 VDDIO  
0.8 VDDIO  
−0.3  
VDDIO  
+0.3  
V
<
VDDIO = 1.7V to 2.0V  
VDDIO = 2.0V to 3.3V  
0.3 VDDIO  
0.2 VDDIO  
V
<
VDDIO = 1.7V to 2.0V  
−0.3  
V
VHY  
VDDIO = 3.0V  
500  
300  
0
mV  
mV  
µA  
µA  
µA  
VDDIO = 1.8V  
IIN  
Input Current (includes IOZ  
Input Current High Level  
Input Current Low Level  
)
LVCMOS IO Signals  
LVCMOS Input Only Signals (i.e. Mode)  
−2  
−1  
−1  
+2  
+1  
+1  
IIH  
0
IIL  
0
VOH  
Output Voltage High Level IOH = −2 mA  
VDDIO = 3.3V  
VDDIO = 1.7V  
VDDIO = 3.3V  
VDDIO = 1.7V  
2.8  
1.6  
0.08  
0.12  
−5  
0.8 VDDIO  
V
V
VOL  
IOS  
Output Voltage Low Level  
IOL = 2 mA  
0.2 VDDIO  
Output Short-Circuit  
Current  
VOUT = 0V, VDDIO = 1.7 V  
VOUT = 0V, VDDIO = 3.3 V  
mA  
mA  
−30  
www.national.com  
6
Electrical Characteristics (Continued)  
Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 2, 3)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
SUPPLY CURRENT  
IDD  
Total Supply  
Master  
VDDIO  
15  
14  
1.5  
9.0  
10  
5
220  
25  
µA  
mA  
mA  
mA  
µA  
CurrentEnabled  
VDD = VDDA  
Slave, CL = 10 pF VDDIO  
VDD = VDDA  
Conditions: MC = 76.8  
MHz, MD = 1010-0101  
pattern (worse case toggle,  
rail-to-rail levels), CLK =  
19.2 MHz (4X) (Note 7)  
Total Supply  
9.0  
13.0  
Master  
VDDIO = 1.8V  
CurrentEnabled  
VDD = VDDA = 3V  
Conditions: MC = 20 MHz,  
MD = 1010-0101 pattern  
(worse case toggle,  
rail-to-rail levels), CLK = 5  
MHz (4X)  
mA  
mA  
Slave, CL = 10 pF VDDIO = 1.8V  
VDD = VDDA = 3V  
1
4
1
mA  
µA  
IDDZ  
Supply CurrentDisabled Power_Down Mode, PD* = 0V  
10  
Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
PARALLEL BUS TIMING  
tSET  
Set Up Time, Data to Edge Inputs  
5
5
ns  
ns  
tHOLD  
tRISE  
Hold Time, Edge to Data  
Rise Time  
Figure 2, Outputs, VDDIO = 1.7V  
2
1
2
1
7
2
6
14  
10  
14  
10  
ns  
ns  
ns  
CL = 10 pF  
Edge sensitive  
VDDIO = 3.3V  
outputs tested  
only:  
tFALL  
Fall Time  
VDDIO = 1.7V  
*
m68 mode: CS1 ,  
*
CS2 and CLKout  
VDDIO = 3.3V  
*
i80 mode: RD ,  
2
ns  
%
*
WR , and CLKout  
*
CLKDC  
Output Clock Duty Cycle  
CLKDIS = H, Slave (DES)  
50  
Parallel Bus Timing - See Figures 13, 14, 15, 16 and  
Table 5, Table 6, Table 7, and Table 8  
SERIAL BUS TIMING  
tDVBC  
tDVAC  
Data Valid before Clock  
Data Valid after Clock  
Master-to-Slave  
(Note 5)  
2.0  
0.5  
ns  
ns  
POWER UP TIMING(Note 5)  
t0  
t1  
t2  
t3  
t4  
t5  
Master PLL Lock Counter  
Figure 6  
CLK  
cycles  
CLK  
4096  
11  
MC Pulse Width Low  
(Master)  
cycles  
CLK  
MC Pulse Width HIGH  
(Master)  
11  
cycles  
CLK  
MC Pulse Width Low  
(Master)  
11  
cycles  
MC  
CLK-Out Delay (Slave)  
7
cycles  
CLK  
Power Up Total delay  
(t0 + t1 + t2 + t3 + t4)  
4133  
cycles  
7
www.national.com  
Switching Characteristics (Continued)  
Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
POWER UP TIMING(Note 5)  
MPL POWER OFF TIMING  
tPAZ  
Disable Time to Power  
Down  
Figure 7, This parameter is functionally  
50  
ms  
tested by the IDDZ parameter. (Note 6)  
Recommended Input Timing Requirements  
Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
MASTER REFERENCE CLOCK (CLK)  
fCLK  
tCP  
Clock Frequency  
See Table 10  
3
25  
333  
60  
MHz  
ns  
(Note 5)  
Clock Period  
40  
40  
CLKDC  
tT  
Clock Duty Cycle  
Clock Transition Times  
(Rise or Fall, 20%–80%)  
50  
%
1
14  
ns  
Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device  
should be operated at these limits. The tables of “Electrical Characteristics” specify conditions for device operation.  
Note 2: Typical values are given for VDDIO = 1.8V and VDD = VDDA = 3.0V and T = 25˚C.  
A
Note 3: Current into a device pin is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to Ground unless otherwise  
specified.  
Note 4: UFBGA assumes 4 layer PCB, LLP assumes 2 layer PCB for thermal calculations.  
Note 5: This parameter is Guaranteed by Design (GBD) based on simulation or bench characterization.  
Note 6: This parameter is guaranteed by a ATE tester delay, actual turn off time is faster.  
Note 7: Typical supply condition is V  
= 1.8V and V  
= V  
= 3.0V, Maximum supply condition is V  
= V  
= V  
= 3.3V for the I  
parameter.  
DD  
DDIO  
DD  
DDA  
DDIO  
DD  
DDA  
Timing Diagrams  
20093316  
FIGURE 1. Serial Data ValidMaster to Slave  
20093318  
FIGURE 2. Slave Output Rise and Fall Time  
www.national.com  
8
Functional Description  
SERIAL BUS TIMING  
Data valid is relative to both edges for a WRITE as shown in  
Figure 4. Data valid is specified as: Data Valid before Clock,  
Data Valid after Clock, and Skew between data lines should  
be less than 500ps.  
BUS OVERVIEW  
The LM2502 is a dual link Transceiver configurable part that  
supports a 16-bit CPU (m68 or i80) style interface. The MPL  
physical layer is purpose-built for an extremely low power  
and low EMI data transmission while requiring the fewest  
number of signal lines. No external line components are  
required, as termination is provided internal to the MPL  
receiver. A maximum raw throughput of 307 Mbps (raw) is  
possible with this chipset. When the protocol overhead is  
taken into account, a maximum data throughput of 245 Mbps  
is possible. The MPL interface is designed for use with  
common 50to 100lines using standard materials and  
connectors. Lines may be microstrip or stripline construction.  
Total length of the interconnect is expected to be less than  
20cm.  
20093303  
FIGURE 4. Dual Link Timing (WRITE)  
20093304  
FIGURE 5. Dual Link Timing (READ)  
Data is strobed out on the rising edge by the Slave for a  
READ as shown in Figure 5. The Master monitors for the  
start bit transition (Low to High) and selects the best strobe  
to sample the incoming data on. This is done to account for  
the round trip delay of the interconnect and application data  
rate.  
20093302  
FIGURE 3. MPL Point-to-Point Bus  
9
www.national.com  
Functional Description (Continued)  
SERIAL BUS PHASES  
There are four bus phases on the MPL serial bus. These are  
determined by the state of the MC and MD lines. The MPL  
bus phases are shown in Table 3.  
TABLE 3. Link Phases  
MDn State Phase Description  
Name  
MC State  
Pre-Phase  
A, I or LU  
A or LU  
Post-Phase  
LU  
OFF (O)  
IDLE (I)  
0
A
A
0
L
X
Link is Off  
Data is Static (Low)  
A or O  
Active (A)  
Data Out  
Data Out (Write) — includes  
command, Data Out Phases  
Data In (Read) — includes  
command, TA’, Data In, and TA”  
phases  
LU, A, or I  
A, I, or O  
WRITE  
Data In  
READ  
A
H
X
-
LU, A, or I  
A, I, or O  
A, I, or O  
LINK-UP  
(LU)  
Notes on MC/MD Line State:  
0 = no current (off)  
L = Logic Low — The higher level of current on the MC and MD lines  
H = Logic High — The lower level of current on the MC and MD lines  
X = Low or High  
Master  
Master initiated Link-Up  
O
A = Active Clock  
SERIAL BUS START UP TIMING  
transition of the MC – point B – the Slave latches the current  
source configuration. This optimized configuration is held as  
long as the MPL remains up. Next, the Master drives both  
the MC and the MD lines to a logical Low for another 11 CLK  
cycles (t3), after which it begins to toggle the MC line at a  
rate determined by its PLL Configuration pins. The Master  
will continue to toggle the MC line as long as its PD* pin  
remains de-asserted (High). At this point the MPL bus may  
remain in IDLE phase, enter the ACTIVE phase or return to  
the OFF phase. Active data will occur at the Slave output  
latency delays (Master + line + Slave) after the data is  
applied to the Master input. Possible start points are shown  
by the “C” arrow in Figure 6.  
In the Serial Bus OFF phase, Master transmitters for MD0,  
MD1 and MC are turned off such that zero current flows over  
the MPL lines. In addition, both the Master and the Slave are  
internally held in a low power state. When the PD* input pins  
are de-asserted (driven High) the Master enables its PLL  
and waits for enough time to pass for its PLL to lock. After the  
Master’s PLL is locked (t0 = 4,096 CLK Cycles), the Master  
will perform an MPL start up sequence. The Slave will also  
power up and await the start up sequence from the Master.  
The MPL start up sequence gives the Slave an opportunity to  
optimize the current sources in its transceiver to maximize  
noise margins. The Master begins the sequence by driving  
the MC line logically Low for 11 CLK cycles (t1). During this  
part of the sequence the Slave’s transceiver samples the MC  
current flow and adjusts itself to interpret that amount of  
current as a logical Low. Next the Master drives the MC line  
logically HIGH for 11 CLK cycles (t2). On the Low-to-High  
After seven subsequent MC cycles the Slave will start tog-  
gling its CLK pin at a rate configured by its CLK Divisor pins.  
In the Figure 6 example, an IDLE bus phase is shown until  
point C, after which the bus is active and the High start bit on  
MD initiates the transfer of information.  
www.national.com  
10  
Functional Description (Continued)  
20093305  
FIGURE 6. MPL Power Up Timing  
OFF PHASE  
internally enter a low power state. To avoid loss of data the  
Master’s PD* input should only be asserted after the MPL  
bus has been in the IDLE state for at least 20 MC clock  
cycles. This gives the Slave enough time to complete any  
write operations received from the MPL bus.  
In the OFF phase, both Master and Slave MPL transmitters  
are turned off with zero current flowing on the MC and MD  
lines. Figure 7 shows the transition of the MPL bus into the  
OFF phase. If an MPL line is driven to a logical Low (high  
current) when the OFF phase is entered it may temporarily  
pass through as a logical High (low current) before reaching  
the zero line current state.  
CPU INTERFACE COMPATIBILITY  
The CPU Interface mode provides compatibility between a  
CPU Interface and a small form factor (SFF) Display or other  
fixed I/O port application. Two options are allowed:  
TABLE 4. Modes  
Mode  
Description  
m68 Interface  
0
(E, R/W*), 16-bit support  
i80 Interface  
1
(WR*, RD*), 16-bit support  
It is not required that both the Master and the Slave to be  
configured in the same mode. For example the Master may  
be configured as an 80xx (i80) interface while the Slave is  
configured for an 68xx (m68) interface.  
20093306  
FIGURE 7. MPL Power Down Timing  
Control information is carried over both MD lines. MD0 car-  
ries the D0–7 data bits while MD1 the D8–15 data bits. See  
Figure 8.  
The link may be powered down by asserting both the Mas-  
ter’s and Slaves’s PD* input pins (Low). This causes the  
devices to immediately put the link to the OFF Phase and  
11  
www.national.com  
bit and then the data payload of 8 bits (D0–7). The MD1 line  
carries the R/W* bit (Read/Write*), the CS1/2 bit and then  
the data payload of 8 bits (D8–15). The data payload is sent  
least significant bit (LSB) first. The CS1/2 bit denotes which  
Chipset pin was active. CS1/2 = HIGH designates that CS1*  
is active (Low). CS1/2 = LOW designates that CS2* is active  
(Low). CS1* and CS2* LOW is not allowed.  
Functional Description (Continued)  
WRITE TRANSACTION  
The WRITE transaction consists of two MC edges of control  
information followed by 8 MC edges of write data. Since  
WRITE transactions transfer information on both edges of  
MC it takes 5 MC cycles to complete a write transaction. The  
MD0 line carries the Start bit (High), the A/D (Address/Data)  
20093307  
FIGURE 8. Dual MD Link WRITE Transaction  
READ TRANSACTION  
In the second section (TA’) the MD lines are turned around,  
such that the Master becomes the receiver and Slave be-  
comes the transmitter. The Slave must drive the MD lines  
low by the 14th clock edge. It may then idle the line at the  
Logic Low state or drive the line High to indicate that read  
data transmission is starting. This ensures that the MD lines  
are a stable LOW state and that the Low-to-High transition of  
the “Start” bit is seen by the Master.  
The READ transaction is variable in length. It consists of four  
sections.  
In the first section the Master sends a READ_Command to  
the slave. This command is sent in a single MC cycle (2  
edges) and uses a similar format to the 1st cycle of the  
WRITE transaction. The MD0 line carries the Start bit (High)  
and the A/D (Address/Data) bit. The MD1 line carries the  
R/W* bit (High for reads) and the CS1/2 bit.  
20093308  
FIGURE 9. READ_Command and TA’  
The third section consists of the transfer of the read data  
from the Slave to the Master. Note that the READ_Data  
selects the best strobe to sample the incoming data on. This  
is done to account for the round trip delay of the interconnect  
and application data rate.  
operates on single-edge strobing (Rising Edge ONLY).  
1
Therefore the back channel data signaling rate is  
2 of the  
The Master detects the location of the START bit on MD0  
and selects the best strobe for data capture. Skew between  
the data lines is constrained tighter in the Master-to-Slave  
direction (Write) than in the Read direction due to the data  
rate difference. The Master uses its internal clock (multiple  
phases) to latch the data.  
forward channel (Master-to-Slave direction). When the Slave  
is ready to transmit data back to the Master it drives the MD  
lines High to indicate start of read data, followed by 8 MC  
cycles of the actual read data payload. As in the WRITE  
command MD0 carries D0–7 and MD1 carries D8–5. The  
Master monitors for the start bit transition (Low to High) and  
The fourth and final section (TA”) occurs after the read data  
has been transferred from the Slave to the Master. In the  
www.national.com  
12  
During a READ transaction (Double Read access on the  
Master), other MPL transactions are not allowed until the  
current READ dual cycle is completed.  
Functional Description (Continued)  
fourth section the MD lines are again turned around, such  
that the Master becomes the transmitter and the Slave be-  
comes the receiver. The Slave drives the MD lines Low for 1  
bit width and then turns off. The MD lines are off momentarily  
to avoid driver contention. The Master then drives the MD  
line Low for 1 bit time and then idles the bus until the next  
transaction is sent.  
20093309  
FIGURE 10. READ_Data and TA”  
To account for the latency through the MPL link, a dual  
READ operation is required by the host. The first read re-  
turns invalid data (all Low). Once data has returned to the  
Master LM2502, the INTR signal is asserted to inform the  
host to initiate a second read operation. When the Master  
LM2502 sees the Read signal/CS* combination, it will de-  
assert the INTR signal and Valid data is presented.  
20093315  
FIGURE 11. Slave WRITE and Slave READ m68 mode Operation  
Figure 11 illustrates a m68 mode WRITE followed by a  
READ operation (Slave output to Display). At the end of the  
WRITE operation the SLAVE outputs are turned off. The  
SLAVE latches in the READ data on the rising edge of the  
CS* signal as shown. The Display should disable its outputs  
prior to the next operation to avoid any bus contention.  
13  
www.national.com  
Functional Description (Continued)  
20093314  
FIGURE 12. Back-to-Back WRITE Operationsm68 Mode  
Figure 12 illustrates a m68 mode WRITE operation to the  
main display (CS1*) followed by a WRITE operation to the  
sub display (CS2*). This example shows the maximum op-  
eration rate with no idle time between the serial transactions.  
www.national.com  
14  
Functional Description (Continued)  
CPU MODEWRITEm68  
20093310  
FIGURE 13. WRITEMOT 6800 µP Interface  
15  
www.national.com  
Functional Description (Continued)  
TABLE 5. WRITEMOT 6800 µP Interface Parameters  
No.  
Parameter  
Data Setup Time before ChipSelect*  
Low-High (or E High-Low)  
Data Hold after ChipSelect*  
Low-High (or E High-Low)  
ChipSelect* Recovery Time, (Note 5)  
Master Latency  
Min  
Typ  
Max  
Units  
T1  
MasterIN  
MasterIN  
5
ns  
T2  
5
6
ns  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
MasterIN  
Master  
Slave  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
5
9
1
3
4
1
Slave Latency  
SlaveOUT Data Valid before ChipSelect* High-Low  
SlaveOUT ChipSelect* Low Pulse Width  
SlaveOUT Data Valid before ChipSelect* Low-High  
SlaveOUT Data Valid after ChipSelect* Low-High  
www.national.com  
16  
Functional Description (Continued)  
CPU MODEREADm68  
20093311  
FIGURE 14. READ6800 µP Interface  
TABLE 6. READ6800 µP Interface Parameters  
No.  
T1  
Parameter  
Min  
Typ  
Max  
Units  
ns  
*
MasterIN  
MasterIN  
Master  
Slave  
Set Up Time (A/D, R/W ) and Data On Time  
20  
*
T2  
Hold Time (A/D, R/W ) and Data Off Time  
15  
5
ns  
T3  
Master Latency  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
ns  
T4  
Slave Latency  
6
T5  
Slave  
ChipSelect* Delay  
ChipSelect Low Pulse Width  
Data Set Up Time  
Data Hold Time  
1
T6  
Slave  
6
T7  
Slave  
5
T8  
Slave  
15  
ns  
T9  
Slave  
Slave Read Latency  
MST Read Latency and INTR Delay  
Data Delay  
4
12  
MC Cycles  
MC Cycles  
ns  
T10  
T11  
T12  
T13  
T14  
Master  
Master  
18.6  
15  
MasterOUT Data Valid after Strobe  
MasterOUT CS* or E active pulse width  
MasterOUT INTR De-assert  
ns  
20  
ns  
5
MC Cycles  
17  
www.national.com  
Functional Description (Continued)  
TABLE 6. READ6800 µP Interface Parameters (Continued)  
No.  
T15  
T16  
Parameter  
Min  
Typ  
Max  
Units  
ns  
MasterOUT Recovery Time  
MasterOUT INTR Response, (Note 5)  
5
0
MC Cycles  
For the MOT CPU 68xx mode, the Master accepts data on the CS* Low-to-High transition or the E High-to-Low transition, which  
ever come first. The Slave output only uses the CS* pin for data strobe/latch, as the E signal is held constantly High.  
CPU MODEWRITEi80  
20093312  
FIGURE 15. WRITE80xx µP Interface  
TABLE 7. WRITE80xx µP Interface Parameters  
No.  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Parameter  
Data Setup before Write* High  
Data Hold after Write* High  
Write* Recovery Time, (Note 5)  
Master Latency  
Min  
5
Typ  
Max  
Units  
ns  
MasterIN  
MasterIN  
MasterIN  
Master  
5
ns  
6
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
5
9
1
3
4
1
Slave  
Slave Latency  
SlaveOUT Data Valid before Write* High-to-Low  
SlaveOUT WR* Pulse Width Low  
SlaveOUT Data Valid before Write* Low-to-High  
SlaveOUT Data Valid after Write* Low-to-High  
www.national.com  
18  
19  
www.national.com  
Functional Description (Continued)  
TABLE 8. READIntel µP Interface Parameters  
No.  
T1  
Parameter  
Min  
Typ  
Max  
Units  
ns  
*
MasterIN  
MasterIN  
Master  
Slave  
Set Up Time (A/D, RD ) and Data On Time  
20  
*
T2  
Hold Time (A/D, RD ) and Data Off Time  
15  
5
ns  
T3  
Master Latency  
MC Cycles  
MC Cycles  
MC Cycles  
MC Cycles  
ns  
T4  
Slave Latency  
6
T5  
Slave  
Read* Delay  
1
T6  
Slave  
Read Low Pulse Width  
Data Set Up Time  
Data Hold Time  
6
T7  
Slave  
5
T8  
Slave  
15  
ns  
T9  
Slave  
Slave Read Latency  
MST Read Latency and INTR Delay  
Data Delay  
4
12  
MC Cycles  
MC Cycles  
ns  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
Master  
Master  
18.6  
15  
MasterOUT Data Valid after Strobe  
MasterOUT RD* active pulse width  
MasterOUT INTR De-assert  
ns  
20  
0
ns  
5
5
MC Cycles  
ns  
MasterOUT Recovery Time  
MasterOUT INTR Response, (Note 5)  
MC Cycles  
TABLE 9. SLV Output in Powerdown  
LM2502 Features and Operation  
Pin  
SLV  
i80  
H
SLV  
m68  
H
POWER SUPPLIES  
The VDDcore and VDDA (MPL and PLL) must be connected to  
the same potential between 2.9V and 3.3V. VDDIO powers  
the logic interface and may be powered between 1.7 and  
3.3V to be compatible with a wide range of host and target  
AD  
Data[n]  
CLK  
L
L
L
L
devices. VDDIO should not be powered up without VDDcore  
VDDA applied as VDDcore biases the IO ring. During power  
/
*
*
CS1  
CS2  
H
H
L
H
up, all rails should power up at the same time, or VDDcore  
VDDA should lead.  
/
MF0  
MF1  
H
H
H
H
POWER DOWN/OFF  
The Master and the Slave provide a PD* pin to save power  
when the link is not needed. A Low on this pin will power  
down the entire device and turn off the line current to MD0,  
MD1, and MC.  
BYPASS RECOMMENDATIONS  
Bypass capacitors should be placed near the power supply  
pins of the device. Use high frequency ceramic (surface  
mount recommended) 0.1 µF capacitors. A 2.2 to 4.7 µF  
Tantalum capacitor is recommended near the Master (SER)  
VDDA pin for PLL bypass. Connect bypass capacitors with  
wide traces and use dual or larger via to reduce resistance  
and inductance of the feeds. Utilizing a thin spacing between  
power and ground planes will provide good high frequency  
bypass above the frequency range where most typical sur-  
face mount capacitors are less effective. To gain the maxi-  
mum benefit from this, low inductance feed points are impor-  
tant. Also, adjacent signal layers can be filled to create  
additional capacitance. Minimize loops in the ground returns  
also for improved signal fidelity and lowest emissions.  
During power up, the PD* inputs should be held LOW and  
released once power is stable and within specification. The  
Slave PD* may be released first or at the same time as the  
*
Master’s PD pin. CLK (Master) should be applied prior to  
releasing PD*. If the Powerdown state is not required, the  
*
PD pins maybe connected to VDDIO, however VDDIO should  
power up smooth through the logic threshold region.  
*
In Powerdown (PD = GND) the following outputs are driven  
to:  
Master:  
INTR = L  
Slave depends on mode configuration - see Table 9.  
UN-USED/OPEN PINS  
Unused inputs must be tied to the proper input leveldo not  
float them. Unused outputs should be left open to minimize  
power dissipation.  
PHASE-LOCKED LOOP  
When the LM2502 is configured as a Master, a PLL is  
enabled to generate the serial link clock. The Phase-locked  
loop system generates the serial data clock at several mul-  
tiples of the input clock. The PLL operates with an input clock  
www.national.com  
20  
the CLK pin. Slave PLL_CON[2:0] pins do not need to be set  
the same as the Master, this allows for clock multiplication /  
division to be supported for the output clock reference signal.  
LM2502 Features and Operation  
(Continued)  
between 3 and 25 MHz. See Table 10 below, Multiplier/  
Divisor times CLK rate must also be less than 76.8 MHz. The  
76.8 MHz limitation is based on the semiconductor process  
used on this implementationit is not an MPL limitation.  
RESET  
On both the Master and the Slave, the PD* pin resets the  
logic. The PD* pins should be held low until the power supply  
has ramped up and is stable and within specifications. The  
Slave PD pin should be driven High first or at the same time  
as the Master. This will ensure that the Slave sees the start  
up sequence from the Master.  
Line rate should also be selected such that it is faster than  
the input load rate when bursting data across the link. Oth-  
erwise 8/10 X Line rate must be greater than the input load  
rate to the Master. At the maximum raw data rate of 307  
Mbps, the maximum information rate is 245 Mbps. Thus the  
parallel load rate at the Master input must not exceed 15.4  
Mega Transfers per second sustained (of 16 data bits). The  
Master can accommodate up to four words at a higher rate  
due to internal FIFOs.  
*
MASTER/SLAVE SELECTION  
The M/S* pin is used to configure the device as either a  
Master or Slave device. When the M/S* pin is a Logic High,  
the Master configuration is selected. The Driver block is  
enabled for the MC line, and the MD lines. When the M/S*  
pin is a Logic Low, the Slave configuration is selected. The  
Receiver block is enabled for the MC line, and the MD lines.  
Configuration pins (PLL_CON[2:0], and M/S*) are used to  
determine the mode of which the part is operating in. In the  
Slave configuration the PLL block is disabled. The Slave  
PLL_CON pins are required to set up the proper divisor for  
TABLE 10. PLL_CON Settings  
Maximum  
CLK Input  
(MC % 76.8  
MHz)  
Multiplier  
(Master)  
MC out  
CLK X 2  
Divisor  
(Slave)  
CLKout  
Minimum  
CLK Input  
PLLCON2  
PLLCON1  
PLLCON0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
MC / 2  
13 MHz  
25 MHz  
CLK X 4  
CLK X 6  
CLK X 7  
CLK X 8  
CLK X 9  
CLK X 10  
MC / 4  
MC / 6  
MC / 7  
MC / 8  
MC / 9  
MC / 10  
6 MHz  
3 MHz  
3 MHz  
3 MHz  
3 MHz  
3 MHz  
19.2 MHz  
12.8 MHz  
10.97 MHz  
9.60 MHz  
8.53 MHz  
7.68 MHz  
(Reserved)  
and the counter expired, an additional 40 clock cycles are  
required for the calibration of the MPL link. After this, data  
may now be written to the device.  
Application Information  
SYSTEM CONSIDERATIONS  
It takes 5MC Cycles to send a 16-bit CPU Write including the  
serial overhead. The MC cycle time is calculated based on  
the PLL_CON[2:0] setting and also the input clock fre-  
quency. For example, a 19.2MHz input CLK and a 4X  
PLLCON setting yields a MC frequency of 76.8MHz. Thus it  
takes 65.1ns to send the word in serial form. To allow some  
idle time between transmissions (this will force a bit sync per  
word if the gap is long enough in between), the load rate on  
the Master input should not be faster than 6MC cycles, or  
every 78ns in our example to support a data pipe line. This is  
sometimes referred to as the bus cycle time (time between  
commands).  
When employing the MPL SERDES chipset in place of a  
parallel bus, a few system considerations must be taken into  
account. Before sending commands (ie initialization com-  
mands) to the display, the SERDES must be ready to trans-  
mit data across the link. The MPL link must be powered up,  
and the PLL must be locked. Also a review of the Slave  
output timing should be completed to insure that the timing  
parameters provided by the Slave output meet the require-  
ments of the LCD driver input. Specifically, pulse width on  
CSn*, RD* / WR*, data valid time, and bus cycle rate should  
be reviewed and checked for inter-operability. Additional de-  
tails are provided next:  
The Slave output times is also a function of MC cycles. Note  
The MPL link should be started up as follows: The chipset  
should be powered up first, VDDIO should not be powered up  
first, it may be at the same time as VDD/VDDA or lag. During  
power up, the PD* inputs should be held LOW and released  
once power is stable and within specification. The Slave PD*  
may be released first or at the same time as the Master. CLK  
should be applied prior to releasing PD*.  
*
that in i80 mode, the width of the WR pulse (in m68 mode  
*
the width of the CS ) pulse low is three MC cycles regard-  
less of the pulse width applied to the Master input. System  
designers need to check compatibility with the display driver  
to ensure this pulse width meets its requirement. If it is too  
fast, select a lower PLLCON setting or apply a slower input  
clock.  
Before data can be sent across the MPL serial link, the link  
must be ready for transmission. The CLK needs to be ap-  
plied to the device, and the PLL locked. This is controlled by  
a keep-off counter set for 4096 cycles. After the PLL has lock  
The CLK input must be free running and not gapped. If the  
clock is stopped a RESET (PD* = Low) cycle should be done  
and the link brought up again.  
21  
www.national.com  
returns are an important part of system design. Impedance  
should be in the 50 to 100 Ohm nominal range for the  
LM2502. Testing has been done with cables ranging from 40  
to 110 Ohms without error (BER Testing). To obtain the  
impedance, adjacent grounds are typically required ( 1 layer  
flex), or a ground shield / layer. Total interconnect length is  
intended to be in the 20cm range, however 30cm is possible  
at lower data rates. Skew should be less than 500ps to  
maximize timing margins.  
Application Information (Continued)  
MPL SWAP FEATURE  
The LM2502 provides a swap function of MPL MD lines  
depending upon the state of the M/S* pin. This facilitates a  
straight through MPL interface design eliminating the needs  
for via and crossovers as shown on Figure 17. See also  
Connection Diagram and Table 1.  
Note that three pins are defined differently on the MAS-  
TER and the SLAVE configured device. Schematic Cap-  
ture device diagrams should take this into account for  
proper connection. The following pin descriptions apply  
for the three pins given in Ball Number : Master (Slave)  
function  
GROUNDING  
While the LM2502 employs three separate types of ground  
pins, these are intended to be connected together to a  
common ground plane. The separate ground pins help to  
isolate switching currents from different sections of the inte-  
grated circuit (IC). Also required is a nearby signal return  
(ground) for the MPL signals. These should be provided next  
to the MPL signals, as that will create the smallest current  
loop area. The grounds are also useful for noise isolation  
and impedance control.  
UFBGA Package  
A5 : INTR (CLKDIS*)  
A6 : MD1 (MD0)  
B7 : MD0 (MD1)  
PCB RECOMMENDATIONS  
LLP Package  
General guidelines for the PCB design:  
34 : INTR (CLKDIS*)  
32 : MD1 (MD0)  
29 : MD0 (MD1)  
Floor plan, locate MPL Master near the connector to limit  
chance of cross talk to high speed serial signals.  
Route serial traces together, minimize the number of  
layer changes to reduce loading.  
FLEX CIRCUIT RECOMMENDATIONS  
The three MPL lines should generally run together to mini-  
mize any trace length differences (skew). For impedance  
control and also noise isolation (crosstalk), guard ground  
traces are recommended in between the signals. Commonly  
a Ground-Signal-Ground (GSGSGSG) layout is used. Lo-  
cate fast edge rate and large swing signals further away to  
also minimize any coupling (unwanted crosstalk). In a  
stacked flex interconnect, crosstalk also needs to be taken  
into account in the above and below layers (vertical direc-  
tion). To minimize any coupling locate MPL traces next to a  
ground layer. Power rails also tend to generate less noise  
than LVCMOS so they are also good candidates for use as  
isolation and separation.  
Use ground lines are guards to minimize any noise cou-  
pling (guarantees distance).  
Avoid parallel runs with fast edge, large LVCMOS swings.  
Also use a GSGSG pinout in connectors (Board to Board  
or ZIF).  
Slave device - follow similar guidelines.  
Bypass the device with MLC surface mount devices and  
thinly separated power and ground planes with low induc-  
tance feeds.  
High current returns should have a separate path with a  
width proportional to the amount of current carried to  
minimize any resulting IR effects.  
The interconnect from the Master to the Slave typically acts  
like a transmission line. Thus impedance control and ground  
20093320  
FIGURE 17. MPL Interface Layout - UFBGA Example  
www.national.com  
22  
Application Information (Continued)  
20093321  
FIGURE 18. LM2502 UFBGA Package PWR (VDD) and GND (VSS) Balls  
*
DISPLAY APPLICATION  
output. If this is desired the CLKDIS pin needs to be also  
tied HIGH. A different PLL_CON setting can be used to alter  
the frequency if desired. As the Divisor setting in the Slave is  
not used for data recovery. For the dual display application,  
the multidrop bus should be laid out to minimize any result-  
ing stub lengths on the Data, A/D, and control signals.  
The LM2502 chipset is intended for Interface between a host  
(processor) and a Display. It supports a 16 or 8-bit CPU style  
interface and can be configured for i80 or m68 modes.  
The Master side connection is shown in Figure 19. Input  
Clock frequency and the selection of the PLL_CON setting  
are determined by system parameters. These include the  
required display bandwidth, the Master load rate and the  
Display Driver input timing requirements. See the System  
Considerations section for more details.  
If required, the Slave output clock can be enabled to provide  
a output frequency reference. The frequency can be ad-  
justed by setting different PLL_CON (divisor) settings (on the  
Slave). This can then be used as a frequency reference  
signal to the display module or other subsystem (ie camera  
module). If the CLK output is not needed, tie the Slave  
The Display side parallel bus may be connected to one or  
two displays. Each display has its own chipselect signal. If  
only one display is required, the unused CS signal should be  
tied HIGH (VDDIO) on the Master, and the unused output left  
open on the Slave. The Slave provides an optional clock  
*
CLKDIS pin Low to disable it. The Clock is available when  
ever the MPL link is enabled.  
23  
www.national.com  
Application Information (Continued)  
20093301  
FIGURE 19. Display Interface Application  
RGB565 APPLICATION  
MC cycle. See Figure 20 for details. Support is provided for  
PCLKs in the 3 to 25 MHz range. PLLCON setting of X8 is  
also possible, however, the Slave output PCLK (WR*) will  
have some duty cycle distortion (37.5%).  
The LM2502 chipset may also be configured for a RGB565  
application. This is also known as a "buffer-less" or "dumb"  
display application. In this configuration 16 color bits (R[4:0],  
G[5:0], B[4:0]), Pixel Clock (PCLK) and two control bits (VS  
and HS) are supported. An external invertor is also required.  
Slower PCLK rates maybe supported if a higher frequency  
multiple of the PCLK is available. For example, if a 2MHz  
PCLK is required, then a 6MHz CLK (freq locked, not phase)  
may be applied to the MST CLK input and the 2MHz PCLK  
to the MST WR* signal input. The PLLCON setting should be  
selected as 2X (PLLCON[2:0] = 000’b). Once again 5 MC  
cycles are required to transfer the pixel data, and the WR*  
(PCLK) will be 50% duty cycle. The applied CLK and  
PLLCON should be selected such that is creates a 6X  
multiple on MC to ensure a 50% duty cycle.  
To configure for the RGB565 mode, the i80 mode must be  
selected. The Pixel clock should be connected to both the  
CLK input and the WR* pins on the Master. The PLL_CON  
pins should be configured for a 6X mode, as it takes 5 MC  
cycles to transfer the RGB data, and the 6X setting will  
provide a 50% output PCLK from the Slave device. The 50%  
duty cycle PCLK is created by the WR* signal which pulses  
low for 3 MC cycles and is high for 2 MC cycles and an idle  
20093322  
FIGURE 20. RGB565 Application  
QVGA Example - For a QVGA display (320 by 240), with 16  
bits of color depth and 60 frames per second, a net band-  
width requirement is 73.728 Mbps. Maximum transfer rate  
for the LM2502 chipset is 245 Mbps (307 Mbps raw - in-  
cludes overhead), thus there is adequate bandwidth for this  
application and even larger resolution displays.  
www.national.com  
24  
With this configuration there will always be a valid CS* LOW  
on the Master input. The RGB information is then serialized  
and passed to the Slave via the MPL bus. It takes 5 MC  
cycles to complete the transfer and with the 6X PLL setting,  
there will be two idle bits on the MD (1 MC cycle) lines before  
the next transfer. Recovery of the RGB interface (RGB565,  
HS, VS and PCLK) is provided at the Slave output. The  
PCLK is slightly shifted later in time (1 MC cycle) but ad-  
equate timing margin (increased set, shorted hold) is still  
provided.  
Application Information (Continued)  
Figure 21 shows the typical timing of the RGB application.  
The 6X PLL setting (PLLCON[2:0] = 010’b) is selected. The  
PCLK is applied to both the WR* and CLK inputs on the  
Master. The rising edge on the WR* (PCLK) signal samples  
the data by the Master for serialization. The CLK input can  
be the PCLK (if timing requirements are met) or a synchro-  
nous clock to the PCLK signal. The HS connects to the CS1*  
signal and the HS* (inverted HS) is connected to the CS2*.  
20093323  
FIGURE 21. RGB565 Application Timing  
25  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
49 Lead UFBGA, 0.5mm pitch  
Order Number LM2502SM  
NS Package Number SLH49A  
40 Lead LLP, 0.4mm pitch  
Order Number LM2502SQ  
NS Package Number SQF40A  
www.national.com  
26  
Notes  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain  
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
Leadfree products are RoHS compliant.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  
配单直通车
LM2502SMX产品参数
型号:LM2502SMX
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Obsolete
零件包装代码:BGA
包装说明:TFBGA,
针数:49
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.65
差分输出:NO
驱动器位数:1
输入特性:SCHMITT TRIGGER
接口集成电路类型:LINE TRANSCEIVER
接口标准:GENERAL PURPOSE
JESD-30 代码:S-PBGA-B49
JESD-609代码:e1
长度:4 mm
湿度敏感等级:3
功能数量:1
端子数量:49
最高工作温度:85 °C
最低工作温度:-30 °C
封装主体材料:PLASTIC/EPOXY
封装代码:TFBGA
封装形状:SQUARE
封装形式:GRID ARRAY, THIN PROFILE, FINE PITCH
峰值回流温度(摄氏度):260
认证状态:Not Qualified
接收器位数:1
座面最大高度:1.1 mm
最大供电电压:3.3 V
最小供电电压:2.9 V
标称供电电压:3 V
表面贴装:YES
温度等级:OTHER
端子面层:TIN SILVER COPPER
端子形式:BALL
端子节距:0.5 mm
端子位置:BOTTOM
处于峰值回流温度下的最长时间:40
宽度:4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!