欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • LNK616PG图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • LNK616PG 现货库存
  • 数量5098 
  • 厂家Power Integrations(帕沃英蒂格盛) 
  • 封装DIP-8 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • LNK616PG图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • LNK616PG 现货库存
  • 数量5000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号24+ 
  • 全新原装现货,低价出售,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • LNK616PG图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • LNK616PG 现货库存
  • 数量20000 
  • 厂家POWER 
  • 封装DIP 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • LNK616PG图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LNK616PG 现货库存
  • 数量69850 
  • 厂家Power Integrations 
  • 封装DIP 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LNK616PG图
  • 深圳西迈尔科技有限公司

     该会员已使用本站9年以上
  • LNK616PG 现货库存
  • 数量10000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号21+ 
  • 原装现货供应
  • QQ:13316801556QQ:13316801556 复制
    QQ:2706801556QQ:2706801556 复制
  • 13316801556 QQ:13316801556QQ:2706801556
  • LNK616PG图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LNK616PG
  • 数量85000 
  • 厂家POWER 
  • 封装1113+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • LNK616PG图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • LNK616PG
  • 数量25000 
  • 厂家PI 
  • 封装DIP-7 
  • 批号2018+ 
  • 一级专营品牌全新原装热卖
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • LNK616PG图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • LNK616PG
  • 数量55000 
  • 厂家PI 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • LNK616PG图
  • 集好芯城

     该会员已使用本站13年以上
  • LNK616PG
  • 数量14851 
  • 厂家POWER 
  • 封装DIP7 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • LNK616PG图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • LNK616PG
  • 数量6878 
  • 厂家POWER/拓普 
  • 封装DIP-7 
  • 批号08+Pb 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • LNK616PG图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • LNK616PG
  • 数量30000 
  • 厂家POWER 
  • 封装DIP 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • LNK616PG图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • LNK616PG
  • 数量
  • 厂家POWER 
  • 封装雅维特电子全新正品 
  • 批号83000 
  • QQ:767621813QQ:767621813 复制
    QQ:541766577QQ:541766577 复制
  • 0755-83975781 QQ:767621813QQ:541766577
  • LNK616PG图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • LNK616PG
  • 数量3500 
  • 厂家Power Integrations 
  • 封装8-DIP 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • LNK616PG图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • LNK616PG
  • 数量65400 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号NEW 
  • 【◆全新原装现货◆绝对价格优势◆质量保证◆】
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • LNK616PG图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • LNK616PG
  • 数量35000 
  • 厂家POWER 
  • 封装 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • LNK616PG图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • LNK616PG
  • 数量5784 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • LNK616PG图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • LNK616PG
  • 数量3000 
  • 厂家Power 
  • 封装8-DIP,7 
  • 批号24+ 
  • 授权分销 现货热卖
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • LNK616PG图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • LNK616PG
  • 数量14950 
  • 厂家POWER 
  • 封装DIP 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • LNK616PG图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • LNK616PG
  • 数量2800 
  • 厂家POWER 
  • 封装DIP-8 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • LNK616PG图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • LNK616PG
  • 数量3000 
  • 厂家POWER 
  • 封装DIP8 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • LNK616PG图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • LNK616PG
  • 数量5000 
  • 厂家Power Integrations 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • LNK616PG图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • LNK616PG
  • 数量11530 
  • 厂家Power Integrations 
  • 封装8-DIP 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • LNK616PG图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • LNK616PG
  • 数量5893 
  • 厂家Power 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • LNK616PG图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • LNK616PG
  • 数量9328 
  • 厂家POWER-微源 
  • 封装DIP-8.直插 
  • 批号▉▉:2年内 
  • ▉▉¥7.1元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • LNK616PG图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • LNK616PG
  • 数量16200 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号23+ 
  • 全新原装正品现货低价
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • LNK616PG图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LNK616PG
  • 数量13500 
  • 厂家POWER 
  • 封装DIP 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • LNK616PG图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LNK616PG
  • 数量55939 
  • 厂家PI 
  • 封装DIP-7 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • LNK616PG图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • LNK616PG
  • 数量5500 
  • 厂家POWER 
  • 封装DIP7 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • LNK616PG图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • LNK616PG
  • 数量2500 
  • 厂家POWER 
  • 封装DIP 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3007947169QQ:3007947169 复制
    QQ:3007947210QQ:3007947210 复制
  • 755-83950895 QQ:3007947169QQ:3007947210
  • LNK616PG图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • LNK616PG
  • 数量
  • 厂家POWER原装特价 
  • 封装原厂指定分销商,有意请来电或QQ洽谈 
  • 批号17+ 
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • LNK616PG图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • LNK616PG
  • 数量2500 
  • 厂家POWER 
  • 封装DIP 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 0755-83950895 QQ:3003818780QQ:3003819484
  • LNK616PG图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • LNK616PG
  • 数量99000 
  • 厂家POWER 
  • 封装DIP 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • LNK616PG图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • LNK616PG
  • 数量2500 
  • 厂家POWER 
  • 封装DIP7 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • LNK616PG图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • LNK616PG
  • 数量3500 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • LNK616PG图
  • 深圳市赛矽电子有限公司

     该会员已使用本站13年以上
  • LNK616PG
  • 数量60070 
  • 厂家POWER 
  • 封装DIP-8 
  • 批号最新 
  • 原厂渠道 优势价格
  • QQ:3397630681QQ:3397630681 复制
  • 0755-83040896 QQ:3397630681

产品型号LNK616PG的概述

LNK616PG 芯片概述 LNK616PG 是由 Power Integrations 公司推出的一款专用于开关电源的集成电路(IC),广泛应用于消费电子、家居电器和工业设备等领域。作为 LinkSwitch-TN 系列的一部分,LNK616PG 提供了一种高效、低成本的解决方案,满足各种电源设计需求。此芯片集成了多种功能,以简化电源设计,同时提高系统效率和可靠性。 LNK616PG 的设计理念是通过集成多个功能模块,包括功率转换、反馈控制和保护功能,来简化电源构建的复杂性。该 IC 具有高达 45W 的输出功率能力,适用于多种应用场景,如适配器、LED 驱动电源和小型电源模块。 LNK616PG 详细参数 LNK616PG 的主要参数包括: - 输入电压范围:85V 至 265V AC - 输出功率能力:最高可达 45W - 开关频率:大约 132kHz - 工作温度范围:-40°...

产品型号LNK616PG的Datasheet PDF文件预览

LNK603-606/613-616  
®
LinkSwitch-II Family  
Energy-Efficient, Accurate CV/CC Switcher  
for Adapters and Chargers  
Product Highlights  
Dramatically Simplifies CV/CC Converters  
Eliminates optocoupler and all secondary CV/CC control circuitry  
Eliminates all control loop compensation circuitry  
Advanced Performance Features  
Compensates for transformer inductance tolerances  
Compensates for input line voltage variations  
Compensates for cable voltage drop (LNK61X series)  
Compensates for external component temperature variations  
Very tight IC parameter tolerances using proprietary trimming  
technology  
Wide Range  
High Voltage  
DC Input  
D
S
FB  
LinkSwitch-II  
BP/M  
Frequency jittering greatly reduces EMI filter cost  
Even tighter output tolerances achievable with external resistor  
selection/trimming  
PI-4960-011510  
(a) Typical Application Schematic  
Programmable switching frequency up to 85 kHz to reduce  
transformer size  
VO  
±±5  
Advanced Protection/Safety Features  
Auto-restart protection reduces power delivered by >95% for  
output short circuit and control loop faults (open and shorted  
components)  
±ꢀ15  
Hysteretic thermal shutdown – automatic recovery reduces  
power supply returns from the field  
Meets high voltage creepage requirements between DRAIN and  
all other pins both on the PCB and at the package  
PI-4916-14ꢀ118  
(b) Output Characteristic  
IO  
EcoSmart® – Energy Efficient  
Figure 1. Typical Application/Performance – Not a Simplified Circuit (a) and  
Output Characteristic Envelope (b). (see Application Section for  
more information).  
Easily meets all global energy efficiency regulations  
No-load consumption below 30 mW at 230 VAC with optional  
external bias winding  
ON/OFF control provides constant efficiency down to very light  
loads – ideal for CEC and ENERGY STAR 2.0 regulations  
No current sense resistors – maximizes efficiency  
Output Power Table  
85-265 VAC  
Product3  
Adapter1  
2.5 W  
Open Frame2  
Green Package  
Halogen free and RoHS compliant package  
LNK603/613PG/DG  
LNK604/614PG/DG  
LNK605/615PG/DG  
LNK606/616PG/GG/DG  
3.3 W  
3.5 W  
4.1 W  
Applications  
4.5 W  
5.1 W  
Chargers for cell/cordless phones, PDAs, MP3/portable audio  
devices, adapters, LED drivers, etc.  
5.5 W  
6.1 W  
Table 1. Output Power Table.  
Description  
Notes:  
The LinkSwitch-II dramatically simplifies low power CV/CC  
charger designs by eliminating an optocoupler and secondary  
control circuitry. The device introduces a revolutionary control  
technique to provide very tight output voltage and current  
regulation, compensating for transformer and internal parameter  
tolerances along with input voltage variations.  
1. Minimum continuous power in a typical non-ventilated enclosed adapter  
measured at +50 °C ambient, device, TJ <100 °C.  
2. Maximum practical continuous power in an open frame design with adequate  
heatsinking, measured at 50 °C ambient (see Key Applications Considerations  
section for more information).  
3. Packages: P: DIP-8C, G: SMD-8C, D: SO-8C.  
The device incorporates a 700 V power MOSFET, a novel ON/OFF  
control state machine, a high voltage switched current source for  
self biasing, frequency jittering, cycle-by-cycle current limit and  
hysteretic thermal shutdown circuitry onto a monolithic IC.  
www.powerint.com  
January 2010  
LNK603-606/613-616  
DRAIN  
(D)  
REGULATOR  
6 V  
BYPASS  
(BP/M)  
+
-
6 V  
5 V  
FB  
OUT  
+
Reset  
VILIMIT  
D
Q
STATE  
MACHINE  
FEEDBACK  
VTH  
-
(FB)  
tSAMPLE-OUT  
ILIM  
DCMAX  
Drive  
VILIMIT  
CABLE DROP  
COMPENSATION  
FAULT  
Auto-Restart  
Open-Loop  
FB  
6.5 V  
THERMAL  
SHUTDOWN  
INDUCTANCE  
CORRECTION  
DCMAX  
tSAMPLE-INPUT  
SAMPLE  
tSAMPLE-OUT  
DELAY  
tSAMPLE-INPUT  
OSCILLATOR  
SOURCE  
(S)  
+
-
ILIM  
SOURCE  
(S)  
VILIMIT  
CONSTANT  
CURRENT  
Current Limit  
Comparator  
LEADING  
EDGE  
BLANKING  
PI-4908-041508  
Figure 2  
Functional Block Diagram.  
Pin Functional Description  
DRAIN (D) Pin:  
P Package (DIP-8C)  
G Package (SMD-8C)  
This pin is the power MOSFET drain connection. It provides  
internal operating current for both start-up and steady-state  
operation.  
D Package (SO-8C)  
FB  
S
S
1
2
8
7
1
2
8
7
FB  
S
S
S
S
BYPASS/MULTI-FUNCTIONAL PROGRAMMABLE  
(BP/M) Pin:  
This pin has multiple functions:  
1. It is the connection point for an external bypass capacitor for  
the internally generated 6 V supply.  
BP/M  
BP/M  
6
5
6
5
S
S
4
D
D
4
2. It is a mode selection for the cable drop compensation for  
LNK61X series.  
3a  
3b  
FEEDBACK (FB) Pin:  
PI-3491-012808  
During normal operation, switching of the power MOSFET is  
controlled by this pin. This pin senses the AC voltage on the bias  
winding. This control input regulates both the output voltage in  
CV mode and output current in CC mode based on the flyback  
voltage of the bias winding. The internal inductance correction  
circuit uses the forward voltage on the bias winding to sense the  
bulk capacitor voltage.  
Figure 3. Pin Configuration.  
SOURCE (S) Pin:  
This pin is internally connected to the output MOSFET source for  
high voltage power and control circuit common returns.  
2
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
Auto-Restart and Open-Loop Protection  
LinkSwitch-II Functional Description  
In the event of a fault condition such as an output short or an  
open loop condition the LinkSwitch-II enters into an appropriate  
protection mode as described below.  
The LinkSwitch-II combines a high voltage power MOSFET  
switch with a power supply controller in one device. Similar to  
the LinkSwitch-LP and TinySwitch-III it uses ON/OFF control to  
regulate the output voltage. In addition, the switching frequency  
is modulated to regulate the output current to provide a  
constant current characteristic. The LinkSwitch-II controller  
consists of an oscillator, feedback (sense and logic) circuit, 6 V  
regulator, over-temperature protection, frequency jittering,  
current limit circuit, leading-edge blanking, inductance  
correction circuitry, frequency control for constant current  
regulation and ON/OFF state machine for CV control.  
In the event the FEEDBACK pin voltage during the flyback  
period falls below 0.7 V before the FEEDBACK pin sampling  
delay (~2.5 ms) for a duration in excess of ~450 ms (auto-restart  
on-time (tAR-ON) the converter enters into auto-restart, wherein  
the power MOSFET is disabled for 2 seconds (~18% auto-  
restart duty cycle). The auto-restart alternately enables and  
disables the switching of the power MOSFET until the fault  
condition is removed.  
Inductance Correction Circuitry  
In addition to the conditions for auto-restart described above, if  
the sensed FEEDBACK pin current during the forward period of  
the conduction cycle (switch “on” time) falls below 120 mA, the  
converter annunciates this as an open-loop condition (top  
resistor in potential divider is open or missing) and reduces the  
auto-restart time from 450 msec to approximately 6 clock cycles  
(90 ms), whilst keeping the disable period of 2 seconds.  
If the primary magnetizing inductance is either too high or low  
the converter will automatically compensate for this by adjusting  
the oscillator frequency. Since this controller is designed to  
operate in discontinuous-conduction mode the output power is  
directly proportional to the set primary inductance and its  
tolerance can be completely compensated with adjustments to  
the switching frequency.  
Over-Temperature Protection  
Constant Current (CC) Operation  
The thermal shutdown circuitry senses the die temperature. The  
threshold is set at 142 °C typical with a 60 °C hysteresis. When  
the die temperature rises above this threshold (142 °C) the  
power MOSFET is disabled and remains disabled until the die  
temperature falls by 60 °C, at which point the MOSFET is  
re-enabled.  
As the output voltage and therefore the flyback voltage across  
the bias winding increases, the FEEDBACK pin voltage increases.  
The switching frequency is adjusted as the FEEDBACK pin  
voltage increases to provide a constant output current regulation.  
The constant current circuit and the inductance correction  
circuit are designed to operate concurrently in the CC region.  
Current Limit  
Constant Voltage (CV) Operation  
The current limit circuit senses the current in the power  
MOSFET. When this current exceeds the internal threshold  
(ILIMIT), the power MOSFET is turned off for the remainder of that  
cycle. The leading edge blanking circuit inhibits the current limit  
comparator for a short time (tLEB) after the power MOSFET is  
turned on. This leading edge blanking time has been set so that  
current spikes caused by capacitance and rectifier reverse  
recovery time will not cause premature termination of the MOSFET  
conduction. The LinkSwitch-II also contains a “di/dt” correction  
feature to minimize CC variation across the input line range.  
As the FEEDBACK pin approaches VFBth from the constant  
current regulation mode, the power supply transitions into CV  
operation. The switching frequency at this point is at its  
maximum value, corresponding to the peak power point of the  
CCCV characteristic. The controller regulates the feedback pin  
voltage to remain at VFBth using an ON/OFF state-machine. The  
FEEDBACK pin voltage is sampled 2.5 ms after the turn-off of  
the high voltage switch. At light loads the current limit is also  
reduced to decrease the transformer flux density.  
Output Cable Compensation  
6.0 V Regulator  
This compensation provides a constant output voltage at the  
end of the cable over the entire load range in CV mode. As the  
converter load increases from no-load to the peak power point  
(transition point between CV and CC) the voltage drop introduced  
across the output cable is compensated by increasing the  
FEEDBACK pin reference voltage. The controller determines the  
output load and therefore the correct degree of compensation  
based on the output of the state machine. Cable drop  
compensation for a 24 AWG (0.3 W) cable is selected with  
CBP = 1 mF and for a 26 AWG (0.49 W) cable with CPB = 10 mF.  
The 6 V regulator charges the bypass capacitor connected to  
the BYPASS pin to 6 V by drawing a current from the voltage on  
the DRAIN, whenever the MOSFET is off. The BYPASS pin is  
the internal supply voltage node. When the MOSFET is on, the  
device runs off of the energy stored in the bypass capacitor.  
Extremely low power consumption of the internal circuitry  
allows the LinkSwitch-II to operate continuously from the  
current drawn from the DRAIN pin. A bypass capacitor value of  
either 1 mF or 10 mF is sufficient for both high frequency  
decoupling and energy storage.  
3
www.powerint.com  
Rev. F 01/10  
LNK603-606/613-616  
Applications Example  
C6  
1 nF  
R7  
100 V 200  
L1  
T1  
EE16  
1.5 mH  
5 V, 555 mA  
5
3
10  
D7  
C3  
820 pF  
1 kV  
R2  
SS14  
R8  
470 kΩ  
8
1
200 Ω  
D1  
D2  
C7  
1N4007 1N4007  
DC  
Output  
680 µF  
10 V  
R3  
RF1  
8.2 Ω  
2 W  
300 Ω  
2
4
VR1  
2MM5230B-7  
4.7 V  
C1  
4.7 µF  
400 V  
C2  
4.7 µF  
400 V  
D5  
1N4007  
AC  
Input  
NC  
D6  
LL4148  
LinkSwitch-II  
R5  
U1  
13 kΩ  
LNK613DG  
1%  
D
D3  
D4  
FB  
1N4007 1N4007  
BP  
R4  
S
R6  
8.87 kΩ  
1%  
C4  
1 µF  
25 V  
6.2 kC5  
10 µF  
16 V  
PI-5111-050808  
Figure 4.  
Energy Efficient USB Charger Power Supply (74% Average Efficiency, <30 mW No-load Input Power).  
compensation. A 1 mF value selects the standard compensation.  
A 10 mF value selects the enhanced compensation. Table 2  
shows the amount of compensation for each device and  
bypass capacitor value. The LNK60x devices do not provide  
cable drop compensation.  
Circuit Description  
This circuit shown in Figure 4 is configured as a primary-side  
regulated flyback power supply utilizing the LNK613DG. With  
an average efficiency of 74% and <30 mW no-load input power  
this design easily exceeds the most stringent current energy  
efficiency requirements.  
The optional bias supply formed by D6 and C5 provides the  
operating current for U1 via resistor R4. This reduces the  
no-load consumption from ~200 mW to <30 mW and also  
increases light load efficiency.  
Input Filter  
AC input power is rectified by diodes D1 through D4. The  
rectified DC is filtered by the bulk storage capacitors C1 and  
C2. Inductor L1, C1 and C2 form a pi (π) filter, which attenuates  
conducted differential-mode EMI noise. This configuration  
along with Power Integrations transformer E-shieldtechnology  
allow this design to meet EMI standard EN55022 class B with  
good margin without requiring a Y capacitor, even with the  
output connected to safety earth ground. Fusible resistor RF1  
provides protection against catastrophic failure. This should be  
suitably rated (typically a wire wound type) to withstand the  
instantaneous dissipation while the input capacitors charge  
when first connected to the AC line.  
The rectified and filtered input voltage is applied to one side of  
the primary winding of T1. The other side of the transformer’s  
primary winding is driven by the integrated MOSFET in U1. The  
leakage inductance drain voltage spike is limited by an RCD-R  
clamp consisting of D5, R2, R3, and C3.  
Output Rectification  
The secondary of the transformer is rectified by D7, a 1 A, 40 V  
Schottky barrier type for higher efficiency, and filtered by C7. If  
lower efficiency is acceptable then this can be replaced with a  
1 A PN junction diode for lower cost. In this application C7 was  
sized to meet the required output voltage ripple specification  
without requiring a post LC filter. To meet battery self discharge  
requirement the pre-load resistor has been replaced with a  
series resistor and Zener network (R8 and VR1). However in  
designs where this is not a requirement a standard 1 kW  
resistor can be used.  
LNK 613 Primary  
The LNK613DG device (U1) incorporates the power switching  
device, oscillator, CC/CV control engine, startup, and protection  
functions. The integrated 700 V MOSFET provides a large drain  
voltage margin in universal input AC applications, increasing  
reliability and also reducing the output diode voltage stress by  
allowing a greater transformer turns ratio. The device is  
completely self-powered from the BYPASS pin and decoupling  
capacitor C4. For the LNK61X devices, the bypass capacitor  
value also selects the amount of output cable voltage drop  
Output Regulation  
The LNK613 regulates the output using ON/OFF control in the  
constant voltage (CV) regulation region of the output character-  
4
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
istic and frequency control for constant current (CC) regulation.  
The feedback resistors (R5 and R6) were selected using  
standard 1% resistor values to center both the nominal output  
voltage and constant current regulation thresholds.  
LinkSwitch-II Output Cable Voltage Drop Compensation  
BYPASS Pin  
Output Voltage  
Change Factor  
Device  
LNK613  
Capacitor Value  
1.035  
1.055  
1.045  
1.065  
1.050  
1.070  
1.060  
1.090  
1 mF  
10 mF  
1 mF  
Key Application Considerations  
LNK614  
LNK615  
LNK616  
Output Power Table  
10 mF  
1 mF  
The data sheet maximum output power table (Table 1) repre-  
sents the maximum practical continuous output power level  
that can be obtained under the following assumed conditions:  
10 mF  
1 mF  
10 mF  
1. The minimum DC input voltage is 90 V or higher at 85 VAC  
input. The value of the input capacitance should be large  
enough to meet these criteria for AC input designs.  
2. Secondary output of 5 V with a Schottky rectifier diode.  
3. Assumed efficiency of 70%.  
4. Discontinuous mode operation (KP >1.3).  
5. The part is board mounted with SOURCE pins soldered to a  
sufficient area of copper to keep the SOURCE pin tempera-  
ture at or below 90 °C.  
Table 2. Cable Compensation Change Factor vs Device and BYPASS Pin  
Capacitor Value.  
The output voltage that is entered into PIXls design spreadsheet  
is the voltage at the end of the output cable when the power  
supply is delivering maximum power. The output voltage at the  
terminals of the supply is the value measured at the end of the  
cable multiplied by the output voltage change factor.  
LinkSwitch-II Layout Considerations  
6. Ambient temperature of 50 °C for open frame designs and  
an internal enclosure temperature of 60 °C for adapter  
designs.  
Circuit Board Layout  
LinkSwitch-II is a highly integrated power supply solution that  
integrates on a single die, both, the controller and the high  
voltage MOSFET. The presence of high switching currents and  
voltages together with analog signals makes it especially  
important to follow good PCB design practice to ensure stable  
and trouble free operation of the power supply. See Figure 5 for  
a recommended circuit board layout for LinkSwitch-II.  
Note: Higher output power are achievable if an output CC  
tolerance > 10% is acceptable, allowing the device to be  
operated at a higher SOURCE pin temperature.  
Output Tolerance  
LinkSwitch-II provides an overall output tolerance (including line,  
component variation and temperature) of 5% for the output  
voltage in CV operation and 10% for the output current during  
CC operation over a junction temperature range of 0 °C to 100 °C  
for the P/G package. For the D package (SO8) additional CC  
variance may occur due to stress caused by the manufacturing  
flow (i.e. solder-wave immersion or IR reflow). A sample power  
supply build is recommended to verify production tolerances for  
each design.  
When designing a printed circuit board for the LinkSwitch-II  
based power supply, it is important to follow the following  
guidelines:  
Single Point Grounding  
Use a single point (Kelvin) connection at the negative terminal of  
the input filter capacitor for the LinkSwitch-II SOURCE pin and  
bias winding return. This improves surge capabilities by  
returning surge currents from the bias winding directly to the  
input filter capacitor.  
BYPASS Pin Capacitor Selection  
For LinkSwitch-II 60x Family of Devices (without output  
cable voltage drop compensation)  
Bypass Capacitor  
The BYPASS pin capacitor should be located as close as  
possible to the SOURCE and BYPASS pins.  
A 1 mF BYPASS pin capacitor is recommended. The capacitor  
voltage rating should be greater than 7 V. The capacitor’s  
dielectric material is not important but tolerance of capacitor  
should be ≤ 50%. The capacitor must be physically located  
close to the LinkSwitch-II BYPASS pin.  
Feedback Resistors  
Place the feedback resistors directly at the FEEDBACK pin of  
the LinkSwitch-II device. This minimizes noise coupling.  
Thermal Considerations  
For LinkSwitch-II 61x Family of Devices (with output cable  
voltage drop compensation)  
The copper area connected to the SOURCE pins provides the  
LinkSwitch-II heat sink. A good estimate is that the LinkSwitch-II  
will dissipate 10% of the output power. Provide enough copper  
area to keep the SOURCE pin temperature below 90 °C. Higher  
temperatures are allowable only if an output current (CC)  
tolerance above 10% is acceptable. In this case a maximum  
SOURCE pin temperature below 110 °C is recommended to  
provide margin for part to part RDS(ON) variation.  
The amount of output cable compensation can be selected with  
the value of the BYPASS pin capacitor. A value of 1 mF selects  
the standard cable compensation. A 10 mF capacitor selects  
the enhanced cable compensation. Table 2 shows the amount  
of compensation for each LinkSwitch-II device and capacitor  
value. The capacitor can be either ceramic or electrolytic but  
tolerance and temperature variation should be ≤ 50%.  
5
www.powerint.com  
Rev. F 01/10  
LNK603-606/613-616  
Output Filter  
Capacitors  
Output  
Diode Snubber  
Input Stage  
Primary Clamp  
R1  
C1  
R8  
C6  
T1  
C2  
R3  
R4  
D5  
C3  
D7  
S
S
S
S
R1  
U1  
LinkSwitch-II  
R5  
L2  
Feedback  
Resistors  
R2  
FB  
BP  
D
D1  
R6  
C7  
D2  
D3  
C4  
C5  
D4  
Bypass  
Capacitor  
C8  
D3  
R9  
Bypass Supply  
Components  
RF1  
Preload  
Resistor  
Spark  
Gap  
AC  
Input  
DC  
Output  
PI-5110-050508  
Figure 5.  
PCB Layout Example Showing 5.1 W Design Using P Package.  
Secondary Loop Area  
Addition of a Bias Circuit for Higher Light Load Efficiency  
and Lower No-load Input Power Consumption.  
To minimize leakage inductance and EMI the area of the loop  
connecting the secondary winding, the output diode and the  
output filter capacitor should be minimized. In addition,  
sufficient copper area should be provided at the anode and  
cathode terminal of the diode for heatsinking. A larger area is  
preferred at the quiet cathode terminal. A large anode area can  
increase high frequency radiated EMI.  
The addition of a bias circuit can decrease the no-load input  
power from ~200 mW down to less than 30 mW at 230 VAC  
input. Light load efficiency also increases which may avoid the  
need to use a Schottky barrier vs PN junction output diode  
while still meeting average efficiency requirements.  
Electrostatic Discharge Spark Gap  
An trace is placed along the isolation barrier to form one  
electrode of a spark gap. The other electrode on the secondary  
is formed by the output return node. The spark gap directs  
ESD energy from the secondary back to the AC input. The  
trace from the AC input to the spark gap electrode should be  
spaced away from other traces to prevent unwanted arcing  
occurring and possible circuit damage.  
The power supply schematic shown in Figure 4 has the bias  
circuit incorporated. Diode D6, C5 and R4 form the bias circuit.  
As the output voltage is less than 8 V, an additional transformer  
winding is needed, AC stacked on top of the feedback winding.  
This provides a high enough voltage to supply the BYPASS pin  
even during low switching frequency operation at no-load.  
In Figure 4 the additional bias winding (from pin 2 to pin 1) is  
stacked on top of the feedback winding (pin 4 to pin 2). Diode  
D6 rectifies the output and C5 is the filter capacitor. A 10 uF  
capacitor is recommended to hold up the bias voltage at low  
switching frequencies. The capacitor type is not critical but the  
Drain Clamp Optimization  
LinkSwitch-II senses the feedback winding on the primary side  
to regulate the output. The voltage that appears on the feed-  
back winding is a reflection of the secondary winding voltage  
while the internal MOSFET is off. Therefore any leakage  
inductance induced ringing can affect output regulation. Optimizing  
the drain clamp to minimize the high frequency ringing will give  
the best regulation. Figure 6 shows the desired drain voltage  
waveform compared to Figure 7 with a large undershoot due to  
the leakage inductance induced ring. This will reduce the  
output voltage regulation performance. To reduce this adjust  
the value of the resistor in series with the clamp diode.  
voltage rating should be above the maximum value of VBIAS  
.
The recommended current into the BYPASS pin is equal to IC  
supply current (~0.5 mA) at the minimum bias winding voltage.  
The BYPASS pin current should not exceed 3 mA at the maximum  
bias winding voltage. The value of R4 is calculated according to  
(VBIAS – VBP)/IS2, where VBIAS (10 V typ.) is the voltage across C5, IS2  
(0.5 mA typ.) is the IC supply current and VBP (6.2 V typ.) is the  
6
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
An overshoot  
is acceptable  
Negative ring may  
increase output  
ripple and/or  
degrade output  
regulation  
Figure 6. Desired Drain Voltage Waveform with Minimal Leakage  
Ringing Undershoot.  
Figure 7.  
Undesirable Drain Voltage Waveform with Large Leakage  
Ring Undershoot.  
L1  
1 mH  
TI  
EE13  
5
10  
8
D7  
SL13  
C3  
R2  
470 k  
820 pF  
3
1 kV  
D1  
D2  
C7  
470 µF  
10 V  
1N4007 1N4007  
DC  
Output  
1 kΩ  
R3  
300 Ω  
RF1  
8.2 Ω  
2 W  
2
4
C1  
4.7 µF  
400 V  
C2  
4.7 µF  
400 V  
AC  
Input  
D5  
1N4007  
NC  
LinkSwitch-II  
R5  
U1  
13 kΩ  
LNK613DG  
1%  
D
D3  
D4  
FB  
1N4007 1N4007  
BP  
S
R6  
9.31 kΩ  
1%  
C4  
1 µF  
50 V  
PI-5116-050808  
Figure 8. LinkSwitch-II Flyback Power Supply Without Bias Supply.  
former saturation and excessive leading edge current spikes.  
LinkSwitch-II has a leading edge blanking time of 170 ns to  
prevent premature termination of the ON-cycle.  
BYPASS pin voltage. The parameters IS2 and VBP are provided in  
the parameter table of the LinkSwitch-II data sheet. Diode D6 can  
be any low cost diode such as FR102, 1N4148 or BAV19/20/21.  
3. Thermal check – At maximum output power, both minimum  
and maximum input voltage and maximum ambient tempera-  
ture; verify that temperature specifications are not exceeded  
for LinkSwitch-II, transformer, output diodes and output  
capacitors. Enough thermal margin should be allowed for  
part-to-part variation of the RDS(ON) of LinkSwitch-II, as specified  
in the data sheet. To assure 10% CC tolerance a maximum  
SOURCE pin temperature of 90 ºC is recommended.  
Quick Design Checklist  
As with any power supply design, all LinkSwitch-II designs  
should be verified on the bench to make sure that component  
specifications are not exceeded under worst-case conditions.  
The following minimum set of tests is strongly recommended:  
1. Maximum drain voltage – Verify that peak VDS does not exceed  
680 V at the highest input voltage and maximum output power.  
2. Maximum drain current – At maximum ambient temperature,  
maximum input voltage and maximum output load, verify  
drain current waveforms at start-up for any signs of trans-  
Design Tools  
Up-to-date information on design tools can be found at the  
Power Integrations web site: www.powerint.com  
7
www.powerint.com  
Rev. F 01/10  
LNK603-606/613-616  
Absolute Maximum Ratings(1,4)  
Lead Temperature(3) .................................................................260 °C  
Notes:  
1. All voltages referenced to SOURCE, TA = 25 °C.  
2. Duration not to exceed 2 msec.  
DRAIN Voltage .........................................................-0.3 V to 700 V  
DRAIN Peak Current: LNK603/613...................320 (480) mA(4)  
LNK604/614.................. 400 (600) mA(4)  
LNK605/615.................. 504 (750) mA(4)  
LNK606/616.................. 654 (980) mA(4)  
3. 1/16 in. from case for 5 seconds.  
Peak Negative Pulsed Drain Current ............................ -100 mA(2)  
FEEDBACK Pin Voltage .................................................-0.3 V to 9 V  
FEEDBACK Pin Current ................................................. ..... 100 mA  
BYPASS Pin Voltage ..................................... .............-0.3 V to 9 V  
Storage Temperature ........................................... -65 °C to 150 °C  
Operating Junction Temperature.........................-40 °C to 150 °C  
4. The higher peak DRAIN current is allowed while the DRAIN  
voltage is simultaneously less than 400 V.  
5. Maximum ratings specified may be applied, one at a time  
without causing permanent damage to the product.  
Exposure to Absolute Maximum ratings for extended  
periods of time may affect product reliability.  
Thermal Impedance  
Thermal Impedance: P or G Package:  
Notes:  
(qJA) ....................................70 °C/W(2); 60 °C/W(3) 1. Measured on pin 8 (SOURCE) close to plastic interface.  
(qJC)(1) ............................................... .........11 °C/W 2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad.  
D Package:  
3. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad.  
(qJA .....................................100 °C/W(2); 80 °C/W(3)  
(qJC)(1) .......................... ...........................30 °C/W  
Conditions  
(Unless OtherwiJse Specified)  
SOURCE = 0 V; T = 0 to 100 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Control Functions  
Output Frequency  
TJ = 25 °C, VFB = VFBth  
tON × IFB = 2 mA-ms  
(See Note 1,7)  
LNK603/6  
LNK613/6  
59  
58  
66  
65  
73  
72  
fOSC  
kHz  
Frequency Ratio  
(Constant Current)  
TJ = 25 °C  
Between VFB = 1.0 V and VFB = 1.6 V  
fRATIO(CC)  
fRATIO(IC)  
1.59  
1.635  
1.215  
7
1.68  
Frequency Ratio  
(Inductance Correction)  
Between tON × IFB = 1.6 mA × ms  
and tON × IFB = 2 mA × ms  
1.160  
1.265  
Peak-Peak Jitter Compared to  
Average Frequency, TJ = 25 °C  
Frequency Jitter  
%
Ratio of Output Fre-  
quency at Auto-Restart  
TJ = 25 °C  
Relative to fOSC  
fOSC(AR)  
DCMAX  
12  
16.5  
55  
21  
%
%
Maximum Duty Cycle  
(Note 4,5)  
LNK603/604P  
LNK603/604D  
1.815  
1.855  
1.835  
1.775  
1.935  
1.975  
1.975  
1.935  
1.840  
1.880  
1.860  
1.800  
1.960  
2.000  
2.000  
1.960  
1.865  
1.905  
1.885  
1.825  
1.985  
2.025  
2.025  
1.985  
LNK605P, LNK605D  
TJ = 25 °C  
See Figure 19,  
CBP = 10 mF  
LNK606P/G/D  
FEEDBACK Pin  
Voltage  
VFBth  
V
LNK613/614P  
LNK613/614/615D  
LNK615P  
LNK616P/G/D  
FEEDBACK Pin  
Voltage Temperature  
Coefficient  
TCVFB  
-0.01  
0.72  
%/°C  
V
FEEDBACK Pin  
Voltage at Turn-OFF  
Threshold  
VFB(AR)  
0.65  
0.79  
1.035  
1.055  
1.045  
1.065  
CBP = 1 mF  
CBP = 10 mF  
CBP = 1 mF  
CBP = 10 mF  
LNK613  
See Figure 19  
Cable Compensation  
Factor  
υFB  
LNK614  
See Figure 19  
8
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
Conditions  
(Unless OtherwiJse Specified)  
SOURCE = 0 V; T = 0 to 100 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Control Functions (cont.)  
1.05  
1.07  
1.06  
1.09  
4
CBP = 1 mF  
LNK615  
See Figure 19  
CBP = 10 mF  
Cable Compensation  
Factor  
υFB  
CBP = 1 mF  
LNK616  
See Figure 19  
CBP = 10 mF  
IFB = -500 mA  
fOSC = 66 kHz  
2
IFB = -1 mA  
Switch ON-Time  
tON  
ms  
VFB = VFBth  
(Note 5)  
1.33  
1
IFB = -1.5 mA  
IFB = -2 mA  
Minimum Switch  
ON-Time  
tON(min)  
(Note 5)  
700  
ns  
FEEDBACK Pin  
Sampling Delay  
tFB  
IS1  
See Figure 19  
2.35  
2.55  
280  
2.75  
330  
ms  
FB Voltage > VFBth  
DRAIN Supply  
Current  
LNK6X3/4  
440  
480  
520  
-3.4  
-4.8  
-2.3  
-3.2  
520  
560  
600  
-1.8  
-2.5  
-1.0  
-1.4  
FB Voltage = VFBth -0.1,  
Switch ON-Time = tON  
(MOSFET Switching at fOSC  
mA  
IS2  
LNK6X5  
LNK6X6  
)
LNK6X3/4  
LNK6X5/6  
LNK6X3/4  
LNK6X5/6  
-5.0  
-7.0  
-4.0  
-5.6  
ICH1  
VBP = 0 V  
VBP = 4 V  
BYPASS Pin  
Charge Current  
mA  
ICH2  
BYPASS Pin Voltage  
VBP  
VBPH  
5.65  
0.70  
6.2  
6.00  
1.00  
6.5  
6.25  
1.20  
6.8  
V
V
V
BYPASS Pin  
Voltage Hysteresis  
BYPASS Pin  
Shunt Voltage  
VSHUNT  
Circuit Protection  
LNK6X3  
di/dt = 50 mA/ms , TJ = 25 °C  
186  
233  
293  
382  
200  
250  
315  
410  
214  
267  
337  
LNK6X4  
di/dt = 60 mA/ms , TJ = 25 °C  
Current Limit  
ILIMIT  
mA  
LNK6X5  
di/dt = 70 mA/ms , TJ = 25 °C  
LNK6X6  
di/dt = 100 mA/ms , TJ = 25 °C  
438  
TJ = 25 °C  
See Figure 21, (See Note 6)  
TJ = 25 °C  
Normalized Output  
Current  
Leading Edge  
Blanking Time  
Thermal Shutdown  
Temperature  
Thermal Shutdown  
Hysteresis  
IO  
0.975  
170  
1.000  
215  
142  
60  
1.025  
tLEB  
TSD  
TSDH  
ns  
°C  
°C  
(See Note 5)  
135  
150  
9
www.powerint.com  
Rev. F 01/10  
LNK603-606/613-616  
Conditions  
(Unless OtherwiJse Specified)  
SOURCE = 0 V; T = 0 to 100 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Output  
24  
36  
24  
36  
16  
24  
9.6  
14  
28  
42  
28  
42  
19  
28  
11  
17  
TJ = 25 °C  
LNK6X3  
ID = 50 mA  
TJ = 100 °C  
TJ = 25 °C  
LNK6X4  
ID = 50 mA  
TJ = 100 °C  
ON-State  
Resistance  
RDS(ON)  
W
TJ = 25 °C  
LNK6X5  
ID = 62 mA  
TJ = 100 °C  
TJ = 25 °C  
LNK6X6  
ID = 82 mA  
TJ = 100 °C  
VDS = 560 V See Figure 20  
IDSS1  
50  
TJ = 125 °C See Note 3  
OFF-State  
Leakage  
mA  
VDS = 375 V See Figure 20  
IDSS2  
15  
TJ = 50 °C  
Breakdown  
Voltage  
TJ = 25 °C  
See Figure 20  
BVDSS  
700  
50  
V
V
DRAIN Supply  
Voltage  
tON × IFB = 2 mA-ms, fOSC = 12 kHz  
VFB = 0  
Auto-Restart  
ON-Time  
tAR-ON  
tAR-OFF  
IOL  
450  
1.2  
ms  
s
See Notes 1, 5  
Auto-Restart  
OFF-Time  
2
Open-Loop  
FEEDBACK Pin  
Current Threshold  
See Note 5  
See Note 5  
-120  
90  
mA  
ms  
Open-Loop  
ON-Time  
NOTES:  
1. Auto-restart ON-time is a function of switching frequency programmed by tonx IFB and minimum frequency in CC mode.  
2. The current limit threshold is compensated to cancel the effect of current limit delay. As a result the output current stays constant  
across the input line range.  
3. IDSS1 is the worst case OFF state leakage specification at 80% of BVDSS and maximum operating junction temperature. IDSS2 is a  
typical specification under worst case application conditions (rectified 265 VAC) for no-load consumption calculations.  
4. When the duty-cycle exceeds DCMAX the LinkSwitch-II operates in on-time extension mode.  
5. This parameter is derived from characterization.  
6. Mechanical stress induced during the assembly may cause shift in this parameter. This shift has no impact on the ability of  
LinkSwitch-II to meet 10% in mass production given the design follows recommendation in AN-44 and good manufacturing practice  
7. The switching frequency is programmable between 60 kHz and 85 kHz.  
10  
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
Typical Performance Characteristics  
1.200  
1.200  
1.000  
0.800  
1.000  
0.800  
0.600  
0.400  
0.600  
0.400  
0.200  
0.000  
0.200  
0.000  
-40 -15 10 35 60  
85 110 135  
-40 -15 10 35 60  
85 110 135  
Temperature (°C)  
Temperature (°C)  
Figure 9. Current Limit vs. Temperature.  
Figure 10. Output Frequency vs. Temperature.  
1.200  
1.200  
1.000  
0.800  
1.000  
0.800  
0.600  
0.400  
0.200  
0.600  
0.400  
0.200  
0.000  
0.000  
-40 -15 10 35 60  
85 110 135  
-40 -15 10 35 60  
85 110 135  
Temperature (°C)  
Temperature (°C)  
Figure 11. Frequency Ratio vs. Temperature (Constant Current).  
Figure 12. Frequency Ratio vs. Temperature (Inductor Current).  
1.200  
1.200  
1.000  
0.800  
1.000  
0.800  
0.600  
0.400  
0.600  
0.400  
0.200  
0.000  
0.200  
0.000  
-40 -15 10 35 60  
85 110 135  
-40 -15 10 35 60  
85 110 135  
Temperature (°C)  
Temperature (°C)  
Figure 13. Feedback Voltage vs. Temperature.  
Figure 14. Normalized Output Current vs. Temperature.  
11  
www.powerint.com  
Rev. F 01/10  
LNK603-606/613-616  
Typical Performance Characteristics (cont.)  
1.1  
300  
250  
200  
150  
100  
50  
TCASE=25 °C  
TCASE=100 °C  
1.0  
0.9  
Scaling Factors:  
LNK6X3 1.0  
LNK6X4 1.0  
LNK6X5 1.5  
LNK6X6 2.5  
0
-50 -25  
0
25 50 75 100 125 150  
0
2
4
6
8
10  
Junction Temperature (°C)  
DRAIN Voltage (V)  
Figure 15. Breakdown vs. Temperature.  
Figure 16. Output Characteristic.  
50  
1000  
100  
10  
40  
Scaling Factors:  
LNK6X3 1.0  
LNK6X4 1.0  
LNK6X5 1.5  
LNK6X6 2.5  
Scaling Factors:  
LNK6X3 1.0  
LNK6X4 1.0  
LNK6X5 1.5  
LNK6X6 2.5  
30  
20  
10  
0
1
0
200  
400  
600  
0
100 200 300 400 500 600  
Drain Voltage (V)  
DRAIN Voltage (V)  
Figure 18. Drain Capacitance Power.  
Figure 17. COSS vs. Drain Voltage.  
12  
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
LinkSwitch-II  
FB  
BP  
S
S
VOUT  
10 µF  
S
S
+
+
VIN  
D
6.2 V  
500 Ω  
+
2 V  
PI-4961-022708  
1) Raise VBP voltage from 0 V to 6.2 V, down to 4.5 V, up to 6.2 V  
2) Raise VIN until cycle skipping occurs at VOUT to measure VFBth  
3) Reduce VIN until cycle skipping stops at VOUT to measure VFBth-. Cable drop compensaion factor is υFB = VFBth / VFBth-  
4) Apply 1.5 V at VIN and measure tFB delay from start of cycle falling edge to the next falling edge  
Figure 19. Test Set-up for Feedback Pin Measurements.  
LinkSwitch-II  
FB  
BP  
S
S
1 µF  
5 µF  
50 kΩ  
10 kΩ  
4 kΩ  
.1 µF  
S
S
D
S1  
S2  
VIN  
+
16 V  
Curve  
Tracer  
To measure BVDSS, IDSS1, and IDSS2 follow these steps:  
1) Close S1, open S2  
2) Power-up VIN source (16 V)  
3) Open S1, close S2  
4) Measure I/V characteristics of Drain pin using the curve tracer  
PI-4962-040308  
Figure 20. Test Set-up for Leakage and Breakdown Tests.  
13  
www.powerint.com  
Rev. F 01/10  
LNK603-606/613-616  
470 pF  
3.3 V  
RO  
680 µF  
200 V  
+
VO  
200 Ω  
11.5 kΩ  
+
50 V  
LinkSwitch-II  
FB  
BP  
S
S
7.15 kΩ  
S
S
10 µF  
D
1)The transformer inductance is chosen to set the value of tON × IFB to 2 mA × µS  
2) RO is chosen to operate test circuit in the CC region  
3) VO is measured  
4) Output current is VO / RO  
PI-4963-022708  
Figure 21. Test Set-up for Output Current Measurements.  
14  
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
DIP-8C (P Package)  
D S .004 (.10)  
Notes:  
-E-  
1. Package dimensions conform to JEDEC specification  
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)  
package with .300 inch row spacing.  
2. Controlling dimensions are inches. Millimeter sizes are  
shown in parentheses.  
.240 (6.10)  
.260 (6.60)  
3. Dimensions shown do not include mold flash or other  
protrusions. Mold flash or protrusions shall not exceed  
.006 (.15) on any side.  
4. Pin locations start with Pin 1, and continue counter-clock-  
wise to Pin 8 when viewed from the top. The notch and/or  
dimple are aids in locating Pin 1. Pin 3 is omitted.  
5. Minimum metal to metal spacing at the package body for  
the omitted lead location is .137 inch (3.48 mm).  
6. Lead width measured at package body.  
Pin 1  
-D-  
.367 (9.32)  
.387 (9.83)  
7. Lead spacing measured with the leads constrained to be  
perpendicular to plane T.  
.057 (1.45)  
.068 (1.73)  
(NOTE 6)  
.125 (3.18)  
.145 (3.68)  
.015 (.38)  
MINIMUM  
-T-  
SEATING  
PLANE  
.008 (.20)  
.015 (.38)  
.120 (3.05)  
.140 (3.56)  
.300 (7.62) BSC  
(NOTE 7)  
.100 (2.54) BSC  
.048 (1.22)  
.053 (1.35)  
.137 (3.48)  
MINIMUM  
P08C  
.300 (7.62)  
.390 (9.91)  
.014 (.36)  
.022 (.56)  
T E D S .010 (.25) M  
PI-3933-101507  
SMD-8C (G Package)  
Notes:  
D S .004 (.10)  
.046 .060 .060 .046  
1. Controlling dimensions are  
inches. Millimeter sizes are  
shown in parentheses.  
2. Dimensions shown do not  
include mold flash or other  
protrusions. Mold flash or  
protrusions shall not exceed  
.006 (.15) on any side.  
3. Pin locations start with Pin 1,  
and continue counter-clock-  
wise to Pin 8 when viewed  
from the top. Pin 3 is omitted.  
4. Minimum metal to metal  
spacing at the package body  
for the omitted lead location  
is .137 inch (3.48 mm).  
-E-  
.080  
.086  
.186  
.286  
.372 (9.45)  
.388 (9.86)  
.240 (6.10)  
.260 (6.60)  
.420  
.010 (.25)  
E S  
Pin 1  
Pin 1  
.137 (3.48)  
MINIMUM  
5. Lead width measured at  
package body.  
Solder Pad Dimensions  
.100 (2.54) (BSC)  
6. D and E are referenced  
datums on the package  
body.  
.367 (9.32)  
.387 (9.83)  
-D-  
.057 (1.45)  
.068 (1.73)  
(NOTE 5)  
.125 (3.18)  
.145 (3.68)  
.004 (.10)  
.032 (.81)  
.037 (.94)  
.048 (1.22)  
.053 (1.35)  
°
°
.009 (.23)  
0 - 8  
.036 (0.91)  
.044 (1.12)  
.004 (.10)  
.012 (.30)  
G08C  
PI-4015-101507  
15  
www.powerint.com  
Rev. F 01/10  
LNK603-606/613-616  
SO-8C  
0.10 (0.004)  
A-B  
2X  
C
2
DETAIL A  
B
4
4.90 (0.193) BSC  
A
4
D
8
5
GAUGE  
PLANE  
SEATING  
PLANE  
3.90 (0.154) BSC  
6.00 (0.236) BSC  
2
0 - 8o  
C
0.25 (0.010)  
BSC  
1.04 (0.041) REF  
0.10 (0.004)  
C D  
0.40 (0.016)  
1.27 (0.050)  
2X  
1
4
Pin 1 ID  
0.20 (0.008) C  
2X  
7X 0.31 - 0.51 (0.012 - 0.020)  
1.27 (0.050) BSC  
0.25 (0.010)  
M
C A-B D  
1.25 - 1.65  
1.35 (0.053)  
1.75 (0.069)  
DETAIL A  
(0.049 - 0.065)  
H
0.10 (0.004)  
0.25 (0.010)  
0.10 (0.004)  
C
7X  
SEATING PLANE  
0.17 (0.007)  
0.25 (0.010)  
C
Reference  
Solder Pad  
Dimensions  
+
Notes:  
1. JEDEC reference: MS-012.  
2. Package outline exclusive of mold flash and metal burr.  
3. Package outline inclusive of plating thickness.  
4. Datums A and B to be determined at datum plane H.  
2.00 (0.079)  
4.90 (0.193)  
5. Controlling dimensions are in millimeters. Inch dimensions  
are shown in parenthesis. Angles in degrees.  
+
+
+
1.27 (0.050)  
0.60 (0.024)  
D07C  
PI-4526-040207  
Part Ordering Information  
• LinkSwitch Product Family  
• II Series Number  
• Package Identifier  
G
P
Plastic Surface Mount DIP  
Plastic DIP  
D
Plastic SO-8  
• Package Material  
GREEN: Halogen Free and RoHS Compliant  
Tape & Reel and Other Options  
G
Blank  
Standard Configurations  
Tape & Reel, 1 k pcs minimum for G Package. 2.5 k pcs for D Package. Not available  
for P Package.  
LNK 615  
D
G - TL  
TL  
16  
Rev. F 01/10  
www.powerint.com  
LNK603-606/613-616  
17  
www.powerint.com  
Rev. F 01/10  
Revision  
Notes  
Date  
06/08  
03/09  
07/09  
01/10  
C
D
E
F
Final data sheet  
Auto-restart time modified PCN-09131  
Introduced Max current limit when V DRAIN is below 400 V  
Added LNK616DG and LNK606DG.  
For the latest updates, visit our website: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power  
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES  
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
Patent Information  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by  
one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A  
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under  
certain patent rights as set forth at http://www.powerint.com/ip.htm.  
Life Support Policy  
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii)  
whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant  
injury or death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert  
and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies.  
©2010, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
World Headquarters  
Germany  
Japan  
Taiwan  
5245 Hellyer Avenue  
Rueckertstrasse 3  
D-80336, Munich  
Germany  
Phone: +49-89-5527-3910  
Fax: +49-89-5527-3920  
e-mail: eurosales@powerint.com Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
Kosei Dai-3 Bldg.  
2-12-11, Shin-Yokohama,  
Kohoku-ku  
Yokohama-shi Kanagwan  
222-0033 Japan  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei, Taiwan 114, R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@powerint.com  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@powerint.com  
India  
#1, 14th Main Road  
Vasanthanagar  
Bangalore-560052 India  
Phone: +91-80-4113-8020  
Fax: +91-80-4113-8023  
e-mail: indiasales@powerint.com Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
e-mail: japansales@powerint.com Europe HQ  
China (Shanghai)  
Room 1601/1610, Tower 1  
Kerry Everbright City  
No. 218 Tianmu Road West  
Shanghai, P.R.C. 200070  
Phone: +86-21-6354-6323  
Fax: +86-21-6354-6325  
1st Floor, St. Jamess House  
East Street, Farnham  
Surrey GU9 7TJ  
Korea  
RM 602, 6FL  
Korea City Air Terminal B/D, 159-6 United Kingdom  
Samsung-Dong, Kangnam-Gu, Phone: +44 (0) 1252-730-141  
Fax: +44 (0) 1252-727-689  
e-mail: eurosales@powerint.com  
e-mail: chinasales@powerint.com Italy  
Via De Amicis 2  
Fax: +82-2-2016-6630  
e-mail: koreasales@powerint.com Applications Hotline  
World Wide +1-408-414-9660  
China (Shenzhen)  
20091 Bresso MI  
Italy  
Phone: +39-028-928-6000  
Fax: +39-028-928-6009  
e-mail: eurosales@powerint.com Singapore, 308900  
Phone: +65-6358-2160  
Rm A, B & C 4th Floor, Block C,  
Electronics Science and  
Technology Bldg., 2070  
Shennan Zhong Rd,  
Singapore  
51 Newton Road  
#15-08/10 Goldhill Plaza  
Applications Fax  
World Wide +1-408-414-9760  
Shenzhen, Guangdong,  
China, 518031  
Fax: +65-6358-2015  
Phone: +86-755-8379-3243  
Fax: +86-755-8379-5828  
e-mail: chinasales@powerint.com  
e-mail: singaporesales@powerint.com  
配单直通车
LNK616PG产品参数
型号:LNK616PG
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:POWER INTEGRATIONS INC
零件包装代码:DIP
包装说明:DIP,
针数:8
Reach Compliance Code:compliant
HTS代码:8542.39.00.01
Factory Lead Time:14 weeks
风险等级:2.35
模拟集成电路 - 其他类型:ANALOG CIRCUIT
JESD-30 代码:R-PDIP-T8
长度:9.56 mm
功能数量:1
端子数量:8
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装形状:RECTANGULAR
封装形式:IN-LINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
表面贴装:NO
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.62 mm
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!