欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • LT8609SIV#WTRPBF
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • LT8609SIV#WTRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LT8609SIV#WTRPBF 现货库存
  • 数量
  • 厂家ADI 
  • 封装16-Lead LQFN (3mm x 3mm x 0.94mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LT8609SIV#WTRPBF图
  • 集好芯城

     该会员已使用本站13年以上
  • LT8609SIV#WTRPBF
  • 数量18098 
  • 厂家ADI 
  • 封装16-Lead LQFN (3mm x 3mm x 0.94mm w/ EP) 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • LT8609SIV#WTRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LT8609SIV#WTRPBF
  • 数量
  • 厂家ADI 
  • 封装16-Lead LQFN (3mm x 3mm x 0.94mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LT8609SIV#WTRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LT8609SIV#WTRPBF
  • 数量
  • 厂家ADI 
  • 封装16-Lead LQFN (3mm x 3mm x 0.94mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • LT8609SIV#WTRPBF图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • LT8609SIV#WTRPBF
  • 数量98622 
  • 厂家ADI/亚德诺 
  • 封装LQFN-16 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • LT8609SIV#WTRPBF图
  • 深圳亿景融荣科技有限公司

     该会员已使用本站2年以上
  • LT8609SIV#WTRPBF
  • 数量2500 
  • 厂家AD 
  • 封装16-Lead LQFN (3mm x 3mm x 0.94mm w/ EP) 
  • 批号24+ 
  • QQ:1958522749QQ:1958522749 复制
    QQ:2560388062QQ:2560388062 复制
  • 86-0755-27742156 QQ:1958522749QQ:2560388062

产品型号LT8610的Datasheet PDF文件预览

Electrical Specifications Subject to Change  
LT8610  
42V, 2.5A Synchronous  
Step-Down Regulator  
with 2.5µA Quiescent  
Current  
FEATURES  
DESCRIPTION  
The LT®8610 is a compact, high efficiency, high speed  
synchronous monolithic step-down switching regulator  
that consumes only 2.5μA of quiescent current. Top and  
bottom power switches are included with all necessary  
circuitry to minimize the need for external components.  
Low ripple Burst Mode operation enables high efficiency  
down to very low output currents while keeping the output  
n
Wide Input Voltage Range: 3.4V to 42V  
Ultralow Quiescent Current Burst Mode® Operation:  
n
2.5μA I Regulating 12V to 3.3V  
Q
IN  
P-P  
OUT  
Output Ripple < 10mV  
n
High Efficiency Synchronous Operation:  
96% Efficiency at 1A, 5V  
94% Efficiency at 1A, 3.3V  
from 12V  
from 12V  
IN  
OUT  
IN  
OUT  
n
n
n
n
n
n
n
n
n
n
Fast Minimum Switch-On Time: 50ns  
ripplebelow10mV . ASYNCpinallowssynchronization  
P-P  
Low Dropout Under All Conditions: 200mV at 1A  
Allows Use Of Small Inductors  
Low EMI  
to an external clock. Internal compensation with peak cur-  
rent mode topology allows the use of small inductors and  
results in fast transient response and good loop stability.  
The EN/UV pin has an accurate 1V threshold and can be  
Adjustable and Synchronizable: 200kHz to 2.2MHz  
Current Mode Operation  
usedtoprogramV undervoltagelockoutortoshutdown  
IN  
Accurate 1V Enable Pin Threshold  
Internal Compensation  
Output Soft-Start and Tracking  
the LT8610 reducing the input supply current to 1μA. A  
capacitor on the TR/SS pin programs the output voltage  
ramp rate during start-up. The PG flag signals when V  
OUT  
Small Thermally Enhanced 16-Lead MSOP Package  
is within ±±9 of the programmed output voltage as well  
as fault conditions. The LT8610 is available in a small  
16-lead MSOP package with exposed pad for low thermal  
resistance.  
APPLICATIONS  
n
Automotive and Industrial Supplies  
L, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
n
General Purpose Step-Down  
n
GSM Power Supplies  
TYPICAL APPLICATION  
5V 2.5A Step-Down Converter  
12VIN to 5VOUT Efficiency  
100  
±5  
±0  
85  
80  
75  
70  
65  
V
IN  
V
BST  
IN  
5.5V TO 42V  
0.1μF  
4.7μH  
4.7μF  
EN/UV  
PG  
V
OUT  
5V  
SW  
LT8610  
2.5A  
47μF  
SYNC  
BIAS  
10nF  
1M  
TR/SS  
FB  
1μF  
10pF  
INTV  
CC  
RT PGND GND  
f
= 700kHz  
60  
55  
50  
SW  
V
V
= 12V  
= 24V  
IN  
IN  
60.4k  
= 700kHz  
243k  
0
0.5  
1
1.5  
2
2.5  
f
SW  
8610 TA01a  
LOAD CURRENT (A)  
8610 G01  
8610p  
1
LT8610  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , EN/UV, PG..........................................................42V  
IN  
1
2
3
4
5
6
7
8
SYNC  
TR/SS  
RT  
16 FB  
BIAS..........................................................................30V  
BST Pin Above SW Pin................................................4V  
15 PG  
14 BIAS  
13 INTV  
12 BST  
11 SW  
10 SW  
17  
GND  
EN/UV  
CC  
V
V
IN  
IN  
FB, TR/SS, RT, INTV ...............................................4V  
CC  
PGND  
PGND  
SYNC Voltage .............................................................6V  
9
SW  
Operating Junction Temperature Range (Note 2)  
MSE PACKAGE  
16-LEAD PLASTIC MSOP  
LT8610E.................................................40 to 125°C  
LT8610I..................................................40 to 125°C  
Storage Temperature Range ......................–65 to 150°C  
θ
= 40°C/W, θ  
= 10°C/W  
JA  
JC(PAD)  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT8610EMSE#PBF  
LT8610IMSE#PBF  
TAPE AND REEL  
PART MARKING*  
8610  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8610EMSE#TRPBF  
LT8610IMSE#TRPBF  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
8610  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
Minimum Input Voltage  
2.±  
3.4  
V
V
IN  
Quiescent Current  
V
EN/UV  
V
EN/UV  
V
EN/UV  
= 0V, V = 0V  
SYNC  
1.0  
1.0  
3
8
μA  
μA  
= 2V, Not Switching, V  
= 2V, Not Switching, V  
= 0V  
= 2V  
1.7  
1.7  
4
10  
μA  
μA  
SYNC  
0.24  
0.5  
mA  
SYNC  
l
l
V
Current in Regulation  
V
V
= 0.±7V, V = 6V, Output Load = 100μA  
24  
210  
50  
350  
μA  
μA  
IN  
OUT  
OUT  
IN  
= 0.±7V, V = 6V, Output Load = 1mA  
IN  
Feedback Reference Voltage  
V
V
= 6V, I  
= 0.5A  
= 0.5A  
0.±67  
0.±58  
0.±70  
0.±70  
0.±73  
0.±82  
V
V
IN  
IN  
LOAD  
LOAD  
l
l
= 6V, I  
Feedback Voltage Line Regulation  
Feedback Pin Input Current  
V
V
= 4.0V to 42V, I  
= 1V  
= 0.5A  
0.004  
0.02  
20  
9/V  
nA  
IN  
LOAD  
–20  
FB  
INTV Voltage  
I
I
= 0mA, V  
= 0mA, V  
= 0V  
= 3.3V  
3.23  
3.25  
3.4  
3.2±  
3.57  
3.35  
V
V
CC  
LOAD  
LOAD  
BIAS  
BIAS  
INTV Undervoltage Lockout  
2.5  
2.6  
8.5  
2.7  
V
CC  
BIAS Pin Current Consumption  
Minimum On-Time  
V
= 3.3V, I  
= 1A, 2MHz  
mA  
BIAS  
LOAD  
l
l
I
I
= 1A, SYNC = 0V  
= 1A, SYNC = 3.3V  
30  
30  
50  
45  
70  
65  
ns  
ns  
LOAD  
LOAD  
Minimum Off-Time  
50  
80  
110  
ns  
8610p  
2
LT8610  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
R = 221k, I  
MIN  
TYP  
MAX  
UNITS  
l
l
l
Oscillator Frequency  
= 1A  
= 1A  
= 1A  
180  
665  
1.85  
210  
700  
2.00  
240  
735  
2.15  
kHz  
kHz  
MHz  
T
LOAD  
R = 60.4k, I  
T
LOAD  
LOAD  
R = 18.2k, I  
T
Top Power NMOS On-Resistance  
Top Power NMOS Current Limit  
Bottom Power NMOS On-Resistance  
Bottom Power NMOS Current Limit  
SW Leakage Current  
I
= 1A  
120  
4.8  
65  
mΩ  
A
SW  
l
3.5  
5.8  
V
V
V
= 3.4V, I = 1A  
mΩ  
A
INTVCC  
INTVCC  
SW  
= 3.4V  
2.5  
3.3  
4.8  
1.5  
= 42V, V = 0V, 42V  
–1.5  
0.±4  
μA  
V
IN  
SW  
l
EN/UV Pin Threshold  
EN/UV Rising  
1.0  
40  
1.06  
EN/UV Pin Hysteresis  
mV  
nA  
9
EN/UV Pin Current  
V
V
V
= 2V  
–20  
6
20  
12  
EN/UV  
l
l
PG Upper Threshold Offset from V  
Falling  
±.0  
–±.0  
1.3  
FB  
FB  
FB  
PG Lower Threshold Offset from V  
PG Hysteresis  
Rising  
–6  
–12  
9
FB  
9
PG Leakage  
V
V
= 3.3V  
= 0.1V  
–40  
40  
nA  
Ω
PG  
PG  
l
PG Pull-Down Resistance  
SYNC Threshold  
680  
2000  
SYNC Falling  
SYNC Rising  
0.8  
1.6  
1.1  
2.0  
1.4  
2.4  
V
V
SYNC Pin Current  
V
= 2V  
–40  
1.2  
40  
nA  
μA  
Ω
SYNC  
l
TR/SS Source Current  
TR/SS Pull-Down Resistance  
2.2  
3.2  
Fault Condition, TR/SS = 0.1V  
230  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during overload conditions. Junction temperature will  
exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
will reduce lifetime.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT8610E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization, and correlation with statistical process controls. The  
LT8610I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes. Operating lifetime is derated at junction temperatures greater  
than 125°C.  
8610p  
3
LT8610  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency at 5VOUT  
Efficiency at 3.3VOUT  
Efficiency at 5VOUT  
100  
±0  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
±5  
±0  
85  
80  
75  
70  
65  
60  
55  
50  
100  
±5  
±0  
85  
80  
75  
70  
65  
60  
55  
50  
f
= 700kHz  
f
= 700kHz  
SW  
f
= 700kHz  
SW  
SW  
V
V
= 12V  
= 24V  
V
V
= 12V  
= 24V  
V
IN  
V
IN  
= 12V  
= 24V  
IN  
IN  
IN  
IN  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
0.001  
0.1  
10  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8610 G03  
8610 G01  
8610 G02  
Efficiency at 3.3VOUT  
Efficiency vs Frequency  
Reference Voltage  
100  
±0  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.±85  
0.±82  
0.±7±  
0.±76  
0.±73  
0.±70  
0.±67  
0.±64  
0.±61  
0.±58  
0.±55  
±6  
±4  
±2  
V
= 3.3V  
OUT  
±0  
88  
86  
84  
82  
f
= 700kHz  
SW  
V
V
= 12V  
= 24V  
V
V
= 12V  
= 24V  
IN  
IN  
IN  
IN  
0.001  
0.1  
10  
1000  
0.25  
0.75  
1.25  
1.75  
2.25  
–55  
5
35  
65  
±5 125 155  
–25  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
SWITCHING FREQUENCY (MHz)  
8610 G04  
8610 G05  
8610 G06  
EN Pin Thresholds  
Load Regulation  
Line Regulation  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.04  
1.03  
1.02  
1.01  
1.00  
0.±±  
0.±8  
0.±7  
0.±6  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 3.3V  
V
= 3.3V  
= 0.5A  
OUT  
IN  
OUT  
= 12V  
I
LOAD  
EN RISING  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
EN FALLING  
0.±5  
0
5
10 15 20 25 30 35 40 45  
INPUT VOLTAGE (V)  
8610 G0±  
0
0.5  
1.5  
2
2.5  
3
1
–55 –25  
5
35  
155  
65  
±5 125  
LOAD CURRENT (A)  
TEMPERATURE (°C)  
8610 G08  
8610 G07  
8610p  
4
LT8610  
TYPICAL PERFORMANCE CHARACTERISTICS  
No Load Supply Current  
No Load Supply Current  
Top FET Current Limit vs Duty Cycle  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
25  
20  
15  
10  
5
6.0  
5.5  
5.0  
4.5  
V
= 3.3V  
V
V
= 3.3V  
OUT  
OUT  
IN  
IN REGULATION  
= 12V  
IN REGULATION  
4.0  
3.5  
3.0  
2.5  
2.0  
0
0
5
10 15 20 25 30 35 40 45  
INPUT VOLTAGE (V)  
–55 –25  
5
35  
65  
±5 125 155  
0.2  
0.4  
DUTY CYCLE  
0.8  
0
1.0  
0.6  
TEMPERATURE (°C)  
8610 G10  
8610 G11  
8610 G13  
Switch Drop  
Top FET Current Limit  
Bottom FET Current Limit  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
250  
200  
150  
100  
50  
5.0  
4.5  
4.0  
3.5  
SWITCH CURRENT = 1A  
309 DC  
709 DC  
TOP SW  
BOT SW  
3.0  
2.5  
0
–55  
5
35  
65  
±5  
125  
–55  
5
35  
65  
±5  
125  
–25  
65  
155  
–25  
–55 –25  
5
35  
±5 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8610 G15  
8610 G14  
8610 G40  
Switch Drop  
Minimum On-Time  
Minimum Off-Time  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
I
I
I
= 1A, V  
= 1A, V  
= 2.5A, V  
= 2.5A, V  
= 0V  
= 3V  
V
I
= 3.3V  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
SYNC  
SYNC  
SYNC  
SYNC  
IN  
= 0.5A  
±5  
±0  
= 0V  
= 3V  
85  
80  
75  
70  
65  
TOP SW  
BOT SW  
60  
0
–55  
5
35  
65  
±5 125 155  
–50 –25  
5
35  
65  
±5 125 155  
–25  
0
0.5  
1
1.5  
3
2
2.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH CURRENT (A)  
8610 G17  
8610 G18  
8610 G41  
8610p  
5
LT8610  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dropout Voltage  
Switching Frequency  
Burst Frequency  
740  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
R
= 60.4k  
V
V
= 12V  
T
IN  
OUT  
= 3.3V  
730  
720  
710  
700  
6±0  
680  
670  
660  
1
1.5  
2
2.5  
–25  
5
65  
±5 125 155  
0
100  
50  
LOAD CURRENT (mA)  
200  
0
0.5  
3
–55  
35  
150  
LOAD CURRENT (A)  
TEMPERATURE (°C)  
8610 G1±  
8610 G20  
8610 G21  
Minimum Load to Full Frequency  
(SYNC DC High)  
Frequency Foldback  
Soft-Start Tracking  
1.2  
1.0  
0.8  
0.6  
100  
800  
700  
600  
500  
V
V
V
= 3.3V  
V
f
= 5V  
OUT  
IN  
OUT  
SW  
= 12V  
= 700kHz  
= 0V  
SYNC  
80  
60  
R
T
= 60.4k  
400  
300  
40  
20  
0
0.4  
0.2  
0
200  
100  
0
0.2  
0.4  
FB VOLTAGE (V)  
0.8  
0
0.6 0.8  
1.0  
1.2  
1.4  
20  
0
1
0.2  
0.4  
5
10 15  
25 30 35 40 45  
0.6  
TR/SS VOLTAGE (V)  
INPUT VOLTAGE (V)  
8610 G3±  
8610 G22  
8610 G23  
Soft-Start Current  
PG High Thresholds  
PG Low Thresholds  
12.0  
11.5  
11.0  
10.5  
10.0  
±.5  
–7.0  
–7.5  
2.4  
V
= 0.5V  
SS  
2.3  
2.2  
–8.0  
–8.5  
FB RISING  
2.1  
2.0  
1.±  
1.8  
1.7  
–±.0  
FB RISING  
FB FALLING  
FB FALLING  
–±.5  
±.0  
–10.0  
–10.5  
–11.0  
–11.5  
–12.0  
8.5  
8.0  
7.5  
1.6  
7.0  
–25  
5
65  
±5 125 155  
35  
65  
35  
65  
–50  
35  
–55  
5
±5 125 155  
–55  
5
±5 125 155  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8610 G24  
8610 G25  
8610 G26  
8610p  
6
LT8610  
TYPICAL PERFORMANCE CHARACTERISTICS  
RT Programmed Switching  
VIN UVLO  
Bias Pin Current  
Frequency  
3.6  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
250  
225  
200  
175  
150  
125  
100  
75  
V
V
= 5V  
= 5V  
= 1A  
BIAS  
OUT  
3.4  
3.2  
I
f
LOAD  
SW  
= 700kHz  
3.0  
2.8  
2.6  
2.4  
2.2  
50  
25  
2.0  
–55  
0
25 30  
10 15 20  
INPUT VOLTAGE (V)  
5
35 40 45  
–25  
5
65  
±5 125 155  
35  
0.2  
0.6  
1
1.4  
1.8  
2.2  
TEMPERATURE (°C)  
SWITCHING FREQUENCY (kHz)  
8610 G2±  
8610 G28  
8610 G27  
Switching Waveforms  
Switching Waveforms  
Bias Pin Current  
12  
10  
V
V
V
= 5V  
= 5V  
BIAS  
OUT  
IN  
I
I
L
L
= 12V  
200mA/DIV  
1A/DIV  
I
= 1A  
LOAD  
8
6
V
SW  
V
SW  
5V/DIV  
5V/DIV  
8610 G31  
8610 G32  
4
2
0
500ns/DIV  
AT 1A  
500μs/DIV  
AT 10mA  
12V TO 5V  
12V TO 5V  
SYNC  
IN  
OUT  
IN  
OUT  
V
= 0V  
0
0.5  
1
1.5  
2
2.5  
SWITCHING FREQUENCY (MHz)  
8610 G30  
Transient Response  
Transient Response  
Switching Waveforms  
I
I
LOAD  
L
I
LOAD  
1A/DIV  
1A/DIV  
1A/DIV  
V
V
OUT  
OUT  
V
SW  
100mV/DIV  
200mV/DIV  
10V/DIV  
8610 G34  
8610 G35  
8610 G33  
50μs/DIV  
0.5A TO 1.5A TRANSIENT  
50μs/DIV  
0.5A TO 2.5A TRANSIENT  
500ns/DIV  
AT 1A  
36V TO 5V  
IN  
OUT  
12V , 5V  
OUT  
12V , 5V  
IN  
OUT  
IN OUT  
C
= 47μF  
C
= 47μF  
OUT  
8610p  
7
LT8610  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transient Response  
Start-Up Dropout Performance  
Start-Up Dropout Performance  
I
LOAD  
V
1A/DIV  
V
IN  
IN  
V
V
IN  
IN  
2V/DIV  
2V/DIV  
V
OUT  
V
V
OUT  
OUT  
200mV/DIV  
V
V
OUT  
2V/DIV  
OUT  
2V/DIV  
8610 G36  
8610 G37  
8610 G38  
50μs/DIV  
100ms/DIV  
100ms/DIV  
2.5Ω LOAD  
(2A IN REGULATION)  
20Ω LOAD  
(250mA IN REGULATION)  
50mA TO 1A TRANSIENT  
12V , 5V  
IN OUT  
= 47μF  
C
OUT  
PIN FUNCTIONS  
SYNC (Pin 1): External Clock Synchronization Input.  
Ground this pin for low ripple Burst Mode operation at low  
output loads. Tie to a clock source for synchronization to  
an external frequency. Apply a DC voltage of 3V or higher  
V (Pins 5, 6): The V pins supply current to the LT8610  
IN IN  
internal circuitry and to the internal topside power switch.  
These pins must be tied together and be locally bypassed.  
Be sure to place the positive terminal of the input capaci-  
or tie to INTV for pulse-skipping mode. When in pulse-  
tor as close as possible to the V pins, and the negative  
CC  
IN  
skipping mode, the I will increase to several hundred μA.  
capacitor terminal as close as possible to the PGND pins.  
Q
Do not float this pin.  
PGND (Pins 7, 8): Power Switch Ground. These pins are  
the return path of the internal bottom-side power switch  
and must be tied together. Place the negative terminal of  
the input capacitor as close to the PGND pins as possible.  
TR/SS (Pin 2): Output Tracking and Soft-Start Pin. This  
pin allows user control of output voltage ramp rate during  
start-up. A TR/SS voltage below 0.±7V forces the LT8610  
toregulatetheFBpintoequaltheTR/SSpinvoltage. When  
TR/SS is above 0.±7V, the tracking function is disabled  
and the internal reference resumes control of the error  
SW (Pins 9, 10, 11): The SW pins are the outputs of the  
internal power switches. Tie these pins together and con-  
nect them to the inductor and boost capacitor. This node  
should be kept small on the PCB for good performance.  
amplifier. An internal 2.2ꢀA pull-up current from INTV  
CC  
on this pin allows a capacitor to program output voltage  
slewrate.Thispinispulledtogroundwithaninternal230Ω  
MOSFETduringshutdownandfaultconditions;useaseries  
resistor if driving from a low impedance output. This pin  
may be left floating if the tracking function is not needed.  
BST (Pin 12): This pin is used to provide a drive voltage,  
higher than the input voltage, to the topside power switch.  
Placea0.1μFboostcapacitorascloseaspossibletotheIC.  
INTV (Pin 13): Internal 3.4V Regulator Bypass Pin.  
CC  
The internal power drivers and control circuits are pow-  
RT (Pin 3): A resistor is tied between RT and ground to  
set the switching frequency.  
ered from this voltage. INTV maximum output cur-  
CC  
rent is 20mA. Do not load the INTV pin with external  
CC  
EN/UV (Pin 4): The LT8610 is shut down when this pin  
is low and active when this pin is high. The hysteretic  
threshold voltage is 1.00V going up and 0.±6V going  
circuitry. INTV current will be supplied from BIAS if  
CC  
V
> 3.1V, otherwise current will be drawn from V .  
BIAS  
IN  
Voltage on INTV will vary between 2.8V and 3.4V when  
CC  
down. Tie to V if the shutdown feature is not used. An  
IN  
V
BIAS  
isbetween3.0Vand3.6V.Decouplethispintopower  
external resistor divider from V can be used to program  
IN  
ground with at least a 1ꢀF low ESR ceramic capacitor  
a V threshold below which the LT8610 will shut down.  
IN  
placed close to the IC.  
8610p  
8
LT8610  
PIN FUNCTIONS  
BIAS(Pin14):Theinternalregulatorwilldrawcurrentfrom  
FB (Pin 16): The LT8610 regulates the FB pin to 0.±70V.  
BIAS instead of V when BIAS is tied to a voltage higher  
Connect the feedback resistor divider tap to this pin. Also,  
IN  
than 3.1V. For output voltages of 3.3V and above this pin  
connect a phase lead capacitor between FB and V  
.
OUT  
should be tied to V . If this pin is tied to a supply other  
Typically, this capacitor is 4.7pF to 10pF.  
OUT  
than V  
use a 1μF local bypass capacitor on this pin.  
OUT  
GND (Exposed Pad Pin 17): Ground. The exposed pad  
must be connected to the negative terminal of the input  
capacitor and soldered to the PCB in order to lower the  
thermal resistance.  
PG (Pin 15): The PG pin is the open-drain output of an  
internal comparator. PG remains low until the FB pin is  
within ±±9 of the final regulation voltage, and there are  
no fault conditions. PG is valid when V is above 3.4V,  
regardless of EN/UV pin state.  
IN  
BLOCK DIAGRAM  
V
IN  
V
IN  
5, 6  
C
IN  
+
INTERNAL 0.±7V REF  
SHDN  
BIAS  
3.4V  
REG  
R3  
14  
1V  
+
OPT  
EN/UV  
4
SLOPE COMP  
INTV  
CC  
R4  
OPT  
13  
12  
C
VCC  
OSCILLATOR  
200kHz TO 2.2MHz  
BST  
ERROR  
PG  
AMP  
±±9  
15  
C
V
+
+
BST  
C
SWITCH  
LOGIC  
M1  
M2  
BURST  
DETECT  
L
SW  
V
OUT  
AND  
V
OUT  
±-11  
ANTI-  
SHOOT  
THROUGH  
C
OUT  
SHDN  
TSD  
C1 R1  
R2  
INTV UVLO  
CC  
V
IN  
UVLO  
FB  
PGND  
7, 8  
16  
2
SHDN  
TSD  
IN  
C
SS  
2.2μA  
OPT  
V
UVLO  
TR/SS  
R
T
RT  
3
1
SYNC  
GND  
17  
8610 BD  
8610p  
9
LT8610  
OPERATION  
The LT8610 is a monolithic, constant frequency, current  
mode step-down DC/DC converter. An oscillator, with  
frequency set using a resistor on the RT pin, turns on  
the internal top power switch at the beginning of each  
clock cycle. Current in the inductor then increases until  
the top switch current comparator trips and turns off the  
top power switch. The peak inductor current at which  
the top switch turns off is controlled by the voltage on  
the internal VC node. The error amplifier servos the VC  
from the input supply when regulating with no load. The  
SYNC pin is tied low to use Burst Mode operation and can  
be tied to a logic high to use pulse-skipping mode. If a  
clockisappliedtotheSYNCpinthepartwillsynchronizeto  
an external clock frequency and operate in pulse-skipping  
mode.Whileinpulse-skippingmodetheoscillatoroperates  
continuously and positive SW transitions are aligned to  
the clock. During light loads, switch pulses are skipped  
to regulate the output and the quiescent current will be  
several hundred μA.  
node by comparing the voltage on the V pin with an  
FB  
internal 0.±7V reference. When the load current increases  
it causes a reduction in the feedback voltage relative to  
the reference leading the error amplifier to raise the VC  
voltageuntiltheaverageinductorcurrentmatchesthenew  
load current. When the top power switch turns off, the  
synchronous power switch turns on until the next clock  
cycle begins or inductor current falls to zero. If overload  
conditions result in more than 3.3A flowing through the  
bottom switch, the next clock cycle will be delayed until  
switch current returns to a safe level.  
To improve efficiency across all loads, supply current to  
internal circuitry can be sourced from the BIAS pin when  
biasedat3.3Vorabove.Else,theinternalcircuitrywilldraw  
current from V . The BIAS pin should be connected to  
IN  
V
OUT  
iftheLT8610outputisprogrammedat3.3Vorabove.  
Comparators monitoring the FB pin voltage will pull the  
PG pin low if the output voltage varies more than ±±9  
(typical)fromthesetpoint,orifafaultconditionispresent.  
The oscillator reduces the LT8610’s operating frequency  
when the voltage at the FB pin is low. This frequency  
foldback helps to control the inductor current when the  
output voltage is lower than the programmed value which  
occurs during start-up or overcurrent conditions. When  
a clock is applied to the SYNC pin or the SYNC pin is  
held DC high, the frequency foldback is disabled and the  
switching frequency will slow down only during overcur-  
rent conditions.  
If the EN/UV pin is low, the LT8610 is shut down and  
draws 1μA from the input. When the EN/UV pin is above  
1V, the switching regulator will become active.  
To optimize efficiency at light loads, the LT8610 operates  
in Burst Mode operation in light load situations. Between  
bursts, all circuitry associated with controlling the output  
switch is shut down, reducing the input supply current to  
1.7ꢀA. In a typical application, 2.5ꢀA will be consumed  
8610p  
10  
LT8610  
APPLICATIONS INFORMATION  
Achieving Ultralow Quiescent Current  
much higher light load efficiency than for typical convert-  
ers. Bymaximizingthetimebetweenpulses, theconverter  
quiescentcurrentapproaches2.5μAforatypicalapplication  
when there is no output load. Therefore, to optimize the  
quiescent current performance at light loads, the current  
in the feedback resistor divider must be minimized as it  
appears to the output as load current.  
To enhance efficiency at light loads, the LT8610 operates  
in low ripple Burst Mode operation, which keeps the out-  
put capacitor charged to the desired output voltage while  
minimizing the input quiescent current and minimizing  
outputvoltageripple. InBurstModeoperationtheLT8610  
deliverssinglesmallpulsesofcurrenttotheoutputcapaci-  
tor followed by sleep periods where the output power is  
supplied by the output capacitor. While in sleep mode the  
LT8610 consumes 1.7ꢀA.  
While in Burst Mode operation the current limit of the top  
switchisapproximately400mAresultinginoutputvoltage  
rippleshowninFigure2.Increasingtheoutputcapacitance  
willdecreasetheoutputrippleproportionally.Asloadramps  
upward from zero the switching frequency will increase  
but only up to the switching frequency programmed by  
the resistor at the RT pin as shown in Figure 1a. The out-  
put load at which the LT8610 reaches the programmed  
frequency varies based on input voltage, output voltage,  
and inductor choice.  
As the output load decreases, the frequency of single cur-  
rent pulses decreases (see Figure 1a) and the percentage  
of time the LT8610 is in sleep mode increases, resulting in  
Burst Frequency  
800  
V
V
= 12V  
IN  
OUT  
= 3.3V  
700  
600  
500  
400  
300  
200  
100  
0
For some applications it is desirable for the LT8610 to  
operate in pulse-skipping mode, offering two major differ-  
ences from Burst Mode operation. First is the clock stays  
awake at all times and all switching cycles are aligned to  
the clock. In this mode much of the internal circuitry is  
awake at all times, increasing quiescent current to several  
hundred μA. Second is that full switching frequency is  
reached at lower output load than in Burst Mode operation  
(seeFigure1b). Toenablepulse-skippingmode, theSYNC  
100  
0
50  
150  
200  
LOAD CURRENT (mA)  
pin is tied high either to a logic output or to the INTV  
8610 F01a  
CC  
(1a)  
pin. When a clock is applied to the SYNC pin the LT8610  
will also operate in pulse-skipping mode.  
Minimum Load to Full Frequency (SYNC DC High)  
100  
5V  
OUT  
700kHz  
80  
60  
I
L
200mA/DIV  
40  
20  
0
V
OUT  
10mV/DIV  
8610 F02  
V
= 0V  
5μs/DIV  
SYNC  
Figure 2. Burst Mode Operation  
20  
5
10 15  
25 30 35 40 45  
INPUT VOLTAGE (V)  
8610 F01b  
(1b)  
Figure 1. SW Frequency vs Load Information in  
Burst Mode Operation (1a) and Pulse-Skipping Mode (1b)  
8610p  
11  
LT8610  
APPLICATIONS INFORMATION  
FB Resistor Network  
where R is in kΩ and f is the desired switching fre-  
T
SW  
quency in MHz.  
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the resistor  
values according to:  
Table 1. SW Frequency vs R Value  
T
f
SW  
(MHz)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
1.0  
1.2  
14  
R (kΩ)  
T
232  
150  
VOUT  
0.970V  
(1)  
R1= R2  
–1  
110  
Reference designators refer to the Block Diagram. 19  
resistors are recommended to maintain output voltage  
accuracy.  
88.7  
71.5  
60.4  
52.3  
41.2  
33.2  
28.0  
23.7  
20.5  
18.2  
15.8  
Iflowinputquiescentcurrentandgoodlight-loadefficiency  
are desired, use large resistor values for the FB resistor  
divider. The current flowing in the divider acts as a load  
current, and will increase the no-load input current to the  
converter, which is approximately:  
1.6  
1.8  
2.0  
2.2  
VOUT  
R1+ R2  
VOUT  
1
⎝ ⎠  
n
⎛ ⎞  
IQ = 1.7µA+  
(2)  
⎜ ⎟  
V
IN  
where 1.7μA is the quiescent current of the LT8610 and  
the second term is the current in the feedback divider  
reflected to the input of the buck operating at its light  
load efficiency n. For a 3.3V application with R1 = 1M and  
Operating Frequency Selection and Trade-Offs  
Selectionoftheoperatingfrequencyisatrade-offbetween  
efficiency, component size, and input voltage range. The  
advantageofhighfrequencyoperationisthatsmallerinduc-  
tor and capacitor values may be used. The disadvantages  
are lower efficiency and a smaller input voltage range.  
R2 = 412k, the feedback divider draws 2.3μA. With V =  
IN  
12V and n = 809, this adds 0.8μA to the 1.7μA quiescent  
current resulting in 2.5μA no-load current from the 12V  
supply. Note that this equation implies that the no-load  
The highest switching frequency (f  
) for a given  
SW(MAX)  
application can be calculated as follows:  
current is a function of V ; this is plotted in the Typical  
IN  
Performance Characteristics section.  
VOUT + VSW(BOT)  
fSW(MAX)  
=
(4)  
When using large FB resistors, a 4.7pF to 10pF phase-lead  
tON(MIN) V – VSW(TOP) + VSW(BOT)  
(
)
IN  
capacitor should be connected from V  
to FB.  
OUT  
where V is the typical input voltage, V  
is the output  
IN  
OUT  
Setting the Switching Frequency  
voltage, V  
and V  
are the internal switch  
SW(TOP)  
SW(BOT)  
drops (~0.3V, ~0.15V, respectively at maximum load)  
and t is the minimum top switch on-time (see the  
The LT8610 uses a constant frequency PWM architecture  
thatcanbeprogrammedtoswitchfrom200kHzto2.2MHz  
by using a resistor tied from the RT pin to ground. A table  
ON(MIN)  
Electrical Characteristics). This equation shows that a  
slowerswitchingfrequencyisnecessarytoaccommodate  
showing the necessary R value for a desired switching  
T
a high V /V  
ratio.  
frequency is in Table 1.  
IN OUT  
For transient operation, V may go as high as the abso-  
The R resistor required for a desired switching frequency  
IN  
T
lute maximum rating of 42V regardless of the R value,  
can be calculated using:  
T
however the LT8610 will reduce switching frequency as  
necessary to maintain control of inductor current to as-  
46.5  
RT  
=
5.2  
(3)  
fSW  
sure safe operation.  
8610p  
12  
LT8610  
APPLICATIONS INFORMATION  
The LT8610 is capable of a maximum duty cycle of greater  
where I is the inductor ripple current as calculated in  
L
LOAD(MAX)  
for a given application.  
than ±±9, and the V -to-V  
DS(ON)  
switch cycles, resulting in a lower switching frequency  
than programmed by RT.  
dropout is limited by the  
Equation ± and I  
is the maximum output load  
IN  
OUT  
R
of the top switch. In this mode the LT8610 skips  
As a quick example, an application requiring 1A output  
should use an inductor with an RMS rating of greater than  
For applications that cannot allow deviation from the pro-  
1A and an I of greater than 1.3A. During long duration  
SAT  
grammed switching frequency at low V /V  
ratios use  
overload or short-circuit conditons, the inductor RMS  
routing requirement is greater to avoid overheating of the  
inductor. To keep the efficiency high, the series resistance  
(DCR) should be less than 0.04Ω, and the core material  
should be intended for high frequency applications.  
IN OUT  
the following formula to set switching frequency:  
VOUT + VSW(BOT)  
1– fSW tOFF(MIN)  
V
=
– VSW(BOT) + VSW(TOP)  
(5)  
IN(MIN)  
where V  
is the minimum input voltage without  
The LT8610 limits the peak switch current in order to  
protect the switches and the system from overload faults.  
IN(MIN)  
skipped cycles, V  
is the output voltage, V  
and  
OUT  
SW(TOP)  
V
are the internal switch drops (~0.3V, ~0.15V,  
The top switch current limit (I ) is at least 3.5A at low  
SW(BOT)  
LIM  
respectively at maximum load), f is the switching fre-  
duty cycles and decreases linearly to 2.8A at DC = 0.8. The  
inductorvaluemustthenbesufficienttosupplythedesired  
SW  
quency (set by RT), and t  
is the minimum switch  
OFF(MIN)  
off-time.Notethathigherswitchingfrequencywillincrease  
the minimum input voltage below which cycles will be  
dropped to achieve higher duty cycle.  
maximum output current (I  
), which is a function  
OUT(MAX)  
of the switch current limit (I ) and the ripple current.  
LIM  
IL  
2
IOUT(MAX) = ILIM  
(8)  
Inductor Selection and Maximum Output Current  
The peak-to-peak ripple current in the inductor can be  
calculated as follows:  
The LT8610 is designed to minimize solution size by  
allowing the inductor to be chosen based on the output  
load requirements of the application. During overload or  
short-circuitconditionstheLT8610safelytoleratesopera-  
tion with a saturated inductor through the use of a high  
speed peak-current mode architecture.  
V
V
OUT  
V
IN(MAX)  
OUT  
I  
=
• 1–  
(±)  
L
L • f  
SW  
where f is the switching frequency of the LT8610, and  
SW  
A good first choice for the inductor value is:  
L is the value of the inductor. Therefore, the maximum  
output current that the LT8610 will deliver depends on  
the switch current limit, the inductor value, and the input  
and output voltages. The inductor value may have to be  
increased if the inductor ripple current does not allow  
VOUT + VSW(BOT)  
(6)  
is  
L =  
fSW  
where f is the switching frequency in MHz, V  
SW  
OUT  
the output voltage, V  
is the bottom switch drop  
sufficient maximum output current (I ) given the  
OUT(MAX)  
SW(BOT)  
(~0.15V) and L is the inductor value in ꢀH.  
switching frequency, and maximum input voltage used in  
the desired application.  
Toavoidoverheatingandpoorefficiency,aninductormust  
be chosen with an RMS current rating that is greater than  
the maximum expected output load of the application. In  
The optimum inductor for a given application may differ  
from the one indicated by this design guide. A larger value  
inductor provides a higher maximum load current and  
reduces the output voltage ripple. For applications requir-  
ing smaller load currents, the value of the inductor may  
be lower and the LT8610 may operate with higher ripple  
addition, the saturation current (typically labeled I  
)
SAT  
rating of the inductor must be higher than the load current  
plus 1/2 of in inductor ripple current:  
1
2
IL(PEAK) = ILOAD(MAX) + IL  
(7)  
8610p  
13  
LT8610  
APPLICATIONS INFORMATION  
current. This allows use of a physically smaller inductor,  
or one with a lower DCR resulting in higher efficiency. Be  
aware that low inductance may result in discontinuous  
mode operation, which further reduces maximum load  
current.  
Output Capacitor and Output Ripple  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated  
by the LT8610 to produce the DC output. In this role it  
determines the output ripple, thus low impedance at the  
switching frequency is important. The second function  
is to store energy in order to satisfy transient loads and  
stabilize the LT8610’s control loop. Ceramic capacitors  
have very low equivalent series resistance (ESR) and  
provide the best ripple performance. For good starting  
values, see the Typical Applications section.  
For more information about maximum output current  
and discontinuous operation, see Linear Technology’s  
Application Note 44.  
Finally, for duty cycles greater than 509 (V /V > 0.5),  
OUT IN  
a minimum inductance is required to avoid sub-harmonic  
oscillation. See Application Note 1±.  
Use X5R or X7R types. This choice will provide low output  
rippleandgoodtransientresponse.Transientperformance  
can be improved with a higher value output capacitor and  
the addition of a feedforward capacitor placed between  
Input Capacitor  
Bypass the input of the LT8610 circuit with a ceramic ca-  
pacitor of X7R or X5R type placed as close as possible to  
V
and FB. Increasing the output capacitance will also  
OUT  
the V and PGND pins. Y5V types have poor performance  
IN  
decrease the output voltage ripple. A lower value of output  
capacitor can be used to save space and cost but transient  
performancewillsufferandmaycauseloopinstability.See  
the Typical Applications in this data sheet for suggested  
capacitor values.  
over temperature and applied voltage, and should not be  
used. A 4.7ꢀF to 10ꢀF ceramic capacitor is adequate to  
bypasstheLT8610andwilleasilyhandletheripplecurrent.  
Notethatlargerinputcapacitanceisrequiredwhenalower  
switching frequency is used. If the input power source has  
high impedance, or there is significant inductance due to  
long wires or cables, additional bulk capacitance may be  
necessary. This can be provided with a low performance  
electrolytic capacitor.  
When choosing a capacitor, special attention should be  
giventothedatasheettocalculatetheeffectivecapacitance  
undertherelevantoperatingconditionsofvoltagebiasand  
temperature. A physically larger capacitor or one with a  
higher voltage rating may be required.  
Step-down regulators draw current from the input sup-  
ply in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage  
ripple at the LT8610 and to force this very high frequency  
switching current into a tight local loop, minimizing EMI.  
A 4.7ꢀF capacitor is capable of this task, but only if it is  
placed close to the LT8610 (see the PCB Layout section).  
Asecondprecautionregardingtheceramicinputcapacitor  
concernsthemaximuminputvoltageratingoftheLT8610.  
A ceramic input capacitor combined with trace or cable  
inductance forms a high quality (under damped) tank cir-  
cuit. If the LT8610 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possibly  
exceeding the LT8610’s voltage rating. This situation is  
easilyavoided(seeLinearTechnologyApplicationNote88).  
Ceramic Capacitors  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
whenusedwiththeLT8610duetotheirpiezoelectricnature.  
When in Burst Mode operation, the LT8610’s switching  
frequency depends on the load current, and at very light  
loadstheLT8610canexcitetheceramiccapacitorataudio  
frequencies, generating audible noise. Since the LT8610  
operates at a lower current limit during Burst Mode op-  
eration, the noise is typically very quiet to a casual ear. If  
this is unacceptable, use a high performance tantalum or  
electrolytic capacitor at the output. Low noise ceramic  
capacitors are also available.  
8610p  
14  
LT8610  
APPLICATIONS INFORMATION  
INTV Regulator  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LT8610. As  
previouslymentioned,aceramicinputcapacitorcombined  
with trace or cable inductance forms a high quality (un-  
derdamped) tank circuit. If the LT8610 circuit is plugged  
into a live supply, the input voltage can ring to twice its  
nominal value, possibly exceeding the LT8610’s rating.  
This situation is easily avoided (see Linear Technology  
Application Note 88).  
CC  
Aninternallowdropout(LDO)regulatorproducesthe3.4V  
supply from V that powers the drivers and the internal  
IN  
bias circuitry. The INTV can supply enough current for  
CC  
the LT8610’s circuitry and must be bypassed to ground  
withaminimumof1Fceramiccapacitor.Goodbypassing  
isnecessarytosupplythehightransientcurrentsrequired  
by the power MOSFET gate drivers. To improve efficiency  
the internal LDO can also draw current from the BIAS  
pin when the BIAS pin is at 3.1V or higher. Typically the  
BIAS pin can be tied to the output of the LT8610, or can  
be tied to an external supply of 3.3V or above. If BIAS is  
Enable Pin  
The LT8610 is in shutdown when the EN pin is low and  
active when the pin is high. The rising threshold of the EN  
comparator is 1.0V, with 40mV of hysteresis. The EN pin  
connected to a supply other than V , be sure to bypass  
OUT  
with a local ceramic capacitor. If the BIAS pin is below  
can be tied to V if the shutdown feature is not used, or  
3.0V, the internal LDO will consume current from V .  
IN  
IN  
tied to a logic level if shutdown control is required.  
Applications with high input voltage and high switching  
frequency where the internal LDO pulls current from V  
IN  
Adding a resistor divider from V to EN programs the  
IN  
will increase die temperature because of the higher power  
LT8610 to regulate the output only when V is above a  
IN  
dissipation across the LDO. Do not connect an external  
desired voltage (see the Block Diagram). Typically, this  
load to the INTV pin.  
CC  
threshold, V , is used in situations where the input  
IN(EN)  
supply is current limited, or has a relatively high source  
resistance. A switching regulator draws constant power  
from the source, so source current increases as source  
voltage drops. This looks like a negative resistance load  
to the source and can cause the source to current limit or  
Output Voltage Tracking and Soft-Start  
T
he LT8610 allows the user to program its output voltage  
ramp rate by means of the TR/SS pin. An internal 2.2ꢀA  
pulls up the TR/SS pin to INTV . Putting an external  
CC  
capacitoronTR/SSenablessoftstartingtheoutputtopre-  
ventcurrentsurgeontheinputsupply.Duringthesoft-start  
ramptheoutputvoltagewillproportionallytracktheTR/SS  
pin voltage. For output tracking applications, TR/SS can  
be externally driven by another voltage source. From 0V to  
0.±7V, the TR/SS voltage will override the internal 0.±7V  
reference input to the error amplifier, thus regulating the  
FB pin voltage to that of TR/SS pin. When TR/SS is above  
0.±7V, tracking is disabled and the feedback voltage will  
regulate to the internal reference voltage. The TR/SS pin  
may be left floating if the function is not needed.  
latchlowunderlowsourcevoltageconditions. TheV  
IN(EN)  
threshold prevents the regulator from operating at source  
voltages where the problems might occur. This threshold  
can be adjusted by setting the values R3 and R4 such that  
they satisfy the following equation:  
R3  
R4  
(10)  
V
=
+ 1 •1.0V  
IN(EN)  
wheretheLT8610willremainoffuntilV isaboveV  
.
IN  
IN(EN)  
Duetothecomparator’shysteresis,switchingwillnotstop  
until the input falls slightly below V  
.
IN(EN)  
An active pull-down circuit is connected to the TR/SS pin  
which will discharge the external soft-start capacitor in  
the case of fault conditions and restart the ramp when the  
faults are cleared. Fault conditions that clear the soft-start  
When operating in Burst Mode operation for light load  
currents, the current through the V resistor network  
IN(EN)  
can easily be greater than the supply current consumed  
by the LT8610. Therefore, the V resistors should be  
IN(EN)  
capacitor are the EN/UV pin transitioning low, V voltage  
IN  
large to minimize their effect on efficiency at low loads.  
falling too low, or thermal shutdown.  
8610p  
15  
LT8610  
APPLICATIONS INFORMATION  
Output Power Good  
twodifferencescomeattheexpenseofincreasedquiescent  
current. To enable pulse-skipping mode, the SYNC pin is  
tied high either to a logic output or to the INTVCC pin.  
When the LT8610’s output voltage is within the ±±9  
window of the regulation point, which is a V voltage in  
FB  
the range of 0.883V to 1.057V (typical), the output voltage  
is considered good and the open-drain PG pin goes high  
impedance and is typically pulled high with an external  
resistor. Otherwise, the internal pull-down device will pull  
the PG pin low. To prevent glitching both the upper and  
lower thresholds include 1.39 of hysteresis.  
The LT8610 does not operate in forced continuous mode  
regardless of SYNC signal. Never leave the SYNC pin  
floating.  
Shorted and Reversed Input Protection  
TheLT8610willtolerateashortedoutput.Severalfeatures  
are used for protection during output short-circuit and  
brownout conditions. The first is the switching frequency  
will be folded back while the output is lower than the set  
point to maintain inductor current control. Second, the  
bottom switch current is monitored such that if inductor  
current is beyond safe levels switching of the top switch  
will be delayed until such time as the inductor current  
falls to safe levels.  
The PG pin is also actively pulled low during several fault  
conditions: EN/UV pin is below 1V, INTV has fallen too  
CC  
low, V is too low, or thermal shutdown.  
IN  
Synchronization  
ToselectlowrippleBurstModeoperation,tietheSYNCpin  
below 0.4V (this can be ground or a logic low output). To  
synchronizetheLT8610oscillatortoanexternalfrequency  
connect a square wave (with 209 to 809 duty cycle) to  
theSYNCpin.Thesquarewaveamplitudeshouldhaveval-  
leys that are below 0.4V and peaks above 2.4V (up to 6V).  
Frequency foldback behavior depends on the state of the  
SYNC pin: If the SYNC pin is low the switching frequency  
will slow while the output voltage is lower than the pro-  
grammed level. If the SYNC pin is connected to a clock  
sourceortiedhigh,theLT8610willstayattheprogrammed  
frequency without foldback and only slow switching if the  
inductor current exceeds safe levels.  
The LT8610 will not enter Burst Mode operation at low  
output loads while synchronized to an external clock, but  
instead will pulse skip to maintain regulation. The LT8610  
may be synchronized over a 200kHz to 2.2MHz range. The  
R resistor should be chosen to set the LT8610 switching  
There is another situation to consider in systems where  
the output will be held high when the input to the LT8610  
is absent. This may occur in battery charging applications  
or in battery-backup systems where a battery or some  
other supply is diode ORed with the LT8610’s output. If  
T
frequency equal to or below the lowest synchronization  
input. For example, if the synchronization signal will be  
500kHz and higher, the R should be selected for 500kHz.  
T
The slope compensation is set by the R value, while the  
T
minimum slope compensation required to avoid subhar-  
monic oscillations is established by the inductor size,  
input voltage, and output voltage. Since the synchroniza-  
tion frequency will not change the slopes of the inductor  
current waveform, if the inductor is large enough to avoid  
the V pin is allowed to float and the EN pin is held high  
IN  
(either by a logic signal or because it is tied to V ), then  
IN  
theLT8610’sinternalcircuitrywillpullitsquiescentcurrent  
through its SW pin. This is acceptable if the system can  
tolerate several ꢀA in this state. If the EN pin is grounded  
the SW pin current will drop to near 1μA. However, if the  
subharmonic oscillations at the frequency set by R , then  
T
the slope compensation will be sufficient for all synchro-  
V pin is grounded while the output is held high, regard-  
IN  
nization frequencies.  
less of EN, parasitic body diodes inside the LT8610 can  
pull current from the output through the SW pin and  
For some applications it is desirable for the LT8610 to  
operate in pulse-skipping mode, offering two major differ-  
ences from Burst Mode operation. First is the clock stays  
awake at all times and all switching cycles are aligned to  
theclock.Secondisthatfullswitchingfrequencyisreached  
at lower output load than in Burst Mode operation. These  
the V pin. Figure 3 shows a connection of the V and  
IN  
IN  
EN/UV pins that will allow the LT8610 to run only when  
the input voltage is present and that protects against a  
shorted or reversed input.  
8610p  
16  
LT8610  
APPLICATIONS INFORMATION  
D1  
V
V
IN  
IN  
LT8610  
EN/UV  
GND  
GND  
8610 F03  
V
OUT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
±
FB  
SYNC  
PG  
TR/SS  
RT  
Figure 3. Reverse VIN Protection  
BIAS  
INTV  
EN/UV  
CC  
PCB Layout  
BST  
ForproperoperationandminimumEMI,caremustbetaken  
during printed circuit board layout. Figure 4 shows the  
recommended component placement with trace, ground  
plane and via locations. Note that large, switched currents  
V
IN  
flowintheLT8610’sV pins,PGNDpins,andtheinputca-  
IN  
SW  
pacitor(C1).Theloopformedbytheinputcapacitorshould  
GND  
be as small as possible by placing the capacitor adjacent  
to the V and PGND pins. When using a physically large  
IN  
input capacitor the resulting loop may become too large  
in which case using a small case/value capacitor placed  
close to the V and PGND pins plus a larger capacitor  
IN  
further away is preferred. These components, along with  
the inductor and output capacitor, should be placed on the  
samesideofthecircuitboard,andtheirconnectionsshould  
be made on that layer. Place a local, unbroken ground  
plane under the application circuit on the layer closest to  
the surface layer. The SW and BOOST nodes should be  
as small as possible. Finally, keep the FB and RT nodes  
small so that the ground traces will shield them from the  
SW and BOOST nodes. The exposed pad on the bottom of  
the package must be soldered to ground so that the pad  
is connected to ground electrically and also acts as a heat  
sink thermally. To keep thermal resistance low, extend the  
ground plane as much as possible, and add thermal vias  
under and near the LT8610 to additional ground planes  
within the circuit board and on the bottom side.  
V
OUT  
8610 F04  
V
LINE TO BIAS  
VIAS TO GROUND PLANE  
OUT  
OUTLINE OF LOCAL  
GROUND PLANE  
Figure 4. Recommended PCB Layout for the LT8610  
must be soldered to a ground plane. This ground should  
be tied to large copper layers below with thermal vias;  
these layers will spread heat dissipated by the LT8610.  
Placing additional vias can reduce thermal resistance  
further. The maximum load current should be derated  
as the ambient temperature approaches the maximum  
junction rating. Power dissipation within the LT8610 can  
be estimated by calculating the total power loss from an  
efficiencymeasurementandsubtractingtheinductorloss.  
ThedietemperatureiscalculatedbymultiplyingtheLT8610  
power dissipation by the thermal resistance from junction  
to ambient. The LT8610 will stop switching and indicate  
a fault condition if safe junction temperature is exceeded.  
High Temperature Considerations  
For higher ambient temperatures, care should be taken in  
the layout of the PCB to ensure good heat sinking of the  
LT8610. The exposed pad on the bottom of the package  
8610p  
17  
LT8610  
TYPICAL APPLICATIONS  
5V Step-Down Converter  
12V Step-Down Converter  
V
IN  
5.5V TO 42V  
V
BST  
IN  
V
IN  
12.5V TO 42V  
V
BST  
0.1μF  
2.5μH  
IN  
4.7μF  
EN/UV  
0.1μF  
10μH  
4.7μF  
V
OUT  
EN/UV  
V
5V  
OUT  
SW  
LT8610  
12V  
SW  
LT8610  
2.5A  
47μF  
SYNC  
TR/SS  
INTV  
BIAS  
2.5A  
47μF  
SYNC  
TR/SS  
INTV  
BIAS  
10nF  
100k  
10nF  
100k  
PG  
FB  
POWER GOOD  
PG  
FB  
1M  
POWER GOOD  
1μF  
1M  
1μF  
10pF  
CC  
10pF  
CC  
RT PGND GND  
RT PGND GND  
18.2k  
= 2MHz  
243k  
41.2k  
= 1MHz  
88.7k  
f
SW  
8610 TA02  
f
SW  
8610 TA0±  
5V Step-Down Converter  
1.8V 2MHz Step-Down Converter  
V
V
IN  
IN  
5.5V TO 42V  
V
BST  
IN  
3.4V TO 15V  
V
BST  
IN  
0.1μF  
10μH  
4.7μF  
0.1μF  
1μH  
(42V TRANSIENT)  
EN/UV  
4.7μF  
V
EN/UV  
PG  
OUT  
V
1.8V  
2.5A  
OUT  
5V  
SW  
LT8610  
SW  
LT8610  
2.5A  
68μF  
SYNC  
TR/SS  
INTV  
BIAS  
68μF  
SYNC  
BIAS  
10nF  
100k  
10nF  
PG  
FB  
POWER GOOD  
TR/SS  
INTV  
1M  
1μF  
866k  
1μF  
FB  
10pF  
CC  
4.7pF  
CC  
RT PGND GND  
RT PGND GND  
110k  
= 400kHz  
243k  
18.2k  
= 2MHz  
1M  
f
SW  
f
8610 TA03  
SW  
8610 TA06  
3.3V Step-Down Converter  
1.8V Step-Down Converter  
V
V
IN  
IN  
3.4V TO 42V  
V
BST  
IN  
3.8V TO 27V  
V
BST  
IN  
0.1μF  
4.7μH  
4.7μF  
0.1μF  
1.8μH  
(42V TRANSIENT)  
4.7μF  
EN/UV  
PG  
EN/UV  
PG  
V
1.8V  
2.5A  
OUT  
V
3.3V  
2.5A  
OUT  
SW  
LT8610  
SW  
LT8610  
120μF  
SYNC  
BIAS  
47μF  
SYNC  
BIAS  
10nF  
10nF  
TR/SS  
INTV  
TR/SS  
INTV  
866k  
1μF  
1M  
1μF  
FB  
FB  
4.7pF  
CC  
4.7pF  
CC  
RT PGND GND  
RT PGND GND  
110k  
= 400kHz  
1M  
18.2k  
= 2MHz  
412k  
f
SW  
f
SW  
8610 TA07  
8610 TA04  
3.3V Step-Down Converter  
Ultralow EMI 5V 2.5A Step-Down Converter  
V
IN  
3.8V TO 42V  
FB1  
BEAD  
V
BST  
IN  
4.7μH  
4.7μF  
0.1μF  
8.2μH  
4.7μF  
V
IN  
5.5V TO 42V  
EN/UV  
PG  
V
BST  
IN  
V
3.3V  
2.5A  
OUT  
0.1μF  
4.7μH  
4.7μF  
4.7μF  
SW  
EN/UV  
PG  
LT8610  
V
OUT  
68μF  
SYNC  
BIAS  
5V  
SW  
10nF  
LT8610  
2.5A  
47μF  
SYNC  
BIAS  
TR/SS  
INTV  
10nF  
1M  
1μF  
1M  
FB  
TR/SS  
FB  
1μF  
4.7pF  
CC  
10pF  
RT PGND GND  
INTV  
CC  
RT PGND GND  
110k  
= 400kHz  
412k  
52.3k  
= 800kHz  
243k  
f
SW  
8610 TA05  
FB1: TDK MPZ2012S221A  
f
SW  
8610 TA11  
8610p  
18  
LT8610  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1667 Rev E)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 t 0.102  
(.112 t .004)  
2.845 t 0.102  
(.112 t .004)  
0.88± t 0.127  
(.035 t .005)  
1
8
0.35  
REF  
5.23  
(.206)  
MIN  
1.651 t 0.102  
(.065 t .004)  
1.651 t 0.102  
(.065 t .004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
±
0.305 t 0.038  
0.50  
(.01±7)  
BSC  
NO MEASUREMENT PURPOSE  
4.03± t 0.102  
(.15± t .004)  
(NOTE 3)  
(.0120 t .0015)  
TYP  
0.280 t 0.076  
(.011 t .003)  
RECOMMENDED SOLDER PAD LAYOUT  
16151413121110  
±
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 t 0.102  
(.118 t .004)  
(NOTE 4)  
0s – 6s TYP  
4.±0 t 0.152  
(.1±3 t .006)  
GAUGE PLANE  
0.53 t 0.152  
(.021 t .006)  
1 2 3 4 5 6 7 8  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 t 0.0508  
(.004 t .002)  
MSOP (MSE16) 0±11 REV E  
0.50  
(.01±7)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
8610p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT8610  
TYPICAL APPLICATION  
3.3V and 1.8V with Ratio Tracking  
Ultralow IQ 2.5V, 3.3V Step-Down with LDO  
V
IN  
3.8V TO 42V  
V
V
BST  
SW  
IN  
3.8V TO 27V  
IN  
V
BST  
IN  
0.1μF  
5.6μH  
4.7μF  
0.1μF  
1.8μH  
EN/UV  
PG  
4.7μF  
EN/UV  
PG  
V
3.3V  
2.5A  
OUT1  
V
3.3V  
2.5A  
OUT1  
LT8610  
SW  
LT8610  
47μF  
SYNC  
47μF  
SYNC  
BIAS  
10nF  
10nF  
BIAS  
FB  
TR/SS  
INTV  
TR/SS  
INTV  
232k  
1μF  
1M  
1μF  
FB  
4.7pF  
CC  
4.7pF  
CC  
RT PGND GND  
V
OUT2  
RT PGND GND  
2.5V  
IN  
OUT  
88.7k  
= 500kHz  
20mA  
2.2μF  
±7.6k  
18.2k  
= 2MHz  
LT3008-2.5  
412k  
SHDN SENSE  
f
SW  
f
SW  
8610 TA10  
V
BST  
SW  
IN  
0.1μF  
3.3μH  
4.7μF  
EN/UV  
PG  
V
OUT2  
1.8V  
2.5A  
LT8610  
68μF  
SYNC  
24.3k  
BIAS  
FB  
TR/SS  
INTV  
80.6k  
4.7pF  
10k  
1μF  
CC  
RT PGND GND  
88.7k  
= 500kHz  
±3.1k  
f
SW  
8610 TA08  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT8611  
42V, 2.5A, ±69 Efficiency, 2.2MHz Synchronous Micropower Step-Down V : 3.4V to 42V, V  
= 0.±7V, I = 2.5μA,  
IN  
OUT(MIN) Q  
DC/DC Converter with I = 2.5μA and Input/Output Current Limit/Monitor  
I
< 1μA, 3mm × 5mm QFN-24 Package  
SD  
Q
LT36±0  
LT3±71  
LT3±±1  
LT3±70  
LT3±±0  
LT3480  
36V with 60V Transient Protection, 4A, ±29 Efficiency, 1.5MHz  
V : 3.±V to 36V, V  
SD  
= 0.±85V, I = 70μA,  
Q
IN  
OUT(MIN)  
Synchronous Micropower Step-Down DC/DC Converter with I = 70μA  
I
< 1μA, 4mm × 6mm QFN-26 Package  
Q
38V, 1.2A, 2.2MHz High Efficiency Micropower Step-Down DC/DC  
V : 4.2V to 38V, V  
= 1.21V, I = 2.8μA,  
Q
IN  
OUT(MIN)  
Converter with I = 2.8μA  
I
< 1μA, 3mm × 3mm DFN-10 and MSOP-10E Packages  
SD  
Q
55V, 1.2A, 2.2MHz High Efficiency Micropower Step-Down DC/DC  
V : 4.2V to 55V, V  
= 1.21V, I = 2.8μA,  
Q
IN  
SD  
OUT(MIN)  
Converter with I = 2.8μA  
I
< 1μA, 3mm × 3mm DFN-10 and MSOP-10E Packages  
Q
40V, 350mA, 2.2MHz High Efficiency Micropower Step-Down DC/DC  
V : 4.2V to 40V, V  
= 1.21V, I = 2.5μA,  
Q
IN  
OUT(MIN)  
Converter with I = 2.5μA  
I
< 1μA, 3mm × 2mm DFN-10 and MSOP-10 Packages  
SD  
Q
62V, 350mA, 2.2MHz High Efficiency MicroPower Step-Down DC/DC  
V : 4.2V to 62V, V  
= 1.21V, I = 2.5μA,  
OUT(MIN) Q  
IN  
Converter with I = 2.5μA  
I
< 1μA, 3mm × 3mm DFN-10 and MSOP-6E Packages  
SD  
Q
36V with Transient Protection to 60V, 2A (I ), 2.4MHz, High Efficiency  
V : 3.6V to 36V, Transient to 60V, V  
= 0.78V,  
OUT  
IN  
OUT(MIN)  
Step-Down DC/DC Converter with Burst Mode Operation  
I = 70μA, I < 1μA, 3mm × 3mm DFN-10 and  
Q SD  
MSOP-10E Packages  
LT3±80  
58V with Transient Protection to 80V, 2A (I ), 2.4MHz, High Efficiency  
V : 3.6V to 58V, Transient to 80V, V  
= 0.78V,  
OUT(MIN)  
OUT  
IN  
Step-Down DC/DC Converter with Burst Mode Operation  
I = 85μA, I < 1μA, 3mm × 4mm DFN-16 and  
Q SD  
MSOP-16E Packages  
8610p  
LT 0512 • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA ±5035-7417  
© LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1±00 FAX: (408) 434-0507 www.linear.com  
配单直通车
LT8610ABEMSE-5#PBF产品参数
型号:LT8610ABEMSE-5#PBF
Brand Name:Linear Technology
是否Rohs认证:符合
生命周期:Active
IHS 制造商:LINEAR TECHNOLOGY CORP
零件包装代码:MSOP
包装说明:MSOP-16
针数:16
制造商包装代码:MSE
Reach Compliance Code:compliant
风险等级:2.18
Is Samacsys:N
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!